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Strictly correlated electrons in density-functional theory
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Electrons at a fixed density approach a strictly correlated limit as their Coulomb interaction is scaled to
infinity. We find the exact energy for strictly correlated electrons in spherical two-electron densities, and a
useful gradient expansion for general densities. We also propose a model for the coupling-constant depen-
dence, which interpolates between the weak- and strong-interaction limits. This model defines a density
functional which predicts accurate ground-state correlation energies for real atoms and the two-dimensional
uniform electron gag.S1050-294{@9)10001-5
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arise from the quantum-mechanical behavior of the elec-
trons. A simple but accurate theoretical description of these
systems is very desirable. The most difficult contribution totreats the electrons as a continuous distribution of charge. All
the ground-state energy is due to electronic correlations, reaspects of the many-body problem ignored in this continuum
sulting from both Pauli exclusion and Coulomb repulsion. Indescription are included in the explicitly unknown exchange-
density-functional theory (DFT [1]), this exchange- correlation functionakE,J p].
correlation energye,{ p] is exactly represented as an inte-  An exact expression for this functional is the coupling-
gral, involving a series of hypothetical systems which haveconstant integra3]
the same ground-state electron dengify) as the real sys-
tem, but where the electronic repulsion is scaled by a factor _[*

“ : ) Exdpl= f da W,[p],
a (“coupling constant’). 0

The present paper demonstrates that this “coupling-
constant integration” can be performed very accurately if W, [p]=(¥[p]|Ved ¥*[p])—U[p]. (1)
information on two extreme limits is considered. The famil-
iar limit «—0 of weak interaction is dominated by the ex- The integrandW,[p] has only potential-energy contribu-
change energy and by the second-order correlation energ;ons.veeEEi<j|ri—rj|‘1 is the two-particle Coulomb inter-
[2]. The limit «— o of strong interaction is also found to be action operator for electronal’“[p] is that wave function
mathematically simple, but in a different way. To describéwhich minimizes the expectation valg& + aVg for a fic-
this strong interaction, we introduce the concept “SCE” of tive electron system with the kinetic-energy operafoand

strictly correlated electronsand present an exact solution . . A . . .
for spherical two-electron systems. An accurate approximat—he interactionaVe, subject to the constraint that it has the

tion to SCE is provided by a simple gradient eXp(,jmsionground-state density of the real system with interaction
which applies to any many-electron system. Using this infor-Ved @=1). _

mation in a model for the coupling-constant dependence, we W,[p] is expected to be a smooth function of the cou-
obtain a density functional for the correlation eneigyjp]  Pling constantx [4,5]. Some key properties are known ex-

Most physical properties of atoms, molecules, and solids 1 p()p(r’)
U[p]=§jd3rjd3r’ ]

of real systems withw=1. . _ actly [5-7]:
B L e I T TS
W [p]=dW,[p]/da<0 («=0), €)
ELp1=Tdpl+ | % vad1)p(1)+Ulp] +End ] - “
of the electron densitg(r). T4 p] is the kinetic energy of a Wglp]=2ES"[p], 5

system of noninteracting electrons with a ground-state den-
sity p. The second term is the interaction with the external
potential ve,(r). The two remaining terms describe the
electron-electron interaction. The classical Coulomb or HarE,[ p], the exchange energy, is the Fock integral with the
tree term (occupied Kohn-Sham(KS) orbitals. ES"Y p], the second-

W.[p]= lim W, [p] (finite). (6)

a— 0
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TABLE I. The approximationfrcnOd [Eq. (8)] of the exact correlation enerdy, [11,4b)] for N-electron
systems, using exact exchange enerffigq11], exact or accurat®/, [2,12], andWscg from Eq. (10) (for
two-electron systemsr Wy from Eq. (11) (in parenthesgsas models folV,, . E. (exac) for the exponen-
tial two-electron densityExp.) is taken from Ref[4(b)]. No exact value is available for the Gaussian
two-electron densityGau). Hartree-Fock densitigd0] have been used to calculdtés.c and W for the
real atoms and ions. The less accurate enerﬁ@é result from ignoring the information iW,,. (All
energies in hartreg.

N W, SWH=ES?  Wsce (WpQ EM?  EMYPO E. (exac)
He 2 —1.0246 —0.0503 —1500 (—1.463 —0.042 (-0.04) —0.042
Exp. 2  —-06250 —0.0467 -0910 (-0.889 —0.036 (—0.035  —0.037
Gau. 2 —-0.7978 —0.0497 -1.152 (-1.102 —0.040 (-0.038 -
Ne®* 2 —6.0275 —0.0467 —-8795 (—8554 —0.045 (—0.045  —0.046
Be 4  -26740 -0.125 (—3.943 (-0.109  —0.096
Ne 10 -—12.084 -0.469 (—20.02 (-0.420  —0.394

order coefficient in Gding-Levy perturbation theon|7], harmonic-oscillator potential9].) The “correlation func-

can also be expressed in terms of thecupied and unoccu- tion” f(r) can be obtained unambiguously from the given

pied KS orbitals[Eqg. (4) in Ref.[7(a)]]. In this sense, quan- spherical density distributiop(r). It is that particular solu-

tities (4) and (5) represent the weak-interaction limitz(  tion to the nonlinear first-order differential equation

—0). ExtrapolatingW [ p] linearly from «=0, we obtain

from Eq. (1) the estimat&ES"?[ p] for the correlation energy . r2p(r) g

E.=E,—E,. (== 2ty ©
This approximation can be improved substantially if in-

formation on the opposite limi&e— oo of strong interaction, which fulfills f(rg)=r,, where ry is defined by

W..[p], is included. The simple model Ldr(4mr?)p(r)=1. Equation(9) arises because the prob-
W ability for electron 1 to bénsidea sphere of radius, is the
Wy—W.,, A i ;
WTf p]= W, + 0 = 0 % same as for electron 2 to loeitsidea sphere of radius(r,).

J1+2Xa' W..— W, Since the distanch;—r,| between the two electrons is al-
waysr+f(r)>r,, we can evaluate the expectation value
for the integrandW,[ p] fulfills requirementg3)—(6). In par- (Ve sce to define the density functional
ticular, it also fulfills Eg. (2), becaljse[G 71 Woelpy]
=A\Wo..[p] and Wi[p,]=Wy[p]. WT*is chosen so that B = r?p(r)
there is an asymptotia 2 term which is expecte@8] to WSCE[p]_ZWj dr +f(r)_U[ d
result from zero-point oscillations of the strongly correlated
SySUEm at I|arg§1( ﬂ;)lgn? it]S I\S/Itrigﬂl)’(?f?)of”e'\%eﬁ ]Sta'teldat as a candidate for an exact expression for the unknown limit
=o [see also Eq elow]. Mode or Wo[p] yields, —\y r 1=y ) — in two-electron m
in Eq. (1), after elementary integratio(an(_j subtraption of has[ltﬂe éorere;ct Stégﬁr]]g b;h:V&iz&ZA]iyfﬁscﬁﬁfiﬂL
the exchange enerdy,=W,;), a new density functional for other exact propertigig] of W..[p].
the correlation energy of real systems, Solving the differential equatiof®) with an accurate den-
1 sity profile pye(r) for the ground state of the helium atom
E™ p]=(Wo—W..)| < (VI+2X—1)—1]. (8)  [10], we can, with the resulting,¢(r), evaluate Eq(10).
X With the exact exchange enerdy, of the helium ground
state[11], an accurate value for the coefficieng, [2], and
ur result from Eq(10) for W,,, Eq. (8) yields the accurate
value E™%=—0.0418 for the exact correlation energy
E [ puel= —0.0421 of the He ground staf#1]. Ignoring the
information provided by the quantitWscd pne] Vields the
poor resultES-*=—0.0503, as shown in the first line in
Table I.

(10

For a practical use of this functional, we need a quantltanv%
interpretation of the unknown limNV,_[ p].

As « grows, the electrons repel each other with an in-
creasingly strong force. At the same time, however, accord-
ing to the definition ofW,[ p] in Eq. (1), they must form a
fixed smooth density distribution(r). Therefore, these elec-
trons become strongly correlatdd]. In the very limit . .
a—», we expect the SCE state of strictly correlated elec- Forhypothetical E‘;VO electrson 2:;1Eoms with theGa%round—
trons[8]. This means that the position of any one electron is>2t€ densities p(r)=2\°e" /7 and  p™(r)
completely determined by the positions of all the others.= 2>\ e 0%/ 732 respectively, the quantitiesWo[p]
Therefore, if in a spherical two-electron system electron 1 is= —3U[p] [— 2\ and —2)\/(27) 2 respectively andW;
at a certain distance; from the center, electron 2 is on the [12] are known exactly. Therefore, we can predict the un-
opposite side of the center at the distamge=f(r,). (This  known correlation energies. Table | gives the resultsNor
strictly correlated behavior is displayed in the exact ground= 1. (For\ # 1, note thaWy sce pépy] =AW sce pdp1] and
state for two electrons bound by a very weak externaWg[p,]=W{[p1].) For Né*, which has almost an expo-
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nential density, we use in Table | as an approximation the E(r) ©
value W} of Exp. For the two-electron densities in Table I, -0.02
the ratioWscd p]/fd3 p*3is about—1.25, consistent with
and close to rigorous boun@$3] on W..[p]/fd3 p*2.

The generalization of the SCE concept to systems with
more than two electrons and/or without spherical symmetry -0.08 2D uniform electron gas
is not straightforward. Strict correlation minimizes the
electron-number fluctuation in any volume of space. A
simple but accurate picture is th@oint-charge-plus- 012 10 20 30 20 50
continuum (PC) model [14], originally established for the "
low-density limit. In this model, one point electron in a con-  FIG. 1. Approximation(8) of the correlation energy per electron
tinuous rigid positive background is surrounded by a sharpin the 2D uniform electron gas, using the PC mogsllid line) or
edged hole in a continuous fluid of negative charge whichhe Wigner-crystal energidashed lingfor W,, . The dots represent
represents all the other electrons. Inside this hole, the negauantum Monte Carlo results of Refd7] (rs=1, 5, 10, and 2D
tive fluid is completely removed. Outside, the fluid neutral-and[20]. Note thatEg"*= —0.19 for allr. (All energies in har-
izes the positive background perfectly. We note that the P@ee)
hole is not a model for the exchange-correlation hole as it is
usually defined1,3], but a different way of dividing up the valuesWscgin Table I. This provides further support for the
charge around an electron. The PC division of the charg®C approximation11) which, in contrast to the SCE con-
into neutral cells is a textbook way to estimate the energy otept, applies straightforwardly to systems with more than
the Wigner crystal. two electrons. Table | also shows our results for the Be and

In a uniform system, the PC hole is a concentric spheréNe atoms, although our values f@v; are less accurate for
with radiusr = (3/4mp)*. In a system with a slowly vary- these atoms than for the two-electron systems.
ing positive background, it is assumed to be still of spherical The functional(8) does not directly apply to the three-
shape but, to maintain minimum electrostatic energy andlimensional3D) uniform electron gas, which, in contrast to
zero electric dipole moment, shifted into the direction of many real systems of interest, has no finis[ p]. There-
—Vp by the small displacement y(5)rs, where fore, we consider a 2D gas with constant densjty
y=|rsVp|/p<1 [15]. This leads to the gradient expansion = (7r2)~1 a system which is beyond the reach of standard
approximation(GEA) density functionals. The exchange energy per electrphis

Woy(rs)=—4v2/(3mrg). The correlation energy is known

WPdP]:f d3r[Ap()*3+Bp(r)"*AVp(r)|?], (11) exactly[18] in the high-density limit {;—0),
E2P(rg)=—0.19-0.086 In rg+O(ry). (12)

-0.06

-0.1

for the strongly interacting limitV,.[ p] or for the functional
Wscd p]. Both these functionals have the scaling propertylt  has the general scaling  behavior [19]
[6]_\/_V[p)\]=_)\W[p], which is satisfied by Eq.11). The co- E*[p]=a?E2=Y py,,], where, for aD-dimensional system,
efﬁmsnts in l/gll) are Afg—%(4w/3)1’3= —1.451 and "ry_\Dp0yp). Here E<= [ 8dB(W4— W) is the density
B = 555(3/4m) "°=5.317x 10"~ [15]. No dependence upon fnctional for the correlation energy of electrons with cou-
spin polarization is needed n EdLD). . . pling constante. Therefore, for smalk<<1, wherep,,, is a

A severe test for the functiondll) is provided by one- high density, we obtaife2>(r ) by replacingr s in Eq. (12)

electron densities, whed/ [p]=—U for all a. There- o . . .
tore. for the scaled densit;y[g])=)\3e[‘pzl’/w of trC:e hydro- by ar s and multiplying the resulting expression by. Since
' = A S W,—Wy=dEZ/da, we findWg(rs)=—0.38.

gen atom,W,[p,]=—0.3125. which is very close to o ¢ ) .
Wed py]=(—0.4179+0.1051) = —0.3128.. Note the im- To obtainW,,(r¢), we apply the PC model: In two dimen-

oF;tan}Ee of thé radieto;secondterm .For thé Gaussian one- sions, the PC hole around the point electron becomes a flat
P . . g 3~ (\r)2 32 , circular disk of positive background. The electrostatic energy
particle density p\(r)=x"e ™7 /% we find Walpy]  of such a charged disk with radius and constant charge

=~0.399, ] while I ?Npc{px]=(—0.ﬁ32+0.156)>\ density @rr2)~!is 8/(3xrg). A point electron, located in
(_11_)]0'376" These results clearly support the PC GE. the plane of the disk at a small distancer g from its center,

has the electrostatic potential energy(r)=—2r_*

Simple (ungeneralized gradient expansions of the P 3 ; .
exchange-correlation energy do not work nearly as well aser /(2r5). Thus we can find the total energy per electron in

the PC gradient expansion, probabily because the gradieH?e PC model(m_cslltédmg _the neutralizing positive bac_k—

expansion of the exchange-correlation hole has a spurim@oundzto orde_rg/sz , taking account of the 2D zero-point

long-range tai[16] which the PC hole does not. Even stan- €N€rgyzfo=rs== of the electron in the oscillator-type po-

dard generalized-gradient approximations are not much betential ¢(r). Subtracting the noninteracting kinetic energy

ter than the local-density approximatifthe first term of Eq.  Ts(r's)=O(rs ?) and the exchange enerilyo(r), we obtain

(11)] in the strongly interacting limif6]. the PC model for the correlation energy in the low-density
In systems with two electrons, the PC GE&q. (11)] can  limit,

be compared with the probably exact SCE model. For He,

the exponential and Gaussian two-electron densities, and E20(y )=(i—2+ﬂ)r‘1+r‘3’2+0(r_2 (13)

Ne?*, the valuesWpc are very close to the corresponding ¢ Vs 37 37/ S s s 7
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To estimateEgD(rs) at intermediate densities, we could di- We have used the PC model here. It is less accurate than
rectly interpolate between Eq$l2) and (13). In order to the SCE model, which is not solved for a uniform electron
check our present approach, however, we will extract theyas. The SCE energy is expected to be close to the energy
quantityW,,(r) from Eq. (13). E\ZND(rS) of a 2D Wigner crysta[17], where the electronic
Applying the general scaling behavior of the correlationpositions are also strictly correlated. UsiBg2(r) instead
energy to Eq(13), in the same way as we did to E(L2) of the PC model [i.e., replacing the number
above, yields, for strong interaction, (8/37)—2=—1.151 by—1.106 yields the dashed curve in
Fig. 1.
rot+ 1 (032024 O(a™3?). ~ We have presented an approach to the difficult problem of
2 interacting electrons in actual physical systems by utilizing
(149 only the two relatively simple limits of weak and strong

Therefore,W..(r) =[ (8/3m) — 2]r *. With this model and interaction. In the former limit, our approach might be ex-

. . , . tended to include third and higher-order terms in the pertur-
W.'th. the quantltles!NO(rS) andWo(rs), Eq. (8) yllelds apPre- pation expansion. The strict correlation that arises in the lat-
diction for the correlation energy of the 2D uniform electron

o ] ter limit might be observed, for example in a quantum dot.
gas, shown in Fig. 1 as a solid curve. The close agreement

with quantum Monte Carlo resuli47,20 (dots in the figurg Discussions with Matthias Ernzerhof, Andreas Savin, and
is very satisfying. Note that, at large>1, the integrand7)  David Langreth are gratefully acknowledged. This work was
now becomesV,—W.,+0.47%  %?a~ 2 with ana Y2 co-  supported by the Deutsche Forschungsgemeinschaft and by
efficient close to the one in E¢l4). the NSF(Grant No. DMR 95-213583
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