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Equilibrium configurations of systems of trapped ions
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We have computed the equilibrium conformations of clusters of up to 100 ions in a spherically symmetric
harmonic trap by a simple optimization strategy called seeding in which ions are added or removed from
previously discovered minima. In each case, we have found at least as good a minimum as was previously
known and believe that we have located the global minimum. We have additionally located a number of local
minima and some saddle points. A balancing condition between the Coulomb and trapping terms which all of
the critical points of the potential energy surface must satisfy was used to estimate the errors in the computed
energies[S1050-294®9)09401-9

PACS numbg(s): 02.60.Pn, 32.80.Pj, 52.25.Wz, 36.40.Mr

I. INTRODUCTION the way, we rediscovered the fact that the trapping and Cou-
lomb terms of the potential have a simple relationship to
It is now possible to trap small numbers of ions at mil- each other at any equilibrium poift1]. We used this bal-
likelvin temperatures in a harmonic trap and to observe theiancing condition to estimate the errors in our computed en-
equilibrium configurations directlf/l]. In two recent papers ergies, as was originally suggested by Lozovik and Man-
[2,3], the lowest-energy equilibrium configurations were delshtam11].
computed. However, the energies of the configurations ob-
tained were only reported to three or four decimal places,
which is not always sufficient to distinguish equilibrium con-
figurations one from anoth¢#—6]. Furthermore, some inter- We initially intended to compute the global equilibria by
esting features of the equilibrium geometries of these syssimulated annealinfl2], refining the crude solutions so ob-
tems were not discussed. We therefore recomputed thgined by simple downhill optimization. However, this ap-
equilibrium geometries and energies of harmonically trappegroach proved to be both inefficient and unreliable. We
ionic systems. In addition to searching for global energytherefore wrote a pair of programs which use simple, fast
minima, our method locates local minima and saddle pointspptimizers to perturb precomputed solutions by adding and
an important first step in dynamical studies. removing particles. This strategy has been called “seeding”
We seek the global minima of a set Nfions interacting [13]. One optimizer uses a simple strategy similar to simu-
by the Coulomb force in a spherically symmetric harmoniclated annealing at zero temperature: Steps of a given size are
potential. In dimensionless form, the potentia[&9] taken along each of the coordinate axes in turn in the down-
hill direction until no further reduction in the energy can be
achieved at this step size, at which point the step size is

Il. COMPUTING METHODS

A I A _ : \
u= _ E o + EE re, (1)  decreased and the process iterated until the step size has been
=1 j=i+1tip ci=l reduced to a preselected threshold. The other optimizer is a

simple gradient minimizer. Starting with large step sizes, the
where " is the distance between iofisandj, andr?=x? first optimizer is able to step out of shallow minima so that it
+ yi2+ z. is somewhat biased toward finding low-energy equilibria and
We report an efficient, reliable method for locating theis thus ideally suited to searching for the global minimum.
global equilibrium and other critical points of this problem The gradient optimizer was mostly used to refine previously
and, in general, of any particle cluster. Our method relies ormliscovered minima, as necessary, but was also found to be
the fact that the critical points corresponding toNwparticle  effective for finding higher-energy critical points.
cluster are generally closely structurally related to e A straightforwardly written optimizer must compute a
+n andN—n critical points for small values afi [10]. Our  very large number of square roots in cluster problems such as
strategy has allowed us to find lower-energy minima tharthis, resulting in very poor performance. The simple down-
had previously been reported for several valuedland to  hill and simulated annealing strategies call for particles to be
discover local equilibria unreported in earlier studies. Alongmoved one at a time. If particlke is moved, only the terms
involving the coordinates of this particle in the enefdgg.
(1)] are affected. Our simple downhill and simulated anneal-
*Permanent address: Division of Science, Technology, Trades arilg codes maintain a matrix of 4{’s and a vector of trap-
Business, Medicine Hat College, Medicine Hat, Alberta, Canadgding termsriz. At every step, only those terms affected by
T1A 3Y6. the move are updated.
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TABLE I. Equilibrium configurations of ions in a spherically symmetric trapis the number of ionsy
is the value of the potential energy at the equilibriumis the distance of an ion from the origin, andis
the number of ions at that distance. UpNe=12, the minimum energy configuration consists of a single
shell. However, a second equilibrium with a central ion appears as eaNy-&s

N u ri(n;)
2 1.190551 0.63002)
3 3.120126 0.83213)
4 5.669 645 0.97214)
5 8.910031 1.08083), 1.1036(2)
6 12.639073 1.185(6)
7 17.024 321 1.2488), 1.2832(5)
8 21.864 287 1.34988)
9 27.214 434 1.414%), 1.4304(3)
27.448 336 0.00001), 1.5124(8)
10 33.057 547 1.481gB), 1.4978(2)
33.232075 0.00001), 1.5664(6), 1.5740(3)
11 39.404 080 1.524Q1), 1.5404(2), 1.5412(2), 1.5436(4), 1.5684(2)
39.490 305 0.00001), 1.6208(8), 1.6296(2)
12 46.088 283 1.600012)
46.234 432 0.02241), 1.6667(2), 1.6685(1), 1.6695(2), 1.6742

(4), 1.6877(2)

Our seeding programs allow random addition of an arbishells. This critical point need not be a stable equilibrium.
trary number of particles as well as addition of a single par-Accordingly, for all critical points located up tN=47 and
ticle to the center of the trap, random deletions, deletions ofor a selection of important points at highéy we have com-

n of the innermost particles or of of the outermost, as well puted the eigenvalues of the Hessi#ime matrix of the sec-

as balanced deletions of an equal number of particles frorgnd derivatives ofu with respect to the coordinates of the
the innermost and outermost positions of the clusiéthen  jong. A negative eigenvalue corresponds to an unstable di-
an odd number of ions are to be removed, the balanced rgection in space. The index of a critical point is the number
moval option removes one more ion from the outer shell thanyt pegative eigenvaludd]. A stable equilibrium point thus
from the inner) Seeding has previously been used in a “m'has an index of 0. Throughout this paper, we mostly focus

ited way in qluster pro_blemEB,lB]. our attention on stable equilibria, but discuss saddle points as
The seeding technique needs to be bootstrapped from fppropriate[34]

known solution. As we had simulated annealing solutions for One of the advantages of the seeding method is that the

many different values oN, we initially used these as seeds work can be distributed over several CPUs. Each optimizer

but could equally well have used the well-known analytic . X :
solutions of the problem for smal [14,15. Once we had a run is relatively short and independent of the others. Accord-
' this method lends itself well to execution on several

few minima for each value ofl, these were in turn used as N9y, this ,
seeds for further trials. For smaller values Mf we used Workstations coupled over a network. The workstations need

seeds differing by as many as ten ions from the desired cofl0t all be of the same design, nor need they be particularly
figuration. For large values df,, additions or deletions of fast. The computations described below were run on a mix-
only one particle seemed to be sufficient to locate the globaiure of Sun and Digital hardware of varying speeds.
minima. Furthermore, for the largest clusters considered

here, we focused our efforts on seeds which were within a

few one-hundredths of an energy unit from the global mini- lll. RESULTS AND DISCUSSION

mum for their respective values df This still leaves hun- . . -
dreds of seeds from which to initiate the minimization pro- _1able | shows the energies and geometric characteristics

cess. Under these sampling restrictions, it become8f the minima of potential 1 foN<12. For this range of
particularly important to use a combination of ordered andvalues of N, the global minimum consists of a single,
random additions/deletions to insure effective coverage ofoughly spherical shell of ions. However, as has been previ-
the configuration space. ously noted 2,7], a second minimum appears on the poten-
The method described above, using either optimizer, has #al energy surface i =9 in which a shell of ions surrounds
tendency to locate both stable equilibria and saddle pointsy single particle at the center of the trap. Note that tNe (
particularly for smaller values dfl [16]. This is particularly —1,1) local minima appear not to have been previously re-
so when particles are being removed, due to the shell strugorted for the 10- and 11-ion systems. A single shell of ions
ture of the solutiong2,3,17,18. If, for instance, we com- remains a local minimum on the potential energy surface for
pletely remove the inner shell, we are left with a configura-values ofN up to 23(Table IV). For N= 24, the single-shell
tion which is often in tangential equilibrium so that a critical critical point is a saddle point of index 5.
point is easily accessible by a simple contraction of the outer In one earlier study of this problefii4], it was errone-
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TABLE Il. Coulomb and harmonic trapping contributions to the energy for the unconstrained problem
and for the case in which;=r,=---=ry. Only the lowest-energy configuration is considered in these
calculations. Note that the Coulomb energy is always exactly twice the trapping didigy

Unconstrained Constrained
N Coulomb Trapping Coulomb Trapping
5 5.940021 2.970010 5.940 222 2970111
7 11.349548 5.674774 11.350219 5.675109
9 18.142 956 9.071478 18.143 090 9.071 545
10 22.038 365 11.019 182 22.038 492 11.019 246
11 26.269 387 13.134 693 26.269 770 13.134 885

ously reported that the ions all lie at equal distances from thene unstable directiofi7]. Table Ill shows the transition
origin in the equilibrium conformation foN=>5. It is easily  states found during our search for minima for valuesNof
verified by direct evaluation of the radial derivativés/Jr; between 10 and 22. Fdf< 10, the transition states are avail-

in this conformation that this is not the case. However, if weable from the paper of Wales and L§&] who used an
minimize the energy subject to the constraint that all of thegigenvector-following method to locate both minima and
ions are equidistant from the origin, we find that the energysaddie points. Although the range=10—22 was also stud-

is only slightly higher. For instance, fo#=5, the energy of jeq py Wales and Lee, we have found several previously
the constrained system is 8.910 334 with a radius equal to thgyreported transition states. Our method also missed some
average radius of the unconstrained s¥4stem. Note that theansition states which they detected. This suggests that a
constraint raises the energy by onli30 " dimensionless .,mpination of seeded minimization and eigenvector follow-
energy units, highlighting the importance of displaying eners,, ight pe valuable to locate transition states of clusters

gies to several decimal places when characterizing CIUSte.rstbr small values oN. Note that in a few cases noted in Table

The fact that ions trapped in a soft spherically symmetncIH, we located transition states of lower energy than previ-

potential do not in general have equilibrium positions lying g

on the surface of a sphere should come as no surprise for tv\%USIY relzpqrtgg. Clearlz\,/th;:se traln5|tf|on Ztates mgy bef ?\f dﬁ/'

reasons: First, it has been noted that in the Thomson pr061am|ca significance. We have also found a number of high-
dex saddle points and, of course, we have detected some

lem, the electrostatic potential energy is not generally evenly " ; i
distributed over all iong19]. For instance, folN=5, the ransition states and other saddle points for higher values of

axial ions each contribute 1.2% more than the average to thi (data not shown o .
total potential energy while the equatorial ions each contrib- Tables IV, V, and VI show the minima located for various
ute 0.8% less. Thus the Coulondion-ion repulsion contri-  values ofN>12. Due to the rapidly growing number of equi-
bution to the energy can be reduced by stretching the poldibria, we report progressively less information &b in-
axis which, however, slightly increases the value of the corcreases. In several cases, we have found deeper minima than
responding trapping terms in potential 1. This allows a shortthose reported by earlier workers. These new results are
ening of the radial distances in the equatorial plane whichinarked in the tables. Note that fbi= 24, while Rafacet al.
also reduces the trapping contribution to the potential energy2] missed the global minimum, the correct configuration
The results of constrained and unconstrained simulated awvas located by Hasse and AvildB]. Also note that the
nealing optimizations shown in Table Il for small values of inner-shell radius given foN=27 in Table Il of Ref.[2] is
N where asphericity occurs confirm our reasoning. In addisnuch too large.
tion, we might have expected unequal radial distances by a When reporting cluster structures and energies, it is im-
rather simple argument: While the trapping potential isportantto show as many significant figures as can be reliably
spherically symmetric, placing ions in the trap breaks thisobtained because the minima are sometimes extremely
symmetry. It then becomes a question of whether the ionslosely spaced, as has previously been pointed out for the
can be so positioned that they are all symmetry-equivaleniffThomson problenj5]. Consider, for instance, the third and
For some values oN such as 5, 7, 9, 10, and 11, this is fourth minima atN=44 (Table V) where we reported nine
impossible[20] and unequal radial distances are to be ex-digits instead of six because of a difference of only 5.58
pected. This effect is well known in structural chemistry, X 10~ 7 units in their energies. Commonly used procedures
where the VSEPR method for predicting molecular geomfor reporting energies of clusters, such as normalizing by the
etries leads to an energy minimization problem of similarnumber of particle$3,22], especially when combined with a
form for these values df [21]. truncation of the energies after the third or fourth digit,
We may also note from Table Il that the Coulomb contri- sometimes make it difficult to establish whether a given criti-
bution to the energy is always exactly twice the contributioncal point is or is not the same as another, especially when no
from the harmonic trapping terms of E(L). This property geometric information(shell radii, point groups, etc.is
has previously been notgd 1] and follows from a simple given.
scaling argument. Since this result is exact, it provides a Rafacet al. [2] found that the global minimum configu-
useful check on the numerical accuracy of the minimizatiorration forN=60 is a(48,12 configuration and wrote that a
method used11]. three-shell global minimum first appeared Nit=61. How-
Transition states are saddle points of index 1, i.e., havingver, this is not the first three-shell global minimum, as can
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TABLE lll. Transition states located fdd=10-22.N andu have the same meanings as in Table |. The
shell structure 1f,,n,, ...) of each transition state is given, wharg is the number of ions in the outer
shell, n, is the number in the next shell, and so on.

N u(ny,ny, ...)
10 33.060 40510); 33.233098(9,1)
11 39.405 15411); 39.492 811(10,1)
124 46.169 678(12); 46.182 042(12); 46.198 479(12); 46.235417(11,1)
132 53.364 232(13); 53.387 302(12,1); 53.398 774(12,1)
142 60.958 829(13,1); 61.010 378(14)
15 68.969 93514,1); 69.066 250(15); 69.066 517(15); 69.150 711(15)
16° 77.382574(15,1); 77.382 688(15,1); 77.537 561(16); 77.541 454(16); 77.578 621(16)
17° 86.202 038(16,1); 86.205 356(16,1); 86.415 118(17)
18 95.419 407117,1); 95.686 963(18); 95.762 664(18)
19 105.024 46918,1); 105.097 140(18,1); 105.381 46819); 105.382 26519)
20 115.044 40819,1); 115.109 60018,2; 115.111 18418,2); 115.165 81718,2); 115.396 80920)
21 125.381 63820,1); 125.463 70219,2); 125.464 07919,2);

125.819 74321); 125.819 87221); 125.837 96321

2220 136.11989521,2; 136.119 991(21,1); 136.136 92720,2; 136.137 58821,1); 136.138 585
(20,2; 136.608 11922); 136.613 26522

AVales and Le¢7] report additional transition states for valueshofo marked.
®The first configuration given is lower in energy than the lowest-energy transition state found by Wales and
Lee[7].

be seen in Table VI. In the rangé=58—-61, with the excep- the difference between the energy per ion and the energy of
tion of N=60, the global minimum is anN—13,12,1) con- a homogeneoull-ion plasma. The results are shown for the
figuration. The structure of the global minimumMtE=60 is  lowest-energy N—12,12) and N—13,12,1) clusters foN
anomalous, belonging to the same genus as the globaletween 55 and 6¢Fig. 1). The N=60 clusters are anoma-
minima obtained foN=55-57. To understand this anomaly, lous in two ways: First, thé48,12 cluster is significantly
we computed the specific excess endr@l, more stable than the neighboririg7,12 and (49,12 clus-
ters. Second, thé47,12,1 cluster is significantly less stable
than its neighbors. The importance of the former fact has
U9 . previously been emphasizg2i3]. However, thg48,12 clus-
Ue= N~ EN ' ter might not be a global minimum fdi= 60 if the (47,12,2
cluster were not somewhat higher in energy than might be
expected from the excess energies of its neighbors. In a sense
then it is not just the special stability or “magic nhumber”

+7 R — (N-12,12) 1 property of N=60 which is responsible for the anomalous
L\ - — — (N-13,12,1) - shell structure obtained at this value Mf but also an “an-
C|> timagic” property which results in a less stable than ex-

] pected three-shell configuration.

—-0.885
T

FIG. 2. Equilibrium configuration with an intershell ion fot
L Y =79 with an energy of 1239.116 475 units. Drawi@y shows the
whole cluster, with bonds represented by lines. The sphere is the
' ' : ' ' : : intershell ion. The outer-shell ions lie between 3.46 and 3.68 units
°5 56 57 58 59 60 61 from the center of the trap. The ions in the next shell lie between
N 1.95 and 2.23 units from the center. The intershell ion is at a dis-
tance of 2.59 units from the center, belonging clearly neither to one
FIG. 1. Specific excess energies of the lowest-enerjy ( shell nor to the other. Drawingp) shows only the outer shell and
—12,12) and N—13,12,1) clusters foN=55-61. Note that the the intershell ion. Note that this ion sits under a pentagonal hole in
N=60(48,12) cluster is significantly more stable and that thethe outer shell. Drawingc) shows only the intershell ion and the
(47,12,1) cluster is significantly less stable than the correspondin@ner shells. The intershell ion almost lies along the “bond axis” of
clusters for neighboring values of. a two-ion innermost shelldrawn as a solid stick for emphakis
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TABLE IV. Equilibrium configurations foN=13-27.N andu
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The shell structure of the solutions has frequently been

have the same meanings as in Table I. However, in this case, onlgmphasized, both in the spherically symmetric case
the shell average radiugf is given rather than the individual [2,3,17,18 and in other geometriel24—28. We find that
distances, the latter list being extremely long for some low-while the vast majority of equilibrium configurations are
symmetry configurations.

N u i(n)

13 53.311577 0.000Q1), 1.7210(12)
53.363 799 1.654213)

14 60.958 435 0.008@1), 1.7680(13)
60.997 336 1.704814)

15 68.957 823 0.000Q1), 1.8121(14)
69.065 338 1.752015)

16 77.381627 0.000Q1), 1.8445(15)
77.536 558 1.797416)
77.542 086 1.797516)

17 86.200931 0.000Q1), 1.8951(16)
86.205 854 0.00001), 1.8952(16)
86.413 661 1.840917)

18 95.417 840 0.000Q1), 1.9344(17)
95.683 733 1.882518)

19 105.021 479 0.0001), 1.9722(18)
105.378 552 1.922819)

20 115.041 825 0.000@1), 2.0091(19)
115.109516 0.6808), 2.0518(18)
115.396 053 1.961220)

21 125.380 818 0.000(), 2.0443(20)
125.458 622 0.68072), 2.0861(19)
125.819715 1.998421)

22 136.119 890 0.00041), 2.0788(21)
136.136 927 0.67042), 2.1193(20)
136.138 274 0.6728), 2.1192(20)
136.603 134 2.034422)

23 147.201 472 0.668(®), 2.1516(21)
147.201 540 0.66812), 2.1515(21)
147.213 301 0.00001), 2.1121(22)
147.222 935 0.00001), 2.1122(22)
147.284 451 0.898M0), 2.1877(20)
147.789 663 2.06883)

24 158.615 707 0.6627(2), 2.1830(22)
158.623 646 0.66312), 2.1830(22)
158.688 346 0.88713), 2.2186(21)
158.705 886 0.00001), 2.1448(23)
158.781 360 1.043%), 2.2524(20)

25 170.414 660 0.663@), 2.2137(23)
170.425714 0.876[3), 2.2488(22)
170.490 241 0.00001), 2.1762(24)
170.530 042 1.0318%), 2.2823(21)

26 182.511 548 0.660), 2.2433(24)
182.546 368 0.87313), 2.2781(23)
182.546 862 0.873@), 2.2780(23)
182.592 651 1.0179%), 2.3112(22
182.684 887 0.00061), 2.2071(25)

27 194.955 099 0.869(), 2.3063(24)
194.956 830 0.86873), 2.3063(24)
195.008 599 0.658(R), 2.2726(25)
195.008 884 0.658%2), 2.2726(25)
195.025 549 1.01664), 2.3390(23)
195.031 087 1.01614), 2.3389(23)
195.197 517 0.00041), 2.2371(26)

dmproves on the minimum found by Rafat al. [2].

made up of thin, distinat‘onion” [3]) shells, there are cases

in which intershell ions appear for larger valueshofFigure

2 shows such a case. The innermost shell consists of two
ions located 0.57 and 0.85 units from the center of the trap.
The 58-ion outermost shell contains a pentagonal h@le.
similar structure has previously been described in a much
larger cluster by Hasse and Avild3].) This allows one of

the ions which would have completed the middle shell to
move out between the two shells, part way into the pentago-
nal hole in the outer shell. This leaves a pentagonal hole in
the middle shell. The two-ion inner shell then aligns with this
hole to minimize repulsions between it and the nearby
middle-shell ions(The intershell ion lies just 0.39 distance
units off the line defined by the two inner-shell ionSimilar
pentagonal defects account for other intershell ion structures
detected. The existence of such equilibrium structures opens
the possibility that they exist as true intermediates on the
reaction path between configurations whose two outer shells
differ by the transfer of a single iotand the attendant shell
reorganizations In the N=79 case, for instance, there are
many (59,18,2 and (58,19,2 equilibria. One pair of these
equilibria may be connected to each other through a reaction
path that includes the structure shown in Fig. 2.

IV. CONCLUSIONS

Previous computational studies of this system for small to
moderate values dfl used molecular-dynamics simulations
to obtain the minima by slow cooling. Despite precautions
taken in these studies to avoid trapping in local minima, we
have improved on several previously reported results as
shown in Tables IV, V, and VI. We attribute our success to
using a direct minimization method rather than a dynamical
simulation. (Schweigert and Peeters have also found direct
minimization of the potential energy to be an advantageous
strategy[29].) While our minimization methods are simple,
they have the virtue of having been specifically designed for
this class of problems and are thus likely to outperform any
dynamical method when the goal of the study is the location
of the minima of a potential energy surface.

While we cannot be completely sure that we have found
the global minimum in all cases, we are reasonably confident
that we have in fact done so for all valuedfup to 100. We
also believe that we have found all local equilibria upNo
=27 and most of the equilibria up td=45. As can be seen
from Table V, the number of equilibria grows rapidly fisr
between 28 and 45. The growth is even more spectacular
beyond this point. Furthermore, the potential existence of
multiple geometrically similar equilibria within a small frac-
tion of an energy unit of each other makes an enumeration
very difficult at larger values olN.

The balancing condition between Coulomb and trapping
terms is of course specific to this problem, but similar rela-
tions hold for the equilibria of any potential where the en-
ergy depends on the distances between the particles in a
simple way. For the Lennard-Jones potential, for instance,
we find that the sum of the™® terms of the potential is six
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TABLE V. Equilibrium configurations foN=28-45. Due to the large number of minima, only the ener@igand shell configurations
are given, using the notation of Table IlI.

N u(ny,ny, ...)
282 207.754 52525,3); 207.754 861(25,3; 207.754 88325,3; 207.757 58724,4); 207.761 30524,4); 207.820 59726,2);
207.820 63926,2); 207.821 200(26,2); 208.021 50827,1)
292 220.861 15525,4); 220.868 85826,3); 220.868 88926,3; 220.869 561(26,3; 220.869 91326,3; 220.940 151(27,2);
220.94369227,2); 221.227 87428,))
30? 234.27574326,4); 234.290 674(27,3); 234.291 01227,3); 234.437 02328,2); 234.437 22324,
312 248.003 50827,4); 248.003 66727,4); 248.004 97327,4); 248.006 531(27,4); 248.078 95028,3; 248.080 27228,3;
248.095 601(26,5); 248.102 06226,5; 248.106 71926,5; 248.183 46925,6); 248.183 65025,6); 248.274 57029,2
32 262.078 10628,4); 262.087 29828,4); 262.127 52527,5); 262.127 57027,5; 262.130 63727,95; 262.133 18427,5;
262.201 73929,3); 262.204 59829,3; 262.217 110(26,6; 262.218 92326,6); 262.219 12(026,6); 262.400 66930,2
33 276.499 367129,4); 276.500 86829,4); 276.507 92228,5; 276.509 00728,5; 276.509 45028,5; 276.550 44827,6);
276.616 32230,3); 276.86343231,2
34 291.199 69%30,4); 291.217 151(29,5; 291.217 580(29,5; 291.217 70629,5; 291.217 76529,5; 291.217 79029,5);

291.217 81929,5; 291.223 99728,6); 291.224 42928,6); 291.365 251(31,3; 291.365 34531,3; 291.366 80531,3);

291.597 481(32,2); 291.597 48832,2
35 306.206 16G30,5); 306.206 924(30,5); 306.206 97630,5; 306.207 51230,5; 306.209 29530,5; 306.223 41429,6);
306.224 24229,6); 306.224 28629,6); 306.230 34631,4); 306.230 740(31,4); 306.232 13731,4); 306.381 72432,3;

306.381 784(32,3); 306.458 66032,3);

36° 321.503 64930,6); 321.504 16330,6; 321.517 75331,5; 321.519 92531,5; 321.521 60031,5; 321.524 42631,5,
321.529 46332,4); 321.607 91432,4); 321.622 09529,7); 321.624 77429,7),
37 337.095 44431,6); 337.100 10931,6); 337.10556532,5; 337.17540832,5; 337.181 82232,5; 337.198 40630,7);
337.199 08730,7); 337.203 21730,7); 337.241 211(33,4;
3gP 352.968 27532,6); 352.968 57432,6); 353.034 374(32,6); 353.082 18831,7); 353.084 91331,7); 353.092 941(33,5),

353.092 944(33,5; 353.093 91533,5; 353.094 586(33,5; 353.094 83833,5; 353.17959930,8; 353.186 86530,9);
353.201 771(34,4

39 369.23312733,6; 369.233 144(33,6); 369.243 764(32,7); 369.245 08232,7); 369.295 85932,7); 369.306 53332,7);
369.306 77832,7); 369.328 73234,5); 369.331 774(34,5); 369.33342234,5); 369.481 04335,4); 369.481 07935,4);

369.485 42735,4);
40 385.74362734,6; 385.779 92933,7); 385.781 41633,7); 385.782 89533,7); 385.802 76732,8; 385.802 77932,9;

385.854 18932,8); 385.854 75532,8); 385.877 024(35,5); 385.877 82535,5); 385.883 08835,5); 385.883 14(0(35,5);
385.88327235,5); 385.883 32335,5); 386.048 48736,4); 386.049 431(36,4

41° 402.566 851(35,6); 402.567 13736,5); 402.572 104(34,7); 402.574 36734,7); 402.575 05234,7); 402.575 500(34,7);

402.611 75733,8; 402.615 33333,8; 402.669 79832,9; 402.674 30432,9; 402.714 65036,5; 402.716 99736,5;
402.718 56536,5; 402.718 70636,5; 402.718 72736,5; 402.719 86336,5); 402.720 04336,5

42 419.664 27335,7); 419.665 25335,7); 419.669 18536,6); 419.669 521(35,7); 419.669 95335,7); 419.670 39935,7);

419.67898334,8); 419.679 35634,8); 419.68391234,8); 419.686 36834,8); 419.763 02433,9; 419.853 74337,5);
419.854 75437,9; 419.857 65837,5); 419.857 92237,5); 419.859 58737,5); 419.861 49637,5

43 437.042 02336,7); 437.045 28636,7); 437.04561335,8); 437.045 95536,7); 437.046 16536,7); 437.047 67935,8;
437.049 29336,7); 437.051 18735,8); 437.052 47335,8); 437.077 23437,6; 437.081 27537,6); 437.083 09936,7);
437.104 31834,9); 437.104 53834,9); 437.106 23334,9; 437.143 71836,7); 437.286 211(38,5; 437.287 00438,5);

437.289 29938,5); 437.289 921(38,5

442 454.697 87936,8); 454.698 52636,8); 454.698 900 63936,8; 454.698 901 19736,8; 454.699 24836,9);
454.701 426(36,8); 454.701 48737,7); 454.701 87236,8); 454.717 14637,7); 454.720 19737,7); 454.725 41537,7);
454.725 66237,7); 454.743572435,9); 454.744 38235,9); 454.745 00736,9); 454.748 15235,9; 454.750 09635,9);
454.750 15835,9; 454.750 721(35,9; 454.751 08935,9; 454.752 43835,9; 454.754 41935,9; 454.775 72038,6);

454.776 57238,6); 454.777 31638,6); 454.779 48738,6

452 472.63322937,9; 472.639 44337,9; 472.63957937,9; 472.644 44037,8; 472.664 02436,9; 472.665 49936,9;,
472.666 28636,9); 472.668 49636,9); 472.681 60938,7); 472.682 08338,7); 472.682 29238,7); 472.683 89338,7);
472.684 26938,7); 472.684 73538,7); 472.687 21038,7); 472.687 304(38,7); 472.688 11438,7); 472.688 15638,7);
472.699 22236,9); 472.760 851(39,6); 472.762 94339,6); 472.778 29939,6); 472.778 50539,6); 472.779 42939,6

3 owest-energy equilibrium improves on the minimum found by Hasse and Aj@pv
bGlobal minimum not found by simulated annealing.
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TABLE VI. Global equilibrium configurations for largd. Due to the large number of minima, only the
global minimum energyu) is given, along with the average shell radij)(and occupation numbers;( for

the corresponding minimum.

N

u

ri(n)

46
47
48
49
502
51
52
53
54
55
56
57
582
592
602
61
620c
63PC
64b,C
65°
662
67
682
69
70
712
72
732
742
75
762
77
782
792
80%P
81
82
83
842
85
862
87
88
89
90
91
g2a
93
94
95
96
97
98
99
10G*P

490.865 413
509.364 892
528.138 313
547.197 840
566.532 661
586.136 053
606.011 001
626.166 254
646.570 635
667.231 207
688.138 425
709.348 383
730.818 457
752.536 120
774510781
796.720 223
819.214 999
841.937 455
864.932 364
888.149 659
911.637 142
935.365179
959.339 045
983.554 345
1008.026 399
1032.736 152
1057.691 659
1082.885 507
1108.317 404
1133.984 273
1159.893 009
1186.046 433
1212.429 671
1239.048 425
1265.900 903
1292.969 098
1320.289 435
1347.835 437
1375.603 457
1403.593613
1431.820 296
1460.268 068
1488.947 280
1517.853719
1546.982911
1576.335999
1605.905 260
1635.683 871
1665.683 010
1695.922 479
1726.376 412
1757.044 316
1787.927516
1819.023 535
1850.334 931

1.366(8), 2.8664(39)
1.435(), 2.9062(39)
1.433(®), 2.9243(39)
1.432), 2.9421(40)
1.43289), 2.9596(41)
1.49610), 2.9970(41)
1.496¢10), 3.0140(42)
1.495@.0), 3.0307(43)
1.495810), 3.0473(44)
1.609@2), 3.1017(43)
1.608.2), 3.1174(44)
1.608(12), 3.1333(45)
0.0066L), 1.7343(12), 3.1657(45)
0.00001), 1.7342(12), 3.1809(46)
1.607012), 3.1795(48)
0.005¢1), 1.7325(12), 3.2112(48)
0.0206L), 1.7808(13), 3.2428(48)
0.00561), 1.8235(14), 3.2743(48)
0.00241), 1.8241(14), 3.2886(49)
0.00001), 1.8239(14), 3.3025(50)
0.0076L), 1.8654(15), 3.3329(50)
0.005@L), 1.8651(15), 3.3467(51)
0.00421), 1.9054(16), 3.3762(51)
0.001@), 1.9058(16), 3.3896(52)
0.0024), 1.9049(16), 3.4031(53)
0.0108L), 1.9047(16), 3.4164(54)
0.007d), 1.9432(17), 3.4449(54)
0.006(1), 1.9431(17), 3.4578(55)
0.01141), 1.9431(17), 3.4706(56)
0.006d), 1.9802(18), 3.4981(56)
0.000Q1), 1.9799(18), 3.5108(57)
0.004d1), 1.9799(18), 3.5233(58)
0.00581), 1.9799(18), 3.5357(59)
0.00601), 1.9792(18), 3.5481(60)
0.003@1), 2.0161(19), 3.5743(60)
0.008@), 2.0500(20), 3.6004(60)
0.006@), 2.0505(20), 3.6123(61)
0.686@), 2.1275(20), 3.6368(61)
0.683®), 2.1595(21), 3.6618(61)
0.6832), 2.1589(21), 3.6735(62)
0.680R), 2.1592(21), 3.6849(63)
0.678@), 2.1898(22), 3.7094(63)
0.678%), 2.1895(22), 3.7208(64)
0.677@), 2.1894(22), 3.7320(65)
0.675(2), 2.1893(22), 3.7431(66)
0.888@®), 2.2573(22), 3.7660(66)
0.88883), 2.2566(22), 3.7771(67)
0.884@), 2.3134(24), 3.8125(66)
0.882(B), 2.3127(24), 3.8234(67)
1.0192), 2.3748(24), 3.8455(67)
1.0188)), 2.3745(24), 3.8561(69)
1.019@)), 2.3748(24), 3.8663(69)
1.018@), 2.4008(25), 3.8886(69)
1.016@}), 2.4009(25), 3.8988(70)
1.01464), 2.4265(26), 3.9205(70)

8Global minimum not found by simulated annealing. No annealing results are available in theNange

=94-99.

b_owest-energy equilibrium improves on the minimum found by Hasse and Afdpv
‘Lowest-energy equilibrium improves on the minimum found by Rafaal. [2].
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optimization problem, lattice models suggest that proteins
which fold to their native states without assistance must have
a relatively large gap between the energies of the native and
5 i denatured statel33]. Figure 3 shows the energy gaps be-
tween the two configurations of lowest energy for values of
N between 30 and 100. At large valueshfthese gaps tend
to be small because of the large number of minima. How-
ever, there are many cases with large gapd\flwetween 50
and 60 and a few more with moderate energy gapsNor
<70 so that this range might be useful for testing strategies
. intended to be used in the protein folding problem. At larger
values ofN, relatively large gaps in the energy spectrum can
still be found separating sets of minima. For instance, for
* . N=94, we have found fifteen closely structurally related
o . o (67,24,3 minima within 0.0083 energy units of the lowest-
. . S energy cluster. The sixteenth minimum lies 0.0182 units
O lalomalde @ 10, 0io0 Vanis®els Jotf 00 o] above the fifteenth. This kind of energy spectrum may be
40 60 80 100 generally typical of the protein energy minimization problem
where there may be a few conformational substates differing
by minor movements of amino-acid side chains correspond-
FIG. 3. Energy gapsAu) between the lowest and next-lowest INd to one overall fold. _ _
energy configurations fak =30—-100. Note the very large gap for e particularly recommend trapped-ion clusters in the
N=56. N=24-27 range for dynamical study. These clusters are
relatively small so that calculations in this size range are
times the size of the sum of the 2 terms at equilibrium. inexpensive, but they _display many of the complexities (_)f
Relations such as these are useful for verifying the accurad@9er clusters. In particular, note from Table IV that equi-
of equilibrium structure calculations since they are very senliPria in this range frequently occur in pairs or triplets with
sitive to the particle positions. Balancing conditions maySimilar shell structures and very similar energies. One can
prove particularly useful for verifying results obtained by anticipate tha_t these minima W'." be sepgrateql by relatively
methods which do not refine the solution very much, such a!PV Parriers since one can imagine paths in which one rotates
our simple downhill optimizer, Monte Carlo optimizefis- the shells rglat[ye to one another without bringing ions in the
cluding simulated annealérand methods based on molecu- two shells significantly closer to.each cher, espeually if one
lar dynamics. aIIovx_/s small movements qf the ions W|th_|n a shell during the
It has recently been suggested by Altschuler and cofotation. It would b(_a very interesting to find out _vvhether the
workers that the Thomson problem would make an excellenemperature at which this kind of transformation between
system for benchmarking optimization softw#86]. Cluster related structures pecomes fa_c|le is hlgher_or_ lower than.the
problems, in general, are excellent test problems for optimiz€MPerature at which the motion of ions within a shell dis-
ers because they are easy to code representatives of the c/RL2ys fluid behaviof17]. In two dimensions, the barrier to
of NP-hard problem§31]. We suggest that the trapped ion rotation tends to be qwtellow, at least for 'small clu§ters in
problem studied here would make a very good test problerHVh'C_h the number of ions in the mner_shell is not an integral
for techniques of unconstrained optimization. The rahge Multiple of the number of outer-shell iof&g].
=49-100 contains many cases in which the global minimum
is difficult to locate, as can be seen in Table VI. Incidentally,
it seems to us that the Thomson problem, suitably framed, We would like to thank the Department of Mathematics
may be an excellent test problem for optimization with con-and Computer Science at the University of Lethbridge for
straints: Using polar coordinates, the Thomson problem is aaccess to their network of Sun workstations. M.R.R. is grate-
unconstrained optimization problem iMN2-3 coordinates ful to Keramat Ali for useful discussions. This work was
[32]. However, in Cartesian coordinates, it becomes a probfunded by a grant from the Natural Sciences and Engineering
lem with a set of nontrivial constraints. Research Council of Canada to M.R.R. In addition, R.A.B.
In the protein folding problem, another notoriously hardwas supported by the University of Lethbridge.
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