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Generalized eikonal wave function of a Dirac particle interacting with an arbitrary potential
and radiation fields
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A generalized eikonal approximation in the relativistic quantum theory of Dirac particle scattering on an
arbitrary electrostatic potential in the field of strong electromagnetic waves is developed. An analytic formula
for the particle wave function is obtained. The essence of the approximation is that quadratic scattering

potential terms{~U2(F)] are considered smallS1050-294{®9)02601-3
PACS numbdss): 34.50.Rk, 31.15:p, 32.80.Rm, 33.80.Rv

I. INTRODUCTION tron in both short-range and long-range potentials in differ-
ent limits. Such a wave function allows us to describe the
In relativistic quantum theory of elastic scattering of final state of the photoelectron with more accuracy in the
Dirac particles interacting with an arbitrary static potential@bove-threshold multiphoton ionization process of atoms.
(atomic, ionic, etc. fields a so-called generalized eikonal The relativistic description of the latter for high-intensity la-
approximation(GEA) was developed in Refd]. Further, in ~ S€r fields taking into account the spin interaction has been
Ref.[2] this approximation was developed for inelastic scat-developed analytically in Ref$10—-12 with an approxima-
radiation field. However, this treatment is used within the€lectron is neglected. The relativistic consideration of this
scope of nonrelativistic theory based on the solution of théProblem is important as it is generally assumed that the sta-
Schrainger equation. The generalized eikonal wave func-Pilization of atoms in ultraintense laser fields must be solved
tion obtained enables us to leave the framework of the ordiwithin the framework of relativistic theory by solving the
nary eikonal approximation in stimulated bremsstrahlundime-dependent Dirac equati¢h3]. From this point of view
(SB), which is not applicable beyond the interaction regionSOmMe attempts have been made to solve analytically the

C1Ela2 . . S Klein-Gordon equation[14,15 or numerically the Dirac
(z<|p|a/#, wherezs the coordinate along the direction of equation13,14 in fields of a static potential and monochro-

initial momentum of the particle, a is the range of the atic EM wave. In these works various simplifications of the
interaction region, and is the Planck constantknowledge jsgye, using various model potentials of one or two dimen-
of such a time dependence in the eikonal-type wave functiojong and various approximations, have been made. The rela-
becomes especially important for the processes occurring ifyistic corrections to the nonrelativistic theory have been
the strong laser fields. These include laser-assisted electrogen in Refs[17—19.

atom scattering processes, particularly the above-threshold the organization of the paper is as follows. In Sec. Il we
multiphoton ionization of atomg3,4]. In addition, in many  present a solution of the Dirac equation for a charged particle
cases when the condition of the Born approximation is broj, he fields of an arbitrary electrostatic potential and strong
ken, the scattering process is described by the eikonal wavey radiation. In Sec. IIl we consider the various limits of
function. Indeed, the Born and low-frequency approxima-the GEA wave function obtained and the conditions of its

tions are appropriate for describing free-free transitions inyyjicapility. In Sec. IV we summarize our conclusions.
high-intensity EM radiation fields, but they do not take into

account the mutual influence of the scattering and the radia-

tion fields(i.e., the probability of SB is factorized by elastic Il. APPROXIMATE SOLUTION OF THE DIRAC
scattering and photon emission or absorption procgsses EQUATION IN AN ARBITRARY STATIC POTENTIAL
[5—9] AND A PLANE EM WAVE FIELDS

e e he\eamentoned Bl The problem can b reduced 10 the nvesigation of th
q : %ynamics of the SB process, which can be described by the

%he It?|rag e:qhuatlogltfor thpi e;/oluttli)_n of éhel partlélla Wave pirac equation for a charged patrticle in a static potential and
unction In the arbitrary electrostatic and piane Wave, the field of given EM radiationin natural unitshi=c

fields, which simultaneously takes into account the influence_ )
of both the scattering and radiation fields on the state of the

particle and the release from the restrictios |p|a?/4. In
addition, it also takes into account the spin interaction in the
scattering process. The GEA wave function so obtained in-
cludes the known approximate wave functions of the elecwWheree andm are the Dirac particle charge and mass, re-
spectively,c is the light speed in vacuur¥’ (x) is the four-
component Dirac spinoxz(t,F) is the four-component ra-
*FAX: (3742 151-087. Electronic addresses: dius vector, 9=4d/9x, (#=0,1,2,3) denotes the first
tesakfiz@sun.ysu.am and havetis@www.physdep.am derivative of a function with respect tq

{(Aio—eAp)—eA()]-m¥(x)=0, (2.1
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where p=(s,5) and u are the initial four-momentum and
bispinor amplitude of a free Dirac particle, respectively
is the four-vector potentlal of the plane EM wave with the (yu=2m and u=u'y,; u' denotes the transposition and
phasep=kx, k=(w, k) is the four-wave vector of the ap- complex conjugation ofi).

plied EM field of frequencyw, A(Ao(r),O) is the four- Let theOz axis be directed along the initial momenttfm
vector potential of the electrostatic field of an arbitrary scalamnf the free particle. Then, in accordance with the solution

A(e)=A(kx)=(0A(wt—k-T)) (2.2

potential Ao(r), andy=(yo,y) are the Dirac matrices.
Introducing a bispinor functiod (x), which is connected
with the Dirac wave functionV'(x) by the relation

1
W(x)=5{rlid—eAle)—eA(X)]+mP(x), (2.3

we turn Eq.(2.1) into the quadratic equation
(io—eAle)—eA(x)]*—m?—ie{yd[ yA(
—ie(yk)[ydA(e)/de])®(x)=0.

To solve Eq.(2.4) we seek a solution in the form

x)]}
(2.4

O (x)=f(x)exdiS(x)], (2.5
wheref(x) is a bispinor function and
Yr=exdiS(x)] (2.6

is the solution of the Klein-Gordon equation for a charged
particle in the static potential and EM wave fields

{lio—eA(p)—eA(X)]*~ (2.7

Substituting the expressid@.5) into Eq.(2.4), we obtain for
scalarS(x) and bispinorf(x) functions

mz}\I’K: 0.

—i3?S(X) +[dS(x) +eA(p)+eA(x)]2—m?=0, (2.8

—i?F(X)+2[dS(X) + e A( @) +eA(x)]af (X)

+e{yd yA(X) [H (x) +e(vk)[ ydA(e)/de]f(x) =0.
(2.9

So we have initially represented the Dirac equalfi@ri) in
the quadratic fornTEq. (2.4)] and then by two equations
(2.8) and(2.9), the first of which is the Klein-Gordon equa-
tion and the second describes the particle-spin interactio
with the given fields.

We look for the solutions of Eq92.8) and (2.9) in the
form

SX)=Sy(x)+S1(x),  f(x)=Ffv(e)+f1(x), (2.10

where S,(x) and fy(¢) are the action and bispinor ampli-
tude of a charged particle in the EM fie{@ordon-Volkov
state

[ e
_w(pA(so’)—zAz(qo') de’,
(2.11)

e
SV = —px— {5

e
fule)=u+ 2(Tp)(7k)[7A(‘P)]“’ (2.12

(2.5, we have the initial condition
S(z=—o,t=—0)=—pX,

corresponding to the asymptotic behavior of the scattering
potential atz=—o [A(z=—)=0] andt=—= [A(t=
—oo)=5]. We assume that the EM wave is adiabatically
switched on at= —« (if necessary, the field must be adia-
batically switched off at=+o [A(t=+%)=0]).

Substituting the solution$2.10—(2.12 into Egs. (2.8
and (2.9, we have the following equations f&;(x) and
f1(x), respectively:

—13%S1(X) +2[9Sy(X) + e A(9)]9S1(X)
—2eA(X)dSy(X) —2eA(X)dS;(X)
—e?A%(x)—[3S1(x)]?,

(2.13
—i%F1(X)+2[ ISy(X) + e A(@) 19T 1(X)
+2e(yK)[ydA(e)/de]f1(X) +2S,(x)dfy(¢)
+2eA(x)afy(@)
= —e{ydl yYAX) I} fv(¢) —2S,(x) 3 1(x)
—2eA(X)df 1(X) —e{yd[ yA(x)]}f1(X). (2.149

The above-mentioned GEA corresponds to keeping in
Egs. (2.13 and (2.14) only the terms proportional t&J(r)

=eAy(r) [U(r) is the potential energy of the particle in the
electrostatic fieldf i.e., the terms~A(2) and~[dS,(x)]? are
neglected. Consequently, we shall solve the equations

—V2)Sy(t,) = 2[ :S(t,1) 3 — VSy(t,r) -V

—eA(p)-V]S,(1,r)=2U(r)aSy(t,r),

i(d?
(2.1
V2)f,(t,1) = 2[3,Sy(t,1)d,— VSy(t,r)-V
—eA(e)-VIfi(t,r)+2e(yk)[ y-dA(e)/de]fy(t,r)
=[y-VU(N]vof (@) +2[3Sy(t,1)d;
=VS(t,1)- VIfu(e) +2U(Ndfy( ).

I’]l(at

(2.1

To solve Egs(2.15 and(2.16 we turn from variables,r
to o, 7;,

>

<p=wt—|2-F, ;7=r, (2.17)

and make a Fourier transformation ower

Si(¢,7)= f Si(¢.q)expiq- »)dg, (2.18

(2m)°



PRA 59

1
(2m)®

f1(o,m)= f?lup,a)exmq*- 2dd. (219

Then, using the Lorentz condition

kA(¢)=0, (2.20

we obtain the equations for the scaB(ie,q) and bispinor
T(¢,q) functions, respectively,

~2
A ITSULN) —eAle)] [Bi(e.)

+(kp—K-0)9,5:(¢,9)

=0(q)a,Su(t.r), (2.21)

T
i(7+q~[VS\,(t,r)—eA(qo)]

ie - = ¥ S
=5 (Y- dA(e)/de] [Ti(¢,q)
+(kp—|2' ﬁ)&ﬁl(cp,ﬁ)

..~ . ~
=5 (v D) vU(@fv(e)+U(@)dfv(e)

+ Tsl(q,so)ﬂtfv(qo),

v

(2.22

whereU(q) = fU(7)exp(~iq- 7)d7 is the Fourier transform
of the functionU(r). We seek the solution of E¢2.21) in
the form

Si(¢,0)=5s/(¢,0)+5,(q), (2.23

where

si(—,q)=0 (2.24
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M{l_ieiw@f@ eiB(¢".Q)

§1(<P,a): >
q°+2p-q

X(VSy(x)—p—eA(¢'))-qde’

+ L@em“"@)ﬁ e[ 5.A(g)
(kp—k-q)kp e
—eA(¢")/2]d¢’, (2.26
where the functiorB(¢,q) is defined as
- P . . 2 de’
B((P,Q)=f 5 TA-[VSy(x) —eAle’)] —.
kp—k-
(2.2

Making the inverse Fourier transformation %{(¢,ﬁ) and
then turning to the previous variabletsFo, after simple cal-
culations we obtain the following expression for the scalar
part of a particle wave function:

R 1 U(q)ed e Bled
- f kp—k-q

e

Xf"’ B D — gt —[p-Ae’)
— kp ¢

—eA2(¢')/2])d¢'da.

(2.28

In a similar way, seeking the bispinor functiﬁ)[(q;,ﬁ) in
the form

and s”(cﬁ) is the action of the particle corresponding to theand
elastic scattering in the potential field in the absence of an

EM wave[the solution of Eq(2.21) at A(¢)=0]

(2.29

Then, for~Sl(¢,ﬁ) we have the expression

Tile.@)=0/(¢,0)+9(q), (2.29
where
9/(—%,q)=0 (2.30
R v-q) yoU(q
g”(q):(v q) yoU(q)u (2.31

92+2p-q

[g“(ﬁ) is the spin part of the particle wave function at the
elastic scattering in the potential field: the solution of Eqg.

(2.22 at ,&((,D)Zﬁ], we obtain the expression f3r1(<p,(i),
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Y - U(qu[ e Bae® re . i [edTeiBled fp
F ()= (v-9)%0(q) [ _ _ f giBi(e’.q) fi(t,r)= f __ f B¢’ .d)
- 167%) kp—-k-q J-=

q°+2p-q { kp—k-
. . y e(YK)[y-Ale’ ) 7-A9)]
X1 q-[VSu(x)—p—eAl¢')] 2(kp—K-q)

X(7-0) ¥0(@) (@) —i200(q)d, fule")

0,

1+

ie - -
— = (vK[y-dA(¢')/de'] |de’ -~ -
5 (YK[y-dA(e") qo]) ¢ +0(6) _8+_[p Ao’ eAch)/Z]}
e_|Bl(<Pad) o ) - E(j
] It x—— [ 3-A(¢")~ - A()]u| d¢'dd
kp—k-qJ-= kp(kp—k-q)
(2.35
x| [0U(q)+i(K- 93¢ ,0) 10, Fy(e") Then we assume the EM wave to be quasimonochromatic
' and of an arbitrary polarization with the vector potential
ie(y-@)yo0(a) A(9)=Aq(¢)(e1C0SE COSp+esinésing), (2.3

ko (LY Ale")]ulde _ _ _
P where Ag(p) is the slow varying amplitude of the vector

(2.32 potentlaIA(t r) el andez are unit vectors perpendlcular to
each other and to the wave vectdr (e1 e2—0 e K

The functionB(¢,q) in Eq. (2.32 is defined as
1(e.0) a =e,-k=0, and|e1|—|e2| 1), and ¢ is the polarization

R . ie(yk)[7-Ale)] angle.
Bl(‘P:q):B(‘PaQ)_W- (2.33 It is useful to introduce a new functiod,(u,v,A), the

definition and principal properties of which are given in Ap-
pendix A. Utilizing the formula(A9) for the expansion over

As the terms over the first power ofK)[ v- A(¢) ] are equal the functions (u,v,A),

to zero[in accordance with the conditiof2.20] (see Ref.

[20)), eriBl(ﬁ,¢)] can be written exd —iaSin(@— 61) +ia,Sin2¢]
eiBl(‘i"”):eiB(a"")( 14 SOy AR oy = 3 Jn(ar,- g 0p)exd —in(e— 0],
2(kp—k-q) n=o
(2.37

So, after the inverse Fourier transformation and turning to

the preVIOUS variables we have such an eXpr955|On fqnle carry out the |ntegrat|on OVQT in the expressn)(]z 2&
fo(t,r), Then we obtain

< i [ U(@{(e+0Z)Dy— w[a(p)D1,(8(P))—Z cOS %Dy}
SitN=— > e " s = = =
Am3n==c q*+2p-q+22k-q—2n(kp—k-q)—i0
xexp(i{d-r+ ay(9)sin ¢— 01(4)]— ax(Q)sin 26+ 63(d)nHdg, (238
|
where al(ﬁ) is the parameter of the Dirac particle interac- EZKg
tion with both scattering and EM wave fields simultaneously Z= Ikp (2.40
- eAon(a) .
aq(q)= Aoﬂ* = (2.39  anda,(q) has the form
kp—Kk-q’
whereA, is the average value @(¢) andZ is the relative ay(q)= K—chos2§. (2.4

parameter of the wave intensity defined as 2(kp—Kk-q)
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Then the magnitudes of(q) and 6,(q) are

K-ap - =]
7(q)= ( Kp +q|-e,| cogé
> > > 2 1/2
k- I
+ ( q)p+q e, sinzg] . (242
kp
Kaqp .| =
( ?))erq 3,
6,(q)=arctan —=—— tang (2.43
(k~Q)p+» 3
kp q 1

and a(p) is the intensity-dependent amplitude

a<5>=%\/@éozcoé&(ﬁ$2>2sin2g. (2.44

with the phase angle

- >

- p-e
6(p)=arctary ——tané | . (2.45

>

p-&

The functionsD,,, D1 ,(6(p)), andD,,, are defined by the
expressions

1
2, e —in(¢= 61 Vn(a1,~ az,61)| code—6(p)]
CoS 2p
. D,
= 2 _exd—in(e= 611} Dia8(p)), (2.4
D2,n

so they are satisfied for the relations
Dn=Jdn(a1,—az,61),
- 1 _ R
D1n(0(p))= E[Jnfl(al,—az,el)e*'[ﬁr 0(p)]

+‘]n+1(0‘11_ a2101)ei[01_ 0(6)]]1

(2.47)

Dan=old —ay,0,)e 12"
2n 2[ n-2(ay,—ay,0;)€

+ 2@y, —ay,0,)€2%].

In the denominator of the integral in expressi@?38 —i0
is an imaginary infinitesimal, which shows how the path
around the pole in the integrand should be chosen to obtain a
certain asymptotic behavior of the wave function, i.e., the
outgoing spherical wavgo determine that one must pass to
the limit of the Born approximation ai(<p)=5].

Using Eq.(2.5), the approximate solution of ER.1) can
be written as

1
O (x)= E[f\/((p) 1) JexdiSy(x) +iS:(x)],
(2.48

where the spin paiftf,(x)|<|fy(¢)| [the final analytic form
of f1(x) is presented in EqB2)] andS,(t,r) is presented by
Eqg. (2.38. Note that the wave function is normalized for the
one particle in the unit volume.

Inserting the expressia2.48 for d(x) into Eq.(2.3) and

keeping terms to first order of the potentM(F), we obtain
the solution¥ (x) of the Dirac equatiori2.1) in the applied
approximation, which coincides with E€R.48. So the bis-
pinor function®(x) is the solution of the Dirac equation in
the GEA.

Ill. DISCUSSION OF THE GEA WAVE FUNCTION
IN VARIOUS LIMITS

Formula(2.38 has been obtained in the GEA under the
condition that

IVS,(r)]2<|(e + wZ)U(r)]. (3.0

To estimate the latter let us evaluate the expresﬁ@a
using the formulag2.39 and (2.42. Then we fixn in the
denominator of the expressig2.38 at the most probable
valuen for the actionSl(F,t). At the circular polarization of
the wave the functiod,(a,,— a5, 6;) turns into the Bessel
functionJ,,(a;) in accordance with the determination by in-
finite series representatio(A2). Then, to determine the
value ofn we use the argumentation of Choudh(i32] ac-
cording to which the Bessel functial,(z) gets its largest
value when its index is roughly equal to its argument

n(q)=(a1(q)), (3.2

where(a;(q)) denotes integer value of;(q). This approxi-
mative estimation of the Bessel function can be verified by
the diagrams of Jahnke and En{@8&]. Then carrying out the
summation ofn in the formula(2.38, we obtain

U(qyer dq

31~2i(8+w2)f

g2+ 2p-q+2Zk-q—2n(kp—k-q)—i0 (2m)3’

(3.3

From the expression@.3) and(3.1) the condition of the GEA can be presented in the general form
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2

Due to the oscillations of the facta&'" in the integral in
Eq. (3.4), the main contribution is in the region wheger
=1, i.e.,|q|=|gerf|=a" 1, wherea is the dimension of the

effective range of the scattering potenti‘a@(F). Therefore,
the condition(3.4) can be written as

2(e+ wZ) G5
[Q211+ 2P Gesi+ 2ZK- Qei— 2n(kp—kK-Qes) 12

|U(a)|<1.
(3.5

The n included in the formula3.5) is the most probable
number of photons that is defined by expressi¢8),

(2.39, and(2.42:
> , (3.6

3.7

1
Wg(x)= \/T—Sexliisv(x)]| fu(e)+f1(x)

f G%+2p-q+2Zk-q—2n(kp—k-g)—i0 (2m)3

<|u(a)|. (3.4

wherep’ =|p’|.
Finally, the condition of applicability of the GEA3.1)
may be written in the form

2
LA] : (3.9

1 .

_+|H|_

a s
1-vcosk-p

U <1
|U(a)| i,

wherev =|p|/¢ is the particle velocity and

[My=¢e+wZ, ﬁ=5+|22 (3.9

are the average values of the particle energy and momentum
in the EM field that correspond to the average four-kinetic
momentum or “quasimomentumTI of the particle in the
wave (T2=m2=m?+e?A?, wherem, is the “effective
mass” of the particlg

The wave functior(2.48 in the GEA turns into the wave
function in the Born approximation by the scattering poten-
tial if

1S,(r,t)|<1. (3.10

By expanding the second term in the first exponent in the
formula(2.48 into a series and keeping only the terms to the

first order inAo(r), we obtain

U(9){(e+wZ)D,— w[@(p)D1,(8(p))—Z cos %D, ]}

1 - .
~ e e |
43 v(@)n;w

X expi{q-r+ a;(q)sin ¢ — 01(q)]—ia,(q)sin2¢+ 6;:(q)n}dq; .

The condition when the wave functidB.11) is valid can
be written using Eq(3.10 taking into account Eq$3.3) and
(3.9:

eAo

—_—

1-vcok-p

[U(a)|<

1 -
Hoa 5+|H|_ , (3.12

—_—

wherek- p denotes the angle betwe&randp vectors. This

criterion of validity of the particle wave function of the

q%+2p-q+2Zk-q—2n(kp—k-q)—i0

(3.11

field) cases. Thus, for the fast particles, whdfl]|
—eAy/(1-vcok-p)la>1, we have

eA ‘

1—v cosk-p

V(@< | ITl- (3.13

From the condition3.12 for the slow particles, whefiII|

stimulated scattering in the Born approximation by potential—eAq/(1— v cosk-p)la<1, we obtain the strong criterion of

field includes both “fast” and “slow” particleqin the EM

Born approximation for SB:
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1
U(@)<—— (3.14

od

Comparing the condition of applicability of the GHA.8)
and the conditions in the Born approximatid®.13 and
(3.14 we see that for the fast particl@s strong laser fields
the wave function obtained in the GE/.48 describes
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the stimulated scattering in region§li|—eAq/(1-v
x cosk-p)|al|TT| —eAy/(1—v cosk-p)la>1 times larger

than the wave function in the Born approximation.

Now let us find the asymptote of the electron wave func-
tion corresponding to the Born approximatiorr at + o and
justify the chosen sign at the infinitesimed to the path
around the pole in the integral®.38 and (B2). From the
expression(3.11) we have

. exdiSy(X)] - exdiq-r1F.(¢,q)dq
PYo(rt)=————— f — — — — , 3.1
e(r0) J2e { V(¢)+(2ﬂ)3n;w fq2+2p~q+22k~q—2n(kp—k-q)—i0 (313
where the functiorF ,(¢,q)
Fale,q)=0(q)expi{a(q)sife— 6,(q)]— ax(q)sin2e+ 6,(q)n—ne})
e“’[‘f”“ 2,k ‘ﬂ A(YK)(5-Ban(5-0)y
X Dn c.a — k Q-A + 30 9
(y-a@)vo— 2 (kp—R-)kp (YKLy-Ale)] 2 (kp—K-G)
eAJ 4 +2p-q-2 % q wea(q) (Y[ y-A(e)]
+ 2kp)| - — (7 @0 |(YK)(y-D)gpt - D1n(6())
(k ) (¥K) yo— wgyk)(v-Q)Z(Dn+Cos2gD2n) u
kp—k-q '
—2fy(@){(e+ wZ)Dy— w[@(p)D1,(6(p))—Z cos %D, ]} (3.16

To calculate the asymptote of the functi(8115 we tem-
porarily direct theOq, coordinate axis along and replace
the integration variablei by 5’=f[+n|2+(i. Turning to

[this path corresponds to chosen sign of the infinitesimal
(—10) in the denominator of the integrahdis a result, at
r—oo we obtain

spherical coordinates, we carry out the integration over the

solid angle by the formula

N 2 SN i
exp(|p’.r)|réw=>m—,r[5(p’—r)exp(|p’r)

—8(p'+1)exp(—ip’r)],
3.17)

wherep’, r are unit vectors along’ andr, respectively.
Then we carry out the integration over in the complex

plane, passing above the pgé= —p, and below the pole
p’'=p,, where

:\/ﬁ2+nw(2ﬂo+nw) (3.18

\IfB(F,t)z exdiSy(x)]

NP
—ill-
X{fv(q))-Fqu I r]z e'(pnr nk
n= no
XFn(ﬂoypn%_ﬁ_nR)J: (3.19

where F (¢, por —II—nk) is defined by Eq(3.16. Sum-
mation ofn is carried out withng=((—TIy+m,)/ ).

As it is seen from the expressigB.19, the asymptotic
wave function ah=0 [if 5\(99)56], corresponding to elas-
tic scattering of the electron in the Born approximation, de-
scribes the outgoing spherical wave at large distances, ac-
cording to which the sign of the infinitesimid in the poles
of the integralg2.38 and(B2) was chosen. Finally, note that
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in the nonrelativistic limit the GEA wave functiof2.48 Jn(u,0A)=J,(u) (A3)
obtained reduces to the corresponding one of Rdfand at

A(¢)=0 it becomes the relativistic wave function of the and

lasti ring on an arbitrary electrostati j i
elastic scattering on an arbitrary electrostatic poteriiak e 1803 () for n even

Ref. [1]). A)= Ad
In(00,4) 0 for n odd. (Ad)
IV. CONCLUSION Then we have directly the relative formulas
In the current work the quantum description of relativistic
particles induced by bremsstrahlung on an arbitrary electro- _ n
static potential in the field of a strong EM wave is developed. In(—U,0,8)=(=1)"p(u,v,4),
Compared to existing approximations, the wave function
(2.48 obtained by solving the Dirac equation has a wide N
Jn(u,—v,A)=(—-1)"J_,(u,v,—A), (A5)

range of applicability. The essence of the approximation is

that quadratic scattering potential ter{risUZ(F)] are con-

sidered small. Here it also must be taken into account that in
reality, in the SB process both the scattering and wave fields
are limited from the top by the corresponding values of the
fields when the possible process of electron-positron pai{;ﬁl

Ja(u,—v,—A)=(—1)"I_,(u,—v,A).

. 5 . hen from the well known recurrence relations for the Bessel
production may occur. Consequently, it may be considere

that the wave function obtained describes the SB process o nctions we have

a Dirac particle when the spin interaction is also taken into

account with high accuracy. In addition, though we obtain a Joo1(U,v,A) =3, 1(U,0,A)=23,d,(u,v,A)  (AB)
wave function with a so-called general eikonal approxima-

tion, in reality even the wave function of the ordinary eikonal and

approximation for the Dirac particles in the SB process is not

known.
From the formula(2.489 we obtain the wave function e '?2J,_,(u,v,A)— €%, »(u,v,A)=23,3,(u,v,A),
(3.19 in the Born approximation from the scattering poten- (A7)

tial U(F). In boundary cases the GEA wave function ob-
tained reduces to the nonrelativistic GEA wave funciisee
Ref.[2]) and becomes the relativistic one of REF] in the
absence of an EM wave. Such a wave functi@48 is

which follow directly from Eq.(Al) or (A2).
An integration by parts in EqA1) yields the relation

important for a more accurate description of the above- _

threshold ionization of atoms, especially when clarifying the 20 3n(U,0,8) =UlJn-1(U0,8) + 1 (U0, A)]
process of stabilization, as considered in R&8]. The cal- +2u[e 22, _,(u,v,A)

culation of the relativistic multiphoton cross sections of the oA

SB process and the calculation of the probabilities of hydro- +e % 2(uv,A)]. (A8)

genlike atoms in multiphoton ionization in the above thresh-

: : : : c g Other results can be obtained by a combination of Egs.
old regime with this GEA wave function are distinct prob- . .
lems t%at will be considered in the future. P (A2)—(A8). We perform two important theorems, which can

be proved by Eq(Al). The first is

APPENDIX A: DEFINITION OF THE FUNCTION e ]
Jn(u,v,A) > enerdy (v, A)=expli[usin(e+A)+v sin 2]}

n=—o

A function J,(u,v,A) may be defined by (A9)

and the other is

o

kZ_ Jok(U, v, M) (U’ v, =A)=J,(uxu’ v v’ A).
+wvsin 26—n(60+A)]} (A1) (A10)

Jn(u,v,A):(Zw)_lfw doexgli[usin(6+A)

Then the functionJ,(u,v,A) at A=0 becomes the general-
ized Bessel functiod,(u,v), which was induced by Reiss
(see Ref[21]).

or by an infinite series representation

Jn(up,A)= D e g (W (v).  (A2)
k=—o APPENDIX B: SPIN PART OF THE WAVE FUNCTION

Both defining relations are equivalent. From either &) After the integration by parts and simple transformation
or (A2) it follows that of f,(t,r) in the expressiori2.35 we obtain the final form
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- L ey (y-Ae)
i U(q)exp(|q~r iB(¢,q) 2(kp—l2-&)

_ J B¢ Q)
1673 kp—k-q o

fy(t,r)=

.. e
X (Y'Q)?’o+§

(YROLy- ANy Dre (7D y(¥KLy-Ale")]
kp—Kk-q kp

> > - L o
ew q2+2p-q—25k-q

+ [ k _)-;5)\ "N1—(vk _).,51 +
2(kp—K-G)kp {(¥OLy-Ale) = (YKL y-Ale) I}

(Y[ 7-Ale)] - -
— -A(e!
o—E- Dk [a-A(¢")]

(K- ) (¥K) yo— 0(¥K) (¥ Q) , -, .
N Bl e?A2(¢") [ ude’dq. (B1)
2(kp—K-G)kp o) Judeids

We assume an EM wave to be monochromatic and of an arbitrary polarization with the vector potential in ti(2.36ym
Using the formula(A9) for the expansion by the functiodig(u,v, 8), we carry out the integration over’ in the expression
(B1). Then we obtain

fi(t,r)=

1 2 oine f U(q)exp(i{q-r+a;(q)sin ¢— 6:(q)]— ax(q)sin 2¢+ 6:(q)n})
(27)3n == q%+2p-q+2Zk-q—2n(kp—k-q)—i0

) > > [oRSRN
ew|q +2p-q—25k-q

X | Dol (7-9) 70— (YK) (v-Al¢))

2(kp—k-q)kp

-

q*+2p-q-2

— - 2 > > — | w
L eA(y-Dlanly-Dyo GAJ

—— — —(v-0 K(v-D
2(kp—Kk-q) 2kp| kp—K.q (v @) vo [(¥K)(y-D)apn

+wea(q)()/k)e[):A(gD)]Dln(é’(a))-i-(k.q)(YK)YO_f)(]k)(y.q)Z(Dn+COSQ§D2n) udi B2
kp—k-q ' kp—K-q :

wherea;(d), ax(d), Z, 7(q), 6:(A), a(q), 6(d), Dn, Diy(6(q)), andD,, are determined by the formuld8.39—
(2.47 and by the definitions

.. (7-6,)CoSE+i(y-€,)siné o
(Y'D)s,nE 2 Jn-1(ay,—a3,0,)e 02(@)

. (7-81)c0SE—i(7-8,)siné

2 Jn+1(0‘1:_a2-01)ei61(a)1

a(§)= %\/ (G- 61)%c02E+ (G- 6,)°SIrPE. (B3)

In the denominator of the integral in expressi®?2) —i0 is an imaginary infinitesimal, chosen to obtain a certain
asymptotic behavior of the wave function, i.e., the outgoing spherical {tawdetermine that we pass to the limit of the Born

approximation aﬁ(go)zﬁ] in accordance with the determination of the scalar ﬁa(f,t) [Eqg. (2.38)] of the wave function.
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