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High-order nonlinearities in the motion of a trapped atom
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We study the counterpart to the multiphoton down-conversion in the quantized motion of a trapped atom.
The Lamb-Dicke approximation leads to a divergence of the mean motional excitation in a finite interaction
time for k-quantum down-conversions wiki# 3, analogous to the situation in the parametric approximation of
nonlinear optics. We show that, in contrast to the Lamb-Dicke approximation, the correct treatment of the
overlap of the atomic center-of-mass wave function and the driving laser waves leads to a proper dynamics
without any divergence problem. That is, the wavy nature of both matter and light is an important physical
property that cannot be neglected for describing the motional dynamics of a trapped atom, even for small
Lamb-Dicke parameter$S1050-29479)00301-7

PACS numbes): 42.50.Vk, 32.80.Lg, 42.65:k, 03.65-w

[. INTRODUCTION trapped ions, a type of realization of such nonlinear mode
couplings became possible. Here the modes are represented

When the susceptibility of a medium interacting with anby the three-dimensional harmonic center-of-mass oscilla-
electromagnetic field of optical frequency depends stronglyions of a single ion in the trap. The nonlinear mode coupling
on the electric-field amplitude, one enters the domain of nonmay be realized by appropriate laser irradiation which in-
linear optics. Nonlinear couplings of electric fields of differ- duces vibrational Raman transitiof$5—19. This opens
ent frequencies usually emerge from an expansion of thpossibilities to study such mode couplings with an almost
susceptibility in terms of the electric-field amplitude. Promi- perfect systenti.e., the motion of the trapped ipmwhere the
nent examples of such nonlinear couplings are seconddamping of the motion is negligibly small apart from a small
harmonic generation or two-photon down-conversion, whictheating rate due to technical imperfectiof0]. In the
are due to a second-order susceptibijity. Nonlinear crys- Lamb-Dicke regime, where the atomic center-of-mass posi-
tals have been successfully used to produce squeezed qudion is well localized with respect to the wavelengths of the
tum states of light via a two-photon down-conversion. Theapplied laser fields, mode couplings result which are analo-
extension of two-photon down conversion to an arbitdary gous to the optical mode couplings in the parametric ap-
photon process, wheke>2 has also been studied. While this proximation. That is, a treatment of the dynamics based on
might be viewed as a natural generalization of the secondhe Lamb-Dicke approximation would reveal an unphysical
harmonic generation or the two-photon down-conversion, idivergence of the mean number of vibrational quanta for
has been shown that there is a subtle problem in the theorét-quantum processes witte= 3.
ical description of such processes. Fisher, Nieto, and Sand- Whereas for a trapped atom in the Lamb-Dicke regime
berg [1] argued that it is not possible to define states byone obtains a close connection to the parametrically approxi-
applying the unitary time-evolution operator on the vacuummated optical couplings, for a trapped atom, which is not
field state. This argument was partially removed by a conwell localized with respect to the laser wavelengths, nonlin-
sideration using Padapproximant§2]. Later on, however, it ear modifications of the couplings occur which arise from the
was shown by Elyutin and Klyshki8] and Hillery[4] that  overlap of the atomic center-of-mass wave function with the
for k=3 and 4, respectively, a divergence occurs in the meataser waves, describing the momentum transfer onto the
photon number for finite interaction times. This divergenceatomic center-of-mass during laser-photon absorption and
property may be interpreted as an unphysical artifact comingmission[15,19. These recoil effects may strongly influence
from the improper treatment of thephoton process. In fact, the coupling strengths which depend on the number of ex-
it has been shown that the usual parametric approximation isited quanta in the vibrational modes. They have been pre-
incorrect in that it neglects the energy transfer and entangledicted [21] and observed12] in the context of a nonlinear
ment between the pump and signal mode of the electromaglaynes-Cummings model, describing the dynamics of a
netic field, which emerges when the pump mode is quantizethser-driven vibronic transition in the resolved-sideband re-
[5—8]. We note that the possibility of observikg=3 non-  gime.
linear quantum optical conversion processes in a damped In this paper we will show that nonlinear effects caused
cavity has recently been discusq&d. by the overlap of light and matter waves will remove the

While these phenomena are well known and elaboratednphysical divergence problem which arises in the Lamb-
upon in the context of nonlinear optics, due to recent adDicke approximation. The paper is structured as follows: In
vances in laser coolindl0,11], state preparatiof12,13, and  Sec. Il we introduce the effective Hamiltonian for the mo-
detection [14] of the motional quantum state of single tional dynamics of the trapped atom, and we briefly discuss
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12) function in the ground state relative to the wavelengtbf
the beat node of the two laser beams. The Hermitian operator

functions f,(a'a; %) strongly depend on; and are defined
by the normally ordered expressions

” 2l
2 AtA N a2 T aial
f(ata;n=e ;0( D o 8

—:2q\ata) R atae 2. (2

These nonlinear operator functions correspond to overlap in-

tegrals of the motional statg¢s) and|n+k) and the beat

node of the laser fields. They account for the recoil effects

resonant laser fields with laser difference frequetgy- w,=kv, during the process of absorpt_lon and emission of laser pho-

wherev is the frequency of the vibrational mode which is spech‘iedtons of the trappAed AatAom' Since they depend only on the

by the beam directionk, —k, of the beat node of the two lasers. quantum numben=a'a, in the basis of its eigenstates,
njny=n|n) (n=0,1,2...), these operators are diagonal,

the _Just|f|cat|or_1 and the_vaI|d|ty of the parametric approxi-ith their diagonal elementk (n; 7]):<n|fk(éTéi 7)|n) be-

mation for optical couplings and the Lamb-Dicke approxi-ing given by

mation for the motional couplings. The laser-driven motional

dynamics is then considered in Sec. lll, and the divergence I )

problem in the Lamb-Dicke approximation is studied in Sec. fr(nym) = I+l LY (n?)e 772, ()]

IV. In Sec. V the more realistic treatment of an unspecified '

degree of localization of the trapped atom is shown to reWhereLﬁk)(X) are the associated Laguerre polynomials. For a

move the divergence, and some examples for the time eVQge|_jocalized atom, that is, for very small Lamb-Dicke pa-
lution are given. A summary and some conclusions are fo“ngametersn<1, or more precisely for a small spatial exten-

1)

FIG. 1. k-quantum motional coupling by application of two off-

in Sec. V. sion of the atomic wave functiomn+1<1, one reaches
the so-called Lamb-Dicke limit. Here usually the Lamb-
Il. MOTIONAL COUNTERPART OF MULTIPHOTON Dicke approximation is made, which takes into account only

DOWN-CONVERSION the lowest-order terms im. In our description of thek-
For the k-quantum vibrational-mode coupling, we con- quantum couplindEq. (1)] the Lamb-Dicke approximation

sider here a two-photon vibrational Raman transition which> ApeArformed by replacing the operator-valued  function
has been experimentally realizéti2,13 and theoretically Tk(a'a;7) by its limiting value for a small Lamb-Dicke pa-
studied in the context of nonlinear couplings of vibrationalfameter,

modeq 15-18§. By application of two laser beams which are

off resonant with respect to a strong electronic dipole transi- lim f,(R: 7) = i @)
tion, and which are detuned relative to each other by mul- 7—0 ’ k!

tiples of the vibrational frequencies in the trap, vibrational

Raman transitions can be driven which may be used to realy replacing the operator functioh(n;#) in Hamiltonian
ize a quantum-mechanical counterpart of nonlinear optics;1) py the c number given in Eq(4), one obtains the inter-
see Fig. 1. For an appropriate laser-beam propagation 9€0Mtion Hamiltonianf{:® of the k-quantum process in the

;Er%r\ghf:niﬁeasir?ntlzéhfo(tjggsnj\ﬁ;\;g O:e \r”ot;(ri?:;t?:* rT:ﬁgeLamb-Dicke approximation, that is, in lowest order of the
q Y 9 bp Lamb-Dicke parameter,

Hamiltonian describing the effect of the Raman laser drive
on the dynamics of the vibrational mode is given[h]

HD =fira +hixgal®, (5)
He=%«f(a'a; n)(ina)*+H.c., @ with
wherea anda' are the annihilation and creation operators of (in)X
vibrational quanta, respectively. Here the laser difference- Kk= KT

frequency has been chosen tolkoe i.e., k times the vibra-
tional frequency of the mode witk=1 [22]. The effective  peing thek-quantum coupling strength in the Lamb-Dicke

two-photon coupling strength is given y and approximation.
_ In the context of nonlinear optics, Hamiltonids) de-
o V(0]AX?|0) scribes thek-photon down-conversion process, wherds
A the signal mode and the pump mode has been parametrically

approximated by replacing its operators by amplitudes whose
is the so-called Lamb-Dicke parameter describing the localvalues are included in the coupling strengtp. It is well
ization of the spatial extension of the center-of-mass wavénown that fork>2 the parametric approximation described
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by Hamiltonian(5) leads to a divergent behavior of the meanwhereg,(n; ) is given by
guantum number in the signal mode fbnite interaction

times, i.e., . [(ntkK)!
gk(Nn; 7) = k(i) o k() €)
lim —(n(ty)) —(n(ty)) ==, (6)
tr—ty—At, andg,(n; »)=0 for n<0. For notational simplicity we will

omit here and in the following the time argument @f(t)

for a defined interaction time<0At.,<c. In nonlinear op-  and will only write i, .
tics the parametric approximation of the pump mode fails The time evolution of the populations of the number
due to pump depletion and the entanglement of signal angtates,pn:l/,: ¥, is obtained from Eq(8) and its complex
pump modes which is essential in this type of interactionconjugate,
leading to a energy conservation of the total number of pho-
tons in the pumpand signal modeg[1]. The parametric ap- P, . .
proximation essentially neglects the energy transfer from the  —— =2 IM[Gk(1 7) i ¢+ k= QN =K 7) byt ]-
signal to the pump mode, leading to an unbounded increase (10)
of the energy in the signal mode. A quantum description of
the pump mode is therefore required, regardless of howro calculate the second time derivative of Efj0), one re-
strong the pump field actually is compared with the signalquires the time derivatives of combinations of the type
mode[5-8]. ¥ Y+« Which are given by

For the case of a single trapped atom, the coupling

strength«, contains the classically approximated field am- J . .

plitudes of the two Raman lasers. While in nonlinear optics 5t Y0 Unek= 19 (N ) (Pry—Po)

the parametric approximation for the pump mode fails, it is

expected that for a Raman-driven trapped atom it is the +ilgk(n—K; 7)) 5tk
Lamb-Dicke approximation, rather than the replacement of

the laser-field operators by their classical amplitudes, which = gk(N+K; ) ¥ s 2] (13)

leads to a divergent dynamics. Note that the validity of the ) ) ) )

Lamb-Dicke approximation is, in principle, in contradiction nserting Eq(11) into the time-derivated Eq10) the second
with a divergent motional excitation in the trap. Eigenstatedime derivative of the number statistics results to be

of the trap potential should only be populated fpyn+1 5
<1, that is, for higher excitations the approximation is no ¢ Py
longer valid, and a diverging mean excitation violates this 2
requirement.

=2|gk(M; ) [2(Ppsk— Pn) — 2|gk(n—Kk; 7) |?

Therefore in all cases, even for a trapped atom with small X (Ph=Pn_) —2 R gu(n; 7)9(N+K; ) ¥, oktn
Lamb-Dicke parameter7{<1), we have to consider the full .
problem including the nonlinear operator functiohgn; 7) +gk(N—K; 7)Gu(N—2K; 7) ¥/ thn— 2k

in Hamiltonian (1). As already noted, these operator func-

tions describe the effects of momentum transfer onto the
atomic center-of-mass motion during the laser-atom intera
tion [15,19,2]. They are of particular importance for higher
vibrational excitationsyyn+ 1>1, and they are discarded in
the Lamb-Dicke approximation. dz(ﬁ(t)>

=20k(N; M I(N—K; 1) P Wn—i]- (12

%We are interested here in the temporal evolution of the mean
quantum number

=>n : (13)

IIl. EQUATIONS OF MOTION

To study the time evolution of the mean quantum numbethich can be calculated with the help of E¢2). Here only
(ﬁ(t)), we will start by deriving from Hamiltoniaril) the the first two terms of Eq(12) contribute to the sum in Eq.

equations of motion for the populations of the vibrational (13), \_Nhereas 'ghe real part given in EQ.2) cancc_als_. The
levels. The Schitdinger equation is given by resulting equation of motion for the number statistics reads

as

J “
)y =H,| (1)), 7 d2(n(t -
7t PO = Ry V) @ <dnt(2 ) =2k 2 [lg(m; mI*~lgu(n—ki )| IPy(1).

where |¢(t)) is the state vector in the interaction picture. (14)
Using as basis the number stata$, we obtain the follow-
ing equation of motion for the coefficientsy,(t)

={nly(0): 7P k| 2F(0; ) = KT gi(n; m) 2= | g(n—k: ) 2],

Iy _ . _
at __I[gk(nln)l!/n-%—k_'—gk(n_k! n)lﬁn—k]v (8) one ObtainS, for Eq(l4),

if

Defining the coefficient§(n; 7) by the relation
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d’(n(n) <
= 2 Fuln;m)Py(7), (16)
d?
with the (dimensionlessscaled timer given by
=27 «lt. 17

The coefficients=,(n; ») determine the motional dynamics
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with a nonvanishing highest-order coefficieaf x_,# 0.
From Eq.(19) it can be seen that the expansion coefficients
are always positivay,=0. Moreover, the lowest-order coef-
ficient ayq is nonvanishing, since

1
ao=F(0;0)= ——>0.

(k—1)! @D

and especially the existence of a divergence in finite interac- The second-order differential equations for the mean ex-

tion times, as depicted in E¢6). From Eqs(9) and(15) the
coefficients follow as

(n k)' n!
fe(n; 77)_(n——k)!

fﬁ(n—k;ﬂ)},
(18

Fe(n;n)=k
with k=1 and the function$,(n; ) given by Eq.(3), with
fr(n; 7)=0 for n<O.

IV. LAMB-DICKE APPROXIMATION:
EXPLODING SOLUTIONS

In the Lamb-Dicke approximationz(—0), the coeffi-
cientsF,(n; ») read as
1 n+k n
Fk(n,O)—m K — Kl I (19)

From Eqg.(19) it can be seen that, in general, the functions

Fr(n;0) are polynomials im of the orderk—1, that is,
k-1

= E an'
=0

Fk(n;0) (20

2
(n(7))= no+noq-+f drf dr”d<

dr?

with the initial conditions

— d(n(7)

F0:<ﬁ(7')>|7:0: No= dr

: (26)

7=0

———£122>n0+n07+J~d7.[ d7' 3 au(h(7)'

citation number in the Lamb-Dicke approximatidig.
(16)], together with Eq(20), read as

k—1

2 T
dn(n) =3, au(d(n),

(22)
dr?

Note, that the second derivatiyEq. (22)] is always positive
and nonzero due to the nonvanishing lowest-order @gm
cf. Eq. (21). For obtaining a lower bound for the second
derivative we use the relations following from the Schwarz
inequality

(n'(M)Y=(n(n), 1=012.... (23)
Due to the positiveness of the coefficierdg, a lower
bound of the right-hand side of E(22) follows by using Eq.
(23,

k=1

d*(n(n))
R

k—1

ak.<ﬁ'<r>>>|§0 a(n(7))'>0. (24

From the formal solution of Eq22) and the application of
Eq. (24), one obtains the inequality

k 1
(25

for the solution{n(7)). We will show in the following that,
for k=3, the lower-bound solutioN,(7) may diverge for
finite interaction times, so that it is proved that the correct

solution(n(7)) also diverges.
We obtain a first-order differential equation by consider-

where we have chosen, without loss of generality, the initiaing the first derivativeN,(7) =dN,(7)/d,

time to ber=0. From Eq.(25), it follows that the solution
Ni,(7) of the second-order differential equation

d®Nyp(7
E aNjp(7 (27)
dr?
obeys the relation
Nip(7)=<(n(7)), (28)

for =0 and identical initial conditionsl\l|b(0)=ﬁo and
Np(0)=n{. That is,Ny(7) represents a lower-boungb)

dNj, _ dNj dNyy
dT B dN|b d’T

d Nlb

|E akINIb

(29)
The last equality in Eq(29) can then be easily solved by

integration of

k—1

NipdNjp= IZO AN N, (30

and one obtains
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2 d?Ny,(7)/d72>0 [cf. Egs.(24) and(27)], thevelocityat time

k
=n(’)2+|21 bil Njp(7) — o], (B)  7>0 has to be positived Ny,(7)/d7>0. Equation(32) can

B then be integrated from the finite timg>0 to .= r; which
with the coefficientdo, = 2a,,_;/1=0 andby; #0, b, #0.  dives the relation

To demonstrate the unphysical properties of the Hamil-

tonianH{"? for k=3 in the Lamb-Dicke approximatiof5),
it is sufficient to prove the unphysical behavior for one — :J'N'b”z) dn (33)
physically reasonable initial condition. For the special cases 2 1 Nip(71) \/bkknk+ o+ bn?+ bklnl'
k=3 and 4, this has already been explicitly shown in Refs.
[3.,4]; here we want to show the unphysical behavior, in a
general way, for alk=3. For the atom initiallfat 7=0) in  Since thevelocity dN(7)/d is always positive and nonva-
its vibrational ground state#(0))=0), the initial condi-  Lishing for 7>0, it is clear thatN(r)>ne=0. Therefore
tions areny=ny=0 [the latter can be seen from ECLO)  the integration starts with a positive and nonvanishing value
with ¢,(0)= 8,0 and the differential equatiof81) reduces  of the excitationN,,(7;)>0, that has been attained after the

dNip(7)
dr

to interaction timer; .
K 12 Now we are interested in the further evolution in the time
dNp(7) _ E b N (7) (32) interval 7,— 7;. In particular, we are looking for that time
T = e interval Ar,=7,—7, for which the excitation number

Njp(7,) attains an infinite valudl,(7,) — . By taking only
Here we have chosen the positive square root, since for vaihe highest-order term in the square-root of E8p) we ob-

ishing initial velocity_r‘[)=0 and always positivacceleration  tain an upper bound foh .. :

% (k=1,2
A J i dn (34
T =
Nip( 1) Vb 2 = (k=3).

k=2 \/bkkN:(t:Z( )

This result reveals that we obtain a finite value/of,, for (8 If the mean quantum number diverges, we would be
k=3. That is, after attaining the finitthonvanishing exci-  operating in a regime of very large gquantum numbers
tation Ny,(7,) after the interaction timer,, the solution Therefore we are allowed to use an asymptotic expansion of
Nip(7) of Eq. (27) already diverges after the finite time in- the coefficients,(n; z) for largen.

terval Az, according to Eq(34). Concluding, fork=3 the (b) Since fork=1 and 2 we know that in the Lamb-Dicke
solution of Eq.(22) [(n(72))=Ny(7,)] will also diverge at approximation[described byF; ,(n;0)] the dynamics does

a certain finite interaction time,<7;+A7,. Fork=1 and  not exhibit a divergence in finite interaction times, it is suf-
2, no upper bound for the interaction time can be given, andicient to show that the asymptotic expansiorQ{n; ) has

it can be seen by direct integration of Eg2) that the mean an upper bound leading to a dynamics which is at least as
excitation does not diverge in a finite interaction time. convergent as foF; »(n;0),

V. OVERLAP OF MATTER AND LIGHT WAVES: Fu(n:p)<FyAn:0) (n>1). (35)
REGULAR BEHAVIOR FOR LARGE EXCITATIONS ’

In Sec. IV it has been shown that in the Lamb-Dicke Then theacceleration d(n(r))/d7* is always smaller than
approximation the mean motional excitation number di-those for the well-behaved cases, and a divergence in finite
verges in a finite interaction time for the cades3. In this  times cannot exist, regardless of the initial motional quantum
section we will prove that the exact Hamiltoni&h), e.g.,  state chosen.
without the Lamb-Dicke approximation, does not exhibit We start by expressing the functién(n; ) given in Eq.
such a divergence problem. This is due to the overlap of18) in terms of Laguerre polynomials by using E),
matter and light waves described by the nonlinear operator
functions(2). They lead to an excitation-dependent coupling n! ) 212
strength which suppresses the unbounded increase of the Fe(n;n)= Nkl [Ly (7]
mean excitation. '

(n—k)!

n!

(LI ()2 e 72 (36)

A. Proof of the regular behavior -

To prove the regular behavior of the dynamics of the sys-
tem described by Eq€16) and (18) we may consider the While the first(positive term in Eq.(36) describes the tran-
following situations. sition to higher-lying statefn)— |n+k), the secondnega-
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tive) term despribes transitions to Iower—lyil_ﬂg states 1, 1 i (n+k) k
—|n—Kk), leading to a decrease of tlagceleration An up- F(n;n)<—e7””
per bound for,(n; ), which determines the maximuetc- ™ 1+k 2 1+k
celeration is therefore given by neglecting the transitions to 7| n+ Y 7| n+ 2
lower-lying stategwhich do not cause a divergent behayjor B (44)
_ : (K); 2\ 12 22 For the range of large numbens we are considering here,
Fu(ni )< (n+K)! [La (7)]%e 7™ (37 the function therefore has the upper bound
_ _ : 1 e 1
Using the relation between the Laguerre polynomials and the Fu(nip)=<— . (45)
confluent hypergeometri€cKummer's function M(a,b;x) K T gPktl Jn'
[23],
that is, for large numbens, the upper bound of the function
n+k Fi(n;7n) decays as 1/n. It therefore can be further esti-
Lﬂ‘)(x)z( . )M(—n,k+1;x), (38)  mated by a simple consta(7),
7212
one arrives at the inequality fét,(n; 7) Fr(n;n)<Cy(7n), C(np)=-— T (46)
T 7 +1

k M2(—n,k+1:72)e" 7212 (39) The resulting differential equation for the upper bound)
’ ' ' Nyu(7) of the mean quantum number reduces then for possi-
bly large numbers to

An asymptotic expansion of the confluent hypergeometric

1
Fk(n;ﬂ)gﬁ K

functionM(a,b;x) for a— —, boundedb, and real-valued d?Nyy(7) —Cu(n) 47
x is given by[23] dr2 K7
T'(b) b (L4 —(1/2)b Reconsidering the formal solutidiEq. (25)] and the upper-
M(a,b;x)~ —e<1’2)x[(§—a X boundacceleration[Eq. (46)], it becomes clear thall ()
V indeed is an upper bound for the exact mean excitation num-
1 1 ber
xoo{ \/(Zb—4a)x—§b7r+ 27| (40 R
Nuo(7)=(n(7)) (48)
Thus, for large numbers, the inequality in its asymptotic for identically chosen initial conditionaN,(0)=n, and
form reads N/(0)=n} and large excitation¢n(7))>1. Equation(47)
W) states that the mean excitation number does not diverge in
Fu(ni )= 1tk , - 1+k finite time, since the differential equation for large values of
K= T 7 2 n leads to a behavior which is as convergent as in the case of

k=1 in the Lamb-Dicke limit wherd-,(n;0)=1=const.
o2 That is, the upper-bound solution of Bd.7), N (1), which

X ; . ) .
cos can be obtained by direct integration,

) /+1+k 1k 1
n n T E’ZT—ZW

Therefore, the maximum value of the right-hand side of Eqqqes not diverge for finite interaction timesIn conclusion,
(41) can be estimated by taking the squared cosines t0 bghas heen proved that the mean motional excitation number

4 Nuo 7) = g+ M7+ 1Cyl )72, (49

unity, resulting from the full Hamiltoniar{1) does not diverge for
finite interaction times.
E i) (n+k1f +1+|<) R @2
n; 7)< n+— e7’2, ,
(37 ant |7 2 B. Numerical examples

As an example, in Fig. 2 we show the exact time evolu-

Moreover, expressiofd2) can be further estimated by the tion of the mean motional excitation numbg(7)) for k

relation =3 and the Lamb-Dicke parametej=0.2. This clearly
shows that, instead of diverging in a finite interaction time as
(nt+k)! =(n+k)(n+k=1)---(n+1)<(n+k) would be expected in the Lamb-Dicke approximation, the
n! ' mean excitation number exhibits an oscillatory behavior.

(43)  This is due to the destructive overlap of matter and light
waves, leading to a decoupling of the atomic motion from
which gives one a further simplification: the laser fields for certain excitation amplitudes.
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tion. Consequently, those components of the quantum state

200 are moving back toward the origin of phase spg@§. This
effect explains the decrease of the mean motional excitation
10 number as seen in Fig. 2. Note that the distribution in Fig.
7;’100 3(f) for time 7=5.74 corresponds to a local minimum of
~ (ﬁ(r)) in Fig. 2. Obviously, there are some components of
50 the phase-space distribution which cross the barrier. How-
ever, because of the existence of further barriers at approxi-
= : ; : ; - mately equidistant radii, the explosive dynamics occurring in

the Lamb-Dicke approximation and also in the optical para-
metric approximation does not occur.

FIG. 2. Exact time evolution of the mean motional excitation
number(n(7)) for k=3 and Lamb-Dicke parametej=0.2, as a VI. SUMMARY AND CONCLUSIONS
function of the scaled time given in Eq.(17).

In summary, it has been shown that for a trapped atom

To gain more insight into the distribution of the quantum Which is driven by Raman-laser fields, in the Lamb-Dicke
state in phase space, in Fig. 3 we show the time evolution cdPProximation a behavior appears which is analogous to the
the Q function for the three-quantum couplingg£3) and  case ofk-photon down-conversion in nonlinear optics. A di-
for #=0.2. It can be seen that the dynamics is stronglyvergent behavior of the mean motional excitation number
modified by the occurrence of the circles of vanishing cou-after finite interaction times occurs for higher-order quantum
pling strengths. In contrast to the dynamics in the Lamb-couplings withk=3, similar to the situation for the paramet-
Dicke approximation, where the “starlike” structure would ric approximation in nonlinear optics. We have discussed
be extended to infinitely large phase-space amplitudes, thinese divergences within a single unified framework for all
extension of the star structure is halted at the first circle obrdersk=3. Moreover, it has been argued that the Lamb-
vanishing coupling. Parts of the phase-space distribution arBicke approximation, which is only valid for well-localized
smoothed over the circle. For those components of the disatoms, is not consistent with the occurrence of ldgesven
tribution that accumulate a phase shift®f3 relative to the diverging mean excitations.
initial star structure, Hamiltoniail) effectively exhibits a To overcome the divergent behavior, one has to treat the
change of sign accompanied by a reversal of the time evoluull problem without the Lamb-Dicke approximation. This
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FIG. 3. Time evolution of the Husim® function for an initial motional ground state under the influence of the three-quantum coupling
(k=3). The Lamb-Dicke parameter has been chosen=a.2, and the scaled timesare 0(a), 1.14(b), 2.29(c), 3.44(d), 4.59(e), and
5.74(f). Note the formation of a “star” followed by a ring from which further structure grows.
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includes the correct description of the laser-induced momemsptics. Whereas in nonlinear optics the divergence problem
tum transfer onto the center-of-mass of the trapped atomarises from the neglection of the pump-mode depletion and
These are described by a nonlinear operator function, whicbntanglement of the involved field modes, in the case of a
plays an essential role for the dynamics of the motionatrapped atom the unappropriate treatment of the recoil effects
quantum state of the atom. By using an asymptotic expann the Lamb-Dicke approximation leads to unphysical behav-
sion, we have proved that the correct description of the recoily.

effects widely modifies the dynamics for large excitations,

and prevents the mean excitation number from exploding for

finite interaction times. That is, the full problem leads to a ACKNOWLEDGMENTS
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