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Equilibrium configurations of systems of trapped ions

Richard A. Beekman and Marc R. Roussel
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We have computed the equilibrium conformations of clusters of up to 100 ions in a spherically symmetric
harmonic trap by a simple optimization strategy called seeding in which ions are added or removed from
previously discovered minima. In each case, we have found at least as good a minimum as was previously
known and believe that we have located the global minimum. We have additionally located a number of local
minima and some saddle points. A balancing condition between the Coulomb and trapping terms which all of
the critical points of the potential energy surface must satisfy was used to estimate the errors in the computed
energies.@S1050-2947~99!09401-9#

PACS number~s!: 02.60.Pn, 32.80.Pj, 52.25.Wz, 36.40.Mr
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I. INTRODUCTION

It is now possible to trap small numbers of ions at m
likelvin temperatures in a harmonic trap and to observe th
equilibrium configurations directly@1#. In two recent papers
@2,3#, the lowest-energy equilibrium configurations we
computed. However, the energies of the configurations
tained were only reported to three or four decimal plac
which is not always sufficient to distinguish equilibrium co
figurations one from another@4–6#. Furthermore, some inter
esting features of the equilibrium geometries of these s
tems were not discussed. We therefore recomputed
equilibrium geometries and energies of harmonically trap
ionic systems. In addition to searching for global ener
minima, our method locates local minima and saddle poi
an important first step in dynamical studies@7#.

We seek the global minima of a set ofN ions interacting
by the Coulomb force in a spherically symmetric harmo
potential. In dimensionless form, the potential is@8,9#

u5 (
i 51

N21

(
j 5 i 11

N
1

r i j
1

1

2 (
i 51

N

r i
2 , ~1!
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We report an efficient, reliable method for locating t

global equilibrium and other critical points of this proble
and, in general, of any particle cluster. Our method relies
the fact that the critical points corresponding to anN-particle
cluster are generally closely structurally related to theN
1n andN2n critical points for small values ofn @10#. Our
strategy has allowed us to find lower-energy minima th
had previously been reported for several values ofN and to
discover local equilibria unreported in earlier studies. Alo
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the way, we rediscovered the fact that the trapping and C
lomb terms of the potential have a simple relationship
each other at any equilibrium point@11#. We used this bal-
ancing condition to estimate the errors in our computed
ergies, as was originally suggested by Lozovik and Ma
delshtam@11#.

II. COMPUTING METHODS

We initially intended to compute the global equilibria b
simulated annealing@12#, refining the crude solutions so ob
tained by simple downhill optimization. However, this a
proach proved to be both inefficient and unreliable. W
therefore wrote a pair of programs which use simple, f
optimizers to perturb precomputed solutions by adding a
removing particles. This strategy has been called ‘‘seedin
@13#. One optimizer uses a simple strategy similar to sim
lated annealing at zero temperature: Steps of a given size
taken along each of the coordinate axes in turn in the do
hill direction until no further reduction in the energy can b
achieved at this step size, at which point the step size
decreased and the process iterated until the step size has
reduced to a preselected threshold. The other optimizer
simple gradient minimizer. Starting with large step sizes,
first optimizer is able to step out of shallow minima so tha
is somewhat biased toward finding low-energy equilibria a
is thus ideally suited to searching for the global minimu
The gradient optimizer was mostly used to refine previou
discovered minima, as necessary, but was also found to
effective for finding higher-energy critical points.

A straightforwardly written optimizer must compute
very large number of square roots in cluster problems suc
this, resulting in very poor performance. The simple dow
hill and simulated annealing strategies call for particles to
moved one at a time. If particlek is moved, only the terms
involving the coordinates of this particle in the energy@Eq.
~1!# are affected. Our simple downhill and simulated anne
ing codes maintain a matrix of 1/r i j ’s and a vector of trap-
ping termsr i

2 . At every step, only those terms affected b
the move are updated.
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a
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TABLE I. Equilibrium configurations of ions in a spherically symmetric trap.N is the number of ions,u
is the value of the potential energy at the equilibrium,r i is the distance of an ion from the origin, andni is
the number of ions at that distance. Up toN512, the minimum energy configuration consists of a sin
shell. However, a second equilibrium with a central ion appears as early asN59.

N u ri(ni)

2 1.190 551 0.6300~2!

3 3.120 126 0.8327~3!

4 5.669 645 0.9721~4!

5 8.910 031 1.0808~3!, 1.1036~2!

6 12.639 073 1.1850~6!

7 17.024 321 1.2483~2!, 1.2832~5!

8 21.864 287 1.3498~8!

9 27.214 434 1.4145~6!, 1.4304~3!

27.448 336 0.0000~1!, 1.5124~8!

10 33.057 547 1.4812~8!, 1.4978~2!

33.232 075 0.0000~1!, 1.5664~6!, 1.5740~3!

11 39.404 080 1.5240~1!, 1.5404~2!, 1.5412~2!, 1.5436~4!, 1.5684~2!

39.490 305 0.0000~1!, 1.6208~8!, 1.6296~2!

12 46.088 283 1.6001~12!

46.234 432 0.0224~1!, 1.6667~2!, 1.6685~1!, 1.6695~2!, 1.6742
~4!, 1.6877~2!
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Our seeding programs allow random addition of an ar
trary number of particles as well as addition of a single p
ticle to the center of the trap, random deletions, deletions
n of the innermost particles or ofn of the outermost, as wel
as balanced deletions of an equal number of particles f
the innermost and outermost positions of the cluster.~When
an odd number of ions are to be removed, the balanced
moval option removes one more ion from the outer shell th
from the inner.! Seeding has previously been used in a li
ited way in cluster problems@3,13#.

The seeding technique needs to be bootstrapped fro
known solution. As we had simulated annealing solutions
many different values ofN, we initially used these as seed
but could equally well have used the well-known analy
solutions of the problem for smallN @14,15#. Once we had a
few minima for each value ofN, these were in turn used a
seeds for further trials. For smaller values ofN, we used
seeds differing by as many as ten ions from the desired c
figuration. For large values ofN, additions or deletions o
only one particle seemed to be sufficient to locate the glo
minima. Furthermore, for the largest clusters conside
here, we focused our efforts on seeds which were withi
few one-hundredths of an energy unit from the global mi
mum for their respective values ofN. This still leaves hun-
dreds of seeds from which to initiate the minimization pr
cess. Under these sampling restrictions, it becom
particularly important to use a combination of ordered a
random additions/deletions to insure effective coverage
the configuration space.

The method described above, using either optimizer, h
tendency to locate both stable equilibria and saddle poi
particularly for smaller values ofN @16#. This is particularly
so when particles are being removed, due to the shell st
ture of the solutions@2,3,17,18#. If, for instance, we com-
pletely remove the inner shell, we are left with a configu
tion which is often in tangential equilibrium so that a critic
point is easily accessible by a simple contraction of the ou
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shells. This critical point need not be a stable equilibriu
Accordingly, for all critical points located up toN547 and
for a selection of important points at higherN, we have com-
puted the eigenvalues of the Hessian~the matrix of the sec-
ond derivatives ofu with respect to the coordinates of th
ions!. A negative eigenvalue corresponds to an unstable
rection in space. The index of a critical point is the numb
of negative eigenvalues@7#. A stable equilibrium point thus
has an index of 0. Throughout this paper, we mostly foc
our attention on stable equilibria, but discuss saddle point
appropriate@34#.

One of the advantages of the seeding method is that
work can be distributed over several CPUs. Each optimi
run is relatively short and independent of the others. Acco
ingly, this method lends itself well to execution on seve
workstations coupled over a network. The workstations n
not all be of the same design, nor need they be particul
fast. The computations described below were run on a m
ture of Sun and Digital hardware of varying speeds.

III. RESULTS AND DISCUSSION

Table I shows the energies and geometric characteris
of the minima of potential 1 forN<12. For this range of
values of N, the global minimum consists of a single
roughly spherical shell of ions. However, as has been pr
ously noted@2,7#, a second minimum appears on the pote
tial energy surface atN59 in which a shell of ions surround
a single particle at the center of the trap. Note that theN
21,1) local minima appear not to have been previously
ported for the 10- and 11-ion systems. A single shell of io
remains a local minimum on the potential energy surface
values ofN up to 23~Table IV!. For N524, the single-shell
critical point is a saddle point of index 5.

In one earlier study of this problem@14#, it was errone-
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TABLE II. Coulomb and harmonic trapping contributions to the energy for the unconstrained pro
and for the case in whichr 15r 25•••5r N . Only the lowest-energy configuration is considered in the
calculations. Note that the Coulomb energy is always exactly twice the trapping energy@11#.

Unconstrained Constrained
N Coulomb Trapping Coulomb Trapping

5 5.940 021 2.970 010 5.940 222 2.970 111
7 11.349 548 5.674 774 11.350 219 5.675 109
9 18.142 956 9.071 478 18.143 090 9.071 545
10 22.038 365 11.019 182 22.038 492 11.019 246
11 26.269 387 13.134 693 26.269 770 13.134 885
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ously reported that the ions all lie at equal distances from
origin in the equilibrium conformation forN55. It is easily
verified by direct evaluation of the radial derivatives]u/]r i
in this conformation that this is not the case. However, if
minimize the energy subject to the constraint that all of
ions are equidistant from the origin, we find that the ene
is only slightly higher. For instance, forN55, the energy of
the constrained system is 8.910 334 with a radius equal to
average radius of the unconstrained system. Note that
constraint raises the energy by only 331024 dimensionless
energy units, highlighting the importance of displaying en
gies to several decimal places when characterizing clust

The fact that ions trapped in a soft spherically symme
potential do not in general have equilibrium positions lyi
on the surface of a sphere should come as no surprise for
reasons: First, it has been noted that in the Thomson p
lem, the electrostatic potential energy is not generally eve
distributed over all ions@19#. For instance, forN55, the
axial ions each contribute 1.2% more than the average to
total potential energy while the equatorial ions each cont
ute 0.8% less. Thus the Coulomb~ion-ion repulsion! contri-
bution to the energy can be reduced by stretching the p
axis which, however, slightly increases the value of the c
responding trapping terms in potential 1. This allows a sh
ening of the radial distances in the equatorial plane wh
also reduces the trapping contribution to the potential ene
The results of constrained and unconstrained simulated
nealing optimizations shown in Table II for small values
N where asphericity occurs confirm our reasoning. In ad
tion, we might have expected unequal radial distances b
rather simple argument: While the trapping potential
spherically symmetric, placing ions in the trap breaks t
symmetry. It then becomes a question of whether the i
can be so positioned that they are all symmetry-equival
For some values ofN such as 5, 7, 9, 10, and 11, this
impossible@20# and unequal radial distances are to be
pected. This effect is well known in structural chemist
where the VSEPR method for predicting molecular geo
etries leads to an energy minimization problem of simi
form for these values ofN @21#.

We may also note from Table II that the Coulomb cont
bution to the energy is always exactly twice the contribut
from the harmonic trapping terms of Eq.~1!. This property
has previously been noted@11# and follows from a simple
scaling argument. Since this result is exact, it provide
useful check on the numerical accuracy of the minimizat
method used@11#.

Transition states are saddle points of index 1, i.e., hav
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one unstable direction@7#. Table III shows the transition
states found during our search for minima for values ofN
between 10 and 22. ForN,10, the transition states are ava
able from the paper of Wales and Lee@7# who used an
eigenvector-following method to locate both minima a
saddle points. Although the rangeN510–22 was also stud
ied by Wales and Lee, we have found several previou
unreported transition states. Our method also missed s
transition states which they detected. This suggests th
combination of seeded minimization and eigenvector follo
ing might be valuable to locate transition states of clust
for small values ofN. Note that in a few cases noted in Tab
III, we located transition states of lower energy than pre
ously reported. Clearly, these transition states may be of
namical significance. We have also found a number of hi
index saddle points and, of course, we have detected s
transition states and other saddle points for higher value
N ~data not shown!.

Tables IV, V, and VI show the minima located for variou
values ofN.12. Due to the rapidly growing number of equ
libria, we report progressively less information asN in-
creases. In several cases, we have found deeper minima
those reported by earlier workers. These new results
marked in the tables. Note that forN524, while Rafacet al.
@2# missed the global minimum, the correct configurati
was located by Hasse and Avilov@3#. Also note that the
inner-shell radius given forN527 in Table II of Ref.@2# is
much too large.

When reporting cluster structures and energies, it is
portant to show as many significant figures as can be relia
obtained because the minima are sometimes extrem
closely spaced, as has previously been pointed out for
Thomson problem@5#. Consider, for instance, the third an
fourth minima atN544 ~Table V! where we reported nine
digits instead of six because of a difference of only 5.
31027 units in their energies. Commonly used procedu
for reporting energies of clusters, such as normalizing by
number of particles@3,22#, especially when combined with
truncation of the energies after the third or fourth dig
sometimes make it difficult to establish whether a given cr
cal point is or is not the same as another, especially when
geometric information~shell radii, point groups, etc.! is
given.

Rafacet al. @2# found that the global minimum configu
ration for N560 is a~48,12! configuration and wrote that a
three-shell global minimum first appeared atN561. How-
ever, this is not the first three-shell global minimum, as c
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TABLE III. Transition states located forN510–22.N andu have the same meanings as in Table I. T
shell structure (n1 ,n2 , . . . ) of each transition state is given, wheren1 is the number of ions in the oute
shell,n2 is the number in the next shell, and so on.

N u (n1 ,n2 , . . . )

10 33.060 405~10!; 33.233 098~9,1!
11 39.405 154~11!; 39.492 811~10,1!
12 a 46.169 678~12!; 46.182 042~12!; 46.198 479~12!; 46.235 417~11,1!
13 a 53.364 232~13!; 53.387 302~12,1!; 53.398 774~12,1!
14 a 60.958 829~13,1!; 61.010 378~14!

15 68.969 935~14,1!; 69.066 250~15!; 69.066 517~15!; 69.150 711~15!

16 b 77.382 574~15,1!; 77.382 688~15,1!; 77.537 561~16!; 77.541 454~16!; 77.578 621~16!

17 b 86.202 038~16,1!; 86.205 356~16,1!; 86.415 118~17!

18 95.419 407~17,1!; 95.686 963~18!; 95.762 664~18!

19 105.024 469~18,1!; 105.097 140~18,1!; 105.381 468~19!; 105.382 265~19!

20 115.044 405~19,1!; 115.109 600~18,2!; 115.111 184~18,2!; 115.165 817~18,2!; 115.396 809~20!

21 125.381 638~20,1!; 125.463 702~19,2!; 125.464 079~19,2!;
125.819 743~21!; 125.819 872~21!; 125.837 963~21!

22a,b 136.119 895~21,2!; 136.119 991~21,1!; 136.136 927~20,2!; 136.137 588~21,1!; 136.138 585
~20,2!; 136.608 119~22!; 136.613 265~22!

aWales and Lee@7# report additional transition states for values ofN so marked.
bThe first configuration given is lower in energy than the lowest-energy transition state found by Wale
Lee @7#.
ob
y,

y of
e

-

e
as

be
ense
’’
s

x-

(

th
din

the
nits
en

dis-
one
d
e in
e
of
be seen in Table VI. In the rangeN558–61, with the excep-
tion of N560, the global minimum is an (N213,12,1) con-
figuration. The structure of the global minimum atN560 is
anomalous, belonging to the same genus as the gl
minima obtained forN555–57. To understand this anomal
we computed the specific excess energy@23#,

ue5
u

N
2

9

10
N2/3,

FIG. 1. Specific excess energies of the lowest-energyN
212,12) and (N213,12,1) clusters forN555–61. Note that the
N560(48,12) cluster is significantly more stable and that
(47,12,1) cluster is significantly less stable than the correspon
clusters for neighboring values ofN.
al

the difference between the energy per ion and the energ
a homogeneousN-ion plasma. The results are shown for th
lowest-energy (N212,12) and (N213,12,1) clusters forN
between 55 and 61~Fig. 1!. TheN560 clusters are anoma
lous in two ways: First, the~48,12! cluster is significantly
more stable than the neighboring~47,12! and ~49,12! clus-
ters. Second, the~47,12,1! cluster is significantly less stabl
than its neighbors. The importance of the former fact h
previously been emphasized@23#. However, the~48,12! clus-
ter might not be a global minimum forN560 if the~47,12,1!
cluster were not somewhat higher in energy than might
expected from the excess energies of its neighbors. In a s
then it is not just the special stability or ‘‘magic number
property ofN560 which is responsible for the anomalou
shell structure obtained at this value ofN, but also an ‘‘an-
timagic’’ property which results in a less stable than e
pected three-shell configuration.

e
g

FIG. 2. Equilibrium configuration with an intershell ion forN
579 with an energy of 1239.116 475 units. Drawing~a! shows the
whole cluster, with bonds represented by lines. The sphere is
intershell ion. The outer-shell ions lie between 3.46 and 3.68 u
from the center of the trap. The ions in the next shell lie betwe
1.95 and 2.23 units from the center. The intershell ion is at a
tance of 2.59 units from the center, belonging clearly neither to
shell nor to the other. Drawing~b! shows only the outer shell an
the intershell ion. Note that this ion sits under a pentagonal hol
the outer shell. Drawing~c! shows only the intershell ion and th
inner shells. The intershell ion almost lies along the ‘‘bond axis’’
a two-ion innermost shell~drawn as a solid stick for emphasis!.
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TABLE IV. Equilibrium configurations forN513–27.N andu
have the same meanings as in Table I. However, in this case,

the shell average radius (r̄ i) is given rather than the individua
distances, the latter list being extremely long for some lo
symmetry configurations.

N u r̄ i(ni)

13 53.311 577 0.0000~1!, 1.7210~12!
53.363 799 1.6542~13!

14 60.958 435 0.0089~1!, 1.7680~13!
60.997 336 1.7043~14!

15 68.957 823 0.0000~1!, 1.8121~14!
69.065 338 1.7520~15!

16 77.381 627 0.0000~1!, 1.8445~15!
77.536 558 1.7974~16!
77.542 086 1.7975~16!

17 86.200 931 0.0000~1!, 1.8951~16!
86.205 854 0.0000~1!, 1.8952~16!
86.413 661 1.8409~17!

18 95.417 840 0.0000~1!, 1.9344~17!
95.683 733 1.8825~18!

19 105.021 479 0.0000~1!, 1.9722~18!
105.378 552 1.9228~19!

20 115.041 825 0.0002~1!, 2.0091~19!
115.109 516 0.6803~2!, 2.0518~18!
115.396 053 1.9612~20!

21 125.380 818 0.0000~1!, 2.0443~20!
125.458 622 0.6807~2!, 2.0861~19!
125.819 715 1.9984~21!

22 136.119 890 0.0009~1!, 2.0788~21!
136.136 927 0.6704~2!, 2.1193~20!
136.138 274 0.6728~2!, 2.1192~20!
136.603 134 2.0344~22!

23 147.201 472 0.6680~2!, 2.1516~21!
147.201 540 0.6681~2!, 2.1515~21!
147.213 301 0.0000~1!, 2.1121~22!
147.222 935 0.0000~1!, 2.1122~22!
147.284 451 0.8987~3!, 2.1877~20!
147.789 663 2.0688~23!

24 158.615 707a 0.6627~2!, 2.1830~22!
158.623 646 0.6631~2!, 2.1830~22!
158.688 346 0.8872~3!, 2.2186~21!
158.705 886 0.0000~1!, 2.1448~23!
158.781 360 1.0435~4!, 2.2524~20!

25 170.414 660 0.6630~2!, 2.2137~23!
170.425 714 0.8767~3!, 2.2488~22!
170.490 241 0.0000~1!, 2.1762~24!
170.530 042 1.0313~4!, 2.2823~21!

26 182.511 548 0.6604~2!, 2.2433~24!
182.546 368 0.8732~3!, 2.2781~23!
182.546 862 0.8737~3!, 2.2780~23!
182.592 651 1.0179~4!, 2.3112~22!
182.684 887 0.0006~1!, 2.2071~25!

27 194.955 099 0.8691~3!, 2.3063~24!
194.956 830 0.8687~3!, 2.3063~24!
195.008 599 0.6580~2!, 2.2726~25!
195.008 884 0.6582~2!, 2.2726~25!
195.025 549 1.0166~4!, 2.3390~23!
195.031 087 1.0161~4!, 2.3389~23!
195.197 517 0.0004~1!, 2.2371~26!

aImproves on the minimum found by Rafacet al. @2#.
The shell structure of the solutions has frequently be
emphasized, both in the spherically symmetric ca
@2,3,17,18# and in other geometries@24–28#. We find that
while the vast majority of equilibrium configurations a
made up of thin, distinct~‘‘onion’’ @3#! shells, there are case
in which intershell ions appear for larger values ofN. Figure
2 shows such a case. The innermost shell consists of
ions located 0.57 and 0.85 units from the center of the tr
The 58-ion outermost shell contains a pentagonal hole.~A
similar structure has previously been described in a m
larger cluster by Hasse and Avilov@3#.! This allows one of
the ions which would have completed the middle shell
move out between the two shells, part way into the penta
nal hole in the outer shell. This leaves a pentagonal hole
the middle shell. The two-ion inner shell then aligns with th
hole to minimize repulsions between it and the nea
middle-shell ions.~The intershell ion lies just 0.39 distanc
units off the line defined by the two inner-shell ions.! Similar
pentagonal defects account for other intershell ion structu
detected. The existence of such equilibrium structures op
the possibility that they exist as true intermediates on
reaction path between configurations whose two outer sh
differ by the transfer of a single ion~and the attendant she
reorganizations!. In the N579 case, for instance, there a
many ~59,18,2! and ~58,19,2! equilibria. One pair of these
equilibria may be connected to each other through a reac
path that includes the structure shown in Fig. 2.

IV. CONCLUSIONS

Previous computational studies of this system for smal
moderate values ofN used molecular-dynamics simulation
to obtain the minima by slow cooling. Despite precautio
taken in these studies to avoid trapping in local minima,
have improved on several previously reported results
shown in Tables IV, V, and VI. We attribute our success
using a direct minimization method rather than a dynami
simulation. ~Schweigert and Peeters have also found dir
minimization of the potential energy to be an advantage
strategy@29#.! While our minimization methods are simple
they have the virtue of having been specifically designed
this class of problems and are thus likely to outperform a
dynamical method when the goal of the study is the locat
of the minima of a potential energy surface.

While we cannot be completely sure that we have fou
the global minimum in all cases, we are reasonably confid
that we have in fact done so for all value ofN up to 100. We
also believe that we have found all local equilibria up toN
527 and most of the equilibria up toN545. As can be seen
from Table V, the number of equilibria grows rapidly forN
between 28 and 45. The growth is even more spectac
beyond this point. Furthermore, the potential existence
multiple geometrically similar equilibria within a small frac
tion of an energy unit of each other makes an enumera
very difficult at larger values ofN.

The balancing condition between Coulomb and trapp
terms is of course specific to this problem, but similar re
tions hold for the equilibria of any potential where the e
ergy depends on the distances between the particles
simple way. For the Lennard-Jones potential, for instan
we find that the sum of ther 26 terms of the potential is six

ly

-
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TABLE V. Equilibrium configurations forN528–45. Due to the large number of minima, only the energies~u! and shell configurations
are given, using the notation of Table III.

N u (n1 ,n2 , . . . )

28 a 207.754 525~25,3!; 207.754 861~25,3!; 207.754 883~25,3!; 207.757 587~24,4!; 207.761 305~24,4!; 207.820 597~26,2!;

207.820 639~26,2!; 207.821 200~26,2!; 208.021 508~27,1!

29 a 220.861 155~25,4!; 220.868 858~26,3!; 220.868 889~26,3!; 220.869 561~26,3!; 220.869 913~26,3!; 220.940 151~27,2!;

220.943 692~27,2!; 221.227 874~28,1!

30 a 234.275 743~26,4!; 234.290 674~27,3!; 234.291 012~27,3!; 234.437 023~28,2!; 234.437 223~24,6!

31 a 248.003 508~27,4!; 248.003 667~27,4!; 248.004 973~27,4!; 248.006 531~27,4!; 248.078 950~28,3!; 248.080 272~28,3!;

248.095 601~26,5!; 248.102 062~26,5!; 248.106 719~26,5!; 248.183 469~25,6!; 248.183 650~25,6!; 248.274 570~29,2!

32 262.078 106~28,4!; 262.087 298~28,4!; 262.127 525~27,5!; 262.127 570~27,5!; 262.130 637~27,5!; 262.133 184~27,5!;

262.201 739~29,3!; 262.204 598~29,3!; 262.217 110~26,6!; 262.218 923~26,6!; 262.219 120~26,6!; 262.400 669~30,2!

33 276.499 367~29,4!; 276.500 868~29,4!; 276.507 922~28,5!; 276.509 007~28,5!; 276.509 450~28,5!; 276.550 448~27,6!;

276.616 322~30,3!; 276.863 432~31,2!

34 291.199 695~30,4!; 291.217 151~29,5!; 291.217 580~29,5!; 291.217 706~29,5!; 291.217 765~29,5!; 291.217 790~29,5!;

291.217 819~29,5!; 291.223 997~28,6!; 291.224 429~28,6!; 291.365 251~31,3!; 291.365 345~31,3!; 291.366 805~31,3!;

291.597 481~32,2!; 291.597 488~32,2!

35 306.206 160~30,5!; 306.206 924~30,5!; 306.206 976~30,5!; 306.207 512~30,5!; 306.209 295~30,5!; 306.223 414~29,6!;

306.224 242~29,6!; 306.224 286~29,6!; 306.230 346~31,4!; 306.230 740~31,4!; 306.232 137~31,4!; 306.381 724~32,3!;

306.381 784~32,3!; 306.458 660~32,3!;

36 b 321.503 649~30,6!; 321.504 163~30,6!; 321.517 753~31,5!; 321.519 925~31,5!; 321.521 600~31,5!; 321.524 426~31,5!;

321.529 463~32,4!; 321.607 914~32,4!; 321.622 095~29,7!; 321.624 774~29,7!;

37 337.095 444~31,6!; 337.100 109~31,6!; 337.105 565~32,5!; 337.175 408~32,5!; 337.181 822~32,5!; 337.198 406~30,7!;

337.199 087~30,7!; 337.203 217~30,7!; 337.241 211~33,4!;

38 b 352.968 275~32,6!; 352.968 574~32,6!; 353.034 374~32,6!; 353.082 188~31,7!; 353.084 913~31,7!; 353.092 941~33,5!;

353.092 944~33,5!; 353.093 915~33,5!; 353.094 586~33,5!; 353.094 838~33,5!; 353.179 599~30,8!; 353.186 865~30,8!;

353.201 771~34,4!

39 369.233 127~33,6!; 369.233 144~33,6!; 369.243 764~32,7!; 369.245 082~32,7!; 369.295 859~32,7!; 369.306 533~32,7!;

369.306 778~32,7!; 369.328 732~34,5!; 369.331 774~34,5!; 369.333 422~34,5!; 369.481 043~35,4!; 369.481 079~35,4!;

369.485 427~35,4!;

40 385.743 627~34,6!; 385.779 929~33,7!; 385.781 416~33,7!; 385.782 895~33,7!; 385.802 767~32,8!; 385.802 778~32,8!;

385.854 188~32,8!; 385.854 755~32,8!; 385.877 024~35,5!; 385.877 825~35,5!; 385.883 088~35,5!; 385.883 140~35,5!;

385.883 272~35,5!; 385.883 323~35,5!; 386.048 487~36,4!; 386.049 431~36,4!

41 b 402.566 851~35,6!; 402.567 137~36,5!; 402.572 104~34,7!; 402.574 367~34,7!; 402.575 052~34,7!; 402.575 500~34,7!;

402.611 757~33,8!; 402.615 333~33,8!; 402.669 798~32,9!; 402.674 304~32,9!; 402.714 650~36,5!; 402.716 997~36,5!;

402.718 565~36,5!; 402.718 706~36,5!; 402.718 727~36,5!; 402.719 863~36,5!; 402.720 043~36,5!

42 419.664 273~35,7!; 419.665 253~35,7!; 419.669 185~36,6!; 419.669 521~35,7!; 419.669 953~35,7!; 419.670 399~35,7!;

419.678 983~34,8!; 419.679 356~34,8!; 419.683 912~34,8!; 419.686 368~34,8!; 419.763 024~33,9!; 419.853 743~37,5!;

419.854 754~37,5!; 419.857 658~37,5!; 419.857 922~37,5!; 419.859 587~37,5!; 419.861 496~37,5!

43 437.042 023~36,7!; 437.045 286~36,7!; 437.045 613~35,8!; 437.045 955~36,7!; 437.046 165~36,7!; 437.047 679~35,8!;

437.049 293~36,7!; 437.051 187~35,8!; 437.052 473~35,8!; 437.077 234~37,6!; 437.081 275~37,6!; 437.083 099~36,7!;

437.104 318~34,9!; 437.104 538~34,9!; 437.106 233~34,9!; 437.143 718~36,7!; 437.286 211~38,5!; 437.287 004~38,5!;

437.289 299~38,5!; 437.289 921~38,5!

44 a 454.697 878~36,8!; 454.698 526~36,8!; 454.698 900 639~36,8!; 454.698 901 197~36,8!; 454.699 248~36,8!;

454.701 426~36,8!; 454.701 487~37,7!; 454.701 872~36,8!; 454.717 146~37,7!; 454.720 197~37,7!; 454.725 415~37,7!;

454.725 662~37,7!; 454.743 572~35,9!; 454.744 382~35,9!; 454.745 007~36,8!; 454.748 152~35,9!; 454.750 096~35,9!;

454.750 158~35,9!; 454.750 721~35,9!; 454.751 089~35,9!; 454.752 438~35,9!; 454.754 419~35,9!; 454.775 720~38,6!;

454.776 572~38,6!; 454.777 316~38,6!; 454.779 487~38,6!

45 a 472.633 229~37,8!; 472.639 443~37,8!; 472.639 579~37,8!; 472.644 440~37,8!; 472.664 024~36,9!; 472.665 498~36,9!;

472.666 286~36,9!; 472.668 496~36,9!; 472.681 609~38,7!; 472.682 083~38,7!; 472.682 292~38,7!; 472.683 893~38,7!;

472.684 269~38,7!; 472.684 735~38,7!; 472.687 210~38,7!; 472.687 304~38,7!; 472.688 114~38,7!; 472.688 156~38,7!;

472.699 222~36,9!; 472.760 851~39,6!; 472.762 943~39,6!; 472.778 299~39,6!; 472.778 505~39,6!; 472.779 429~39,6!

aLowest-energy equilibrium improves on the minimum found by Hasse and Avilov@3#.
bGlobal minimum not found by simulated annealing.
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TABLE VI. Global equilibrium configurations for largeN. Due to the large number of minima, only th

global minimum energy~u! is given, along with the average shell radii (r̄ i) and occupation numbers (ni) for
the corresponding minimum.

N u r̄ i(ni)

46 490.865 413 1.3660~8!, 2.8664~38!
47 509.364 892 1.4352~9!, 2.9062~38!
48 528.138 313 1.4337~9!, 2.9243~39!
49 547.197 840 1.4327~9!, 2.9421~40!
50 a 566.532 661 1.4328~9!, 2.9596~41!
51 586.136 053 1.4964~10!, 2.9970~41!
52 606.011 001 1.4962~10!, 3.0140~42!
53 626.166 254 1.4958~10!, 3.0307~43!
54 b 646.570 635 1.4958~10!, 3.0473~44!
55 667.231 207 1.6093~12!, 3.1017~43!
56 688.138 425 1.6089~12!, 3.1174~44!
57 709.348 383 1.6080~12!, 3.1333~45!
58 a 730.818 457 0.0066~1!, 1.7343~12!, 3.1657~45!
59 a 752.536 120 0.0000~1!, 1.7342~12!, 3.1809~46!
60 a 774.510 781 1.6070~12!, 3.1795~48!
61 796.720 223 0.0052~1!, 1.7325~12!, 3.2112~48!
62b,c 819.214 999 0.0205~1!, 1.7808~13!, 3.2428~48!
63b,c 841.937 455 0.0059~1!, 1.8235~14!, 3.2743~48!
64b,c 864.932 364 0.0024~1!, 1.8241~14!, 3.2886~49!
65 b 888.149 659 0.0000~1!, 1.8239~14!, 3.3025~50!
66 a 911.637 142 0.0075~1!, 1.8654~15!, 3.3329~50!
67 935.365 179 0.0058~1!, 1.8651~15!, 3.3467~51!
68 a 959.339 045 0.0042~1!, 1.9054~16!, 3.3762~51!
69 983.554 345 0.0013~1!, 1.9058~16!, 3.3896~52!
70 1008.026 399 0.0029~1!, 1.9049~16!, 3.4031~53!
71 a 1032.736 152 0.0105~1!, 1.9047~16!, 3.4164~54!
72 1057.691 659 0.0074~1!, 1.9432~17!, 3.4449~54!
73 a 1082.885 507 0.0060~1!, 1.9431~17!, 3.4578~55!
74 a 1108.317 404 0.0111~1!, 1.9431~17!, 3.4706~56!
75 1133.984 273 0.0069~1!, 1.9802~18!, 3.4981~56!
76 a 1159.893 009 0.0000~1!, 1.9799~18!, 3.5108~57!
77 1186.046 433 0.0041~1!, 1.9799~18!, 3.5233~58!
78 a 1212.429 671 0.0058~1!, 1.9799~18!, 3.5357~59!
79 a 1239.048 425 0.0062~1!, 1.9792~18!, 3.5481~60!
80a,b 1265.900 903 0.0039~1!, 2.0161~19!, 3.5743~60!
81 1292.969 098 0.0080~1!, 2.0500~20!, 3.6004~60!
82 1320.289 435 0.0063~1!, 2.0505~20!, 3.6123~61!
83 1347.835 437 0.6863~2!, 2.1275~20!, 3.6368~61!
84 a 1375.603 457 0.6837~2!, 2.1595~21!, 3.6618~61!
85 1403.593 613 0.6832~2!, 2.1589~21!, 3.6735~62!
86 a 1431.820 296 0.6807~2!, 2.1592~21!, 3.6849~63!
87 1460.268 068 0.6786~2!, 2.1898~22!, 3.7094~63!
88 1488.947 280 0.6785~2!, 2.1895~22!, 3.7208~64!
89 1517.853 719 0.6772~2!, 2.1894~22!, 3.7320~65!
90 1546.982 911 0.6751~2!, 2.1893~22!, 3.7431~66!
91 1576.335 999 0.8883~3!, 2.2573~22!, 3.7660~66!
92 a 1605.905 260 0.8885~3!, 2.2566~22!, 3.7771~67!
93 1635.683 871 0.8843~3!, 2.3134~24!, 3.8125~66!
94 1665.683 010 0.8821~3!, 2.3127~24!, 3.8234~67!
95 1695.922 479 1.0192~4!, 2.3748~24!, 3.8455~67!
96 1726.376 412 1.0185~4!, 2.3745~24!, 3.8561~68!
97 1757.044 316 1.0198~4!, 2.3748~24!, 3.8663~69!
98 1787.927 516 1.0182~4!, 2.4008~25!, 3.8886~69!
99 1819.023 535 1.0169~4!, 2.4009~25!, 3.8988~70!
100a,b 1850.334 931 1.0149~4!, 2.4265~26!, 3.9205~70!

aGlobal minimum not found by simulated annealing. No annealing results are available in the ranN
594–99.
bLowest-energy equilibrium improves on the minimum found by Hasse and Avilov@3#.
cLowest-energy equilibrium improves on the minimum found by Rafacet al. @2#.
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times the size of the sum of ther 212 terms at equilibrium.
Relations such as these are useful for verifying the accu
of equilibrium structure calculations since they are very s
sitive to the particle positions. Balancing conditions m
prove particularly useful for verifying results obtained b
methods which do not refine the solution very much, such
our simple downhill optimizer, Monte Carlo optimizers~in-
cluding simulated annealers! and methods based on molec
lar dynamics.

It has recently been suggested by Altschuler and
workers that the Thomson problem would make an excel
system for benchmarking optimization software@30#. Cluster
problems, in general, are excellent test problems for optim
ers because they are easy to code representatives of the
of NP-hard problems@31#. We suggest that the trapped io
problem studied here would make a very good test prob
for techniques of unconstrained optimization. The rangeN
549–100 contains many cases in which the global minim
is difficult to locate, as can be seen in Table VI. Incidenta
it seems to us that the Thomson problem, suitably fram
may be an excellent test problem for optimization with co
straints: Using polar coordinates, the Thomson problem is
unconstrained optimization problem in 2N23 coordinates
@32#. However, in Cartesian coordinates, it becomes a pr
lem with a set of nontrivial constraints.

In the protein folding problem, another notoriously ha

FIG. 3. Energy gaps (Du) between the lowest and next-lowe
energy configurations forN530–100. Note the very large gap fo
N556.
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cy
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-
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-
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m

,
d,
-
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optimization problem, lattice models suggest that prote
which fold to their native states without assistance must h
a relatively large gap between the energies of the native
denatured states@33#. Figure 3 shows the energy gaps b
tween the two configurations of lowest energy for values
N between 30 and 100. At large values ofN, these gaps tend
to be small because of the large number of minima. Ho
ever, there are many cases with large gaps forN between 50
and 60 and a few more with moderate energy gaps foN
,70 so that this range might be useful for testing strateg
intended to be used in the protein folding problem. At larg
values ofN, relatively large gaps in the energy spectrum c
still be found separating sets of minima. For instance,
N594, we have found fifteen closely structurally relat
~67,24,3! minima within 0.0083 energy units of the lowes
energy cluster. The sixteenth minimum lies 0.0182 un
above the fifteenth. This kind of energy spectrum may
generally typical of the protein energy minimization proble
where there may be a few conformational substates diffe
by minor movements of amino-acid side chains correspo
ing to one overall fold.

We particularly recommend trapped-ion clusters in t
N524–27 range for dynamical study. These clusters
relatively small so that calculations in this size range
inexpensive, but they display many of the complexities
larger clusters. In particular, note from Table IV that eq
libria in this range frequently occur in pairs or triplets wi
similar shell structures and very similar energies. One
anticipate that these minima will be separated by relativ
low barriers since one can imagine paths in which one rota
the shells relative to one another without bringing ions in
two shells significantly closer to each other, especially if o
allows small movements of the ions within a shell during t
rotation. It would be very interesting to find out whether t
temperature at which this kind of transformation betwe
related structures becomes facile is higher or lower than
temperature at which the motion of ions within a shell d
plays fluid behavior@17#. In two dimensions, the barrier to
rotation tends to be quite low, at least for small clusters
which the number of ions in the inner shell is not an integ
multiple of the number of outer-shell ions@29#.
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