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Circular Rydberg states in parallel electric and magnetic fields
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Circular and nearby Rydberg states in parallel electric and magnetic fields are studied using semiclassical
and exact quantum-mechanical methods. A wide range of external field strengths is considered including
regimes close to and beyond the classical ionization thresholds. When the tunneling decay rates due to the
presence of the electric field are negligible, semiclassical eigenvalues and wave functions represent very good
approximations. The combination of the complex-coordinate method with a discrete variable representation
and the Lanczos iterative scheme provides an efficient way to calculate exactly the complex eigenvalues
corresponding to the resonances emerging from the quasibound circular and nearby Rydberg states. Magnetic
fields have in general a stabilizing effect, diminishing the decay rates, although there are cases showing the
nonmonotonic~oscillatory! dependences of the imaginary parts of the eigenvalues with increasing magnetic
field strength.@S1050-2947~98!06012-0#

PACS number~s!: 32.60.1i
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I. INTRODUCTION

Atoms in circular Rydberg states are characterized by
maximum possible angular momentum (l 5umu5n21@1,
where n,l,m are spherical quantum numbers! of the highly
excited electron. The electron is localized in the vicinity
the Bohr circular orbit of the radiusn2 atomic units, which
clearly indicates the semiclassical nature of these states
the electron probability distribution does not penetrate
atomic core, atoms can be considered to be quasihydrog
These states are also characterized by very long radia
lifetimes, since the only allowed dipole transition is (n→n
21; umu→umu21). They can also serve as approximatio
for two-level systems in studies of the electrodynamics
atoms in cavities@1#. Collision processes involving atoms i
circular Rydberg states are characterized by a highly an
tropic cross section@2–4#. The first experimental realizatio
of circular Rydberg states was accomplished in 1983 by
let and Kleppner@5#, and since then various preparatio
schemes have been proposed and developed@6–12#.

Studies of the behavior of circular Rydberg states un
the influence of the external static fields is important, fi
because many of the preparation methods mentioned a
involve application of these fields, and second because t
systems are ideal for testing various semiclassical theo
In the present paper we shall be interested in compa
semiclassical and fully quantum descriptions of circular a
nearby Rydberg states in relatively strong parallel elec
and magnetic fields, that is, beyond the weak-field pertur
tional regime. This work is along the lines of previous inve
PRA 591050-2947/99/59~1!/524~7!/$15.00
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tigations@13–15# which dealt with the case of pure magnet
fields. Here we shall investigate in particular new effe
brought about by the presence of a strong electric field, s
as the possibility of field ionization of an atom in a circul
Rydberg state.

The plan of this paper is as follows. In Sec. II we prese
a semiclassical description of our system. Section III d
scribes the quantum-mechanical method used to obtain e
results. Our results are presented in Sec. IV in the form o
comparison between the semiclassical and quant
mechanical calculations. Finally, Sec. V contains conclud
remarks.

II. SEMICLASSICAL METHOD

In our development of the semiclassical description
circular Rydberg states in parallel electric and magne
fields, we follow the approach of Germann@14# previously
used for the case of a pure magnetic field. This appro
itself is a generalization of the method proposed by Ben
et al. @16#. In addition, it is not difficult to see that it can b
related to the semiclassical quantization of the phase-sp
tori located in the stability islands surrounding stable pe
odic orbits@17#.

Representing the electron wave function in the form

c~r,z,w!5~2pr!21/2f~r,z!exp~ imw!, ~2.1!

the Schro¨dinger equation in cylindrical coordinates an
atomic units reads
ts of
F2
1

2 S ]2

]r2 1
]2

]z2D1
m22 1

4

2r2 2
1

~r21z2!1/21 1
2 mB1 1

8 B2r21FzGf~r,z!5Ef~r,z!, ~2.2!

wherem is the magnetic quantum number andB and F are the magnetic and electric fields strengths expressed in uni
B0'2.353105T andF0'5.143109 V/cm.
524 ©1999 The American Physical Society
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Our goal is to look for the solutions of Eq.~2.2! in the limit umu→`. To this end, we choose as the small expans
parameterd5(umu11)21→0. This particular choice is discussed in Ref.@14# and it basically ensures the exact zero-field lim
for the energy of the circular state@16#. Introducing the scaled quantitiesr̃5d2r, z̃5d2z, B̃5d23B, F̃5d24F, and Ẽ
5d22(E2 1

2 mB), Eq. ~2.2! is transformed to

F2
d2

2 S ]2

]r̃2 1
]2

] z̃2D1
122d1 3

4 d2

2r̃2 2
1

~ r̃21 z̃2!1/21 1
8 B̃2r̃21F̃z̃Gf~r̃,z̃!5Ẽf~r̃,z̃!. ~2.3!
n

e

-

nic
by

the

eld
us

ple

ate
For d→0, the electron is localized at the minimum (r̃c ,z̃c)
of the potential

V~ r̃,z̃!5
1

2r̃22
1

~ r̃21 z̃2!1/21 1
8 B̃2r̃21F̃z̃. ~2.4!

Actually, in three dimensions the electron is localized arou
the circular orbit of radiusr̃5 r̃c located in the planez̃
5 z̃c . The position of the minimum is determined by th
equations

]V

] z̃
5

z̃

~ r̃21 z̃2!3/21F̃50, ~2.5!

]V

]r̃
52

1

r̃3 1
r̃

~ r̃21 z̃2!3/21 1
4 B̃2r̃50. ~2.6!

Introducing newd-scaled displacement coordinates,

x15~ r̃2 r̃c!d
21/2, x25~ z̃2 z̃c!d

21/2, ~2.7!

and retaining in Eq.~2.3! terms up to the order ofd, we
obtain

@V~ r̃c ,z̃c!1dH0#f~x1 ,x2!5Ẽf~x1 ,x2!, ~2.8!

where

H052
1

2 S ]2

]x1
2 1

]2

]x2
2D 1 1

2Ax1
21Bx1x21 1

2Cx2
22

1

r̃c
2 ,

~2.9!

with

A[
]2V

]r̃2U
~ r̃,z̃!5~ r̃c ,z̃c!

5
3

r̃c
4 1

z̃c
222r̃c

2

~ r̃c
21 z̃c

2!5/21 1
4 B̃2.

~2.10!

B[
]2V

]r̃] z̃U
~ r̃,z̃!5~ r̃c ,z̃c!

52
3z̃cr̃c

~ r̃c
21 z̃c

2!5/2, ~2.11!

C[
]2V

] z̃2U
~ r̃,z̃!5~ r̃c ,z̃c!

5
r̃c

222z̃c
2

~ r̃c
21 z̃c

2!5/2. ~2.12!

Changing to rotated coordinates~‘‘normal modes’’!,

u5x1 cosu1x2 sin u, ~2.13!

v52x1 sin u1x2 cosu, ~2.14!
d

where tan 2u52B/(A2C), the Hamiltonian~2.9! is trans-
formed into

H052
1

2 S ]2

]u2 1
]2

]v2D1 1
2 v1

2u21 1
2 v2

2v22
1

r̃c
2 ,

~2.15!

with

v1,2
2 5 1

2 $A1C6@~A2C!214B2#1/2%. ~2.16!

The spectrum ofH0 is that of the two-dimensional har
monic oscillator, so that from Eq.~2.8! we finally find

E' 1
2 mB1d2V~ r̃c ,z̃c!1d3

„~n11 1
2 !v1

1~n21 1
2 !v22 r̃c

22
…, n1,250,1,... . ~2.17!

The circular states correspond ton15n250 and we expect
the above formula to be the most accurate in this case.

The approximate eigenfunctionsfmn1n2
(r,z) can be ex-

pressed in terms of those of the two-dimensional harmo
oscillator. For example, the circular states are described
the simple product of Gaussians:

fm00~r,z!5S v1v2d6

p2 D 1/4

exp~2 1
2 v1u22 1

2 v2v2!,

~2.18!

where u and v are related tor and z via relations~2.13!,
~2.14!, and~2.7!.

All the above considerations are meaningful under
condition that the minimum of the potential~that is, the cir-
cular orbit!, determined by relations~2.5! and ~2.6!, exists.
We can determine the range of the electric and magnetic fi
strengths for which such an orbit exists. To this end, let
introduce a new variablex through the relationz̃52F̃x3.
Relations~2.5! and ~2.6! than take the form

r̃252F̃2x61x2, ~2.19!

x~11 1
4 B̃2x3!~12F̃2x4!251. ~2.20!

It is clear that in order to determinez̃c and r̃c we have to
solve only Eq.~2.20! in the domain 0,x,(F̃)21/2. The
function on the left-hand side of this equation has a sim
zero atx50 and a double zero~that is a minimum! at x

5(F̃)21/2. In between there is a maximum whose coordin
x is determined by the equation

129F̃21B̃2x3~123F̃2x4!50. ~2.21!
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526 PRA 59SUNO, ANDRIC, GROZDANOV, AND McCARROLL
Now, if the maximum value of the left-hand side of E
~2.20! is larger than 1, then there are two roots in the inter
0,x,(F̃)21/2. The smaller one corresponds to a minimu
of the effective potential~that is, to a stable circular orbit!
while the larger one corresponds to a saddle point of
potential ~that is, to an unstable circular orbit!. The critical
case occurs when both roots~orbits! merge. This situation
corresponds to aclassical ionization threshold of the circula
stateand is realized if both relations~2.20! and ~2.21! are
simultaneously fulfilled. The elimination ofx from these two
equations leads to a functional dependence betweenF̃ andB̃

defining a critical curve in the (F̃,B̃) plane representing th
border of the existence of the circular orbits. This curve c
easily be determined numerically and is shown in Fig. 1. T
region on the left of the curve corresponds to the values oF̃

and B̃ for which the circular orbits exist. The stabilizin
effect of the magnetic field can be seen from Fig. 1:
stronger the magnetic field, the stronger the electric fi
needed to reach the classical ionization threshold.

In the limit of very small magnetic fieldsB̃!1, it is not
difficult to obtain an analytical relation defining the critic
curve:

B̃c5 27
4 F̃c

3/4F F̃c
1/22

26

39/2G1/2

. ~2.22!

This expression gives for the classical ionization threshold
circular states in pure electric fields the valueF̃c5212/39,
which is in accord with earlier findings of Benderet al. @16#.
When both fields are large,B̃@1 andF̃@1, the critical curve
asymptotically approaches the following one:

B̃c5F̃cS 272
12

~ F̃c
2!1/4D 1/2

. ~2.23!

FIG. 1. Full line represents the critical curve defining the cl
sical ionization threshold for circular states. Circular trajector
exist in the region left of the critical curve. Vertical and horizon
dashed lines are related to Figs. 4–7 and are discussed later i
text.
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III. EXACT QUANTUM CALCULATIONS

Strictly speaking, the spectrum of the Hamiltonian d
scribing a hydrogen atom in parallel electric and magne
fields is continuous. However, as is well known, for rel
tively weak electric fields one can define quasibound sta
or resonances with exponentially small decay rates co
sponding to tunneling transitions leading to field ionizati
of the atom. The decay rates increase with the increase o
electric field strength and, once the classical ionizat
threshold is approached, are no longer exponentially sm
The circular Rydberg states in this respect are no excepti
and our intention here is to study the corresponding re
nances in various regimes of the external fields strength

In general, the resonances are associated with the c
plex poles of the system’s Green’s function orSmatrix @18#,
located on nonphysical sheets of the Riemann surface
complex energies. The real part of a complex poleEn is
usually called the resonance position (Er5ReEn) while the
width ~or decay rate! is related to the imaginary part (G
522 Im En).

The method widely used to determine resonances is
complex coordinate~or rotation, or scaling, or dilatation!
method~for a review, see@19,20#!. When applied to a hydro-
gen atom in external fields, it consists in replacing the el
tron coordinate and momentum operators by complex qu
tities:

rW→rWeiu, pW→pW e2 iu, ~3.1!

whereu is a real ‘‘rotation angle.’’ The transformed Hami
tonianH(u) is a non-Hermitian operator and has a comp
spectrum which can be related to the spectrum and re
nances corresponding to the original HamiltonianH5H(u
50). In general, the bound~real discrete! spectrum is com-
mon to bothH and H(u), as well as the positions of al
continuum thresholds. The continua themselves, howe
are rotated by the angle22u into the lower half of the com-
plex energy plane. The resonances ofH are the discrete com
plex eigenvalues ofH(u) and are independent ofu provided
they are uncovered by the rotation. The case of the S
effect is special, because then the continuum spectrum
tends from2` to 1` and there is no threshold. Herbst@21#
has shown that in that case the continuous spectrum di
pears completely and only discrete resonances remain.

In our problem, after performing the transformation~3.1!
and introducing the scaled parabolic coordinates

u

l
5~r21z2!1/21z, ~3.2!

v
l

5~r21z2!1/22z, ~3.3!

rdrdz5
1

4l3 ~u1v !dudv, ~3.4!

with an arbitrary scaling parameterl, the complex-rotated
Hamiltonian, restricted to a subspace with fixed magne
quantum numberm, takes the form

-
s

the
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PRA 59 527CIRCULAR RYDBERG STATES IN PARALLEL . . .
H~u!5e2 i2uT2e2 iu
2l

u1v
1ei2u

B2

8l2 uv

1eiu
u2v
2l

F1 1
2 mB, ~3.5!

with the kinetic energy operator given by

T5
2l2

u1v F2
]

]u
u

]

]u
2

]

]v
v

]

]v
1

m2

4 S 1

u
1

1

v D G .
~3.6!

Next we construct the Hamiltonian matrix correspondi
to Eq. ~3.5! by using a discrete variable representati
~DVR! @22#. The particular basis used is the direct product
two one-dimensional DVR’s corresponding to coordinateu
andv and related to generalized Gauss-Laguerre quadra
points and weights@15#. This DVR is equivalent to a ‘‘La-
guerre mesh’’ introduced previously by Baye and Vinc
@23#. Details about the basis functions and matrix elem
can be found in our recent work@15#, where it was applied to
the case of a pure magnetic field. The only difference in
present case is that the parityP(z→2z) is no longer a good
quantum number, and therefore the DVR basis could no
symmetrized. It is important to emphasize that the ma
representing the potential energy is diagonal while the ma
representing the kinetic energy is sparse@15#. Therefore,
DVR is well suited for the applications of various iterativ
methods relying on the repetitions of the basic matrix-vec
multiplication operation.

In order to extract the resonance eigenvalues of the ci
lar and nearby states, we have adopted the complex Lan
recursion method~see, for example,@24#!. As a good starting
vector for the Lanczos recursions, one can use the semi
sical wave function of the type~2.18!. In a series of calcula-
tions for various field strengths, one can always use as
initial Lanczos vector the eigenvector previously found
the nearby field strengths. For the typical results presente
the next section, related to theumu540 manifolds and
laboratory-strength fields, a few hundred iterations were s
ficient to obtain converged results with an accuracy of ei
significant figures, while using DVR bases sets of dime
sions in the range from 3533551225 to 4534552025.
Careful checks are performed to prove that the results
stationary with respect to variations of the scaling param
l and rotation angleu.

IV. RESULTS AND DISCUSSION

We first analyze the pure Stark effect for the circular a
nearby Rydberg states. Figure 2 shows the field depend
of the resonance positions~real parts of complex eigenva
ues! for the circular states withumu540 and for the first two
excited states in the same manifold. States are labeled b
semiclassical quantum numbersn1 and n2 from Eq. ~2.17!,
which in the zero-field limit correspond to usual hydrogen
parabolic quantum numbers. Semiclassical eigenvalues
shown as dashed lines. In this figure~as well as in all others!,
the quantum and semiclassical results for the circular R
berg states (n1 ,n2)5(0,0) are almost visually indistinguish
able, up to the fields close to the classical ionization thre
f
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old ~shown as a vertical line in Fig. 2!. The agreement
between the semiclassical and quantum results for hig
states in the manifold is not so good, but still satisfactory,
can be seen from Fig. 2.

Figure 3 shows the electric-field dependence of wid
~two times the negative imaginary part of the complex eig
values! for the same three states considered in Fig. 2. He
we can see the exponential increase of the widths up to
classical ionization threshold and the subsequent slower
crease with the field strength.

Next we consider the change of resonance paramete
circular (m5240) and nearby Rydberg states for fixed ele
tric field F5831028 and increasing the magnetic field from
B50 to B51.231025. This corresponds to moving alon
the vertical line intersecting the critical curve in Fig. 1.

Figure 4 shows the dependence of the real parts of
eigenvalues on magnetic field strength. We observe a mo
tonic decrease which is well approximated with the semicl
sical results in the region of the existence of the circu
orbits.

The stabilizing effect of the magnetic field can be seen

FIG. 2. Full lines represent the real parts of the complex re
nance eigenvalues (umu540) for circular and nearby states in ze
magnetic and varying electric field. Dashed lines are semiclass
approximations and quantum numbers (n1 ,n2) are defined in Eq.
~2.17!. Vertical line at Fc57.3631028 corresponds to classica
ionization threshold of the circular state.

FIG. 3. Resonance widths of the states whose real parts of
eigenvalues are shown in Fig. 2.
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Fig. 5, which shows the decrease of the widths with
increasing magnetic field strength. Note, however, that
decrease may not be monotonic, as is the case with the
(n1 ,n2)5(1,0) in Fig. 5. This phenomenon of oscillator
behavior of the imaginary parts of the resonances with
creasing magnetic field strength has also been noticed
study of resonances belonging to them50 manifold of the
hydrogen atom in parallel electric and magnetic fields@25#.

The last case considered is the one in which the magn
field strength is fixed atB5231025 and the electric field
strength increases fromF50 to F51.831027. This corre-
sponds to moving along the horizontal line, shown in Fig.
that is, observing the transition from a stable to an unsta
~with respect to field ionization! regime.

Figure 6 shows the behavior of the real parts of the eig
values as functions of the electric field strength. One can
that the state labeled by the semiclassical quantum num
(n1 ,n2)5(1,0) at small electric field strengths undergoes
avoiding crossing with the state labeled~0,2! at small fields.
Obviously, for this last state the semiclassical approximat

FIG. 4. Full lines represent the real parts of the complex re
nance eigenvalues (m5240) for circular and nearby states fo
fixed electric field strength ofF5831028 and varying magnetic
field. Dashed lines are semiclassical approximations and quan
numbers (n1 ,n2) are defined in Eq.~2.17!. Vertical line at Bc

54.3731026 corresponds to classical ionization threshold of t
circular state.

FIG. 5. Resonance widths of the states whose real parts o
eigenvalues are shown in Fig. 4.
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n

is the least accurate, so that the crossing point of the se
classical approximants is considerably displaced from
avoided crossing region. In order to avoid confusion we ha
attached in Fig. 6 labelsa-a andb-b to exact quantum adia
batic states.

Figure 7 shows the evolutions of the correspond
widths with the increase of the electric field strength. J
like in all preceding cases, the dependence is strictly mo
tonic for the circular state~0,0!. However, in the case of the
b-b state, as seen from Fig. 7, an oscillation similar to tha
Fig. 5 is observed. This fact, together with the results of
previously mention work@25#, suggests that this oscillator
behavior is a generic property of the Rydberg-state re
nances in external fields.

In order to provide more quantitative information, w
present the numerical values of the calculated quantum
semiclassical energies. Table I gives a series of results
the umu540 manifolds and for combinations of fiel
strengths when the widths are completely negligible. T
inspection of Table I confirms that the semiclassical e

-

m

he

FIG. 6. Full lines represent the real parts of the complex re
nance eigenvalues (m5240) for circular and nearby states fo
fixed magnetic field strength ofB5231025 and varying electric
field. Dashed lines are semiclassical approximations and quan
numbers (n1 ,n2) are defined in Eq.~2.17!. Vertical line at Fc

51.4931027 corresponds to classical ionization threshold of t
circular state.

FIG. 7. Resonance widths of the states whose real parts of
eigenvalues are shown in Fig. 6.
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TABLE I. Comparison of the calculated quantum eigenenergiesE ~in a.u.! of circular and near-circular states corresponding
m5240 with semiclassical estimatesESC for various fields~in a.u.! in the region where the widths are negligible. The energies of the s
with m5140 are obtained by addingmB. Numbers in square brackets indicate powers of ten.

B (n1 ,n2)

F50 F50.5@27#

E ESC E ESC

0 ~0,0! 22.974 420 0@24# 22.974 420 0@24# 23.042 130 8@24# 23.042 027 0@24#
~0,1! 22.834 467 1@24# 22.829 326 3@24# 22.952 302 5@24# 22.943 701 3@24#
~1,0! 22.834 467 1@24# 22.829 326 3@24# 22.885 016 8@24# 22.878 755 8@24#

0.5@25# ~0,0! 23.886 558 2@24# 23.886 554 3@24# 23.947 806 0@24# 23.947 740 6@24#
~0,1! 23.740 411 8@24# 23.735 461 6@24# 23.843 386 5@24# 23.836 052 3@24#
~1,0! 23.732 027 3@24# 23.727 403 5@24# 23.777 892 0@24# 23.772 701 8@24#

1.0@25# ~0,0! 24.646 519 3@24# 24.646 488 7@24# 24.696 276 2@24# 24.696 213 7@24#
~0,1! 24.485 856 1@24# 24.481 046 6@24# 24.560 416 2@24# 24.557 920 7@24#
~1,0! 24.457 224 3@24# 24.453 188 1@24# 24.496 208 2@24# 24.492 079 3@24#

1.5@25# ~0,0! 25.295 951 7@24# 25.295 951 7@24# 25.335 913 0@24# 25.335 813 2@24#
~0,1! 25.117 667 3@24# 25.112 773 7@24# 25.176 737 5@24# 25.170 909 6@24#
~1,0! 25.063 155 3@24# 25.059 176 6@24# 25.096 383 5@24# 25.092 463 6@24#

2.0@25# ~0,0! 25.866 750 7@24# 25.866 618 1@24# 25.899 381 5@24# 25.899 230 2@24#
~0,1! 25.670 062 8@24# 25.664 884 0@24# 25.716 231 1@24# 25.710 318 4@24#
~1,0! 25.586 946 9@24# 25.582 546 6@24# 25.615 336 3@24# 25.610 970 6@24#
~0,2! 25.481 781 0@24# 25.463 149 9@24# 25.542 867 5@24# 25.521 406 6@24#
lle
th

el

s
th

ve
-

a
he
e,
h-
o-
mates of the energies of the circular states are in exce
agreement with quantum results, while this is less so for
excited states in the manifold.

Table II deals with the set of results corresponding to fi
strengths in the regions where the field ionization~i.e.,
imaginary parts of resonance eigenvalues! is not negligible.
Nevertheless one can see that semiclassical estimates
represent a fairly good approximation for the real parts of
complex eigenvalues, especially for the circular states.

Finally, in order to test the quality of semiclassical wa
functions given by Eq.~2.18!, we have used them to calcu
nt
e

d

till
e

late the radiative lifetimes of circular Rydberg states for
number of combinations of the field strengths for which t
ionization widths are negligible. The only allowed radiativ
electric-dipole transition from a circular state is to the neig
boring circular state with one less quantum of angular m
mentum:m→m8, um8u5umu21. The lifetimetm of a circu-
lar state is therefore given by

tm
215

4

3c3 ~Em2Em8!
3udm8,mu2, ~4.1!
TABLE II. Comparison of the calculated quantum complex eigenenergiesE ~in a.u.! of circular and
near-circular states corresponding tom5240 with semiclassical estimatesESC for various fields~in a.u.! in
the region where the resonance width is important. The energies of the states withm5140 are obtained by
addingmB. Numbers in square brackets indicate powers of ten.

F B (n1 ,n2) E ESC

1.0@27# 1.0@25# ~0,0! 24.893 145 8@24#2 i6.133 77@27# 24.893 780 7@24#
~0,1! 24.851 246@24#2 i4.483@26# 24.854 250 1@24#
~1,0! 24.702 335@24#2 i1.8779@26# 24.698 568 6@24#

1.5@25# ~0,0! 25.472 293 6@24#a 25.471 943 0@24#
~0,1! 25.370 992 6@24#2 i2.521@29# 25.358 575 8@24#
~1,0! 25.228 107 5@24#2 i6.133@29# 25.223 289 4@24#

2.0@25# ~0,0! 26.005 402 7@24# 26.005 137 2@24#
~0,1! 25.862 392 4@24# 25.853 342 6@24#
~1,0! 25.713 409 6@24# 25.710 493 2@24#
~0,2! 25.736 462 8@24# 25.701 548 1@24#

1.3@27# 1.5@25# ~0,0! 25.649 978 4@24#2 i2.318 59@26# ¯

b

~0,1! 25.602 928@24#2 i8.239@26# ¯

~1,0! 25.414 596 8@24#2 i4.093 43@26# ¯

2.0@25# ~0,0! 26.120 031 5@24#2i9.559@211# 26.119 236 1@24#
~0,1! 26.030 613 3@24#2 i2.119 26@27# 26.008 193 4@24#
~1,0! 25.830 829 5@24#2 i8.927@29# 25.824 997 0@24#
~0,2! 25.972 923 1@24#2 i3.3144@26# 25.897 150 7@24#

aWhen the imaginary part is missing it means that it is less than 10212 a.u.
bAbove the classical ionization threshold.
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with the dipole matrix element (m85m61):

dm8,m57221/2^cm8~r,z,w!ure6 iwucm~r,z,w!&,
~4.2!

whereEm andcm(r,z,w) are the energy and the eigenfun
tion of the circular state. Table III shows the comparis

TABLE III. Comparison of the calculated exact quantum rad
tive lifetimes t ~in msec! of circular states corresponding t
m5740 with semiclassical estimatestSC as a function of various
field strengths~in a.u.!. Numbers in square brackets indicate powe
of ten.

F B

m5240 m5140

t tSC t tSC

0 0 10.55 10.71 10.55 10.71
0.5@25# 15.88 16.08 6.115 6.190
1.0@25# 20.14 20.31 3.561 3.590
1.5@25# 22.95 23.08 2.233 2.245
2.0@25# 24.70 24.79 1.507 1.512

0.3@27# 0 11.07 11.26 11.07 11.26
0.5@25# 16.66 16.88 6.307 6.392
1.0@25# 20.90 21.09 3.620 3.652
1.5@25# 23.58 23.71 2.253 2.266
2.0@25# 25.19 25.29 1.515 1.521

0.5@27# 0 12.36 12.61 12.36 12.61
0.5@25# 18.47 18.77 6.738 6.847
1.0@25# 22.50 22.72 3.739 3.777
1.5@25# 24.82 24.98 2.292 2.306
2.0@25# 26.15 26.26 1.530 1.537

0.8@27# 1.0@25# 29.00 29.38 4.180 4.240
1.5@25# 28.87 29.10 2.408 2.427
2.0@25# 28.97 29.11 1.572 1.580

1.0@27# 1.5@25# 35.15 35.49 2.568 2.595
2.0@25# 32.48 32.67 1.619 1.629
B

ys

ys

a

et
between semiclassical and quantum results. An excel
agreement is found indicating that for these field streng
the simple product of two Gaussians~2.18! is a very good
approximation to exact eigenfunctions.

V. CONCLUDING REMARKS

Circular and nearby states can be successfully descr
by the semiclassical theory presented in Sec. II. The co
tion is that the field strengths are such that the system is
close to or on the right of the classical ionization thresh
curve shown in Fig. 1. The semiclassical approximation
excellent both for the eigenvalues and wave functions of
circular Rydberg states, but it subsequently becomes less
curate for nearby states in the samem manifold.

In the region close to and beyond the classical ionizat
threshold, fully quantum calculations based on the compl
coordinate method, discrete variable representation, and
complex Lanczos recursion method provide exact eigen
ues for the resonances emerging from the circular and ne
quasibound states. In general, the magnetic field has a s
lizing effect, reducing the electron field-ionization probab
ity, but often characteristic oscillations of the widths c
appear. For fixed nonzero values of the magnetic fi
strength, calculations have also shown oscillations of
widths as a function of electric field strength.
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sité Pierre et Marie Curie where part of this work has be
done. T.P.G. acknowledges support of this work by the M
istry of Science and Technology of the Republic of Serbi

-

ll,

s.

cs

s

@1# R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. Lett.55,
2137 ~1985!.

@2# E. de Prunele´, Phys. Rev. A31, 3593~1985!.
@3# S. B. Hansen, T. Ehrenreich, E. Horsdal-Pedersen, K.

McAdam, and L. J. Dube´, Phys. Rev. Lett.71, 1522~1993!.
@4# M. F. Lundsgaard, Z. Chen, C. D. Lin, and N. Toshima, Ph

Rev. A 51, 1347~1995!.
@5# R. G. Hulet and D. Kleppner, Phys. Rev. Lett.51, 1430~1983!.
@6# D. Richards, J. Phys. B17, 1221~1984!.
@7# W. A. Molander, C. R. Stroud, Jr., and T. F. Yeazell, J. Ph

B 19, L461 ~1986!.
@8# D. Delande and J. C. Gay, Europhys. Lett.5, 303 ~1988!.
@9# J. Hare, M. Gross, and P. Goy, Phys. Rev. Lett.61, 1938

~1988!.
@10# P. Nussenzveig, F. Bernadot, M. Brune, J. Hare, J. M. R

mond, S. Haroche, and W. Gawlik, Phys. Rev. A48, 3991
~1993!.

@11# L. Chen, M. Cheret, F. Roussel, and G. Spiess, J. Phys. B26,
L437 ~1993!.

@12# C. H. Cheng, C. Y. Lee, and T. F. Gallagher, Phys. Rev. L
73, 3078~1994!.
.

.

.

i-

t.

@13# G. Wunner, M. Kost, and H. Ruder, Phys. Rev. A33, 1444
~1986!.

@14# T. C. Germann, J. Phys. B28, L531 ~1995!.
@15# T. P. Grozdanov, L. Andric, C. Manescu, and R. McCarro

Phys. Rev. A56, 1865~1997!.
@16# C. H. Bender, L. D. Mlodinow, and N. Papanicolaou, Phy

Rev. A 25, 1305~1982!.
@17# M. C. Gutzwiller,Chaos in Classical and Quantum Mechani

~Springer, New York, 1990!.
@18# R. G. Newton, Scattering Theory of Waves and Particle

~McGraw-Hill, New York, 1966!.
@19# W. P. Reinhardt, Annu. Rev. Phys. Chem.33, 223 ~1982!.
@20# Y. K. Ho, Phys. Rep.99, 1 ~1983!.
@21# I. W. Herbst, Commun. Math. Phys.64, 279 ~1979!.
@22# J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82,

1400 ~1985!.
@23# D. Baye and M. Vincke, J. Phys. B24, 3551~1991!.
@24# K. M. Milfeld and N. Moiseyev, Chem. Phys. Lett.130, 145

~1986!.
@25# I. Seipp, K. T. Taylor, and W. Schweizer, J. Phys. B29, 1

~1996!.


