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Exact field ionization rates in the barrier-suppression regime from numerical time-dependent
Schrodinger-equation calculations

D. Bauer and P. Mulser
Theoretical Quantum Electronics (TQE)Darmstadt University of Technology, Hochschulstrasse 4A, D-64289 Darmstadt, Germany
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Numerically determined ionization rates for the field ionization of atomic hydrogen in strong and short laser
pulses are presented. The laser pulse intensity reaches the so-called “barrier-suppression ionization” regime
where field ionization occurs within a few half laser cycles. Comparison of our numerical results with ana-
lytical theories frequently used shows poor agreement. An empirical formula for the “barrier-suppression
ionization” rate is presented. This rate reproduces very well the course of the numerically determined ground-
state populations for laser pulses with different length, shape, amplitude, and frequency.
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I. INTRODUCTION field on theinner atomicdynamics must not be neglected in
BSI. An attempt to extend the ADK theory to BSI has been

With the “table-top” laser systems, nowadays available,undertaken14]. A pure classical ionization rate has been
laser pulse peak field strengths much greater than the bindingoposed recentlj15].
field of the outer atomic electrons can be achie(s=t, e.g., In this paper we compare numerically determined ioniza-
[1] for an overview. Above a certain threshold electric field tion rates for various kinds of pulse shapes and peak field
the electron is able to escape even classically from thestrengths with results predicted by several analytical deriva-
atomic nucleus, i.e., without tunneling through the barriertions: the Landau tunneling formu[d 3], the Keldysh rate
formed by the Coulomb potential and the external electrid11], the ADK formula[10] and its extension to the BSI
(lasey field. This regime is called “barrier-suppression ion- regime[14], a classical rate derived by Posthunatsl.[15]
ization” (BSI) [2]. and a tunneling rate suggested by Mul§&6]. In our nu-

In combination with the dramatic progress in decreasingnerical studies we restrict ourselves to the ionization of
the pulse duration below 10 f8—6] new features in the atomic hydrogen in an intense, short, linearly polarized laser
ionization dynamics are expected. In particular, ionization apulse. We focus on the field strength region where the ion-
such high field strengths occurs mainly within a few halfization rate is of the order of the laser frequency because
laser cycles, i.e., on a subfemtosecond time scale, providddnization occurs within a few half laser cycles in this case.
that the pulse rises fast enough so that tunneling contributes In Sec. Il we review the time-dependent Safirger
negligibly to the overall ionization. Fast depletion of bound equation(TDSE) of field ionization. Moreover, we state the
states within one half laser cycle leads to a nonisotropic elecanalytical formulas used for comparison with our numerical
tron distribution. Apart from the peaked angular distributionresults. In Sec. Ill we present our numerical results for vari-
of the photo electrons in electric field direction, in the BSI0Us pulse shapes and field strengths. The numerical results
case there is also an asymmetry a'ong this field wlST[“S are diSCUS§ed in Sec. IV. We ConC|l,!de in Sec. V. Details on
opens up the possibility to manipulate the electron distributh€ numerical method are attached in the Appendix.
tion function of laser produced plasmas. By “tailoring” the
pulse shape the plasma formation process may be controlled
according to the application under consideration, e.g., har- Il. THEORY
monics generatioh8], or x-ray laser schemd$].

Experimentally observed ion yields are usually analyzed
by means of tunneling theories among these Ammosov- The TDSE for an electron interacting with the nuclear
Delone-Krainov(ADK) [10], Keldysh[11], Keldysh-Faisal- ~potential—Z/r and the laser field(t) in dipole approxima-
Reiss(KFR) [12], or Landay13] theory are the most promi- tion and length gauge readsee, e.g.[17])
nent ones. However, it is, in general, not possible to get good 2
agreement for several ion species without “shifting” the la- ii\]f(r t)= ( — V——E + rE(t))\If

; , o 1O )= (r,t) @

ser intensity{2]. By examining the derivations of KFR-type at 2 r

theories it becomes obvious that thefould fail in the

barrier-suppression ionization regime because the transition

between arunperturbedinitial state and a Volkov state is [atomic units(a.u) are used throughout this pagdd]]. If

calculated there. However, the influence of the strong lasehe electric field is chosen to be directed along thaxis,
cylindrical coordinates are introduced, and the ansatz
W (p,,z,t)=(p,z,t)expime)(2m) Y2 is made, the TDSE

*URL: http://www.physik.tu-darmstadt.de/tqe/ assumes the following two-dimensional form:

A. Time-dependent Schralinger equation
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9 111 4 9 m g2 1. Landau formula
iﬁ‘ﬂ: “2/p %(P%) T2 El ¥ Landau and Lifshitz derived a formula for the ionization
p rate of hydrogen when the electron is in the ground state
7 initially [13]. The result is easily extended to hydrogenlike
+| zE(t)— . 2 ions (where the ground-state ener -Z72/2),
(t) N W 2 ( ¢ gyds= )
o iy (2|&|)>? 2(2|&))%*
and the normalization condition WL=4—E exj -~ ——3g |- (8
f dp pJ dz|y(p,z,t)|?=1 (3) 2. Keldysh formula
0 —o0o0

Keldysh perturbatively calculated the transition rate from
holds. The TDSE(2) was numerically solved first by Ku- &0 initial bound state to a state representing a free electron in

lander in 1987, but for intensities below *0N/cn? [19]. a laser field(Volkov state [11],
In a recent work by Konet al.[20] it was systematically "
examined for what parametarthe substitution (6)2 - E 2(2]&)|)¥2
K= 25/4 <0 (250)3/2 o 3—E ' (9)

3. Ammosov-Delone-Krainov formula

D(£,2,) =WV z 1), E=p, €)

is most favorable numerically. It turned out that the choice . . o
\=3/2 is best, both for stability and accuracy. The TDSE_ Ammosov, Delone, and Krainov derived a tunneling ion-
corresponding to the substitutiad) is given in the Appen- ization rate for complex atoms in an ac electric figld].
dix. We used a Peaceman-Rachford scheme to propagate thBe initial state is described by an effective quantum number
wave function®(£,z,t) (see the Appendix or Ref20] for ™ and the angular and magnetic quantum numbeasdm,
detaily. Absorbing boundary conditions were implementedrespectively. The ADK result reads
which keep the main interaction region in the vicinity of the 1
atomic nucleus free from otherwise reflected probability den- 2 3E
sity. Wapk = Cr (7, m)| & —2lE)

In all our calculations we started from the @jround state, T 0
i.e., m=0. The stable ground state on the numerical grid 2 2n* —|m|-1 2(2|&|)3"2
(which is slightly different from the analytical solution of the X E(2|50|)3’2) ex;{ - T) ,
Coulomb problem, depending on the grid spagings de-
termined by applying our propagation scheme with an imagi- (10
nary time step to the grid representation of the known ana-
lytic solution. with

B. lonization rate formulas

n*
Coer=| 22 (2mn*)~ 12
In this section we review the ionization rate formulas used s n* '

for comparison with our numerical results of Sec. Ill. If we
assume that an ionization ra¥®[ E(t)] is given, the prob- ,
ability for the electron to remain bound is f(/,m)= (2/+1)(7+|m)! _
t 2™ mft (/= |ml)!
I(t)=ex —fwwwnm'. (5) . . |
0 The constant in the coefficientC,+, is Euler's number
2.718 3B ... . In thederivation of the ADK ratg(10) aver-
We take aging over one laser cycle was performed. The validity of the
ADK formula is expected to be best for*>1, E<1, and
A()=1-T(t) 6 w<|&.
as the ionization probability which is, apart from a small 4. BSI extension to ADK

time shift, equivalent to the common procedure to calculate  kyainov suggested an extension of ADK theory to incor-
the amount of probability to find the electron in a small yorate BSI[14]. The result is

volume around the atomic nucleus,

a  (a , B E[4e(le]) 20
A (t):]-_fo dPPJ_adZ|lﬂ(p,Z,t)| ’ a~5 a.u. (7) Kr 7Tn* (2E)l/3\ En*
e > 2|&|
We assume that the laser pulse “hits” the atontat0 (or Xf Ai2l x2+ x2dx, (11)
ionization is negligible fot<0). 0 (2E)3?2
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where Ai denotes the Airy function. Formu{al) reduces to 1 e oo
the usual ADK raté10) in the limit of a relatively weak laser 3 T
field (tunneling limif). =

Lé Foo2w—0il

5. Classical rate proposed by Posthumus et al. '§
Recently, Posthumus and co-workers proposed a purely § 0.1+
classical BSI ionization ratgl5]. Taking the equipotential k. “ T
surface corresponding to the atomic ground state and exam- § N e
ining its intersection with the field-deformed Coulomb po- ™
tential enables the authors to calculate the rate from a geo- ' E-osw=osd  ESQ4W-03
metrical viewpoint. Their result reads 0.01 0 2 4 6 8 10 12 14 16
Time ¢ (a.u.)
_1_53/(425 T.= A FIG. 1. Ground-state populatiohi(t) vs time for an instanta-
e 2T, ! 0 |50|(2|50|)1/2' (12 neously switched on dc electric field. After a short transient behav-

ior (until ~2 atomic time unitsthe rates remain constant in time.
To is the classical orbit period for the so-called “free- The field strengthé as well as the constant ratésare indicated in
falling” trajectories with zero angular momentum. The au- the plot.
thors of[15] present also a cycle-averaged expression of the
rate. They finally suggest to takly+W ok (1) as the total ~ might be. Furthermore, it is interesting to check whether ion-
ionization rate in the BSI regime whetg is an appropriate ization occurs with a constant rate after transient effects have

threshold intensity. died out.
In the instantaneously switched on field case the envelope
6. Tunneling rate proposed by Mulser function is

Mulser calculated the ionization rate by approximating By ;
the tunneling barrier formed by the Coulomb potential and E(t)=E=const fort>0 (0 otherwisg. (19
the external field with a barrier parabolic in shdfé]. After . ] ] ]
calculating the transmission coefficient through this paraln Fig. 1 the ground-state populatidi{t) is plotted vs time
bolic barrier and making an assumption for the tunnelingfor the five different amplitude&=0.1, 0.2, 0.3, 0.4, and

current the rate formula 0.5. One easily verifies that after a very short transient period
of about 2 a.u=0.048 fs the constant rate behavior sets in.
& A+exppg] 7—3« This transient time period may be estimated by purely clas-
MUZW "—ar1 where A=exp( Y ) sical considerations if one assumes that the atomic response
time is similar to that of a classical system with an electron
13 density corresponding to the quantum mechanical probability
12 density of the ground state. The electron density them,is
= 3+_ac a= 4E C=—m(2|&)|)18 2|€0| ~(4m/3)" ! a.u., which leads to a “plasma frequencys;,
4 7 (2|&)¥ O pu2g34 <312 3y, The classical response time therefore would be
about 3.6 a.1=0.09 fs.
is obtained. The constant rated/ are given in the plot. We postpone a

comparison with the analytical rate formulas mentioned
above till Sec. IV.

The probability densityy(¢,z)|? after 15.5 atomic time

In this section we study the ionization dynamics of tiee 1 units for theE=0.3 case is shown in Fig. 2. Since we chose
atomic hydrogen electron under the influence of the externagt > g the electron escapes in negatweirection. Note the
laser fieldE(t). The laser field is assumed to have the formyonounced asymmetry and thes peak which does not

. move as a whole; it rather persists at the Coulomb singular-
E(t)=E(t)sin(wt+ ¢), 14 ity.

IIl. NUMERICAL RESULTS

where E(t) is the pulse shape function ardis a constant B. Square pulses and phase dependence
phase. In the following we vary the pulse enveld¢), the
laser frequency, and the phase in order to examine their
influence on the temporal evolution of the ground-state prob-
ability I'(t).

Now we study an ac field with a steplike envelope func-

E(t)=E sifwt+¢) for t>0 (0 otherwisg.
(16)
A. Instantaneously switched on dc field
Although the dc field instantaneously switched on is, from!n Fig. 3 the ground-state populations for the two field am-
the experimental point of view, not realistic at all, this caseplitudese=0.3 and 0.5 are shown. In each case three differ-
delivers useful insight into how important transient effectsent phases §=0,7/4,7/2) were chosen in order to check
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FIG. 2. Contour plot of the probability density(¢,2)|? after z (au)

15.5 atomic time units for th&=0.3 case. The inlet shows the - . )

same situation as a surface plot. The electron escapes in negative F'C: 4. Contour plot of the probability density/(¢,2)|* after

direction by “over the barrier” ionization. However, a peak re- One laser cycle for th&(t) =0.3 coswt case. Owing to rescattered

mains at the Coulomb singularity. probability density wave packets have already forr_n_ed. The_ inlet
shows the corresponding surface plot of the probability density.

how strong |on|zat!on depends on phase effects. The freélvailable have to cross the field strength region where the
guency wasw=0.2 in these runs.

During the course of one half cvele ionization is strondl ionization rate is~ w. Once this regime is passed there is not
9 atcy T _g Y much electron density left to be ionized by the stronger part
phase dependent. In tH&(t)=E coswt cases ionization is f the pulse.

particularly strong in the beginning owing to the abrupt turn  gqor the sake of illustration the probability density after
on of the field, while in theE(t)=E sin wt cases ionization one complete optical cycle in thE(t)=0.3 coswt case is
starts smoothly. A steady state rate, based on cycle averaghown in Fig. 4. Owing to rescattering of probability density
ing, of course cannot resolve such details. at the ionic core wave packets have already built up. Closer
For E=0.3 ionization lasts mainly two half cycles while examination yields that subsequent wave packets in position
for E=0.5 already after one single half cycle ionization is SPaC€ can be mapped to subsequent wave packets in momen-
>98%. The more rapid ionization is, the stronger should bdUM space. These momentum space packets differ in energy

the dependence of ionization on the phaséHowever, even 3?’ thﬁ Igmou_nt thﬁfj’A_l"i‘I”d thuks are t;‘f ;amous ;‘a_lb%ve
in the E=0.5 case the two fieId£(t)=E sinwt and reshold ionization”(ATI) peaks(see[21] for a detaile

. analysis.
E(t)=E coswt lead to the same net ionizatiafter one half
cycle Only if one is interested in the ionization dynamics on
time scales below one optical half cycle ionization becomes
phase sensitive. However, even the shortest pulses nowadaysA shape which resembles in a reasonable manner an ex-
perimental laser pulse is Gaussian. We took

C. Gaussian pulses

1.00 FEEE ) | ) ) (t—ty)?
E(t)=E(t)sin ot, E(t)=E exp — 202 ) (17)

g

Since a Gaussian is infinitely extended we have to start our
computer runs with nonvanishing(0). We choseE(0) to

be 5% of the maximum field amplitude. Demanding the
Gaussian envelope to covirlaser cycles within the region

E(t)>0.05 vyields

Ground state population I'(¢) (a.u.)
o)
o

0.01 to=Nmlw, o?=t2(4 In 20). (18

0.0 0.2 0.4 0.6 0.8 1.0
Time ¢ (cycles) In Fig. 5 the ground-state populations for the four Gaussian
FIG. 3. The ground-state populations in a strong ac field for twoPulses WithE=0.3, 0.5 andN=6, 12 each an®=0.2 are
different peak field strengthsS(=0.3 and 0.5) and three different ShOWn. Besides, the result for a lower frequenay=0.1)
phasesp each. The dotted lines correspondde 0, i.e.,E sinwt, ~andE=0.5,N=12 is included. The 12-cycle=0.3 pulse

the dashed lines are the= /2 case E coset), and the interme-  (drawn solid ionizes most slowly, but the six-cycle=0.3
diate casep= m/4 is drawn dashed-dotted. pulse (dotted depletes the ground state quicker than is the
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FIG. 5. Ground-state populations for hydrogen in a Gaussian FIG. 6. Instantaneous ionization rates vs the electric field
laser pulse coveringl cycles within the region where the electric present at the certain instant during the course of the laser pulse.
field is 5% of the pulse amplitude [see formulag17) and(18) for The results have been obtained from different pulse shapes and
detaild. frequencies:(+) sir? pulse with w=0.2, (*) sir? pulse with @
=0.1, (¢) instantaneously switched on dc field)\} Gaussian
pulse withw=0.2. The curves are predictions from various analyti-

al theories(L) Landau,(Al) ADK, (A2) to BSI extended ADK,
~ ) Keldysh,(P) Posthumus, an@M) Mulser. The agreement in the
shorterE=0.3 pulse. region 0.15<E=<0.5 is poor. The straight line ¥/=2.4E2 which

The low frequency pulséthin solid ling causes more fits the numerical data in this region quite well.
rapid ionization than its counterpart with twice the frequency

since the total time where the BSI region is reacketa- A . .
sured inabsolutetime unit9 is larger. Eieergs on the pulse envelope orly(t) =W E(t)], is suffi

. We .W'" _furthv_ar discuss the ground-state populatlons de- We determinednstantaneoudonization rates from the
picted in Fig. 5 in Sec. IV when we reproduce them with and - : . .
ecreasing ground-state populations, in accordance with Eq.

empirical formula. (6). In Fig. 6 the results are plotted vs the electric field
present at the corresponding instant. Usually the deepest de-

case for the 12—cyc|§= 0.5 casddasheql This is due to the
fact that the BSI regime is reached earlier for the weaker bu

D. sin” pulses scent in the ground-state population is in the vicinity of the
In Ref. [7] one of the authors dealt extensive|y with 2S|n electric field maximum of the actual half Cycle. HOWeVer,
pulses of the form this behavior might be disturbed by “backsweeping” prob-

ability density ionized earlier, especially for high frequencies
(frequencies not much less thafy|) since the excursion
length of a freely oscillating electron is then not much larger
than the width of its wave packet representation.

Since the results look very similar to those in the Gaussian In Fig. 6 different symbols are used for different pulse
case we suppress a further discussion here. However, in Se)apes, pulse lengths, and laser frequencies. For comparison
IV we utilize rates numerically determined [i7] for sir?  the predictions by the analytic formulas of Sec. IIB are
pulses in order to confirm the insensitivity of our proposeddrawn as well. The scattering of the numerical data is due to
rate formula with respect to the pulse shape. Furthermore, #€ fact that instantaneous rates for a certain electric field
different numerical scheme was used 7. This gives addi- Value may stem from runs with different pulse shapes, peak
tional reliability to the numerical results which will be uti- field strengths, or laser frequencies.

lized to derive an empirical BSI rate in the following section. The BSI regime for atomic hydrogen sets in f&r
=0.146 when a classical electron, initially on &= —0.5

orbit, can escape from the atomic core. In general this so-
calledcritical field in the case of hydrogenlike ions is given

. . L . by [22-24
In this section we want to demonstrate that it is possible

to reproduce our numerical results using a simple formula for 3

the ionization rate in the BSI regime. This rate is not sensi- Ecie=(V2+1)| 432 (20

tive to laser frequency and pulse shape in a wide parameter

range. Moreover we show that none of the analytical rate®©nce the critical field is reached one expects rapid ionization

stated in Sec. Il B is applicable to BSI. within a few half cycles. Therefore we are especially inter-
Since BSI occurs mainly during one or two half laserested in the region wherg=0.15. Fortunately, the scatter-

periods a cycle-averaged rate obviously makes no sensig of our numerical data is small in this region of field

Therefore the laser fielH(t) with its entire time dependence strengths. This makes possible our goal to provide a BSI rate

has to be plugged into a rate formula, i.eW(t) formula valid for a wide range of pulse shapes and laser

=W[E(t)], while in tunneling ionization a rate which de- frequencies.

~ T 2w
E(t)=E sinz(—t)sin wt, T=N—. (19
T w

IV. DISCUSSION
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FIG. 7. Comparison of the numerically determined ground-state r foos
populations vs tim&drawn dottedl with the analytical predictions 0.2 a NSRS e
by means of the empirical formul@1) (drawn solid. The dashed 0.0C . T P
curve shows the result for tHe=0.5, N=6 result when only the 0.0 0.2 0.4 0.6 0.8 1.0
Landau ratg8) is applied during the entire pulse. Time ¢ (cycles)

We observe that none of the analytical theories under con- F'C- 8. Comparison of the numerical square pulse results with
sideration predicts the BSI rates correctly. Apart from Keldy-€ preductngns#ly erThuléiZD- In tlhe upf)per pllotz)lthe ?fgreefment
sh’s result all formulas overestimate the ionization rate in the> V€'Y 900d Whtie In the fower platb) formula (21) su ers from
region of interest, 0.58E<0.5. The ionization rate for the transient ionization dynamics caused by the abrupt jump in the

- SO = C ;[alectric field att=0.
much higher field strengths might be of academic interes

since such high field strengths cannot be reached Withouc} i h ith th ical
strongly ionizing the hydrogen atom during earlier parts ofdau tunneling rate. The agreement with the exact numerica

the pulse where the field strength is in the region we focus Oﬁesults(drawn dottedlis satisfactory. Deviations, especially

in this paper. In real experiments, with rare gases for inin the N=12, E=0.3 run, are mainly due to the@ven for
stance, there are of course stronger bound electrons whidawer field strength not very accurate Landau rate. For

get free not beforéE>0.1 but for those electrong,; is  shorter pulses and higher peak field strengths the agreement
larger too. We will discuss the scaling behavior of the ion-Pecomes excellent. The dashed curve is the result when the

ization rate with respect td later on. Landau rate alone is applied to the entle=6, E=0.5
The rates of Posthumu$®) and Mulser(M) saturate at pulse; the ionization rate is strongly overestimated.
higher field strengths. This is owing to taking theper- In Fig. 8 the BSI ratg21) was evaluated for the square

turbedinner atomic motion to derive an ionization current. pulses discussed in Sec. Il B. In the upper plot the agree-

In reality, however, the external field influences the innerment with the numerical results for tiesin wt case is good.
atomic motion of the electron and yields a higher ionization|_|owever in the lower plot& cosat case the agreement is

current. The tunneling theoried, Al, and A2 are even : : . : .
worse when extrapolated to higher field strengths; they prel?Ot particularly good SInce the abrupt jump in the. field
t<0) to E for (t>0) leads to transient

dict a decreasing ionization rate which is clearly unphysicalStrength from Ofor _

Note that “stabilization” cannot occur when ionization lasts dynamics which cannot be reproduced by our simple rate

less than one laser cycle. Although the Keldysh ftedoes (21). Therefore care ha_s to be excercised for laser pu_lses

not suffer from these shortcomings it underestimates the jonnereé the BSI regime is reached rather abruptly on time

ization rate by a factor 3 and more. scales shorter than one quarter laser cycle. In all other cases
The numerically determined ionization rates in the regionthe rate formulg21) worked well.

0.15<E=<0.5 can be nicely fitted bW=2.4E?. Since every

realistic pulse passes through a region where the electric field A. Scaling

is within the tunneling regime we propose a combined for-

mula The TDSE (1) can be rescaled to the atomic hydrogen

case by substituting

WE()] for E()<E’ T=zr, T=7%, w=wl/z2, E=E/Z3. (22

WO=12£12 for E)=E", @D

) - ) ) . Since our BSI rate is not sensitive to, and an ionization
whereE' is a threshold electric field determined by imposing rate has the dimension of an inverse time the rescaled result
W(t) to be continuous, anw/’(t) is an appropriate tunnel-  a54s

ing rate. For the Landau rat&’ =0.084 holds.
In Fig. 7 the solid curves were calculated by applying the , ,
BSI rate (21) to the four Gaussian pulses which led to the W(t)= WIE(D] for B()<E

23
results already depicted in Fig. 5. Fé# we used the Lan- (2.41Z%)E(1)®> for E(t)=E'. @3
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with U, the “ponderomotive potential'l ,= E%/(40?), i.e.,
the mean quiver energy of an electron in the laser field, has
to be much less than unity when tunneling theories such as Starting point is the TDSH2). We follow the line of
ADK are derived. The Keldysh parameter has the vividKono et al.[20] and perform the substitutiof#)
physical interpretation of tunneling time measured in units of
the laser period. Does the Keldysh parameter reveal some D(&z2,t) = IWE Y2y zt), E=p, (A1)
significance in the BSI regime too? First of all we note that
the Keldysh parameter iq our numerical examples is nofrhe normalization condition fo (£,z,t) simply is
much less than unity. In tHe=0.3,w=0.2 case it is 0.67, in
the E=0.5, w=0.1 case it is 0.2. Thus, in commonly used T 2_
terms in this field, we are rather in the multiphoton than in fo dgfﬁmdz|<b(§,z,t)| L (A2)
the (to BSI extendegtunneling regime.

However, the static field rates in Fig. 1 are also well cov-i.e., we have a “Cartesian”-like volume elemedé dz for
ered by our empirical rate. Additional test runs at intermedi-the normalization ofb.
ate frequencies yielded good agreement also. Thus the insen- With
sitivity of our BSI rate with respect to the laser frequency

APPENDIX: NUMERICAL METHOD

(from static fields up ta=0.2) shows that there seems to be H(t) =K +K,+V(t), (A3)
no need to put much emphasis on the concept of the Keldysh
parameter in BSI. However, we did not deal with frequencies 52 P 12
=|&| in this paper. Moreover, a small laser frequency keeps Ke=— [ E— —2(N—1)é—+| N — —) ] ,
the portion of already ionized probability density far away 2NPE T 082 9¢ 2
from the ionic nucleus most of the time since the excursion (Ad)
length is large. Therefore the ionization curves for smaller
frequencies usually look “cleaner” since interference with 1
parts of the wave function representing the already ionized Ke==3 gy (A5)
electron is suppressed.
z m?>
V. CONCLUSION V(t)= \/WJF 22 +zE(t)sinwt+¢), (A6)

We conclude that even for the simplest atom we can think
of, i.e., atomic hydrogen, none of thg theories discussed ine TDSE for®(¢,2,t) assumes the form
this paper predict correctly the ionization rate in short intense P
laser pulses reaching the BSI regime. Thus extrapolation of i—®(&,2,0)=H()D(&2,1). (A7)
tunneling theories to BSI is not permitted. From the numeri- at
cal results we deduce that a successful theory should take the
influence of the strong laser field on tmmer atomicdynam- ~ The goal is to solve this TDSE.
ics into account. For quantum treatments of strong field ion- |f A>1/2 the transformatioriAl) implies that®(0,z,t)
ization this means that one must not make the assumptior O for all times. We discretize thef(z) space by
that the initial statgto be plugged into the transition matrix

element evolves in time as if it was unperturbéas is usu- &=jA¢ j=12,...),
ally done in KFR-type theorigsin classical theorieguch as
the one by Posthumust al) this corresponds to taking the z.=(k—K/2)Az, k=1.2,...K (A8)

effect of the laser field on the bound Kepler orbits into
acount. However, since in either case, quantum or classicalyith constantA ¢ and Az. While A=1 yields the usual cy-
this appears extremely hard to achieve, empirical rates frortindrical coordinate system =3/2 turned out to offer the
numerical simulations of strong field ionization are highly numerically more appropriate choi¢20]. This is owing to
desirable and important as an ingredient for other simulatiothe proper treatment of the wave function near the origin
codes, e.g., in the field of laser-solid interact[@7—29. when the finite difference formulas for the first and second
In this paper an empirical formula for the BSI rate hasderivatives in the HamiltoniagA3) are applied to the wave
been proposed. Our formula is not sensitive to pulse shapdanction ®. Note that uniform spacing i§ corresponds to
and laser frequencies in a wide parameter range, especialhonuniform spacing ip. For\>1 thep grid width near the
when combined with a reliable tunneling formula for the origin is smallest while it gets coarser far away from the
weaker parts of the laser pulse. origin.
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We use three-point-difference formulas for all derivativesdirection version of the Crank-Nicholson method for the

in K, andK; and impose as additional boundary conditionsTDSE in more than one dimension. The evolution operator
(A10) is second order accurate in time and sp@=zlong as

(A9)  the usual three-point-difference formulas for the derivatives

In longer runs we apoly a filter each time step which re_are usell Provided a noniterative method for solving the
9 PPy P implicit matrix equations

moves probability density moving towards the boundaries.
This is a somewhat “shabby” methogimilar to “imagi-
nary potentials’}] but proper “absorbing boundary condi-
tions” as discussed ih25] are not easily implemented in
more than one dimension. In any case, we always checked
our numerical results upon sensitivity with respect to grid [1+iAtA(t; 12)/2]@" 1 =[1—iAtB(t,, 1,,)/2] D" 12
size and spacing. (A12)
The time propagation is performed by applying the evo-
lution operator

(I)(g\] ,Z,t)=q)(§,21,t)=(l)(§,ZK 1t):0

[14+i1AtB(t,; 10)/2] @ V2= [1— i AtA(t,, 1,)/2] D",
(A11)

is chosen, the method is unconditionally stable.
The stable ground state on our numerical grid was deter-

U(t+AD) = 1 (1= AtB(th+110)/2 mined by propagating a “seed function” in imaginary time,
[1+iAtA(ths12)/2]\ 1+iAtB(ths12)/2 i.e., we substitutedt— —iAt in Eq.(A10). Here, renormal-
) ization of the wave function according to E@\2) after sev-
X[1=1AtA(th+12/2], (A10) eral time steps is necessary since imaginary time propagation
with is not unitary. Our experience was that during imaginary

1 1
A=K+ 5V(1),  B)=Ke+ V(1)

time propagation\t had to be sufficiently small fo con-
verging to the ground state. A typical choice of our numeri-
cal parameters waboth for real and imaginary time propa-

gation

to the discretized representation®{¢,z,t). This is the so-
called Peaceman-RachfofBR) method[26], the alternating

A¢é=Az=0.1, At=0.05, J=60, K=1000.
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