PHYSICAL REVIEW A VOLUME 59, NUMBER 1 JANUARY 1999
Circular Rydberg states in parallel electric and magnetic fields
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Circular and nearby Rydberg states in parallel electric and magnetic fields are studied using semiclassical
and exact quantum-mechanical methods. A wide range of external field strengths is considered including
regimes close to and beyond the classical ionization thresholds. When the tunneling decay rates due to the
presence of the electric field are negligible, semiclassical eigenvalues and wave functions represent very good
approximations. The combination of the complex-coordinate method with a discrete variable representation
and the Lanczos iterative scheme provides an efficient way to calculate exactly the complex eigenvalues
corresponding to the resonances emerging from the quasibound circular and nearby Rydberg states. Magnetic
fields have in general a stabilizing effect, diminishing the decay rates, although there are cases showing the
nonmonotonic(oscillatory) dependences of the imaginary parts of the eigenvalues with increasing magnetic
field strength[S1050-294{@8)06012-Q

PACS numbd(s): 32.60:+i

I. INTRODUCTION tigations[13—15 which dealt with the case of pure magnetic
fields. Here we shall investigate in particular new effects
%rought about by the presence of a strong electric field, such
as the possibility of field ionization of an atom in a circular

Atoms in circular Rydberg states are characterized by th
maximum possible angular momenturh=(m|=n—-1>1,
whgre n,I,m are spherical quan.tum nu_mb}a@‘ the highlly Rydberg state.
excited electron. The electron is localized in the vicinity of “The plan of this paper is as follows. In Sec. Il we present
the Bohr circular orbit of the radius? atomic units, which 5 semiclassical description of our system. Section Ill de-
Clearly indicates the semiclassical nature of these states. %ribes the quantum_mechanica| method used to obtain exact
the electron probability distribution does not penetrate thgesults. Our results are presented in Sec. IV in the form of a
atomic core, atoms can be considered to be quasihydrogenicomparison between the semiclassical and quantum-
These states are also characterized by very long radiativ@echanical calculations. Finally, Sec. V contains concluding
lifetimes, since the only allowed dipole transition is—¢n remarks.

—1; |m|—|m|—1). They can also serve as approximations

for two-level systems in studies of the electrodynamics of Il. SEMICLASSICAL METHOD

atoms in cavitieg1]. Collision processes involving atoms in

circular Rydberg states are characterized by a highly aniso- In our development of the semiclassical description of
tropic cross sectiof2—4]. The first experimental realization Circular Rydberg states in parallel electric and magnetic
of circular Rydberg states was accomplished in 1983 by Hufields, we follow the approach of Germahid] previously

let and Kleppner[5], and since then various preparation used for the case of a pure magnetic field. This approach
schemes have been proposed and develpped?]. itself is a generalization of the method proposed by Bender

Studies of the behavior of circular Rydberg states undegt al. [16]. In addition, it is not difficult to see that it can be
the influence of the external static fields is important, firstrelated to the semiclassical quantization of the phase-space
because many of the preparation methods mentioned aboveri located in the stability islands surrounding stable peri-
involve application of these fields, and second because thegslic orbits[17].
systems are ideal for testing various semiclassical theories. Representing the electron wave function in the form
In the present paper we shall be interested in comparing
semiclassical and fully quantum descriptions of circular and W(p.z,0)=(2mp)” Y2p(p,2)expime), 29
nearby Rydberg states in relatively strong parallel electric
and magnetic fields, that is, beyond the weak-field perturbathe Schrdinger equation in cylindrical coordinates and
tional regime. This work is along the lines of previous inves-atomic units reads

+—|+
&pz 9z?

> s+ 3MB+5B%°+Fz|(p.2)=Ed(p.2), (2.2

1( 0% 42\ m>—%
2 202 (p?+2D)

wherem is the magnetic quantum number aBdand F are the magnetic and electric fields strengths expressed in units of
By~2.35x 10°T andF,~5.14x 10° V/cm.
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Our goal is to look for the solutions of E@2.2) in the limit [m|—«. To this end, we choose as the small expansion
paramete®=(|m|+ 1)~ 1—0. This particular choice is discussed in Rd#] and it basically ensures the exact zero-field limit

for the energy of the circular stafd6]. Introducing the scaled quantitigs= 6%p, 7= 8%z, B=6°B, F=6 *F, andE

=6 ?(E—3mB), Eq. (2.2 is transformed to

1-26+5%6°

+

N
_?(W+ﬁ

For 6—0, the electron is localized at the minimufp.(Z;)
of the potential

1 1 o
V(p,2)= ZTPZ— W—F %BZpZ—F FzZ. (2.9

— s+ i BZp2+ F2
sz (p2+22)1’2 gb p

¢(p.2)=E¢(p.2). 2.3

where tan 2=28/(.A—C), the Hamiltonian(2.9) is trans-
formed into

1( 6 & 1

Ho=——<—z+—z +3 iU+ F05v? - =,

2 \du dv <
(2.15

Actually, in three dimensions the electron is localized around

the circular orbit of radiusp="p. located in the plan&

=7%.. The position of the minimum is determined by the

equations
A F=0 2
@ o 29
N__2 ﬁﬁ 1B%=0 2.6
B F e et @9
Introducing newd-scaled displacement coordinates,
x1=(p—P)6 % xp=(2-7)67 "2 (2.7)

and retaining in Eq(2.3 terms up to the order of, we
obtain

[V(PeZe)+ SHol (X1, x2) =Eb(x1,%2), (2.8
where
Ho= L §2+82 + 3 AXZ+ BxyXo+ 20X2 !
0T 75 axi &Xg 2 AXy T DX X T 30X; ~gv
(2.9
with
PV 3 P-2pr
A=——3 ==3+ =z =252 T 1B~
B G2-Gozg Po (PetZ)
(2.10
PV 3Zcpe
B=—— == == (2.11)
B Go-Gozg (P2
aY% P22 213
=77 = =2 =25 .
I 3= 39 (Pt
Changing to rotated coordinatésormal modes”),
U=Xy COS 8+X, sin 6, (2.13
v=—X; Sin #+X, COS 6, (2.149

with

w? =HA+CE[(A-C)2+4B84Y3. (216

The spectrum oHj is that of the two-dimensional har-
monic oscillator, so that from Eq2.8) we finally find

E~3ImB+ 6°V(pe,Ze) + 8°((v1+ 3) g

~=2
+(V2+ %)wz_Pc )1

(2.17

The circular states correspond 9= r,=0 and we expect
the above formula to be the most accurate in this case.

The approximate eigenfunctionﬁ;ﬂym(p,z) can be ex-
pressed in terms of those of the two-dimensional harmonic
oscillator. For example, the circular states are described by
the simple product of Gaussians:

(.01(.0256

’7T2

V1V2=0,1,... .

1/4
exp(— %wluz_ %wzvz),

(2.18

whereu andv are related tg and z via relations(2.13,
(2.19, and(2.7).

All the above considerations are meaningful under the
condition that the minimum of the potentiéhat is, the cir-
cular orbiy, determined by relation€.5 and (2.6), exists.

We can determine the range of the electric and magnetic field
strengths for which such an orbit exists. To this end, let us

introduce a new variabla through the relatiofz= —Fx°.
Relations(2.5) and (2.6) than take the form

¢m00(paz) = (

B2=—E2%0+x2,

(2.19

x(1+ 1B2x%)(1-F2*%)2=1. (2.20

It is clear that in order to determirig, and’p, we have to
solve only Eq.(2.20 in the domain G<x<(F) Y2 The
function on the left-hand side of this equation has a simple
zero atx=0 and a double zer¢that is a minimum at x
=(F) Y2 In between there is a maximum whose coordinate
X is determined by the equation

1-9F2+B23(1-3F%*% =0. (2.21
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IIl. EXACT QUANTUM CALCULATIONS

-
o—

Strictly speaking, the spectrum of the Hamiltonian de-
................... S scribing a hydrogen atom in parallel electric and magnetic
Im[=40,B=2x10""a.u. fields is continuous. However, as is well known, for rela-
tively weak electric fields one can define quasibound states
or resonances with exponentially small decay rates corre-
sponding to tunneling transitions leading to field ionization
of the atom. The decay rates increase with the increase of the
electric field strength and, once the classical ionization
|ml=40,F=8x10""a.u. ] threshold is approached, are no longer exponentially small.
The circular Rydberg states in this respect are no exceptions,
and our intention here is to study the corresponding reso-
107 o 0 0 nances in various regimes of the external fields strengths.
Critical Scaled Electric Field F,6™(a.u.) In general, the resonances are associated with the com-
plex poles of the system’s Green’s function®matrix [18],
FIG. 1. Full line represents the critical curve defining the clas-located on nonphysical sheets of the Riemann surface of
sical ionization threshold for circular states. Circular trajectoriescomp|ex energies. The real part of a complex pBleis
exist in the region left of the gritical curve. Vertigal and horizon.tal usually called the resonance positid, € ReE,,) while the
dashed lines are related to Figs. 4—7 and are discussed later in th&qth (or decay rateis related to the imaginary part’(
text. =—2ImE,).
The method widely used to determine resonances is the
Now, if the maximum value of the left-hand side of Eq. complex coordinatgor rotation, or scaling, or dilatation
(2.20 is larger than 1, then there are two roots in the intervamethod(for a review, se¢19,20). When applied to a hydro-

0<x<(F)~¥2 The smaller one corresponds to a minimum3en atom ?n external fields, it consists in replacing the elec-
of the effective potentialthat is, to a stable circular orpit tron coordinate and momentum operators by complex quan-
while the larger one corresponds to a saddle point of th&tes:

potential (that is, to an unstable circular orbifThe critical _ _

case occurs when both rootsrbits) merge. This situation F—re'’, p—pe '’ (3.0
corresponds to elassical ionization threshold of the circular

stateand is realized if both relation@.20 and (2.21) are  where# is a real “rotation angle.” The transformed Hamil-
simultaneously fulfilled. The elimination offrom these two tonianH(6) is a non-Hermitian operator and has a complex

defining a critical curve in the~F(,~B) plane representing the nances corresponding to the original Hamiltonldr-H(¢

border of the existence of the circular orbits. This curve can_ 0). In general, the boungteal dlscretbespectrgr_n IS com-
on to bothH and H(#), as well as the positions of all

ea§|ly be determined numerically and is shown in Fig. 1 Thé:ontinuum thresholds. The continua themselves, however,
region on the left of the curve corresponds to the valuds of

- are rotated by the angle26 into the lower half of the com-
and B for which the circular orbits exist. The stabilizing p|ex energy p|ane_ The resonancedidcdire the discrete com-
effect of the magnetic field can be seen from Fig. 1: theplex eigenvalues ofi(#) and are independent éfprovided
stronger the magnetic field, the stronger the electric fielahey are uncovered by the rotation. The case of the Stark
needed to reach the classical ionization threshold. effect is special, because then the continuum spectrum ex-
In the limit of very small magnetic fieldB<1, it is not  tends from—e to +o and there is no threshold. Herlj&tl]
difficult to obtain an analytical relation defining the critical has shown that in that case the continuous spectrum disap-
curve: pears completely and only discrete resonances remain.
In our problem, after performing the transformaticl)
and introducing the scaled parabolic coordinates

°

Critical Scaled Magnetic Field BCS'S(a.u.)

e T T T A

~ ~ _ 26 1/2
Bo= %Fi"‘[ Fo- 3@?} (2.2 "

L= (P2 Pz, 3.2
This expression gives for the classical ionization threshold of

~ 1%
circular states in pure electric fields the valbg=21%3°, X=(p2+ z?)Vo—z, (3.3
which is in accord with earlier findings of Bendetral.[16].

When both fields are larg8>1 andF> 1, the critical curve

. . . 1
asymptotically approaches the following one: pdpdz= e (u+v)dudv, (3.9
- 12 |2 with an arbitrary scaling parametar the complex-rotated
Be=F¢| 27— — T (223  Hamiltonian, restricted to a subspace with fixed magnetic
(F2) guantum numbem, takes the form
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_ 2n B2 28 -
—p 20T _ it i260 BT S
H(t9)—e T-e u+uv +e 8)\2 uv ‘~~\\‘\ ~\\\(~1,0)
(TR N
+e' Y FiimB (3.5
2\ 2 ' Bl
Qm
o
with the kinetic energy operator given by =
(=
e _ | —— Quantum resuits
T= 2)\2 —iui—iv i m_z 1.}.3 T . Semiclassical results
u+uv du du dv dv 4 \u v/ Im|=40
(3.6 B=0
Next we construct the Hamiltonian matrix corresponding 345 02 04 06  F.08 10
to Eq. (3.5 by using a discrete variable representation Electric Field Strength (107a.u.)

(DVR) [22]. The particular basis used is the direct product of
two one-dimensional DVR’s Corresponding to coordinates FIG. 2. Full lines represent the real parts of the complex reso-
andv and related to generalized Gauss-Laguerre quadratufédnce eigenvaluegr(| =40) for circular and nearby states in zero
points and weight§15]. This DVR is equivalent to a “La- magneyc a_nd varying electric field. Dashed lines are semnclassmal
guerre mesh” introduced previously by Baye and Vincke&PProximations and guantum ””mbfsﬁsl {v;) are defined in Eq.
[23]. Details about the basis functions and matrix elemenf2-1?- Vertical line atF;=7.36<10 " corresponds to classical
can be found in our recent wofk5], where it was applied to '°nization threshold of the circular state.
the case of a pure magnetic field. The only difference in the
present case is that the parlﬁ)(z_> —Z) is no |onger a good old (shown as a vertical line in Flg)2 The agreement
quantum number, and therefore the DVR basis could not beetween the semiclassical and quantum results for higher
Symmetrized_ It is important to emphasize that the matri)@tates in the manifold is not so gOOd, but still SatiSfaCtory, as
representing the potential energy is diagonal while the matrigan be seen from Fig. 2.
representing the kinetic energy is Spa.[gé] Therefore, Figure 3 shows the electric-field dependence of widths
DVR is well suited for the applications of various iterative (two times the negative imaginary part of the complex eigen-
methods relying on the repetitions of the basic matrix-vectovalues for the same three states considered in Fig. 2. Here,
multiplication operation. we can see the exponential increase of the widths up to the
In order to extract the resonance eigenva|ues of the CircrplaSSical ionization threshold and the Subsequent slower in-
lar and nearby states, we have adopted the complex Lancz&&ase with the field strength.
recursion methodsee, for exampld24]). As a good starting Next we consider the change of resonance parameters of
vector for the Lanczos recursions, one can use the semiclagircular (n=—40) and nearby Rydberg states for fixed elec-
sical wave function of the typ€.18. In a series of calcula- tric field F=8x10"® and increasing the magnetic field from
tions for various field strengths, one can always use as aB=0 to B=1.2x10"°. This corresponds to moving along
initial Lanczos vector the eigenvector previously found forthe vertical line intersecting the critical curve in Fig. 1.
the nearby field strengths. For the typical results presented in Figure 4 shows the dependence of the real parts of the
the next section, related to thegn/=40 manifolds and eigenvalues on magnetic field strength. We observe a mono-
laboratory-strength fields, a few hundred iterations were suftonic decrease which is well approximated with the semiclas-
ficient to obtain converged results with an accuracy of eighgical results in the region of the existence of the circular
significant figures, while using DVR bases sets of dimen-Orbits.
sions in the range from 3535=1225 to 45<45=2025. The stabilizing effect of the magnetic field can be seen in
Careful checks are performed to prove that the results are
stationary with respect to variations of the scaling parameter

\ and rotation angle. w0 L %

IV. RESULTS AND DISCUSSION g
—
We first analyze the pure Stark effect for the circular and £ 107
nearby Rydberg states. Figure 2 shows the field dependence=
of the resonance positior(seal parts of complex eigenval- 8
ues for the circular states withm| =40 and for the first two g
. . . @ 107 ¢
excited states in the same manifold. States are labeled by the &

semiclassical quantum numberg and v, from Eq. (2.17), Im|=40
which in the zero-field limit correspond to usual hydrogenic (v,,v))=(0,0) B=0
parabolic quantum numbers. Semiclassical eigenvalues are 1o L - : :
0.5 0.6 07 F, 08 0.9 1.0

shown as dashed lines. In this figes well as in all otheps

the quantum and semiclassical results for the circular Ryd-
berg statesi; ,v,)=(0,0) are almost visually indistinguish- ~ FIG. 3. Resonance widths of the states whose real parts of the
able, up to the fields close to the classical ionization thresheigenvalues are shown in Fig. 2.

Electric Field Strength (10 a.u.)
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-3.0 T T T -5.4 )
— Quantumresults |  pmmoiaee.
----- Semiclassical results <2
-5.6
-3.5
£ 5
D T
- 40 =
= < (v,v)=(0,0) b
> 2 -6.0
2 2 —— Quantum results
w L N Semiclassical results a
-4.5
m=-40 -8.2 ' m=-40
F=8x10"a.u. B=2x10" a.u.
(viv,)=(0,0)
-5.0 4 L : : . -6.4 - - L .
0.0 0.2 04B, 06 0.8 1.0 0.0 04 0.8 1.2 F, 16
Magnetic Field Strength (10'5a.u.) Electric Field Strength (107 a.u.)

FIG. 4. Full lines represent the real parts of the complex reso-
nance eigenvaluesn(= —40) for circular and nearby states for
fixed electric field strength oF =8x 10 8 and varying magnetic

FIG. 6. Full lines represent the real parts of the complex reso-
nance eigenvaluesm(=—40) for circular and nearby states for
fixed magnetic field strength @=2x10"° and varying electric

) . X - Held. Dashed lines are semiclassical approximations and quantum
numbers ¢,,v;) are defined in Eq(2.17). Vertical line at B, numbers ¢,,v,) are defined in Eq(2.17. Vertical line atF,

_ i S
;rijgi_&te corresponds to classical lonization threshold of the:l.49>< 10" 7 corresponds to classical ionization threshold of the

circular state.

Fig. 5, which shows the decrease of the widths with thes the least accurate, so that the crossing point of the semi-
increasing magnetic field strength. Note, however, that th& ' gp

decrease may not be monotonic, as is the case with the Sta%assmal approximants is considerably displaced from the

T - . : avoided crossing region. In order to avoid confusion we have
(vq1,v2)=(1,0) in Fig. 5. This phenomenon of oscillatory g :
/ ; ; . _attached in Fig. 6 labela-a andb-b to exact quantum adia-
behavior of the imaginary parts of the resonances with Ny Stic states
creasing magnetic field strength has also been noticed in a Figure 7 shows the evolutions of the corresponding

study of resonances belonging to te=0 manifold of the widths with the increase of the electric field strength. Just

hydrogen atom in parallel electric and magnetic fiq2s]. like in all preceding cases, the dependence is strictly mono-

The last case considered is the one in which the magnetic . . .
field strength is fixed aB=2x 105 and the electric field tonic for the circular stat€0,0). However, in the case of the

. _ : b-b state, as seen from Fig. 7, an oscillation similar to that in
- - 7 ] ) ,
strength Increases froM=0 to F=1.8x10"". This corre Fig. 5 is observed. This fact, together with the results of the
sponds to moving along the horizontal line, shown in Fig. 1,

that is, observing the transition from a stable to an unstablg‘raeh\g‘?lili)s;lyi Smae m'g: e\;\i/:rl{rZOS]éiug(g)fe s;;setgatdtglesr o_zg‘ltlgt?;ys o-
(with respect to field ionizationregime. g property y 9

; ; . nances in external fields.
Figure 6 shows the behavior of the real parts of the eigen- In order to provide more quantitative information, we

values as functions of the electric field strength. One can se resent the numerical values of the calculated quantum and
that the state labeled by the ;emclassmal quantum numbe 2miclassical energies. Table | gives a series of results for
(v1,v5)=(1,0) at small electric field strengths undergoes LT Im=40 manifolds and for combinations of field

avoipling crossing with the state Iabe_lé@jZ) _at small fie_lds. ._strengths when the widths are completely negligible. The
Obviously, for this last state the semiclassical approxmaﬂoqnspection of Table | confirms that the semiclassical esti-

10 R /
__s 10° /
’:\. —_—
8 3 3 ]
— s
£ 107 =
2 -7
= £ 107 |
8 =
< 0]
© Q
1= =4
2 107 g
& m=-40 i 3 107
F=8x10 "a.u. 2
m=-40
(v,.v,)=(0,0) B=2x10"a.u. ]
107" ; ; : : - ©1) [(v,v)=(0.0
0.0 0.2 04B, 06 0.8 1.0 107" . . .
Magnetic Field Strength (10 °a.u.) 1.0 1.2 14 F, 16 1.8

Electric Field Strength (10”a.u.)

FIG. 5. Resonance widths of the states whose real parts of the FIG. 7. Resonance widths of the states whose real parts of the
eigenvalues are shown in Fig. 4. eigenvalues are shown in Fig. 6.
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TABLE I. Comparison of the calculated quantum eigenener@ie6n a.u) of circular and near-circular states corresponding to
m= — 40 with semiclassical estimat&S® for various fields(in a.u) in the region where the widths are negligible. The energies of the states
with m= +40 are obtained by addingB. Numbers in square brackets indicate powers of ten.

F=0 F=0.9-7]
B (v1,7v5) E ESC E ESC

0 (0,0 —2.974 420 (4] —2.974 420 0—4] —3.042 130 B—4] —3.042 027 0—4]
0,9 —2.834 467 [-4] —2.829 326 8—4] —2.952 302 p—4] —2.943 701 8-4]
1,0 —2.834 467 [-4] —2.829 326 8—4] —2.885 016 B—4] —2.878 755 §—4]

0.9-5] 0,0 —3.886 558 P—4] —3.886 554 B—4] —3.947 806 (—4] —3.947 740 p—4]
0,9 —3.740 411 8- 4] —3.735 461 p—4] —3.843 386 5—4] —3.836 052 B—4]
1,0 —3.732 027 B—4] —3.727 403 5-4] —3.777 892 p—4] —3.772 701 8- 4]

1.0-5] 0,0 —4.646 519 B—4] —4.646 488 7—-4] —4.696 276 p—4] —4.696 213 7—4]
0,9 —4.485 856 [—4] —4.481 046 p—4] —4.560 416 P—4] —4.557 920 7—4]
1,0 —4.457 224 B—4] —4.453 188 [-4] —4.496 208 p—4] —4.492 079 B—4]

1.9-5] 0,0 —5.295 951 7—4] —5.295 951 7—4] —5.335913 (4] —5.335 813 P—4]
0,9 —5.117 667 B—4] —5.112 773 7-4] —5.176 737 5—4] —5.170 909 p—4]
(1,0 —5.063 155 B—4] —5.059 176 6—4] —5.096 383 5—4] —5.092 463 p—4]

2.0-5] (0,0 —5.866 750 7—4] —5.866 618 [—4] —5.899 381 5—4] —5.899 230 p—4]
(0,2 —5.670 062 §—4] —5.664 884 (—4] —5.716 231 [-4] —5.710 318 §—4]
(1,0 —5.586 946 §—4] —5.582 546 §—4] —5.615 336 B—4] —5.610 970 p—4]
0,2 —5.481 781 0—4] —5.463 149 §—4] —5.542 867 5—4] —5.521 406 p—4]

mates of the energies of the circular states are in excelletiate the radiative lifetimes of circular Rydberg states for a
agreement with quantum results, while this is less so for theumber of combinations of the field strengths for which the

excited states in the manifold. ionization widths are negligible. The only allowed radiative,
Table Il deals with the set of results corresponding to fieldelectric-dipole transition from a circular state is to the neigh-
strengths in the regions where the field ionizatiGre.,  boring circular state with one less quantum of angular mo-

imaginary parts of resonance eigenvauissnot negligible.  mentum:m—m’, |m’|=|m|— 1. The lifetimer,, of a circu-
Nevertheless one can see that semiclassical estimates stdkr state is therefore given by
represent a fairly good approximation for the real parts of the
complex eigenvalues, especially for the circular states.

Finally, in order to test the quality of semiclassical wave T*lzi (Em—Em)3|dmy ml? 4.1)
functions given by Eq(2.18), we have used them to calcu- m - 3¢dtm o oTm me.m '

TABLE Il. Comparison of the calculated quantum complex eigenenef§ié® a.u) of circular and
near-circular states correspondingnte= — 40 with semiclassical estimat&® for various fields(in a.u) in
the region where the resonance width is important. The energies of the states=witid0 are obtained by
addingmB. Numbers in square brackets indicate powers of ten.

F B (v1,77) E ESC
1.9-7] 1.9-5] 0,0 —4.893 145 8—4]-i6.133 77— 7] —4.893 780 7-4]
0,2 —4.851246—4]—i4.483 —6] —4.854 250 [4]
(1,0 —4.702 33p—4]—i1.8779— 6] —4.698 568 p—4]
1.9-5] 0,0 —5.472 293 —47 —5.471 943 0—4]
0,2 —5.370 992 p—4]—i2.521 — 9] —5.358 575 §—4]
1,0 —5.228 107 5—4]-i6.133 — 9] —5.223 289 §—4]
2.0-5] 0,0 —6.005 402 {—4] —6.005 137 p—4]
0,2 —5.862 392 §—4] —5.853 342 p—4]
1,0 —5.713 409 p—4] —5.710 493 p—4]
0,2 —5.736 462 B—4] —5.701 548 [—4]
1.3-7] 1.9-5] 0,0 —5.649 978 i—4]—i2.318 59— 6] -b
0,2 —5.602 928—4]—i8.239 — 6]
1,0 —5.414 596 B—4]—i4.093 43— 6] fe
2.0-5] 0,0 —6.120 031 5—4]—i9.559 —11] —6.119 236 [-4]
0,9 —6.030 613 B—4]—i2.119 26— 7] —6.008 193 4]
1,0 —5.830 829 5—4]-i8.927—9] —5.824 997 (4]
0,2 —5.972 923 [-4]-i3.3144 - 6] —5.897 150 7—4]

AWhen the imaginary part is missing it means that it is less tharnt?a.u.
bAbove the classical ionization threshold.
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TABLE Ill. Comparison of the calculated exact quantum radia- between semiclassical and quantum results. An excellent
tive lifetimes 7 (in mseg of circular states corresponding to agreement is found indicating that for these field strengths

m= 40 with semiclassical estimates® as a function of various
field strengthgin a.u). Numbers in square brackets indicate powers

of ten.
m=—40 m=+40
F B T ¢ T €

0 0 10.55 10.71 10.55 10.71
0.5-5] 15.88 16.08 6.115 6.190
1.J-5] 20.14 20.31 3.561 3.590
1.9-5] 22.95 23.08 2.233 2.245
2.0-5] 24.70 24.79 1.507 1.512

0.3-7] 0 11.07 11.26 11.07 11.26
0.5-5] 16.66 16.88 6.307 6.392
1.0-5] 20.90 21.09 3.620 3.652
1.5§-5] 2358 23.71 2.253 2.266
2.0-5] 25.19 25.29 1.515 1.521

0.5-7] 0 12.36 12.61 12.36 12.61
0.-5] 18.47  18.77 6.738 6.847
1.J-5] 22.50 22.72 3.739 3.777
1.9-5] 24.82 24.98 2.292 2.306
2.J-5] 26.15 26.26 1.530 1.537

0.94-7] 1.J-5] 29.00 29.38 4,180 4.240
1.9-5] 28.87 29.10 2.408 2.427
2.0-5] 28.97 29.11 1.572 1.580

1.0-7] 15-5 3515 35.49 2.568 2.595
2.0-5] 3248 3267 1.619 1.629

with the dipole matrix elemeninf’ =m=1):
dm',m: 12*1/2<¢m/(p,zl(p)|peil<p| lﬁm(P,Z,(P»r 4.2

the simple product of two Gaussiaf®.18 is a very good
approximation to exact eigenfunctions.

V. CONCLUDING REMARKS

Circular and nearby states can be successfully described
by the semiclassical theory presented in Sec. Il. The condi-
tion is that the field strengths are such that the system is not
close to or on the right of the classical ionization threshold
curve shown in Fig. 1. The semiclassical approximation is
excellent both for the eigenvalues and wave functions of the
circular Rydberg states, but it subsequently becomes less ac-
curate for nearby states in the samamanifold.

In the region close to and beyond the classical ionization
threshold, fully quantum calculations based on the complex-
coordinate method, discrete variable representation, and the
complex Lanczos recursion method provide exact eigenval-
ues for the resonances emerging from the circular and nearby
quasibound states. In general, the magnetic field has a stabi-
lizing effect, reducing the electron field-ionization probabil-
ity, but often characteristic oscillations of the widths can
appear. For fixed nonzero values of the magnetic field
strength, calculations have also shown oscillations of the
widths as a function of electric field strength.

ACKNOWLEDGMENTS

T.P.G. is grateful for the hospitality shown by the Labora-
toire de Dynamique des lons, Atomes et Mulkes, Univer-
site Pierre et Marie Curie where part of this work has been

whereE,, and ¢(p,z,¢) are the energy and the eigenfunc- done. T.P.G. acknowledges support of this work by the Min-
tion of the circular state. Table Il shows the comparisonistry of Science and Technology of the Republic of Serbia.

[1] R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. LBS,

2137(1985.

[2] E. de PrunelePhys. Rev. A31, 3593(1985.
[3] S. B. Hansen, T. Ehrenreich, E. Horsdal-Pedersen, K. B[15] T. P. Grozdanov, L. Andric, C. Manescu, and R. McCarroll,

McAdam, and L. J. DubePhys. Rev. Lett71, 1522(1993.
[4] M. F. Lundsgaard, Z. Chen, C. D. Lin, and N. Toshima, Phys.[16] C. H. Bender, L. D. Mlodinow, and N. Papanicolaou, Phys.

Rev. A51, 1347(1995.

[5] R. G. Hulet and D. Kleppner, Phys. Rev. L1, 1430(1983.

[6] D. Richards, J. Phys. B7, 1221(1984).

[13] G. Wunner, M. Kost, and H. Ruder, Phys. Rev.38 1444
(1986.
[14] T. C. Germann, J. Phys. B8, L531(1995.

Phys. Rev. A56, 1865(1997.
Rev. A 25 1305(1982.

[17] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics
(Springer, New York, 1990

[7] W. A. Molander, C. R. Stroud, Jr., and T. F. Yeazell, J. Phys.[18] R. G. Newton, Scattering Theory of Waves and Particles

B 19, L461 (1986.

[8] D. Delande and J. C. Gay, Europhys. L&it.303(1988.
[9] J. Hare, M. Gross, and P. Goy, Phys. Rev. Létt, 1938

(1988.

(McGraw-Hill, New York, 1966.
[19] W. P. Reinhardt, Annu. Rev. Phys. Che®8, 223(1982.
[20] Y. K. Ho, Phys. Rep99, 1 (1983.
[21] I. W. Herbst, Commun. Math. Phy&4, 279 (1979.

[10] P. Nussenzveig, F. Bernadot, M. Brune, J. Hare, J. M. Rai{22] J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phyg2,
mond, S. Haroche, and W. Gawlik, Phys. Rev.48 3991

(1993.

[11] L. Chen, M. Cheret, F. Roussel, and G. Spiess, J. Phy6, B

L437 (1993.

1400(1985.

[23] D. Baye and M. Vincke, J. Phys. B4, 3551(199J).

[24] K. M. Milfeld and N. Moiseyev, Chem. Phys. Lett30, 145
(1986.

[12] C. H. Cheng, C. Y. Lee, and T. F. Gallagher, Phys. Rev. Lett[25] I. Seipp, K. T. Taylor, and W. Schweizer, J. Phys.28, 1

73, 3078(1994).

(1996.



