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Strictly correlated electrons in density-functional theory
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Electrons at a fixed density approach a strictly correlated limit as their Coulomb interaction is scaled to
infinity. We find the exact energy for strictly correlated electrons in spherical two-electron densities, and a
useful gradient expansion for general densities. We also propose a model for the coupling-constant depen-
dence, which interpolates between the weak- and strong-interaction limits. This model defines a density
functional which predicts accurate ground-state correlation energies for real atoms and the two-dimensional
uniform electron gas.@S1050-2947~99!10001-5#

PACS number~s!: 31.15.Ew, 71.15.Mb
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Most physical properties of atoms, molecules, and so
arise from the quantum-mechanical behavior of the e
trons. A simple but accurate theoretical description of th
systems is very desirable. The most difficult contribution
the ground-state energy is due to electronic correlations
sulting from both Pauli exclusion and Coulomb repulsion.
density-functional theory ~DFT @1#!, this exchange-
correlation energyExc@r# is exactly represented as an int
gral, involving a series of hypothetical systems which ha
the same ground-state electron densityr(r ) as the real sys-
tem, but where the electronic repulsion is scaled by a fa
a ~‘‘coupling constant’’!.

The present paper demonstrates that this ‘‘coupli
constant integration’’ can be performed very accurately
information on two extreme limits is considered. The fam
iar limit a→0 of weak interaction is dominated by the e
change energy and by the second-order correlation en
@2#. The limit a→` of strong interaction is also found to b
mathematically simple, but in a different way. To descri
this strong interaction, we introduce the concept ‘‘SCE’’
strictly correlated electrons, and present an exact solutio
for spherical two-electron systems. An accurate approxim
tion to SCE is provided by a simple gradient expans
which applies to any many-electron system. Using this inf
mation in a model for the coupling-constant dependence,
obtain a density functional for the correlation energyEc@r#
of real systems witha51.

In DFT, the ground-state energy of a system of interact
electrons is presented as a functional

E@r#5Ts@r#1E d3r vext~r !r~r !1U@r#1Exc@r#

of the electron densityr(r ). Ts@r# is the kinetic energy of a
system of noninteracting electrons with a ground-state d
sity r. The second term is the interaction with the exter
potential vext(r ). The two remaining terms describe th
electron-electron interaction. The classical Coulomb or H
tree term
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treats the electrons as a continuous distribution of charge
aspects of the many-body problem ignored in this continu
description are included in the explicitly unknown exchang
correlation functionalExc@r#.

An exact expression for this functional is the couplin
constant integral@3#

Exc@r#5E
0

1

da Wa@r#,

Wa@r#5^Ca@r#uV̂eeuCa@r#&2U@r#. ~1!

The integrandWa@r# has only potential-energy contribu
tions.V̂ee[S i , j ur i2r j u21 is the two-particle Coulomb inter
action operator for electrons.Ca@r# is that wave function
which minimizes the expectation value^T̂1aV̂ee& for a fic-
tive electron system with the kinetic-energy operatorT̂ and
the interactionaV̂ee, subject to the constraint that it has th
ground-state densityr of the real system with interaction
V̂ee(a51).

Wa@r# is expected to be a smooth function of the co
pling constanta @4,5#. Some key properties are known e
actly @5–7#:

Wa@r#5aW1@r1/a#, rl~r ![l3r~lr !, ~2!

Wa8 @r#[dWa@r#/da,0 ~a>0!, ~3!

W0@r#5Ex@r#, ~4!

W08@r#52Ec
GL2@r#, ~5!

W`@r#[ lim
a→`

Wa@r# ~finite!. ~6!

Ex@r#, the exchange energy, is the Fock integral with t
~occupied! Kohn-Sham~KS! orbitals.Ec

GL2@r#, the second-
51 ©1999 The American Physical Society
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TABLE I. The approximationsEc
mod @Eq. ~8!# of the exact correlation energyEc @11,4~b!# for N-electron

systems, using exact exchange energiesW0 @11#, exact or accurateW08 @2,12#, andWSCE from Eq. ~10! ~for
two-electron systems! or WPC from Eq. ~11! ~in parentheses! as models forW` . Ec ~exact! for the exponen-
tial two-electron density~Exp.! is taken from Ref.@4~b!#. No exact value is available for the Gaussia
two-electron density~Gau.!. Hartree-Fock densities@10# have been used to calculateWSCE andWPC for the
real atoms and ions. The less accurate energiesEc

GL2 result from ignoring the information inW` . ~All
energies in hartree.!

N W0
1
2 W085Ec

GL2 WSCE (WPC) Ec
mod Ec

mod~PC! Ec ~exact!

He 2 21.0246 20.0503 21.500 ~21.463! 20.042 ~20.041! 20.042
Exp. 2 20.6250 20.0467 20.910 ~20.886! 20.036 ~20.035! 20.037
Gau. 2 20.7978 20.0497 21.152 ~21.102! 20.040 ~20.038! -
Ne81 2 26.0275 20.0467 28.795 ~28.554! 20.045 ~20.045! 20.046
Be 4 22.6740 20.125 ~23.943! ~20.105! 20.096
Ne 10 212.084 20.469 ~220.02! ~20.420! 20.394
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order coefficient in Go¨rling-Levy perturbation theory@7#,
can also be expressed in terms of the~occupied and unoccu
pied! KS orbitals@Eq. ~4! in Ref. @7~a!##. In this sense, quan
tities ~4! and ~5! represent the weak-interaction limit (a
→0). ExtrapolatingWa@r# linearly from a50, we obtain
from Eq. ~1! the estimateEc

GL2@r# for the correlation energy
Ec[Exc2Ex .

This approximation can be improved substantially if i
formation on the opposite limita→` of strong interaction,
W`@r#, is included. The simple model

Wa
mod@r#5W`1

W02W`

A112Xa
, X[

W08

W`2W0
~7!

for the integrandWa@r# fulfills requirements~3!–~6!. In par-
ticular, it also fulfills Eq. ~2!, because@6,7# W0,̀ @rl#
5lW0,̀ @r# and W08@rl#5W08@r#. Wa

mod is chosen so tha
there is an asymptotica21/2 term which is expected@8# to
result from zero-point oscillations of the strongly correlat
system at largea around its strictly correlated state ata
5` @see also Eq.~14! below#. Model ~7! for Wa@r# yields,
in Eq. ~1!, after elementary integration~and subtraction of
the exchange energyEx[W0), a new density functional for
the correlation energy of real systems,

Ec
mod@r#5~W02W`!F 1

X
~A112X21!21G . ~8!

For a practical use of this functional, we need a quantita
interpretation of the unknown limitW`@r#.

As a grows, the electrons repel each other with an
creasingly strong force. At the same time, however, acco
ing to the definition ofWa@r# in Eq. ~1!, they must form a
fixed smooth density distributionr(r ). Therefore, these elec
trons become strongly correlated@6#. In the very limit
a→`, we expect the SCE state of strictly correlated el
trons@8#. This means that the position of any one electron
completely determined by the positions of all the othe
Therefore, if in a spherical two-electron system electron 1
at a certain distancer 1 from the center, electron 2 is on th
opposite side of the center at the distancer 25 f (r 1). ~This
strictly correlated behavior is displayed in the exact grou
state for two electrons bound by a very weak exter
e

-
d-

-
s
.

is

d
l

harmonic-oscillator potential@9#.! The ‘‘correlation func-
tion’’ f (r ) can be obtained unambiguously from the giv
spherical density distributionr(r ). It is that particular solu-
tion to the nonlinear first-order differential equation

f 8~r !52
r 2r~r !

f ~r !2r„f ~r !…
, ~9!

which fulfills f (r 0)5r 0 , where r 0 is defined by
*0

r 0dr(4pr 2)r(r )51. Equation~9! arises because the prob
ability for electron 1 to beinsidea sphere of radiusr 1 is the
same as for electron 2 to beoutsidea sphere of radiusf (r 1).
Since the distanceur12r2u between the two electrons is a
ways r 1 f (r ).r 0 , we can evaluate the expectation val

^V̂ee&SCE to define the density functional

WSCE@r#52pE
0

`

dr
r 2r~r !

r 1 f ~r !
2U@r# ~10!

as a candidate for an exact expression for the unknown l
W`@r#5^V̂ee&`2U@r# in two-electron systems.WSCE@r#
has the correct scaling behaviorWSCE@rl#5lWSCE@r#, and
other exact properties@8# of W`@r#.

Solving the differential equation~9! with an accurate den
sity profile rHe(r ) for the ground state of the helium atom
@10#, we can, with the resultingf He(r ), evaluate Eq.~10!.
With the exact exchange energyW0 of the helium ground
state@11#, an accurate value for the coefficientW08 @2#, and
our result from Eq.~10! for W` , Eq. ~8! yields the accurate
value Ec

mod520.0418 for the exact correlation energ
Ec@rHe#520.0421 of the He ground state@11#. Ignoring the
information provided by the quantityWSCE@rHe# yields the
poor resultEc

GL2520.0503, as shown in the first line i
Table I.

For hypothetical two-electron atoms with the groun
state densities rl

Exp.(r )52l3e22lr /p and rl
Gau.(r )

52l3e2(lr )2
/p3/2, respectively, the quantitiesW0@r#

52 1
2 U@r# @2 5

16 l and22l/(2p)1/2, respectively# andW08
@12# are known exactly. Therefore, we can predict the u
known correlation energies. Table I gives the results fol
51. ~For lÞ1, note thatW0,SCE,PC@rl#5lW0,SCE,PC@r1# and
W08@rl#5W08@r1#.) For Ne81, which has almost an expo
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nential density, we use in Table I as an approximation
valueW08 of Exp. For the two-electron densities in Table
the ratioWSCE@r#/*d3r r4/3 is about21.25, consistent with
and close to rigorous bounds@13# on W`@r#/*d3r r4/3.

The generalization of the SCE concept to systems w
more than two electrons and/or without spherical symme
is not straightforward. Strict correlation minimizes th
electron-number fluctuation in any volume of space.
simple but accurate picture is thepoint-charge-plus-
continuum~PC! model @14#, originally established for the
low-density limit. In this model, one point electron in a co
tinuous rigid positive background is surrounded by a sha
edged hole in a continuous fluid of negative charge wh
represents all the other electrons. Inside this hole, the n
tive fluid is completely removed. Outside, the fluid neutr
izes the positive background perfectly. We note that the
hole is not a model for the exchange-correlation hole as
usually defined@1,3#, but a different way of dividing up the
charge around an electron. The PC division of the cha
into neutral cells is a textbook way to estimate the energy
the Wigner crystal.

In a uniform system, the PC hole is a concentric sph
with radiusr s5(3/4pr)1/3. In a system with a slowly vary-
ing positive background, it is assumed to be still of spheri
shape but, to maintain minimum electrostatic energy a
zero electric dipole moment, shifted into the direction
2¹r by the small displacement (g/5)r s , where
g[ur s¹ru/r!1 @15#. This leads to the gradient expansio
approximation~GEA!

WPC@r#5E d3r @Ar~r !4/31Br~r !24/3u¹r~r !u2#, ~11!

for the strongly interacting limitW`@r# or for the functional
WSCE@r#. Both these functionals have the scaling prope
@6# W@rl#5lW@r#, which is satisfied by Eq.~11!. The co-
efficients in ~11! are A52 9

10 (4p/3)1/3521.451 and
B5 3

350(3/4p)1/355.31731023 @15#. No dependence upo
spin polarization is needed in Eq.~11!.

A severe test for the functional~11! is provided by one-
electron densities, whereWa@r#52U@r# for all a. There-
fore, for the scaled densityrl(r )5l3e22lr /p of the hydro-
gen atom, Wa@rl#520.3125l which is very close to
WPC@rl#5(20.417910.1051)l520.3128l. Note the im-
portance of the gradient~second! term. For the Gaussian one
particle density rl(r )5l3e2(lr )2

/p3/2, we find Wa@rl#
520.399l, while WPC@rl#5(20.53210.156)l
520.376l. These results clearly support the PC GEA@Eq.
~11!#.

Simple ~ungeneralized! gradient expansions of th
exchange-correlation energy do not work nearly as wel
the PC gradient expansion, probabily because the grad
expansion of the exchange-correlation hole has a spur
long-range tail@16# which the PC hole does not. Even sta
dard generalized-gradient approximations are not much
ter than the local-density approximation@the first term of Eq.
~11!# in the strongly interacting limit@6#.

In systems with two electrons, the PC GEA@Eq. ~11!# can
be compared with the probably exact SCE model. For
the exponential and Gaussian two-electron densities,
Ne81, the valuesWPC are very close to the correspondin
e
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valuesWSCE in Table I. This provides further support for th
PC approximation~11! which, in contrast to the SCE con
cept, applies straightforwardly to systems with more th
two electrons. Table I also shows our results for the Be a
Ne atoms, although our values forW08 are less accurate fo
these atoms than for the two-electron systems.

The functional~8! does not directly apply to the three
dimensional~3D! uniform electron gas, which, in contrast t
many real systems of interest, has no finiteW08@r#. There-
fore, we consider a 2D gas with constant densityr
5(pr s

2)21, a system which is beyond the reach of stand
density functionals. The exchange energy per electron is@17#
W0(r s)524&/(3pr s). The correlation energy is known
exactly @18# in the high-density limit (r s→0),

Ec
2D~r s!520.1920.086r s ln r s1O~r s!. ~12!

It has the general scaling behavior @19#
Ec

a@r#5a2Ec
a51@r1/a#, where, for aD-dimensional system

rl(r )[lDr(lr ). HereEc
a5*0

adb(Wb2W0) is the density
functional for the correlation energy of electrons with co
pling constanta. Therefore, for smalla!1, wherer1/a is a
high density, we obtainEc

2D,a(r s) by replacingr s in Eq. ~12!
by ar s and multiplying the resulting expression bya2. Since
Wa2W05dEc

a/da, we findW08(r s)520.38.
To obtainW`(r s), we apply the PC model: In two dimen

sions, the PC hole around the point electron becomes a
circular disk of positive background. The electrostatic ene
of such a charged disk with radiusr s and constant charge
density (pr s

2)21 is 8/(3pr s). A point electron, located in
the plane of the disk at a small distancer !r s from its center,
has the electrostatic potential energyf(r )522r s

21

1r 2/(2r s
3). Thus we can find the total energy per electron

the PC model~including the neutralizing positive back
ground! to orderr s

23/2, taking account of the 2D zero-poin
energy2

2 \v5r s
23/2 of the electron in the oscillator-type po

tential f(r ). Subtracting the noninteracting kinetic energ
Ts(r s)5O(r s

22) and the exchange energyW0(r s), we obtain
the PC model for the correlation energy in the low-dens
limit,

Ec
2D~r s!5S 8

3p
221

4&

3p D r s
211r s

23/21O~r s
22!. ~13!

FIG. 1. Approximation~8! of the correlation energy per electro
in the 2D uniform electron gas, using the PC model~solid line! or
the Wigner-crystal energy~dashed line! for W` . The dots represen
quantum Monte Carlo results of Refs.@17# (r s51, 5, 10, and 20!
and @20#. Note thatEc

GL2520.19 for all r s . ~All energies in har-
tree.!



i-

th

on

on
e

than
on
ergy

r

of
ing
g
x-
tur-
lat-
t.

nd
as
d by

54 PRA 59MICHAEL SEIDL, JOHN P. PERDEW, AND MEL LEVY
To estimateEc
2D(r s) at intermediate densities, we could d

rectly interpolate between Eqs.~12! and ~13!. In order to
check our present approach, however, we will extract
quantityW`(r s) from Eq. ~13!.

Applying the general scaling behavior of the correlati
energy to Eq.~13!, in the same way as we did to Eq.~12!
above, yields, for strong interaction,

Wa~r s!5S 8

3p
22D r s

211
1

2
r s

23/2a21/21O~a23/2!.

~14!

Therefore,W`(r s)5@(8/3p)22#r s
21. With this model and

with the quantitiesW0(r s) andW08(r s), Eq. ~8! yields a pre-
diction for the correlation energy of the 2D uniform electr
gas, shown in Fig. 1 as a solid curve. The close agreem
with quantum Monte Carlo results@17,20# ~dots in the figure!
is very satisfying. Note that, at largea@1, the integrand~7!
now becomesWa→W`10.47r s

23/2a21/2, with an a21/2 co-
efficient close to the one in Eq.~14!.
s

B

l,
e

nt

We have used the PC model here. It is less accurate
the SCE model, which is not solved for a uniform electr
gas. The SCE energy is expected to be close to the en
EW

2D(r s) of a 2D Wigner crystal@17#, where the electronic
positions are also strictly correlated. UsingEW

2D(r s) instead
of the PC model @i.e., replacing the numbe
(8/3p)22521.151 by21.106# yields the dashed curve in
Fig. 1.

We have presented an approach to the difficult problem
interacting electrons in actual physical systems by utiliz
only the two relatively simple limits of weak and stron
interaction. In the former limit, our approach might be e
tended to include third and higher-order terms in the per
bation expansion. The strict correlation that arises in the
ter limit might be observed, for example in a quantum do
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