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High-order nonlinearities in the motion of a trapped atom
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We study the counterpart to the multiphoton down-conversion in the quantized motion of a trapped atom.
The Lamb-Dicke approximation leads to a divergence of the mean motional excitation in a finite interaction
time for k-quantum down-conversions withk>3, analogous to the situation in the parametric approximation of
nonlinear optics. We show that, in contrast to the Lamb-Dicke approximation, the correct treatment of the
overlap of the atomic center-of-mass wave function and the driving laser waves leads to a proper dynamics
without any divergence problem. That is, the wavy nature of both matter and light is an important physical
property that cannot be neglected for describing the motional dynamics of a trapped atom, even for small
Lamb-Dicke parameters.@S1050-2947~99!00301-7#

PACS number~s!: 42.50.Vk, 32.80.Lg, 42.65.2k, 03.65.2w
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I. INTRODUCTION

When the susceptibility of a medium interacting with
electromagnetic field of optical frequency depends stron
on the electric-field amplitude, one enters the domain of n
linear optics. Nonlinear couplings of electric fields of diffe
ent frequencies usually emerge from an expansion of
susceptibility in terms of the electric-field amplitude. Prom
nent examples of such nonlinear couplings are seco
harmonic generation or two-photon down-conversion, wh
are due to a second-order susceptibilityx2 . Nonlinear crys-
tals have been successfully used to produce squeezed q
tum states of light via a two-photon down-conversion. T
extension of two-photon down conversion to an arbitraryk-
photon process, wherek.2 has also been studied. While th
might be viewed as a natural generalization of the seco
harmonic generation or the two-photon down-conversion
has been shown that there is a subtle problem in the the
ical description of such processes. Fisher, Nieto, and Sa
berg @1# argued that it is not possible to define states
applying the unitary time-evolution operator on the vacu
field state. This argument was partially removed by a c
sideration using Pade´ approximants@2#. Later on, however, it
was shown by Elyutin and Klyshko@3# and Hillery @4# that
for k53 and 4, respectively, a divergence occurs in the m
photon number for finite interaction times. This divergen
property may be interpreted as an unphysical artifact com
from the improper treatment of thek-photon process. In fact
it has been shown that the usual parametric approximatio
incorrect in that it neglects the energy transfer and entan
ment between the pump and signal mode of the electrom
netic field, which emerges when the pump mode is quanti
@5–8#. We note that the possibility of observingk53 non-
linear quantum optical conversion processes in a dam
cavity has recently been discussed@9#.

While these phenomena are well known and elabora
upon in the context of nonlinear optics, due to recent
vances in laser cooling@10,11#, state preparation@12,13#, and
detection @14# of the motional quantum state of sing
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trapped ions, a type of realization of such nonlinear mo
couplings became possible. Here the modes are represe
by the three-dimensional harmonic center-of-mass osc
tions of a single ion in the trap. The nonlinear mode coupl
may be realized by appropriate laser irradiation which
duces vibrational Raman transitions@15–19#. This opens
possibilities to study such mode couplings with an alm
perfect system~i.e., the motion of the trapped ion! where the
damping of the motion is negligibly small apart from a sm
heating rate due to technical imperfections@20#. In the
Lamb-Dicke regime, where the atomic center-of-mass po
tion is well localized with respect to the wavelengths of t
applied laser fields, mode couplings result which are ana
gous to the optical mode couplings in the parametric
proximation. That is, a treatment of the dynamics based
the Lamb-Dicke approximation would reveal an unphysi
divergence of the mean number of vibrational quanta
k-quantum processes withk>3.

Whereas for a trapped atom in the Lamb-Dicke regi
one obtains a close connection to the parametrically appr
mated optical couplings, for a trapped atom, which is n
well localized with respect to the laser wavelengths, non
ear modifications of the couplings occur which arise from
overlap of the atomic center-of-mass wave function with
laser waves, describing the momentum transfer onto
atomic center-of-mass during laser-photon absorption
emission@15,19#. These recoil effects may strongly influenc
the coupling strengths which depend on the number of
cited quanta in the vibrational modes. They have been p
dicted @21# and observed@12# in the context of a nonlinea
Jaynes-Cummings model, describing the dynamics o
laser-driven vibronic transition in the resolved-sideband
gime.

In this paper we will show that nonlinear effects caus
by the overlap of light and matter waves will remove t
unphysical divergence problem which arises in the Lam
Dicke approximation. The paper is structured as follows:
Sec. II we introduce the effective Hamiltonian for the m
tional dynamics of the trapped atom, and we briefly disc
531 ©1999 The American Physical Society
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the justification and the validity of the parametric appro
mation for optical couplings and the Lamb-Dicke appro
mation for the motional couplings. The laser-driven motion
dynamics is then considered in Sec. III, and the diverge
problem in the Lamb-Dicke approximation is studied in S
IV. In Sec. V the more realistic treatment of an unspecifi
degree of localization of the trapped atom is shown to
move the divergence, and some examples for the time e
lution are given. A summary and some conclusions are fo
in Sec. VI.

II. MOTIONAL COUNTERPART OF MULTIPHOTON
DOWN-CONVERSION

For the k-quantum vibrational-mode coupling, we co
sider here a two-photon vibrational Raman transition wh
has been experimentally realized@12,13# and theoretically
studied in the context of nonlinear couplings of vibration
modes@15–18#. By application of two laser beams which a
off resonant with respect to a strong electronic dipole tran
tion, and which are detuned relative to each other by m
tiples of the vibrational frequencies in the trap, vibration
Raman transitions can be driven which may be used to r
ize a quantum-mechanical counterpart of nonlinear opt
see Fig. 1. For an appropriate laser-beam propagation ge
etry which affects only the dynamics in one vibrational mo
of frequency n, in the rotating-wave approximation th
Hamiltonian describing the effect of the Raman laser dr
on the dynamics of the vibrational mode is given by@15#

Ĥk5\k f̂ k~ â†â;h!~ ihâ!k1H.c., ~1!

whereâ andâ† are the annihilation and creation operators
vibrational quanta, respectively. Here the laser differen
frequency has been chosen to bekn, i.e., k times the vibra-
tional frequency of the mode withk>1 @22#. The effective
two-photon coupling strength is given byk, and

h52p
A^0uD x̂2u0&

l

is the so-called Lamb-Dicke parameter describing the lo
ization of the spatial extension of the center-of-mass w

FIG. 1. k-quantum motional coupling by application of two of
resonant laser fields with laser difference frequencyv12v25kn,
wheren is the frequency of the vibrational mode which is specifi
by the beam directionsk12k2 of the beat node of the two lasers
l
e
.
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function in the ground state relative to the wavelengthl of
the beat node of the two laser beams. The Hermitian oper
functions f̂ k(â

†â;h) strongly depend onh and are defined
by the normally ordered expressions

f̂ k~ â†â;h!5e2h2/2(
l 50

`

~21! l
h2l

l ! ~ l 1k!!
â†l âl

5:~2hAâ†â!2kJk~hAâ†â!e2h2/2:. ~2!

These nonlinear operator functions correspond to overlap
tegrals of the motional statesun& and un1k& and the beat
node of the laser fields. They account for the recoil effe
during the process of absorption and emission of laser p
tons of the trapped atom. Since they depend only on
quantum numbern̂5â†â, in the basis of its eigenstate
n̂un&5nun& (n50,1,2, . . . ), these operators are diagona
with their diagonal elementsf k(n;h)5^nu f̂ k(â

†â;h)un& be-
ing given by

f k~n;h!5
n!

~n1k!!
Ln

~k!~h2!e2h2/2, ~3!

whereLn
(k)(x) are the associated Laguerre polynomials. Fo

well-localized atom, that is, for very small Lamb-Dicke p
rametersh!1, or more precisely for a small spatial exte
sion of the atomic wave functionhAn11!1, one reaches
the so-called Lamb-Dicke limit. Here usually the Lam
Dicke approximation is made, which takes into account o
the lowest-order terms inh. In our description of thek-
quantum coupling@Eq. ~1!# the Lamb-Dicke approximation
is performed by replacing the operator-valued functi
f̂ k(â

†â;h) by its limiting value for a small Lamb-Dicke pa
rameter,

lim
h→0

f̂ k~ n̂;h!5
1

k!
. ~4!

By replacing the operator functionf̂ k(n̂;h) in Hamiltonian
~1! by thec number given in Eq.~4!, one obtains the inter-
action HamiltonianĤk

(LD) of the k-quantum process in the
Lamb-Dicke approximation, that is, in lowest order of th
Lamb-Dicke parameter,

Ĥk
~LD!5\kkâ

k1\kk* â†k, ~5!

with

kk5k
~ ih!k

k!

being thek-quantum coupling strength in the Lamb-Dick
approximation.

In the context of nonlinear optics, Hamiltonian~5! de-
scribes thek-photon down-conversion process, whereâ is
the signal mode and the pump mode has been parametri
approximated by replacing its operators by amplitudes wh
values are included in the coupling strengthkk . It is well
known that fork.2 the parametric approximation describe
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by Hamiltonian~5! leads to a divergent behavior of the me
quantum number in the signal mode forfinite interaction
times, i.e.,

lim
t22t1→Dt`

^n̂~ t2!&2^n̂~ t1!&5`, ~6!

for a defined interaction time 0,Dt`,`. In nonlinear op-
tics the parametric approximation of the pump mode fa
due to pump depletion and the entanglement of signal
pump modes which is essential in this type of interacti
leading to a energy conservation of the total number of p
tons in the pumpand signal mode@1#. The parametric ap-
proximation essentially neglects the energy transfer from
signal to the pump mode, leading to an unbounded incre
of the energy in the signal mode. A quantum description
the pump mode is therefore required, regardless of h
strong the pump field actually is compared with the sig
mode@5–8#.

For the case of a single trapped atom, the coupl
strengthkk contains the classically approximated field a
plitudes of the two Raman lasers. While in nonlinear opt
the parametric approximation for the pump mode fails, it
expected that for a Raman-driven trapped atom it is
Lamb-Dicke approximation, rather than the replacemen
the laser-field operators by their classical amplitudes, wh
leads to a divergent dynamics. Note that the validity of
Lamb-Dicke approximation is, in principle, in contradictio
with a divergent motional excitation in the trap. Eigensta
of the trap potential should only be populated forhAn11
!1, that is, for higher excitations the approximation is
longer valid, and a diverging mean excitation violates t
requirement.

Therefore in all cases, even for a trapped atom with sm
Lamb-Dicke parameter (h!1), we have to consider the fu
problem including the nonlinear operator functionsf̂ k(n̂;h)
in Hamiltonian ~1!. As already noted, these operator fun
tions describe the effects of momentum transfer onto
atomic center-of-mass motion during the laser-atom inte
tion @15,19,21#. They are of particular importance for highe
vibrational excitationshAn11.1, and they are discarded i
the Lamb-Dicke approximation.

III. EQUATIONS OF MOTION

To study the time evolution of the mean quantum num

^n̂(t)&, we will start by deriving from Hamiltonian~1! the
equations of motion for the populations of the vibration
levels. The Schro¨dinger equation is given by

i\
]

]t
uc~ t !&5Ĥkuc~ t !&, ~7!

where uc(t)& is the state vector in the interaction pictur
Using as basis the number statesun&, we obtain the follow-
ing equation of motion for the coefficientscn(t)
5^nuc(t)&:

]cn

]t
52 i @gk~n;h!cn1k1gk* ~n2k;h!cn2k#, ~8!
s
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wheregk(n;h) is given by

gk~n;h!5k~ ih!kA~n1k!!

n!
f k~n;h!, ~9!

andgk(n;h)50 for n,0. For notational simplicity we will
omit here and in the following the time argument ofcn(t)
and will only write cn .

The time evolution of the populations of the numb
states,Pn5cn* cn , is obtained from Eq.~8! and its complex
conjugate,

]Pn

]t
52 Im@gk~n;h!cn* cn1k2gk~n2k;h!cn2k* cn#.

~10!

To calculate the second time derivative of Eq.~10!, one re-
quires the time derivatives of combinations of the ty
cn* cn1k which are given by

]

]t
cn* cn1k5 igk* ~n;h!~Pn1k2Pn!

1 i @gk~n2k;h!cn2k* cn1k

2gk~n1k;h!cn* cn12k#. ~11!

Inserting Eq.~11! into the time-derivated Eq.~10! the second
time derivative of the number statistics results to be

]2Pn

]t2
52ugk~n;h!u2~Pn1k2Pn!22ugk~n2k;h!u2

3~Pn2Pn2k!22 Re@gk~n;h!gk~n1k;h!cn12k* cn

1gk~n2k;h!gk~n22k;h!cn* cn22k

22gk~n;h!gk~n2k;h!cn1k* cn2k#. ~12!

We are interested here in the temporal evolution of the m
quantum number

d2^n̂~ t !&

dt2
5 (

n50

`

n
]2Pn~ t !

]t2
, ~13!

which can be calculated with the help of Eq.~12!. Here only
the first two terms of Eq.~12! contribute to the sum in Eq
~13!, whereas the real part given in Eq.~12! cancels. The
resulting equation of motion for the number statistics rea
as

d2^n̂~ t !&

dt2
52k(

n50

`

@ ugk~n;h!u22ugk~n2k;h!u2#Pn~ t !.

~14!

Defining the coefficientsFk(n;h) by the relation

h2kuku2Fk~n;h!5k@ ugk~n;h!u22ugk~n2k;h!u2#,
~15!

one obtains, for Eq.~14!,
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d2^n̂~t!&

dt2
5 (

n50

`

Fk~n;h!Pn~t!, ~16!

with the ~dimensionless! scaled timet given by

t5A2hkukut. ~17!

The coefficientsFk(n;h) determine the motional dynamic
and especially the existence of a divergence in finite inte
tion times, as depicted in Eq.~6!. From Eqs.~9! and~15! the
coefficients follow as

Fk~n;h!5kF ~n1k!!

n!
f k

2~n;h!2
n!

~n2k!!
f k

2~n2k;h!G ,
~18!

with k>1 and the functionsf k(n;h) given by Eq.~3!, with
f k(n;h)50 for n,0.

IV. LAMB-DICKE APPROXIMATION:
EXPLODING SOLUTIONS

In the Lamb-Dicke approximation (h→0), the coeffi-
cientsFk(n;h) read as

Fk~n;0!5
1

~k21!! F S n1k

k D 2S n

kD G . ~19!

From Eq.~19! it can be seen that, in general, the functio
Fk(n;0) are polynomials inn of the orderk21, that is,

Fk~n;0!5 (
l 50

k21

akln
l ~20!
tia
c-

with a nonvanishing highest-order coefficientak,k21Þ0.
From Eq.~19! it can be seen that the expansion coefficie
are always positiveakl>0. Moreover, the lowest-order coe
ficient ak0 is nonvanishing, since

ak05Fk~0;0!5
1

~k21!!
.0. ~21!

The second-order differential equations for the mean
citation number in the Lamb-Dicke approximation@Eq.
~16!#, together with Eq.~20!, read as

d2^n̂~t!&

dt2
5 (

l 50

k21

akl^n̂
l~t!&. ~22!

Note, that the second derivative@Eq. ~22!# is always positive
and nonzero due to the nonvanishing lowest-order termak0 ,
cf. Eq. ~21!. For obtaining a lower bound for the secon
derivative we use the relations following from the Schwa
inequality

^n̂l~t!&>^n̂~t!& l , l 50,1,2, . . . . ~23!

Due to the positiveness of the coefficientsakl , a lower
bound of the right-hand side of Eq.~22! follows by using Eq.
~23!,

d2^n̂~t!&

dt2
5 (

l 50

k21

akl^n̂
l~t!&>(

l 50

k21

akl^n̂~t!& l.0. ~24!

From the formal solution of Eq.~22! and the application of
Eq. ~24!, one obtains the inequality
^n̂~t!&5n̄01n̄08t1E
0

t

dt8E
0

t8
dt9

d2^n̂~t9!&

dt2
>n̄01n̄08t1E

0

t

dt8E
0

t8
dt9(

l 50

k21

akl^n̂~t9!& l , ~25!
ct

r-

y

with the initial conditions

n̄05^n̂~t!&ut50 , n̄085
d^n̂~t!&

dt
U

t50

, ~26!

where we have chosen, without loss of generality, the ini
time to bet50. From Eq.~25!, it follows that the solution
Nlb(t) of the second-order differential equation

d2Nlb~t!

dt2
5 (

l 50

k21

aklNlb
l ~t! ~27!

obeys the relation

Nlb~t!<^n̂~t!&, ~28!

for t>0 and identical initial conditionsNlb(0)5n̄0 and
Nlb8 (0)5n̄08 . That is, Nlb(t) represents a lower-bound~lb!
l

for the solution^n̂(t)&. We will show in the following that,
for k>3, the lower-bound solutionNlb(t) may diverge for
finite interaction times, so that it is proved that the corre
solution ^n̂(t)& also diverges.

We obtain a first-order differential equation by conside
ing the first derivativeNlb8 (t)5dNlb(t)/dt,

dNlb8

dt
5

dNlb8

dNlb

dNlb

dt
5

dNlb8

dNlb
Nlb8 5 (

l 50

k21

aklNlb
l . ~29!

The last equality in Eq.~29! can then be easily solved b
integration of

Nlb8 dNlb8 5 (
l 50

k21

aklNlb
l dNlb , ~30!

and one obtains
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FdNlb~t!

dt G2

5n̄08
21(

l 51

k

bkl@Nlb
l ~t!2n̄0

l #, ~31!

with the coefficientsbkl52ak,l 21 / l>0 andbk1Þ0, bkkÞ0.
To demonstrate the unphysical properties of the Ham

tonianĤk
(LD) for k>3 in the Lamb-Dicke approximation~5!,

it is sufficient to prove the unphysical behavior for o
physically reasonable initial condition. For the special ca
k53 and 4, this has already been explicitly shown in Re
@3,4#; here we want to show the unphysical behavior, in
general way, for allk>3. For the atom initially~at t50) in
its vibrational ground state,uc(0)&5u0&, the initial condi-
tions aren̄05n̄0850 @the latter can be seen from Eq.~10!
with cn(0)5dn,0# and the differential equation~31! reduces
to

dNlb~t!

dt
5F(

l 51

k

bklNlb
l ~t!G1/2

. ~32!

Here we have chosen the positive square root, since for
ishing initial velocity n̄0850 and always positiveacceleration
-

an

ke
di

bi
o

at
ng
f

ys
l-

s
.

a

n-

d2Nlb(t)/dt2.0 @cf. Eqs.~24! and~27!#, thevelocityat time
t.0 has to be positive:dNlb(t)/dt.0. Equation~32! can
then be integrated from the finite timet1.0 to t2>t1 which
gives the relation

t22t15E
Nlb~t1!

Nlb~t2! dn

Abkkn
k1•••1bk2n21bk1n1

. ~33!

Since thevelocity dNlb(t)/dt is always positive and nonva
nishing for t.0, it is clear thatNlb(t1).n̄050. Therefore
the integration starts with a positive and nonvanishing va
of the excitation,Nlb(t1).0, that has been attained after th
interaction timet1 .

Now we are interested in the further evolution in the tim
interval t22t1 . In particular, we are looking for that time
interval Dt`5t22t1 for which the excitation numbe
Nlb(t2) attains an infinite valueNlb(t2)→`. By taking only
the highest-order term in the square-root of Eq.~33! we ob-
tain an upper bound forDt` :
Dt`<E
Nlb~t1!

` dn

Abkkn
k

5H ` ~k51,2!

2

k22

1

AbkkNlb
k22~t1!

~k>3!.
~34!
be

n of

e

f-

t as
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um
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This result reveals that we obtain a finite value ofDt` for
k>3. That is, after attaining the finite~nonvanishing! exci-
tation Nlb(t1) after the interaction timet1 , the solution
Nlb(t) of Eq. ~27! already diverges after the finite time in
tervalDt` , according to Eq.~34!. Concluding, fork>3 the
solution of Eq.~22! @^n̂(t2)&>Nlb(t2)# will also diverge at
a certain finite interaction timet2<t11Dt` . For k51 and
2, no upper bound for the interaction time can be given,
it can be seen by direct integration of Eq.~22! that the mean
excitation does not diverge in a finite interaction time.

V. OVERLAP OF MATTER AND LIGHT WAVES:
REGULAR BEHAVIOR FOR LARGE EXCITATIONS

In Sec. IV it has been shown that in the Lamb-Dic
approximation the mean motional excitation number
verges in a finite interaction time for the casesk>3. In this
section we will prove that the exact Hamiltonian~1!, e.g.,
without the Lamb-Dicke approximation, does not exhi
such a divergence problem. This is due to the overlap
matter and light waves described by the nonlinear oper
functions~2!. They lead to an excitation-dependent coupli
strength which suppresses the unbounded increase o
mean excitation.

A. Proof of the regular behavior

To prove the regular behavior of the dynamics of the s
tem described by Eqs.~16! and ~18! we may consider the
following situations.
d

-

t
f

or

the

-

~a! If the mean quantum number diverges, we would
operating in a regime of very large quantum numbersn.
Therefore we are allowed to use an asymptotic expansio
the coefficientsFk(n;h) for largen.

~b! Since fork51 and 2 we know that in the Lamb-Dick
approximation@described byF1,2(n;0)# the dynamics does
not exhibit a divergence in finite interaction times, it is su
ficient to show that the asymptotic expansion ofFk(n;h) has
an upper bound leading to a dynamics which is at leas
convergent as forF1,2(n;0),

Fk~n;h!<F1,2~n;0! ~n@1!. ~35!

Then theacceleration d2^n̂(t)&/dt2 is always smaller than
those for the well-behaved cases, and a divergence in fi
times cannot exist, regardless of the initial motional quant
state chosen.

We start by expressing the functionFk(n;h) given in Eq.
~18! in terms of Laguerre polynomials by using Eq.~3!,

Fk~n;h!5H n!

~n1k!!
@Ln

~k!~h2!#2

2
~n2k!!

n!
@Ln2k

~k! ~h2!#2J e2h2/2. ~36!

While the first~positive! term in Eq.~36! describes the tran
sition to higher-lying statesun&→un1k&, the second~nega-
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tive! term describes transitions to lower-lying statesun&
→un2k&, leading to a decrease of theacceleration. An up-
per bound forFk(n;h), which determines the maximumac-
celeration, is therefore given by neglecting the transitions
lower-lying states~which do not cause a divergent behavio!,

Fk~n;h!<
n!

~n1k!!
@Ln

~k!~h2!#2e2h2/2. ~37!

Using the relation between the Laguerre polynomials and
confluent hypergeometric~Kummer’s! function M (a,b;x)
@23#,

Ln
~k!~x!5S n1k

n D M ~2n,k11;x!, ~38!

one arrives at the inequality forFk(n;h)

Fk~n;h!<
1

k! S n1k

k D M2~2n,k11;h2!e2h2/2. ~39!

An asymptotic expansion of the confluent hypergeome
function M (a,b;x) for a→2`, boundedb, and real-valued
x is given by@23#

M ~a,b;x!;
G~b!

Ap
e~1/2!xF S b

2
2aD xG ~1/4!2~1/2!b

3cosFA~2b24a!x2
1

2
bp1

1

4
pG . ~40!

Thus, for large numbersn, the inequality in its asymptotic
form reads

Fk~n;h!<
1

p

~n1k!!

n! Fh2S n1
11k

2 D G2k2~1/2!

3cos2F2hAn1
11k

2
2

1

2
kp2

1

4
pGeh2/2.

~41!

Therefore, the maximum value of the right-hand side of E
~41! can be estimated by taking the squared cosines to
unity,

Fk~n;h!<
~n1k!!

pn! Fh2S n1
11k

2 D G2k2~1/2!

eh2/2. ~42!

Moreover, expression~42! can be further estimated by th
relation

~n1k!!

n!
5~n1k!~n1k21!•••~n11!<~n1k!k,

~43!

which gives one a further simplification:
e

c

.
be

Fk~n;h!<
1

p
eh2/2

1

Ah2S n1
11k

2
D F ~n1k!

h2S n1
11k

2
D G

k

.

~44!

For the range of large numbersn, we are considering here
the function therefore has the upper bound

Fk~n;h!<
1

p

eh2/2

h2k11

1

An
; ~45!

that is, for large numbersn, the upper bound of the function
Fk(n;h) decays as 1/An. It therefore can be further esti
mated by a simple constantCk(h),

Fk~n;h!<Ck~h!, C~h!5
1

p

eh2/2

h2k11
. ~46!

The resulting differential equation for the upper bound~ub!
Nub(t) of the mean quantum number reduces then for po
bly large numbersn to

d2Nub~t!

dt2
5Ck~h!. ~47!

Reconsidering the formal solution@Eq. ~25!# and the upper-
boundacceleration@Eq. ~46!#, it becomes clear thatNub(t)
indeed is an upper bound for the exact mean excitation n
ber

Nub~t!>^n̂~t!& ~48!

for identically chosen initial conditionsNub(0)5n̄0 and
Nub8 (0)5n̄08 and large excitationŝn̂(t)&@1. Equation~47!
states that the mean excitation number does not diverg
finite time, since the differential equation for large values
n leads to a behavior which is as convergent as in the cas
k51 in the Lamb-Dicke limit whereF1(n;0)515const.
That is, the upper-bound solution of Eq.~47!, Nub(t), which
can be obtained by direct integration,

Nub~t!5n̄01n̄08t1 1
2 Ck~h!t2, ~49!

does not diverge for finite interaction timest. In conclusion,
it has been proved that the mean motional excitation num
resulting from the full Hamiltonian~1! does not diverge for
finite interaction times.

B. Numerical examples

As an example, in Fig. 2 we show the exact time evo
tion of the mean motional excitation number^n̂(t)& for k
53 and the Lamb-Dicke parameterh50.2. This clearly
shows that, instead of diverging in a finite interaction time
would be expected in the Lamb-Dicke approximation, t
mean excitation number exhibits an oscillatory behavi
This is due to the destructive overlap of matter and lig
waves, leading to a decoupling of the atomic motion fro
the laser fields for certain excitation amplitudes.
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To gain more insight into the distribution of the quantu
state in phase space, in Fig. 3 we show the time evolutio
the Q function for the three-quantum coupling (k53) and
for h50.2. It can be seen that the dynamics is stron
modified by the occurrence of the circles of vanishing co
pling strengths. In contrast to the dynamics in the Lam
Dicke approximation, where the ‘‘starlike’’ structure wou
be extended to infinitely large phase-space amplitudes,
extension of the star structure is halted at the first circle
vanishing coupling. Parts of the phase-space distribution
smoothed over the circle. For those components of the
tribution that accumulate a phase shift ofp/3 relative to the
initial star structure, Hamiltonian~1! effectively exhibits a
change of sign accompanied by a reversal of the time ev

FIG. 2. Exact time evolution of the mean motional excitati

number^n̂(t)& for k53 and Lamb-Dicke parameterh50.2, as a
function of the scaled timet given in Eq.~17!.
of

y
-
-

he
f
re
s-

u-

tion. Consequently, those components of the quantum s
are moving back toward the origin of phase space@24#. This
effect explains the decrease of the mean motional excita
number as seen in Fig. 2. Note that the distribution in F
3~f! for time t55.74 corresponds to a local minimum o

^n̂(t)& in Fig. 2. Obviously, there are some components
the phase-space distribution which cross the barrier. H
ever, because of the existence of further barriers at appr
mately equidistant radii, the explosive dynamics occurring
the Lamb-Dicke approximation and also in the optical pa
metric approximation does not occur.

VI. SUMMARY AND CONCLUSIONS

In summary, it has been shown that for a trapped at
which is driven by Raman-laser fields, in the Lamb-Dic
approximation a behavior appears which is analogous to
case ofk-photon down-conversion in nonlinear optics. A d
vergent behavior of the mean motional excitation num
after finite interaction times occurs for higher-order quant
couplings withk>3, similar to the situation for the parame
ric approximation in nonlinear optics. We have discuss
these divergences within a single unified framework for
ordersk>3. Moreover, it has been argued that the Lam
Dicke approximation, which is only valid for well-localize
atoms, is not consistent with the occurrence of large~or even
diverging! mean excitations.

To overcome the divergent behavior, one has to treat
full problem without the Lamb-Dicke approximation. Th
pling
FIG. 3. Time evolution of the HusimiQ function for an initial motional ground state under the influence of the three-quantum cou
(k53). The Lamb-Dicke parameter has been chosen ash50.2, and the scaled timest are 0~a!, 1.14~b!, 2.29~c!, 3.44~d!, 4.59~e!, and
5.74 ~f!. Note the formation of a ‘‘star’’ followed by a ring from which further structure grows.
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includes the correct description of the laser-induced mom
tum transfer onto the center-of-mass of the trapped at
These are described by a nonlinear operator function, wh
plays an essential role for the dynamics of the motio
quantum state of the atom. By using an asymptotic exp
sion, we have proved that the correct description of the re
effects widely modifies the dynamics for large excitation
and prevents the mean excitation number from exploding
finite interaction times. That is, the full problem leads to
regular dynamics where the energy of the motional degre
freedom does not unphysically diverge. On the other ha
the Lamb-Dicke approximation fails for these types of co
plings, as does the parametric approximation in nonlin
D

eh

d

d,

.

d,

.

n-
.
h
l

n-
il
,
r

of
d,
-
r

optics. Whereas in nonlinear optics the divergence prob
arises from the neglection of the pump-mode depletion
entanglement of the involved field modes, in the case o
trapped atom the unappropriate treatment of the recoil eff
in the Lamb-Dicke approximation leads to unphysical beh
ior.
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@5# V. Buźek and G. Drobny´, Phys. Rev. A47, 1237~1993!.
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