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Generalized eikonal wave function of a Dirac particle interacting with an arbitrary potential
and radiation fields

H. K. Avetissian,* K. Z. Hatsagortsian, A. G. Markossian, and S. V. Movsissian
Plasma Physics Laboratory, Department of Theoretical Physics, Yerevan State University, 1 A. Manukian, 375049 Yerevan, A
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A generalized eikonal approximation in the relativistic quantum theory of Dirac particle scattering on an
arbitrary electrostatic potential in the field of strong electromagnetic waves is developed. An analytic formula
for the particle wave function is obtained. The essence of the approximation is that quadratic scattering

potential terms@;U2(rW)# are considered small.@S1050-2947~99!02601-3#

PACS number~s!: 34.50.Rk, 31.15.2p, 32.80.Rm, 33.80.Rv
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I. INTRODUCTION

In relativistic quantum theory of elastic scattering
Dirac particles interacting with an arbitrary static potent
~atomic, ionic, etc. fields!, a so-called generalized eikon
approximation~GEA! was developed in Ref.@1#. Further, in
Ref. @2# this approximation was developed for inelastic sc
tering in the presence of an external electromagnetic~EM!
radiation field. However, this treatment is used within t
scope of nonrelativistic theory based on the solution of
Schrödinger equation. The generalized eikonal wave fu
tion obtained enables us to leave the framework of the o
nary eikonal approximation in stimulated bremsstrahlu
~SB!, which is not applicable beyond the interaction regi
(z!upW ua2/\, wherez is the coordinate along the direction o
initial momentum of the particlepW , a is the range of the
interaction region, and\ is the Planck constant!. Knowledge
of such a time dependence in the eikonal-type wave func
becomes especially important for the processes occurrin
the strong laser fields. These include laser-assisted elec
atom scattering processes, particularly the above-thres
multiphoton ionization of atoms@3,4#. In addition, in many
cases when the condition of the Born approximation is b
ken, the scattering process is described by the eikonal w
function. Indeed, the Born and low-frequency approxim
tions are appropriate for describing free-free transitions
high-intensity EM radiation fields, but they do not take in
account the mutual influence of the scattering and the ra
tion fields~i.e., the probability of SB is factorized by elast
scattering and photon emission or absorption proces!
@5–9#

For high-intensity laser fields the above-mentioned p
cesses require a relativistic treatment. In this work we so
the Dirac equation for the evolution of the particle wa
function in the arbitrary electrostatic and plane EM wa
fields, which simultaneously takes into account the influe
of both the scattering and radiation fields on the state of
particle and the release from the restrictionz!upW ua2/\. In
addition, it also takes into account the spin interaction in
scattering process. The GEA wave function so obtained
cludes the known approximate wave functions of the el
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tron in both short-range and long-range potentials in diff
ent limits. Such a wave function allows us to describe
final state of the photoelectron with more accuracy in
above-threshold multiphoton ionization process of atom
The relativistic description of the latter for high-intensity l
ser fields taking into account the spin interaction has b
developed analytically in Refs.@10–12# with an approxima-
tion where the stimulated bremsstrahlung of the emerg
electron is neglected. The relativistic consideration of t
problem is important as it is generally assumed that the
bilization of atoms in ultraintense laser fields must be solv
within the framework of relativistic theory by solving th
time-dependent Dirac equation@13#. From this point of view
some attempts have been made to solve analytically
Klein-Gordon equation@14,15# or numerically the Dirac
equation@13,16# in fields of a static potential and monochro
matic EM wave. In these works various simplifications of t
issue, using various model potentials of one or two dim
sions and various approximations, have been made. The
tivistic corrections to the nonrelativistic theory have be
given in Refs.@17–19#.

The organization of the paper is as follows. In Sec. II w
present a solution of the Dirac equation for a charged part
in the fields of an arbitrary electrostatic potential and stro
EM radiation. In Sec. III we consider the various limits
the GEA wave function obtained and the conditions of
applicability. In Sec. IV we summarize our conclusions.

II. APPROXIMATE SOLUTION OF THE DIRAC
EQUATION IN AN ARBITRARY STATIC POTENTIAL

AND A PLANE EM WAVE FIELDS

The problem can be reduced to the investigation of
dynamics of the SB process, which can be described by
Dirac equation for a charged particle in a static potential a
in the field of given EM radiation~in natural units\5c
51)

$g@ i ]2eA~w!2eL~x!#2m%C~x!50, ~2.1!

wheree and m are the Dirac particle charge and mass,
spectively,c is the light speed in vacuum,C(x) is the four-
component Dirac spinor,x5(t,rW) is the four-component ra
dius vector, ][]/]xm (m50,1,2,3) denotes the firs
derivative of a function with respect tox,
549 ©1999 The American Physical Society
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550 PRA 59H. K. AVETISSIAN et al.
A~w!5A~kx!5„0,AW ~vt2kW•rW !… ~2.2!

is the four-vector potential of the plane EM wave with t
phasew5kx, k5(v,kW ) is the four-wave vector of the ap
plied EM field of frequencyv, L„L0(rW),0W … is the four-
vector potential of the electrostatic field of an arbitrary sca
potentialL0(rW), andg5(g0 ,gW ) are the Dirac matrices.

Introducing a bispinor functionF(x), which is connected
with the Dirac wave functionC(x) by the relation

C~x!5
1

2m
$g@ i ]2eA~w!2eL~x!#1m%F~x!, ~2.3!

we turn Eq.~2.1! into the quadratic equation

„@ i ]2eA~w!2eL~x!#22m22 ie$g]@gL~x!#%

2 ie~gk!@gdA~w!/dw#…F~x!50. ~2.4!

To solve Eq.~2.4! we seek a solution in the form

F~x!5 f ~x!exp@ iS~x!#, ~2.5!

where f (x) is a bispinor function and

CK5exp@ iS~x!# ~2.6!

is the solution of the Klein-Gordon equation for a charg
particle in the static potential and EM wave fields

$@ i ]2eA~w!2eL~x!#22m2%CK50. ~2.7!

Substituting the expression~2.5! into Eq.~2.4!, we obtain for
scalarS(x) and bispinorf (x) functions

2 i ]2S~x!1@]S~x!1eA~w!1eL~x!#22m250, ~2.8!

2 i ]2f ~x!12@]S~x!1eA~w!1eL~x!#] f ~x!

1e$g]@gL~x!#% f ~x!1e~gk!@g dA~w!/dw# f ~x!50.

~2.9!

So we have initially represented the Dirac equation~2.1! in
the quadratic form@Eq. ~2.4!# and then by two equation
~2.8! and ~2.9!, the first of which is the Klein-Gordon equa
tion and the second describes the particle-spin interac
with the given fields.

We look for the solutions of Eqs.~2.8! and ~2.9! in the
form

S~x!5SV~x!1S1~x!, f ~x!5 f V~w!1 f 1~x!, ~2.10!

whereSV(x) and f V(w) are the action and bispinor ampl
tude of a charged particle in the EM field~Gordon-Volkov
state!

SV~x!52px2
e

kpE2`

w S pA~w8!2
e

2
A2~w8! Ddw8,

~2.11!

f V~w!5u1
e

2~kp!
~gk!@gA~w!#u, ~2.12!
r

d

n

where p5(«,pW ) and u are the initial four-momentum and
bispinor amplitude of a free Dirac particle, respective
(ūu52m and ū5u†g0 ; u† denotes the transposition an
complex conjugation ofu).

Let theOz axis be directed along the initial momentumpW
of the free particle. Then, in accordance with the solut
~2.5!, we have the initial condition

S~z52`,t52`!52px,

corresponding to the asymptotic behavior of the scatter
potential atz52` @L(z52`)50# and t52` @AW (t5
2`)50W #. We assume that the EM wave is adiabatica
switched on att52` „if necessary, the field must be adia
batically switched off att51` @AW (t51`)50W #).

Substituting the solutions~2.10!–~2.12! into Eqs. ~2.8!
and ~2.9!, we have the following equations forS1(x) and
f 1(x), respectively:

2 i ]2S1~x!12@]SV~x!1eA~w!#]S1~x!

522eL~x!]SV~x!22eL~x!]S1~x!

2e2L2~x!2@]S1~x!#2, ~2.13!

2 i ]2f 1~x!12@]SV~x!1eA~w!#] f 1~x!

12e~gk!@g dA~w!/dw# f 1~x!12]S1~x!] f V~w!

12eL~x!] f V~w!

52e$g]@gL~x!#% f V~w!22]S1~x!] f 1~x!

22eL~x!] f 1~x!2e$g]@gL~x!#% f 1~x!. ~2.14!

The above-mentioned GEA corresponds to keeping
Eqs. ~2.13! and ~2.14! only the terms proportional toU(rW)
5eL0(rW) @U(rW) is the potential energy of the particle in th
electrostatic field#; i.e., the terms;L0

2 and;@]S1(x)#2 are
neglected. Consequently, we shall solve the equations

i ~] t
22¹W 2!S1~ t,rW !22@] tSV~ t,rW !] t2¹W SV~ t,rW !•¹W

2eAW ~w!•¹W #S1~ t,rW !52U~rW !] tSV~ t,rW !, ~2.15!

i ~] t
22¹W 2! f 1~ t,rW !22@] tSV~ t,rW !] t2¹W SV~ t,rW !•¹W

2eAW ~w!•¹W # f 1~ t,rW !12e~gk!@gW •dAW ~w!/dw# f 1~ t,rW !

5@gW •¹W U~rW !#g0f V~w!12@] tS1~ t,rW !] t

2¹W S1~ t,rW !•¹W # f V~w!12U~rW !] t f V~w!. ~2.16!

To solve Eqs.~2.15! and~2.16! we turn from variablest,rW

to w,hW ,

w5vt2kW•rW, hW 5rW, ~2.17!

and make a Fourier transformation overqW

S1~w,hW !5
1

~2p!3E S̃1~w,qW !exp~ iqW •hW !dqW , ~2.18!
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f 1~w,hW !5
1

~2p!3E f̃ 1~w,qW !exp~ iqW •hW !dqW . ~2.19!

Then, using the Lorentz condition

kA~w!50, ~2.20!

we obtain the equations for the scalarS̃(w,qW ) and bispinor
f̃ (w,qW ) functions, respectively,

i S qW 2

2
1qW •@¹W SV~ t,rW !2eAW ~w!# D S̃1~w,qW !

1~kp2kW•qW !]wS̃1~w,qW !

5Ũ~qW !] tSV~ t,rW !, ~2.21!

i S qW 2

2
1qW •@¹W SV~ t,rW !2eAW ~w!#

2
ie

2
~gk!@gW • dAW ~w!/dw# D f̃ 1~w,qW !

1~kp2kW•qW !]w f̃ 1~w,qW !

5
i

2
~gW •qW !g0Ũ~qW ! f V~w!1Ũ~qW !] t f V~w!

1
kW•qW

v
S̃1~qW ,w!] t f V~w!, ~2.22!

whereŨ(qW )5*U(hW )exp(2iqW•hW )dhW is the Fourier transform
of the functionU(rW). We seek the solution of Eq.~2.21! in
the form

S̃1~w,qW !5sI~w,qW !1sII ~qW !, ~2.23!

where

sI~2`,qW !50 ~2.24!

andsII (qW ) is the action of the particle corresponding to t
elastic scattering in the potential field in the absence of
EM wave @the solution of Eq.~2.21! at AW (w)50W ]

sII ~qW !5
2i«Ũ~qW !

qW 212pW •qW
. ~2.25!

Then, forS̃1(w,qW ) we have the expression
n

S̃1~w,qW !5
2i«Ũ~qW !

qW 212pW •qW
F12 ie2 iB~w,qW !E

2`

w

eiB~w8,qW !

3~¹W SV~x!2pW 2eAW ~w8!!•qW dw8G
1

evŨ~qW !

~kp2kW•qW !kp
e2 iB~w,qW !E

2`

w

eiB~w8,qW !@pW •AW ~w8!

2eAW 2~w8!/2#dw8, ~2.26!

where the functionB(w,qW ) is defined as

B~w,qW !5E S qW 2

2
1qW •@¹W SV~x!2eAW ~w8!# D dw8

kp2kW•qW
.

~2.27!

Making the inverse Fourier transformation ofS̃1(w,qW ) and
then turning to the previous variables (t,rW), after simple cal-
culations we obtain the following expression for the sca
part of a particle wave function:

S1~ t,rW !5
1

~2p!3E Ũ~qW !eiqW •rWe2 iB~w,qW !

kp2kW•qW

3E
2`

w

eiB~w8,qW !S 2«1
ev

kp
@pW •AW ~w8!

2eAW 2~w8!/2# Ddw8dqW . ~2.28!

In a similar way, seeking the bispinor functionf̃ 1(w,qW ) in
the form

f̃ 1~w,qW !5gI~w,qW !1gII ~qW !, ~2.29!

where

gI~2`,qW !50 ~2.30!

and

gII ~qW !5
~gW •qW !g0Ũ~qW !u

qW 212pW •qW
~2.31!

@gII (qW ) is the spin part of the particle wave function at th
elastic scattering in the potential field: the solution of E
~2.22! at AW (w)50W ], we obtain the expression forf̃ 1(w,qW ),
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f̃ 1~w,qW !5
~gW •qW !g0Ũ~qW !u

qW 212pW •qW
F12

ie2 iB1~w,qW !

kp2kW•qW
E

2`

w

eiB1~w8,qW !

3S qW •@¹W SV~x!2pW 2eAW ~w8!#

2
ie

2
~gk!@gW •dAW ~w8!/dw8# Ddw8G

1
e2 iB1~w,qW !

kp2kW•qW
E

2`

w

eiB1~w8,qW !

3F @vŨ~qW !1 i ~kW•qW !S̃1~w8,qW !#]w8 f V~w8!

2
ie~gW •qW !g0Ũ~qW !

2kp
~gk!@gW •AW ~w8!#uGdw8.

~2.32!

The functionB1(w,qW ) in Eq. ~2.32! is defined as

B1~w,qW !5B~w,qW !2
ie~gk!@gW •AW ~w!#

2~kp2kW•qW !
. ~2.33!

As the terms over the first power of (gk)@gW •AW (w)# are equal
to zero @in accordance with the condition~2.20!# ~see Ref.
@20#!, exp@iB1(qW,w)# can be written

eiB1~qW ,w!5eiB~qW ,w!S 11
e~gk!@gW •AW ~w!#

2~kp2kW•qW !
D . ~2.34!

So, after the inverse Fourier transformation and turning
the previous variables we have such an expression
f 1(t,rW),
c-
sl
o
or

f 1~ t,rW !5
i

16p3E eiqW •rWe2 iB~w,qW !

kp2kW•qW
E

2`

w

eiB~w8,qW !

3H F11
e~gk!@gW •AW ~w8!2gW •AW ~w!#

2~kp2kW•qW !
G

3~gW •qW !g0Ũ~qW ! f V~w8!2 i2vŨ~qW !]w8 f V~w8!

1Ũ~qW !F2«1
ev

kp
@pW •AW ~w8!2eAW 2~w8!/2#G

3
kW•qW

kp~kp2kW•qW !
@gW •AW ~w8!2gW •AW ~w!#uJ dw8dqW .

~2.35!

Then we assume the EM wave to be quasimonochrom
and of an arbitrary polarization with the vector potential

AW ~w!5A0~w!~eŴ1cosj cosw1eŴ2sinj sinw!, ~2.36!

where A0(w) is the slow varying amplitude of the vecto

potentialAW (t,rW), eŴ1 andeŴ2 are unit vectors perpendicular t

each other and to the wave vectorkW (eŴ1•eŴ250,eŴ1•kW

5eŴ2•kW50, and ueŴ1u5ueŴ2u51), and j is the polarization
angle.

It is useful to introduce a new functionJn(u,v,D), the
definition and principal properties of which are given in A
pendix A. Utilizing the formula~A9! for the expansion over
the functionsJn(u,v,D),

exp@2 ia1sin~w2u1!1 ia2sin 2w#

5 (
n52`

`

Jn~a1 ,2a2 ,u1!exp@2 in~w2u1!#,

~2.37!

we carry out the integration overw8 in the expression~2.28!.
Then we obtain
S1~ t,rW !5
i

4p3 (
n52`

`

e2 inwE Ũ~qW !$~«1vZ!Dn2v@a~pW !D1,n„u~pW !…2Z cos 2jD2,n#%

qW 212pW •qW 12ZkW•qW 22n~kp2kW•qW !2 i0

3exp„i $qW •rW1a1~qW !sin@w2u1~qW !#2a2~qW !sin 2w1u1~qW !n%…dqW , ~2.38!
wherea1(qW ) is the parameter of the Dirac particle intera
tion with both scattering and EM wave fields simultaneou

a1~qW !5
eĀ0h~qW !

kp2kW•qW
, ~2.39!

whereĀ0 is the average value ofA0(w) andZ is the relative
parameter of the wave intensity defined as
y Z5
e2Ā0

2

4kp
~2.40!

anda2(qW ) has the form

a2~qW !5
kW•qW

2~kp2kW•qW !
Z cos 2j. ~2.41!
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Then the magnitudes ofh(qW ) andu1(qW ) are

h~qW !5H F S ~kW•qW !pW

kp
1qW D •eŴ1G2

cos2j

1F S ~kW•qW !pW

kp
1qW D •eŴ2G2

sin2jJ 1/2

, ~2.42!

u1~qW !5arctanS S ~kW•qW !pW

kp
1qW D •eŴ2

S ~kW•qW !pW

kp
1qW D •eŴ1

tanjD ~2.43!

anda(pW ) is the intensity-dependent amplitude

a~pW !5
eĀ0

kp
A~pW •eŴ1!2cos2j1~pW •eŴ2!2sin2j, ~2.44!

with the phase angle

u~pW !5arctanS pW •eŴ2

pW •eŴ1

tanjD . ~2.45!

The functionsDn , D1,n„u(pW )…, andD2,n are defined by the
expressions

(
n52`

`

exp@2 in~w2u1!#Jn~a1 ,2a2 ,u1!H 1

cos@w2u~pW !#

cos 2w

5 (
n52`

`

exp@2 in~w2u1!#H Dn

D1,n„u~pW !…,

D2,n

~2.46!

so they are satisfied for the relations

Dn5Jn~a1 ,2a2 ,u1!,

D1,n„u~pW !…5
1

2
@Jn21~a1 ,2a2 ,u1!e2 i [u12u~pW !]

1Jn11~a1 ,2a2 ,u1!ei [u12u~pW !] #,

~2.47!

D2,n5
1

2
@Jn22~a1 ,2a2 ,u1!e2 i2u1

1Jn12~a1 ,2a2 ,u1!ei2u1#.
In the denominator of the integral in expression~2.38! 2 i0
is an imaginary infinitesimal, which shows how the pa
around the pole in the integrand should be chosen to obta
certain asymptotic behavior of the wave function, i.e., t
outgoing spherical wave@to determine that one must pass
the limit of the Born approximation atAW (w)50W ].

Using Eq.~2.5!, the approximate solution of Eq.~2.1! can
be written as

F~x!5
1

A2«
@ f V~w!1 f 1~x!#exp@ iSV~x!1 iS1~x!#,

~2.48!

where the spin partu f 1(x)u!u f V(w)u @the final analytic form
of f 1(x) is presented in Eq.~B2!# andS1(t,rW) is presented by
Eq. ~2.38!. Note that the wave function is normalized for th
one particle in the unit volume.

Inserting the expression~2.48! for F(x) into Eq.~2.3! and
keeping terms to first order of the potentialL0(rW), we obtain
the solutionC(x) of the Dirac equation~2.1! in the applied
approximation, which coincides with Eq.~2.48!. So the bis-
pinor functionF(x) is the solution of the Dirac equation i
the GEA.

III. DISCUSSION OF THE GEA WAVE FUNCTION
IN VARIOUS LIMITS

Formula~2.38! has been obtained in the GEA under t
condition that

u¹W S1~rW !u2!u~«1vZ!U~rW !u. ~3.1!

To estimate the latter let us evaluate the expression¹W S1
using the formulas~2.39! and ~2.42!. Then we fixn in the
denominator of the expression~2.38! at the most probable
valuen̄ for the actionS1(rW,t). At the circular polarization of
the wave the functionJn(a1 ,2a2 ,u1) turns into the Besse
function Jn(a1) in accordance with the determination by in
finite series representation~A2!. Then, to determine the
value of n̄ we use the argumentation of Choudhury@22# ac-
cording to which the Bessel functionJn(z) gets its largest
value when its indexn is roughly equal to its argument

n̄~qW !5^a1~qW !&, ~3.2!

where^a1(qW )& denotes integer value ofa1(qW ). This approxi-
mative estimation of the Bessel function can be verified
the diagrams of Jahnke and Emde@23#. Then carrying out the
summation ofn in the formula~2.38!, we obtain
S1'2i ~«1vZ!E Ũ~qW !eiqW •rW

qW 212pW •qW 12ZkW•qW 22n̄~kp2kW•qW !2 i0

dqW

~2p!3
. ~3.3!

From the expressions~3.3! and ~3.1! the condition of the GEA can be presented in the general form
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2~«1vZ!U E qW Ũ~qW !eiqW •rW

qW 212pW •qW 12ZkW•qW 22n̄~kp2kW•qW !2 i0

dqW

~2p!3U2

!uU~a!u. ~3.4!
tum
tic

n-

the
he
Due to the oscillations of the factoreiqW •rW in the integral in
Eq. ~3.4!, the main contribution is in the region whereqW •rW

>1, i.e., uqW u.uqW e f fu5a21, wherea is the dimension of the
effective range of the scattering potentialL0(rW). Therefore,
the condition~3.4! can be written as

2~«1vZ!qW e f f
2

@qW e f f
2 12pW •qW e f f12ZkW•qW e f f22n̄~kp2kW•qW e f f!#

2
uU~a!u!1.

~3.5!

The n̄ included in the formula~3.5! is the most probable
number of photons that is defined by expressions~3.2!,
~2.39!, and~2.42!:

n̄5K eĀ0h̄

kp2kW•qW e f f

U~kW•qW e f f!pW

kp
1qW e f fU L , ~3.6!

h̄5AS pW 8

p8
•eŴ1D 2

cos2j1S pW 8

p8
•eŴ2D 2

sin2j,

pW 85
pW

kp
1

qW e f f

kW•qW e f f

, ~3.7!
e
tia
wherep85upW 8u.
Finally, the condition of applicability of the GEA~3.1!

may be written in the form

uU~a!u!
1

P0F 1

a
1uPW u2

eĀ0

12v coskW•pŴ
G 2

, ~3.8!

wherev5upW u/« is the particle velocity and

P05«1vZ, PW 5pW 1kWZ ~3.9!

are the average values of the particle energy and momen
in the EM field that correspond to the average four-kine
momentum or ‘‘quasimomentum’’P of the particle in the
wave (P25m

*
2 [m21e2Ā2, where m* is the ‘‘effective

mass’’ of the particle!.
The wave function~2.48! in the GEA turns into the wave

function in the Born approximation by the scattering pote
tial if

uS1~rW,t !u!1. ~3.10!

By expanding the second term in the first exponent in
formula~2.48! into a series and keeping only the terms to t
first order inL0(rW), we obtain
CB~x!5
1

A2«
exp@ iSV~x!#H f V~w!1 f 1~x!

2
1

4p3
f V~w! (

n52`

`

e2 inwE Ũ~qW !$~«1vZ!Dn2v@a~pW !D1,n„u~pW !…2Z cos 2jD2,n#%

qW 212pW •qW 12ZkW•qW 22n~kp2kW•qW !2 i0

3exp„i $qW •rW1a1~qW !sin@w2u1~qW !#2 ia2~qW !sin 2w1u1~qW !n%…dqW J . ~3.11!
f

The condition when the wave function~3.11! is valid can
be written using Eq.~3.10! taking into account Eqs.~3.3! and
~3.9!:

uU~a!u!
1

P0a U1

a
1uPW u2

eĀ0

12vcoskW•pŴ
U , ~3.12!

wherekW•pŴ denotes the angle betweenkW andpW vectors. This
criterion of validity of the particle wave function of th
stimulated scattering in the Born approximation by poten
field includes both ‘‘fast’’ and ‘‘slow’’ particles~in the EM
l

field! cases. Thus, for the fast particles, whenzuPW u

2eĀ0 /(12vcoskW•pŴ)za@1, we have

uU~a!u!
1

P0aUuPW u2
eĀ0

12v coskW•pŴ
U . ~3.13!

From the condition~3.12! for the slow particles, whenzuPW u

2eĀ0 /(12v coskW•pŴ)za<1, we obtain the strong criterion o
Born approximation for SB:
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uU~a!u!
1

P0a2
. ~3.14!

Comparing the condition of applicability of the GEA~3.8!
and the conditions in the Born approximation~3.13! and
~3.14! we see that for the fast particles~in strong laser fields!
the wave function obtained in the GEA~2.48! describes
th
the stimulated scattering in regionszuPW u2eĀ0 /(12v

3coskW•pŴ)zazuPW u2eĀ0 /(12v coskW•pŴ)za@1 times larger
than the wave function in the Born approximation.

Now let us find the asymptote of the electron wave fun
tion corresponding to the Born approximation atr→1` and
justify the chosen sign at the infinitesimali0 to the path
around the pole in the integrals~2.38! and ~B2!. From the
expression~3.11! we have
CB~rW,t !5
exp@ iSV~x!#

A2«
H f V~w!1

1

~2p!3 (
n52`

` E exp@ iqW •rW#Fn~w,qW !dqW

qW 212pW •qW 12ZkW•qW 22n~kp2kW•qW !2 i0
J , ~3.15!

where the functionFn(w,qW )

Fn~w,qW !5Ũ~qW !exp„i $a1~qW !sin@w2u1~qW !#2a2~qW !sin2w1u1~qW !n2nw%…

3H FDn
S ~gW •qW !g02

evFqW 212pW •qW 22
«

v
kW•qW G

2~kp2kW•qW !kp
~gk!@gW •AW ~w!#D 1

eĀ0~gk!~gW •DW !3,n~gW •qW !g0

2~kp2kW•qW !

1
eĀ0

2kp
F vFqW 212pW •qW 22

«

v
kW•qW G

kp2kW•qW
2~gW •qW !g0

G ~gk!~gW •DW !3,n1
vea~qW !~gk!@gW •AW ~w!#

kp2kW•qW
D1,n„u~qW !…

1
~kW•qW !~gk!g02v~gk!~gW •qW !

kp2kW•qW
Z~Dn1cos 2jD2,n!Gu

22 f V~w!$~«1vZ!Dn2v@a~pW !D1,n„u~pW !…2Z cos 2jD2,n#%J . ~3.16!
al

-
e-
ac-

t

To calculate the asymptote of the function~3.15! we tem-
porarily direct theOqz coordinate axis alongrW and replace
the integration variableqW by pW 85PW 1nkW1qW . Turning to
spherical coordinates, we carry out the integration over
solid angle by the formula

exp~ ipW 8•rW !ur→`⇒ 2p

ip8r
@d~pŴ 82rŴ !exp~ ip8r !

2d~pŴ 81rŴ !exp~2 ip8r !],
~3.17!

where pŴ 8, rŴ are unit vectors alongpW 8 and rW, respectively.
Then we carry out the integration overp8 in the complex
plane, passing above the polep852pn and below the pole
p85pn , where

pn5APW 21nv~2P01nv! ~3.18!
e

@this path corresponds to chosen sign of the infinitesim
(2 i0) in the denominator of the integrand#. As a result, at
r→` we obtain

CB~rW,t !5
exp@ iSV~x!#

A2«

3H f V~w!1
exp@2 iPW •rW#

4pr (
n5n0

`

ei ~pnrŴ2nkW !•rW

3Fn~w, pnrŴ2PW 2nkW !J , ~3.19!

where Fn(w, pnrŴ2PW 2nkW ) is defined by Eq.~3.16!. Sum-
mation ofn is carried out withn05^(2P01m* )/v&.

As it is seen from the expression~3.19!, the asymptotic
wave function atn50 @if AW (w)[0W ], corresponding to elas
tic scattering of the electron in the Born approximation, d
scribes the outgoing spherical wave at large distances,
cording to which the sign of the infinitesimali0 in the poles
of the integrals~2.38! and~B2! was chosen. Finally, note tha
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in the nonrelativistic limit the GEA wave function~2.48!
obtained reduces to the corresponding one of Ref.@2# and at
AW (w)[0W it becomes the relativistic wave function of th
elastic scattering on an arbitrary electrostatic potential~see
Ref. @1#!.

IV. CONCLUSION

In the current work the quantum description of relativis
particles induced by bremsstrahlung on an arbitrary elec
static potential in the field of a strong EM wave is develop
Compared to existing approximations, the wave funct
~2.48! obtained by solving the Dirac equation has a wi
range of applicability. The essence of the approximation
that quadratic scattering potential terms@;U2(rW)# are con-
sidered small. Here it also must be taken into account tha
reality, in the SB process both the scattering and wave fie
are limited from the top by the corresponding values of
fields when the possible process of electron-positron
production may occur. Consequently, it may be conside
that the wave function obtained describes the SB proces
a Dirac particle when the spin interaction is also taken i
account with high accuracy. In addition, though we obtai
wave function with a so-called general eikonal approxim
tion, in reality even the wave function of the ordinary eikon
approximation for the Dirac particles in the SB process is
known.

From the formula~2.48! we obtain the wave function
~3.19! in the Born approximation from the scattering pote
tial U(rW). In boundary cases the GEA wave function o
tained reduces to the nonrelativistic GEA wave function~see
Ref. @2#! and becomes the relativistic one of Ref.@1# in the
absence of an EM wave. Such a wave function~2.48! is
important for a more accurate description of the abo
threshold ionization of atoms, especially when clarifying t
process of stabilization, as considered in Ref.@13#. The cal-
culation of the relativistic multiphoton cross sections of t
SB process and the calculation of the probabilities of hyd
genlike atoms in multiphoton ionization in the above thre
old regime with this GEA wave function are distinct pro
lems that will be considered in the future.

APPENDIX A: DEFINITION OF THE FUNCTION
Jn„u,v,D…

A function Jn(u,v,D) may be defined by

Jn~u,v,D!5~2p!21E
2p

p

du exp$ i @usin~u1D!

1vsin 2u2n~u1D!#% ~A1!

or by an infinite series representation

Jn~u,v,D!5 (
k52`

`

e2 i2kDJn22k~u!Jk~v !. ~A2!

Both defining relations are equivalent. From either Eq.~A1!
or ~A2! it follows that
o-
.

n

is

in
s

e
ir
d
of
o
a
-
l
t

-
-

-

-
-

Jn~u,0,D!5Jn~u! ~A3!

and

Jn~0,v,D!5H e2 iDnJn/2~v ! for n even

0 for n odd.
~A4!

Then we have directly the relative formulas

Jn~2u,v,D!5~21!nJn~u,v,D!,

Jn~u,2v,D!5~21!nJ2n~u,v,2D!, ~A5!

Jn~u,2v,2D!5~21!nJ2n~u,2v,D!.

Then from the well known recurrence relations for the Bes
functions we have

Jn21~u,v,D!2Jn11~u,v,D!52]uJn~u,v,D! ~A6!

and

e2 i2DJn22~u,v,D!2ei2DJn12~u,v,D!52]vJn~u,v,D!,
~A7!

which follow directly from Eq.~A1! or ~A2!.
An integration by parts in Eq.~A1! yields the relation

2nJn~u,v,D!5u@Jn21~u,v,D!1Jn11~u,v,D!#

12v@e2 i2DJn22~u,v,D!

1ei2DJn12~u,v,D!#. ~A8!

Other results can be obtained by a combination of E
~A2!–~A8!. We perform two important theorems, which ca
be proved by Eq.~A1!. The first is

(
n52`

`

ein~w1D!Jn~u,v,D!5exp$ i @u sin~w1D!1v sin 2w#%

~A9!

and the other is

(
k52`

`

Jn7k~u,v,D!Jk~u8,v8,6D!5Jn~u6u8,v6v8,D!.

~A10!

Then the functionJn(u,v,D) at D50 becomes the genera
ized Bessel functionJn(u,v), which was induced by Reis
~see Ref.@21#!.

APPENDIX B: SPIN PART OF THE WAVE FUNCTION

After the integration by parts and simple transformati
of f 1(t,rW) in the expression~2.35! we obtain the final form
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f 1~ t,rW !5
i

16p3E
Ũ~qW !expS iqW •rW2 iB~w,qW !2

e~gk!„gW •AW ~w!…

2~kp2kW•qW !
D

kp2kW•qW
E

2`

w

eiB~w8,qW !

3H ~gW •qW !g01
e

2F ~gk!@gW •AW ~w8!#~gW •qW !g0

kp2kW•qW
2

~gW •qW !g0~gk!@gW •AW ~w8!#

kp G
1

evFqW 212pW •qW 22
«

v
kW•qW G

2~kp2kW•qW !kp
$~gk!@gW •AW ~w8!#2~gk!@gW •AW ~w!#%1

ve2~gk!@gW •AW ~w!#

~kp2kW•qW !kp
@qW •AW ~w8!#

1
~kW•qW !~gk!g02v~gk!~gW •qW !

2~kp2kW•qW !kp
e2AW 2~w8!J u dw8dqW . ~B1!

We assume an EM wave to be monochromatic and of an arbitrary polarization with the vector potential in the form~2.36!.
Using the formula~A9! for the expansion by the functionsJn(u,v,u), we carry out the integration overw8 in the expression
~B1!. Then we obtain

f 1~ t,rW !5
1

~2p!3 (
n52`

`

e2 inwE Ũ~qW !exp„i $qW •rW1a1~qW !sin@w2u1~qW !#2a2~qW !sin 2w1u1~qW !n%…

qW 212pW •qW 12ZkW•qW 22n~kp2kW•qW !2 i0

3H Dn
F ~gW •qW !g02

evFqW 212pW •qW 22
«

v
kW•qW G

2~kp2kW•qW !kp
(gk)„gW •AW ~w!…G

1
eĀ0~gk!~gW •DW !3,n~gW •qW !g0

2~kp2kW•qW !
1

eĀ0

2kp
F vFqW 212pW •qW 22

«

v
kW•qW G

kp2kW•qW
2~gW •qW !g0

G ~gk!~gW •DW !3,n

1
vea~qW !~gk!@gW •AW ~w!#

kp2kW•qW
D1,n„u~qW !…1

~kW•qW !~gk!g02v~gk!~gW •qW !

kp2kW•qW
Z~Dn1cos 2jD2,n!J u dqW , ~B2!

wherea1(qW ), a2(qW ), Z, h(qW ), u1(qW ), a(qW ), u(qW ), Dn , D1,n„u(qW )…, andD2,n are determined by the formulas~2.39!–
~2.47! and by the definitions

~gW •DW !3,n[
~gW •eŴ1!cosj1 i ~gW •eŴ2!sinj

2
Jn21~a1 ,2a2 ,u1!e2 iu1~qW !

1
~gW •eŴ1!cosj2 i ~gW •eŴ2!sinj

2
Jn11~a1 ,2a2 ,u1!eiu1~qW !,

a~qW !5
eĀ0

kp
A~qW •eŴ1!2cos2j1~qW •eŴ2!2sin2j. ~B3!

In the denominator of the integral in expression~B2! 2 i0 is an imaginary infinitesimal, chosen to obtain a certain
asymptotic behavior of the wave function, i.e., the outgoing spherical wave@to determine that we pass to the limit of the Born
approximation atAW (w)[0W ] in accordance with the determination of the scalar partS1(rW,t) @Eq. ~2.38!# of the wave function.
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