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Invariant theory and exact solutions for the quantum Dirac field in a time-dependent spatially
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On the basis of the generalized invariant formulation, the invariant-related unitary transformation method is
used to study the evolution of the quantum Dirac field in a time-dependent spatially homogeneous electric
field. We solve the functional Schimger equation for the Dirac field and obtain the exact solutions and
corresponding total phase. The total phase includes both the dynamical phase and geomettAhahasev-
Anandan phag9e[S1050-294®8)07512-X]

PACS numbds): 03.65.Pm, 03.65.Bz

I. INTRODUCTION field. In Sec. IV, there are some concluding remarks. Finally,
in the Appendix, we present the auxiliary equations which
Quantum invariant theory was proposed by Lewis andare much more complicated than that obtained in Réffor

Riesenfeld in Ref[1]. This theory is a powerful tool for scalar field and can only be solved numerically.
treating systems with time-dependent Hamiltonians. It was
generalized in Refl2] by introducing the concept of basic Il. THE INVARIANT-RELATED UNITARY
invariants and used to study the geometric phd8e§ in TRANSFORMATION METHOD
E%nerlzgtrl)cgr:] dvt\a”rt: g‘:m%:(gg: Seoéﬂ;%gi S(.)f .an nf:oirtresgggg:gg Wg first outling the.Lewis—RiesenfeId invarignt At.heory.
more and more recognized that there are actually nothing biftonsider a one-dimensional system whose Hamiltohi¢t)
different names and attributes given to various parts of thés time dependent. A Hermitian operaldt) is called invari-
total phase[5] as long as the exact solution of the time- ant if it satisfies(using units in whichth =c=1)
dependent Schdinger equation with a time-dependent ~
Hamiltonian is concerned. The invariant theory in Réfs. a)y .
2] for obtaining the exact solutions for systems with time- ot [1(1),H®]=0. 2.9)
dependent Hamiltonians is closely related to the study of the
total phase(including dynamical phase and geometrical The eigenvalue equation 6(t) can be written as
phaseg; it may then be referred to as the phase formulation.

The introduction of the concept of the basic invariants into TN n, )= N Ap 1),

the invariant theory2] makes it possible to find a complete

set of commuting invariants and generalized time-dependent Ip

creation and annihilation operators for some of the time- - 0 2.2

dependent infinite-dimensional quantum systems—time-
dependent quantum fiel§§—8]. By using phase formulation and the time-dependent ScHinger equation for the system
and the newly developed invariant-related unitary transforis
mation method8], the exact solutions and associated phases
have been obtained for the charged Klein-Gordon field in a P (t)s -
time-dependent spatially homogeneous electric fléld]. ! T:H(t)m’(t»s' 2.3
However, to our knowledge, no work on the quantum Dirac
field with a time-dependent Hamiltonian has been seen in th&ccording to Lewis-Riesenfeld quantum-invariant theory
literature. In the present paper, we use the phase formulatidi], the particular solution\,,,t)s of Eq. (2.3 is different
and the invariant-related unitary transformation method tqrom the eigenfunction\ ,,t) of i(t) only by a phase factor
obtain the exact solutions and associated phésefuding  exie,(1)]; that is,
dynamical phases and geometric phades the quantum
Dirac field in a time-dependent spatially homogeneous elec- N ts=exdien(t) ]| Nn,t). (2.9
tric field.

The present paper is organized as follows. In Sec. II, thdhen the general solution of the Schinger equation(2.3)
phase formulation and the invariant-related unitary transforcan be shown to be
mation method is briefly reviewed. In Sec. Ill, we calculate
t_he e>_<act S(_)Iutlons and corresppndlng phases for the D|rgc |‘I’(t)>s=E Crexli on(H) ]\ 1) 2.5
field in a time-dependent spatially homogeneous electric n

1050-2947/99/5d)/55(9)/$15.00 PRA 59 55 ©1999 The American Physical Society



56 XIAO-CHUN GAO, JIAN FU, JINBO XU, AND XUBO ZOU PRA 59

where gon(t)=fg<>\n,t’|iﬂ/&t’—|3|(t’)|)\n,t’)dt’, Cn Ifzd t9 tpe conclusion that if the unitarx transformation
=(\,,0W(0))s, |Nn,t)s (N=1,2,..) aresaid to form a V(t),lo,Hy, and the eigenfunction\,) of I, have been
complete set of the solutions of E@.3). Note that, in gen- found, the problem of solving the complicated time-
eral, (t) is not unique and the complete set changes as thdependent Schainger equatiori2.3) reduces to that of solv-
choice ofi (t) changes. ing the much simplified equ_anoﬁZ.S) since it can be seen
In Ref.[2], we proposed the generalized invariant theoryfrom. Eq. (2.9 that the solution of Eq(2.8) can be easily
(the phase formulatignand established the following facts. obta|.ned by callculatmg the phase from ER.10.

. X A It is worthwhile to emphasize th&) the above used term
(i) The formal solution of Eq. (2.1 is 1I(t)  «4 chosen invariant” implies that the choice of the invariant
=U(1)I(0)U™ (), whereU(t)=P ex —i/oH(t")dt'] is the (1) is not unique and it is usually appropriate to choose
time-evolution operator for the system ar(@) can be arbi- 1(t)=01(0)U* as the system is initially in an eigenstate of

trarily chosen, so that(t) may be Hermitian or non- an operatoi (0) [1(0) may befi(t=0)] and(b) one chosen

Hermitian. (i) There are two basic invariantsk(t) invariantT(t) leads to one definite complete set of the solu
—1] o+ At =[] A (Y- ; : N -
B Ej(t)i(u gtz PO =U®PUT(1); any mvananF J(t) tions|\,,t) of Eq. (2.3 regardless of the fact that the unitary
- U(At)I(O)U (t) can be expressed as a power serick(th _ transformationV, which is required to mak& "1V time in-
andp(t) as long ad (0) can be expressed as a power seriegjependent, is only determined up to a time-independent uni-
in X andp. (iii) In some cases, a chosen non-Hermitian iN-tary transformation.
variant can act as a solution generator, with which one can
generate a complete set of solutions of the time-dependent
Schralinger equatior(2.3) from one solution of it(iv) The
concept can be generalized to find a complete set of invari-
ants and set up an invariant formulaticmepresentationfor
the study of more than one-dimensional time-dependent sys-
tems (including infinite-dimensional quantum systems or
quantum field§6-8]). In this section, we study the Dirac field in a time-
Now we begin to briefly review the invariant-related uni- dependent spatially homogeneous electric field. The La-
tary transformation method on the basis of the phase formugrangian density for the Dirac field [9]
lation. In some cases of physical interest, it is possible to

. EXACT SOLUTIONS OF THE TIME-DEPENDENT
SCHRODINGER EQUATION AND EVOLUTION
OF THE QUANTUM DIRAC FIELD
IN A TIME-DEPENDENT SPATIALLY
HOMOGENEOUS ELECTRIC FIELD

construct a time-dependent unitary transformatigh) for a L(x)=¢(X)[iV —eA-m]y(X), (3.9
chosen invariani(t) such that(i) T,=V*(t)I(t)V(t) is a
time-independent operator with where
Tol\n)=NalXp), Y= (X) o
INn) =V 1) [Np,t), (2.6 Y=93,, A=y"A,

and where the eigenvalug, is the same as that in E(R.2), I 0 0 o
(i) the HamiltonianA(t) is changed intddo(t): yO:( 0 |)' yi—( _J 0 )

. V(1) i . . :

Ho(t)sz(t)H(t)V(t)—|V*(t)T. (2.7 with o' being the Pauli spin matrices. By making use of Eq.

(3.1, it is easy to obtain the canonical momentum density

H 0_
This unitary transformation is easily shown to guarantee thaf’ in the Weyl gauger™=0

the particular solutiof\ , ,t) g, of the time-dependent Schro

dinger equatiorjassociated withd o()] Wa:i =i ‘//1- (3.2
I
P Mot (O)[An,t) (2.9
at 0 n»t/s0 ' To quantize this field, equal-time anticommutation relations

o ] ) A are introduced among the operatérsand fp
is different from the eigenfunctiof\,) of I only by the

same phase factor €ip,(t)] as that in Eq(2.4): [t}a(i,t),%ﬁ(i’,t)L:i5aﬁ5(>?—>2’),
Ao thso=exdi @n(t)]|\n)- (2.9 o o
. i . . [Ir/,a(x!t)vl///}(x,rt)]+:01[77a(xrt)177,8()(,vt)]+:0-
Substitution of|\,,t)g in Eq. (2.9 into Eq.(2.8) yields 3.3
— onlAn) =Ho(t)|\p) (2.10  We choose to work within the functional Scklinger picture

. A [6-8,10,11. From Eqgs.(3.1) and(3.2), we get the quantum
which means thaH y(t) differs froml, only by a multiply-  time-dependent Hamiltonian for the system in the Sehro
ing c-number factor, depending on the timeThus, one is dinger picture
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. J _ . Inserting Eq.(3.5) in Eq. (3.4), we get
H(t)= (%(2,0) —ai(ﬁ—eA'(t))—i,Bm z,b()?,O)Jd?’)?
5 H(t)= j d%{E [E()b{bs—E(t)dsd{]+M1(1)b] L
=f [fﬁ(x 0)|—ia a—x,—+ieAi(t)) -
+2,(1)bT dT (+n5(0)bT AT N4
+B8m Z!f(i.O>]d3>?, (3.9 AT (1), by st AS (DA b+ AZ(1)d_ b
where +>\Z(t)a+56_s] , (3.7
0 o
ai:(o_i 0), where
e
B=7o- E(t):Ep_E_[prx(t)+pyAy(t)+pzAz(t)]y
P
Because the spatial sections are flat, we can employ the
“momentum representation” for the operatdikl] Ay(D)=eA(t)+ e [y PaA (1) + PyPoALD)
&5 - (E,+m)E,
T(%.0) = - TR (R 2\ ip-X 2,2
%(X,0) E (2)372 \/;[bs(p)us(p)e (Px+ Py ALAD)],
Aty (Bya—iB-X €
+di(p)os(pre P, )\3(t)=e/-\((t)+m[pxpyAy(t)+pxpzAz(t)
d%p \/E o 1
RTEN _ Rty R —ip-X _ 2 2 i E—
VExO=2 | oo g, [P(PIU(P voe ™ (P2t PYA(D]=iel A+ (e
*ds(P)vs(P) o€, 39 X [PxPyAt) + PyPoALL) — (p2+ PDALD]]
—J1R8l2 2 3\ 0 (R T (R 7 (F
where E,=1/|p|”+m?, u(p).v<(P) Ux(P).vs(p) are the Mo = —hg(t), Aa()=A3(D). 3.9

spinors defined in Ref9] bl () (bs(p)) is the creation(an-

nihilation) operator of an “electron” with momenturii and  The time-dependent functional Sckinger equation for the
spins, di(P)(ds(p)) the creatior(annihilation operator of a  system is

“positron” with p ands. It follows from Egs.(3.3) that the

creation and annihilation operators satisfy the anticommuta- . d 1D Lo

tion relations I VI (P)it]=HOW$(P);t]. (3.9

[Bs(B).bL,(p")1: = 855 8(P—P"), It is easy to show that there exists an invarig(t} satisfying
ds(9), 0%, (5], = 8ss S(F— "), any ..
[ds(P),dg/ (B")]+= 6ss S(P—P") ;t)—'[l(t),H(t)]zo (3.10

[b<(B).bs (5)14=[ds(P).ds (5] =[BIF).DL(B)]s  Lwhich is found to be

=[di(p),dL,(p")1. =0, . . ) ) )
o o - 0=, [ aBlp.08.5.0-Bp.0BLBY)
[by(P),d5,(5) 1. =[bL(p).a%,(5")]. =[by(P),de (F')] ) (3.1

=[b{(p),ds (p")]+=0. (3.8 where

B, <(P,t) =[COS 6,C0S 6,C0S 65+ Sin 6;Sin Bssin Gge (#1743t %6) 1, (P)+[cos 6;sin O,sin fze'($2F ¢5)
—siN 6;C0S 05C08 B~ #1]b_4(F) +[ cos #;Sin 6,C0S e’ ®2+ sin 01c0s O3sin Ose (P17 #91d" ()

—[cos 6;C0s 6,sin g~ #s—sin 6;sin B3c0s hge (P17 43)1dT (), (3.123
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B_L(p,t)=—[cos 8;sin 63sin 65e~(?3* $6) —sin §,c0s B,c0S Hge' *1]b . {(P) + [ COS H,COS H5C0S b5
+5in 0,C0s 6,C08 Bse' (P17 P2 ¢5)1b _ (5) — [ cos 0;C0s B5sin Bse ' #5—sin 0;sin O,cos e (?1 ¢27dT ()
—[cos 6;sin B;c0s fge %3+ sin 0,c0os ,sin Gge'(?1~ %) 1dT (), (3.12h
DT (B,t)=[cos 0,c0s O3sin Os€' 6+ sin 6,sin 6,c0s e~ (#2+ $4)1b, (5)+[cos f,sin B;c0s Ose' 2
—sin 6,c0s 6,sin e~ (¥4~ 95)|b_(5) —[ cos f,sin O3sin Gse'($3~%5)+ sin 6,c0s B,c0s Ose~ ' #4]d". ()
—[COS 0,C08S 05C0S g — Sin 6,5in 6,sin Gge~'(42+ 42+ 46 1dT (), (3.120
DT «(p,t)=—[cos ,sin 6,c0s Ose ™ ?2—sin 6,c0S B5sin Os€' (P47 %6)1b, ((B) +[cOS ,C0s B,sin e’ s
+sin 6,sin B;c0s e’ (#3724 ]b_ (P) +[ cos 6,C0S 0,08 5 —sin ,sin O,sin he' (#3724~ ¢97d" ()

+[cos 6,sin 6,sin Bge~ (#2+%6) + sin g,c0s B5c0s e’ #41d" (), (3.129

with 6,,¢,, (M=1,2,...6) being the real solutions of the o
auxiliary equationgsee the Appendix It is easy to show V3(U=9XPI d*p[(— 6se~'?sbT T s+ €' ?5d b )
that the operator8!(p,t),B¢(p,t),DI(5,1),D¢(p,t) satisfy . o
the equal-time anticommutation relations +(— e #b" (A" -+ Oge'?ed_b. 9],
560 B (5 - 5 where, for simplicity, the argumenj of b!,bg,d! dg
[BS(P.1).Ba (P",1) ] = 055 2(P=P7), omitted. With thrc)a he)I/p of Ec(396) it |rsﬁeasy t0 show that the
[Dy(p.0).DL (5 0], = dss 8(p—p). (313 S/(t) in Eq. (3.14 transformsl (t) into the time-independent

\%
According to the invariant-related unitary transformation
method, the unitary transformatidf(t) can be constructed: Ty=VrOiHVt)=> f d3p[bl(p)bs(p)
*s
V(t)=V5(t) V() V4(t 3.1 N At s

By making use of the unitary operators in £§.14) and the
Backer-Campbell-Hausdorff formuld2], we obtainH(t)
from H(t)

Vi(t)=exp J d3p[(— 6,67 "*1bT b_+ 6,e'%1bT b, o)
+(— 0,8 %0d, T + g,6"%4d_dT )],

Y [
Uty =exp [ oI .0 1BL A+ 0,002, B Fol =0 (R0 =19 (0 5= | ¢afe(p.0

(3.1
+(— 03¢ *bT dT + 036! %sd_sb_y)], of which the first term is easily obtained
|
T OAOTD-3 [ dBlal(p.0BP)bB)+ B (p.0EAP)] @17
with
af)(p,t) =sin? x4 (p,t) + cog Bsx i (p,t) —sin 26 x&” (p,t)sin g+ x&” (p,t)cos de), (3.183
a'9(p,t)=sirOsx V) (p,t) + co s x P (p,t) — sin 205 x(p,t)sin ¢s+ x' ¥ (p,t)cos ps], (3.18h
B (p,t)=sirPdsx P (p,t) +cog s x Y (p,t) +sin 205 x,(p,t)sin ¢+ x¥(p,t)cos ¢s], (3.189

BY(p,t) =sirdsxy (p,t) +co 05\ (p,t) +sin 2606] x&(p,t)sin pe+ x(p,t)cos ¢s], (3.180
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wherex(@(p,t), (m=1,2,...,8) can be found in the Appendix. By means of the Baker-Hausdorff-Campbell fdrb2iland
Eq. (3.14), the second term in Eq3.16 can be calculated:

i\ (t)——Z f d*Blat? (p,)D{(P)Dy(B) + B (p,)ds(P)AL(P)] (3.19
with
a'9(p,t)=sirtOsx' 2 (p,t) +co s x P (p,t) — sin 205 x 9 (p,t)sin g+ x P (p,t)cos ¢g] — desin b,  (3.208
a'%(p,t) =si Bs x5 (p,t) + coF Bs x5 (p,t) —sin 285 xi (p,1)Sin s+ xi*'(P,t)COS Ps] — ssin 65, (3.200
BE(p,t)=si bsx5” (p,t) + oS s xS (p,t) +sin 205 ¥ (p,1)Sin s+ x'¥'(p,t)cOS 5] — ¢ssin b5, (3.200
B9 (p,t)=sirfx @ (p,t) +coS e x' P (p,t) +sin 20¢[ X (p,t)sin ¢+ x P (p,t)cos dg]— desin b5, (3.200
|
where x(9(p,t) (m=1,2,..,8) can be found in the Appen- INps) =|N1ps:Napss -+ (N1pst Napst - =Npg))
dix. It is clearly seen Irom Eqs{3.17),(3.1?) that, for each
modep in the p spaceH(p,t) differs froml(p) only by a =1] [bl(Bm)1"me40), (3.223
m

multiplying c-number factor depending on the tirh@ndp
=|p|. 1y is time independent and in the discrete notation, it

can be regarded as a sum of terms of which each has the  |Nds)=[N1ds:N2ds: -+ (N1ast Nagst+*=Nas))

form of the Hamiltonian for a simple Fermi oscillator of R

frequency 1. The solutions to the oscillator eigenvalue prob- = H [dl(ﬁm)]”mb# 0)

lem for p,,p,,..., modes may be characterized by integers m

nl,nz,..., (nl,nz,...,:O,l). The ground state df\/(p)) IS (nmb51nmdS:Oyl) (322@

denoted by|0) and satisfies

by(Pm)0)=bd0)=0,
"o . 1vINbs,Naghi, = (Nps s+ Np—s+ N s+ Ng—s)[Nos, Nagh,
()| 0) =00 =0. (3.2 B
By making use of the ground sta® and the raising opera- where, for convenience, we define|Nys,Ngo),
1 L 1 V

+ : .
t0rs b(Prm) =byns, d5(Prm) =0ms, We obtain theN-particle =|Np;s)|Np_s)|Ngss)|Ng_s). According to the invariant-

excited eigenstatiN) of Iy (with the particle number opera- rejated unitary transformation methd8,2], the solutions
tors being defined to beﬁmbszbfmsbms, ﬁmdsszmsdms, INps,Ngs,t)so Of the time-dependent functional Schinger

Nps= = mAmbs: Ngs= = mAmdd equation[associated wittH(t)] are

which satisfies

eX;{iE 'ﬂds(t)hNbS!NdS)IV

*s

INps:Ngs,t)so= exp{ [ 22, Dps(t)

! ") ’ r_ ! 1) NI+ a7+ /(?O(t’) ’
— | (NpgHo(t)[Npgdt’=— [ (Npd U™ (t")Ho(t)U(t") —iU " (t") 3 INps)dt
0 0
t
=-2 nmbsf [t (Pm,t') +al® (P t')]dt,
m 0
— ! ") ' r_ ! 1) INTCTOH! S+ /0"0(1:,) ’
9as= = | (Nad Fo(t)INgdt’ == | (Nad O (t)Fo(t)0(t)—i0 " () —5—[Ngodt

t
= —; Nmds fo[ﬁg"><pm,t'>+ﬂgg)(pm,t'>]dt' (3.24
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FIG. 1. The time and\, dependnece of the expectation va{uép,s)) of the particle numbef(5,s) =My, s+ Ny_ st Ay st Ag_g for the
state| W, (t))s. For the purpose of illustration, we choose the time-dependent electric-magnetic potential field to be of the form
:ﬂocost, whereﬂO:(Ao,O,O) andA, does not depend on time; and set particle nrassl and the particle momentupy=p,=p,=1.

in which J,4(t),J4¢(t) are the total phases, including the the initial state at=0 to be the ground state and calculate
dynamical phases and geometrical phases. According to thfe time dependence of the expectation value of the particle
invariant-related unitary transformation meth@ﬂzz], the  number A(P,s)=Rp, st Ap_stNg st Ayg_s for the state
particular exact solutions of the time-dependent Sdimger |W, «t))s (Which is the ground state at=0). The result of
equation(3.9) [associated withH(t) ] can be found to be the calculation is shown in Fig. 1.

W, N (1) s= V(1) Nps,Ngs, t)so

=exp{i2 abs(t)}

IV. CONCLUDING REMARKS

(1) It can be shown thab! (), bs(p), dl(p), andd(p)

. N in Eq. (3.5, and the quantum Hamiltonigf(t) in Eq. (3.7)
X ex 'izs Das(t) V(t)|NbS'NdS>'v constitute quasialgebrd 3]. It is this algebra that makes it

possible to find the unitary transformatifgt) in Eq. (3.15).
=exr{i2 73bs(t)} This means that the phase formulation and invariant-related
*s unitary transformation method can only be used to investi-
gate special time-dependent systems with Hamiltonians for
INps,Ngs:t), (3.25 which there exist corresponding quasialgebfa8]. The
Dirac field studied in this paper is one of such special sys-
where|Npe,Nge,t), are the eigenstates of the invaridit) tems. However, although special, it is interesting, since, to
- - our knowledge, no one has ever obtained exact solutions of
with particle number Ny, s+Np_stNgistNg_g). The he f ional Schidi ion f : field with
particular exact solutions in Eq3.25 for all possiblen,,  the functional Schrainger equation for a Dirac field wit
andng constitute a complete set, this means that the gener&fme-dependent Hamiltonian. In addition, the exact solutions
exact solution of the time-dependent Salinger equation ©obtained are useful as a starting point for relevant time-
(3.9 is a superposition of the particular solutions in Eq.dependent perturbation quantum field theories as was shown

xexp{iz Fas(t)

(3.25 in the case of scalar fiell8].
(2) Note that even when we choosi(t=0) asi,, the
W(t)s= > CNbSNdSeXF{iZ ﬁbs(t)} “ground-state” solution is the ground eigenstate of the
bsllds s HamiltonianH (t) only att=0, so that, in general, the term
) “ground state” is without the meaning that it has in the case
><ex++25 19ds(t)}|Nbsv'\|ds’t>l ; in which the Hamiltonian is time independent.
- (3) It is interesting to point out that the system of auxil-
CNbsNds: {Nps,Ngs;0/W(0))s, (3.26 @ary e_quations is a Pfaffian system_ in Qifferen_tial geometry. It
is of interest to use the method in differential geometry to
where the initial stat¢¥ (0))s can be chosen arbitrarily. discuss the local as well as global properties of this system

It is worthwhile to point out that the auxiliary equations and its solutions.
obtained in the present paper for the Dirac field are much (4) The method used in this paper can also be used to
more complicated than that for a scalar field in R&], and  discuss the Dirac field in other time-dependent backgrounds,
can only be solved numerically. As an illustration, we choosesuch as the Dirac field in Friedmann-Robertson-Walker flat
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1
:2(co§92—sin263)
X[N3SinN( @3+ ¢a) = N3iCOL P3+ ) ] —Sin 20,SIN O1SIN G4 N3, SIN( Do+ ) —N3iCOL o+ b4) ]
—Sin 26,C0S 0,C0S G4 A 3,SIN( 1+ P2) + N3COK P+ o) |+ N1SiN 20,C0S0,SiN 6,SIN( P11+ Do+ Pg4)

6, {sin 2 63c0s 0,€0S G4 A 3,SiN( 3+ P4) + N3;COK P35+ P4) ]+ Sin 205sin F,Sin 6,

+ N\ 1Sin 203Sin 6,C0S 6,SiN ¢p3— \1SiN 205C0S 0,SiN 0,SIN( P+ d3+ da) — N1SiN 20,SiN §1COS 6,Sin ¢,, (Al)

6,=C0S 0,SiN 1] N 3,SiN( p1+ P) + N3;COL b1+ b)]— A1COS 0,C0S 01SiN b, — COS B1SiN O] N3, SIN po+ ) + N 3;COK b,
+ p4) ] —N1SiN 048I 01SIN( b1+ o+ da), (A2)

3= CO0S 0;SiN O N3, SIN( p3+ P4) — N3;COL b3+ by) ]+ A 1COS 6,C0S 01SiN h3— COS B,SiN 1] N3, SN by + b3) + N 3,COF b4
+ ¢3) ]+ N1SiN 048N 01SIN(p1+ 3+ dy), (A3)

1
2(cog6,—sirf6s)
X [N3rSiN( 1+ o) + N 3;COK b1+ o) | —SIN 205SiN 61SiN O4[ A3, SIN(P1+ ¢3) + N3COL 1+ h3) ]
—Sin 203C0S 0,C0S G4 A3, SIN( p3+ Pa) — N3,COK 3+ P4) ]+ N1Sin 20,08 6,SIN 61SIN(Pp1+ Po+ Py)

-942

{sin 26,€0S 6,C0S O] A 3,SIN(ho+ P4) — N3iCOK Ppo+ ) ]+ Sin 26,Sin H;Sin 6,

+ N\ 1SIN 203Sin 6,C0S 01SiN ¢p3— N 1SIN 205C0S 0,SiN 61SIN( Pq+ P3+ da) — N1Sin 20,SiN 6,C0S 6,Sin ¢y,  (A4)
Bs=c0s s x5 (p.t) + xi (P.)]=sin [ X" (p.t) + X' (p.1)], (A5)

06=c0s pe[ X (p,1) + X2 (p,H)]—sin pel X (p,1) + X (p,1)], (A6)

csc &,
B 2(cog6,—sinfbs)
+N3iSIN( 3+ )] —SiN 20,8iN 61SiN 4] N 3,COK po+ hg) + N3;SIN( Do+ Bdy) ] — SiN 205,C0S O,COS Oy N 3,CO b1+ h2)
—\3iSiN( 1+ Py) ]+ \4Sin 26,c08 SN 6,C0F 1+ do+ dy) + N 1SiN 265SiN 6,C0OS 6,COS b5

éz)l {sin 205c0s 0,C0S 0, A 3,CO b3+ hs) — N3;SIN( P3+ P4) ]+ SIN 203Sin O1SiN 4] N 3,COL p3+ by)

— \1Sin 265c0s 6;Sin 6,08 ¢4+ P35+ p4) — N 1Sin 20,sin H,c0S 6,C0S ¢, (A7)

$2=2[Ep(t) + Eq(t)]— SirP 01 b1 — SiNP Oy — 2 COt 20,C0S 0SiN 04 N3,COK o+ 1) + N3 SIN o+ ¢bs) ]
+2 cot 20,€0S 6,Sin 0] A 3,CO0L p1+ Po) — N3;SIN(Pp1+ P) ] — 2\ 1 COt 26,] cOS 6,C0S H,COS P, +Sin 6,Sin 6,C0F P4
+ ot da)], (A8)

¢b3=—2[Ep(t) + E4(t)]—SiMP 0161 — SiN’ G4+ 2 COt 20508 035IN O4[ A3, COK g+ ba) + NgiSiN b3+ by) ]
— 2 cot 205C0S 6,Sin 0] A 3,0 b1+ P3) — Ng;SiN( P+ d3) ]+ 2\ 1 cot 205] cos 6,C0S H,C0S ¢+ Sin 6,5in #,c0K P4

+ ¢3t+ b4l (A9)
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. csc ¥
bDa= 4_ {sin 26,C0Ss 0,C0S O4[ N\ 3,COK o+ bs) + N3iSIN( Py + P4) ]+ Sin 26,5in 6, sin 6,
2(cog6,—sirffs)
X[N3rCOL 1+ d2) = N3iSiN( g+ o) | —SIN 205SiN ;SiN O4[ A 3,CO 1+ P3) — NgiSiN( 1+ h3) ]
—Sin 205C0S 01C0S O4[ N\ 3,COS 3+ bs) + N3iSiN( P+ P4) ]+ N1Sin 20,€08 0,SiN 0,COK 1+ Do+ by)
+\1Sin 263Sin 6,C0S 01C0S p3— N\ 1SIN 203C0S 0,Sin 6,C0 1+ P3+ Py) — N1SiN 20,Sin 6,C0S 6,COS 5,
(A10)
bs=[x5"(p,0+ X (p,O]=[x5"(p,t) + X2 (p,1)]+2 cot Ws{cos gs[ X (p,t) + ¥ (p,1)]
—sin ¢s[xg”(p.t) + xg” (PO}, (A11)
05=[x5" (p,0)+ X2 (p,0]= X (p,t) + X¥(p,1) ]+ 2 cot We{cos e x5 (p,1) + x&7(p,1)]
—sin el s (p.H) + X (p, O T}, (A12)
where
@_1 i - - - -
X1 =5 €os X,[ E,,+ E4]—sin 0,C0S 0,Sin 20,[ N 3,C0 b1+ o) — N3;SIN( P4+ o) ]+ Sin 6,€0S 6, sin 20,
X[ N3,COL P+ py) + N3iSIN( po+ bg) ]+ N 1COS 61C0S 6,SIN 26,C0S P, + \1Sin 6,Sin 6,5in 26,
XCoq 1+ Pot ), (A13)
Xg_g) = - Sin201C0§02¢1+ S|n2 02(.252'{' Sinzﬁzsin204<-b4, (A14)
(d) 1 ; ; .
X2 =3 €0S X5 E,,+Ey]+Sin 0,408 0,Sin 205 A 3,CO0S b3+ b4) + N5;SIN( D3+ da) ]
—Sin 0,C0S 0,Sin 203[ A 3,C0S b1+ d3) — N3;SIN( P+ ¢3) ]+ X 1COS 0,C0OS 0,Sin 205C0S ¢p5
+ N\ 4Sin 84Sin 6,Sin 20;c09 b1+ 3+ dy), (A15)
X(zg) = - Sin21910052493<.f)1+ S|r']2 03¢3+ Sir]203sin204(.f)4, (A16)
X(3d): —Xﬁd), (A17)
X=X (A18)
X =—x, (A19)
X&'= x5, (A20)

XSV=5in 6;5in 0,5iN 035iN 4[N 3,COK o+ pa— b1~ b3) + N3SIN( o+ bg— b1~ b3)]
+ N\ 41Sin 6,Sin 05 Sin 6,C0S 0,08 b1 — P2+ ¢h3) — SiN ,€0S 0,COS po— Pp3+ b4 |
+sin 6,C0S 0,C0S 03SiN 4] N 3,CO pq1— p4) — N3iSIN(h1— ¢b4) |+ COS H1SIN 658N H3C0OS O4] N 3,CO ho— h3)
—\g;SiN(¢@o— ¢p3) ]+ \1€0S 6,€0S O5(Sin 6,C0S 6,4C0S ¢p1+ Sin 6,C0S H,COS ¢h4) + A 3,C0S 61COS H,C0S H5C0S b4,
(A21)

. . 1.
ngg): 01SiN( 1+ P3)COS B,SiN O3+ 0,SIN( P, + P4)SiN H,C0S O3+ E[(ﬁlcos( @1+ ¢3)COS B,Sin O3Sin 20,

+ 408 o+ b4)COS B55in B,5in 26,], (A22)
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X" == Sin 61SiN 6,Sin 6SiN 0, A3 SIN( by + da— b1~ ba) ~N5iCOS bo+ da— b1~ $3)]
+N\1Sin 8,sin O3 sin 0,C0s 0,SiN( 1 — o+ P3) +Sin 6,08 01SIN( po— P35+ Bda) ]
+SiN 0,C0S 65C0S 03SiN O4] A 3,SIN(P1— ) + N3iCOL p1— Pa)]—COS 01SiN O8N O3C0S 4] A3, SIN(Pr— 3)
+\3icog ¢po— ¢p3) ]+ N\ 1COS 6,C0S O3(Sin ,€0S 6,C0S 1+ Sin 6,C0S 6,COS ¢h4) — \3,COS 61COS H,COS H3C0S b4,
(A23)

. . 1. .
ng) = — 0,09 ¢, + ¢p3)COS B,Sin 3+ 0,C08 P+ p4)sin H,C0S O3+ §[¢lsin( ¢+ P3)COS 658iN O3SiN 201 — b 4SiN( o
+ ¢p4)COS O3Sin 0,Sin 260,], (A24)
X5V =sin 01Sin 6,5iN G35iN O4] N 3,COK b1+ ho— h3— bs) = N3iSIN( b1+ ho— h3— ¢b4) ]
+\41Sin 6,Sin O3] sin 6,C0S 0,09 1+ dho— ¢b3) — Sin ,€0S 0,COK po— p3— b4) |
+8in 6,C0S 0,C0S 03SiN 4 3,0 P — Pp4) — N3iSIN(h1— ¢b4) |+ COS 61SIN 658N H3C0OS O4] N 3,COK ho— h3)

+ N g;SiN( @, — p3) ]+ \1€0S 6,€0S H5(Sin 6,C0S 6,C0S ¢4 —Sin 6,C0S H,COS ¢b4) + \3,C0S 6,C0S H,C0S H5C0S b4,
(A25)

. . 1. .

ng) = — 0,SiN( P11 P,)COS O3SiN 65— ,SIN(Pp3+ ¢4)SiN H3C0S O, — 5[({)1005( ¢1t d2)COS 63Sin 6,Sin 201+ 40 P

+ ¢b4)COS 0,Sin O3Sin 20,], (A26)
X8 = —Sin 015N 0,5iN O38iN 04 N3, SIN(1+ b — h3— ) = N3iCOK b1+ ho— h3— bs) ]

—\1Sin 0,Sin 3] sin 0,C0S 0,SIN( 1+ P~ P3) —Sin 6,€0S O1SIN( Pr— d3— da) ]

—8in 0,C0S 0,C0S 03SiN 4] A3, SIN(Pp1— Pa) +N3;COK b1 — b4) | —COS 61SIN 655N O3C0OS O4] N3, SIN(po— P3)

—\3iCOg po— p3)]— N\ 1COS 6,C0S O5(Sin 6,C0S 6,C0S ¢4+ Sin 6,C0S H,COS ) + \3,COS 1COS H,C0S H3C0S b4,

(A27)

ng) = — 64€09 ¢p1t+ ¢)COS O3Sin O,+ 0,C08 Pp3+ p4)SiN H3€0S O+ E[gblsm( P11 P,)COS 63SiN 0,SiN 201 — ¢ 4SiN( 3

+ ¢4)COS 0,Sin 63Sin 26,], (A28)

with A3, ,A3; being the real and imaginary parts ©f, respectively.
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