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The Greenberger-Horne-Zeilinger~GHZ! paradox is subject to the detector-efficiency ‘‘loophole’’ in a
similar manner as the Bell inequality. In a paper by J.-Å. Larsson@Phys. Rev. A57, R3145~1998!#, the issue
is investigated for very general assumptions. Here, the assumptions of constant efficiency and independent
errors will be imposed, and it will be shown that the necessary and sufficient efficiency bound is not lowered,
but remains at 75%. An explicit local-variable model is constructed in this paper to show the necessity of this
bound. In other words, it is not possible to use the independence of experimental nondetection errors to rule out
local realism in the GHZ paradox below 75% efficiency.@S1050-2947~99!06706-2#
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I. INTRODUCTION

The most well-known test of local realism is the Be
inequality@1#, and it is also well known that it changes in th
case of inefficient detectors. Most familiar is the 82.83
bound in @2#, where a variant of the Bell inequality, th
Clauser-Horne-Shimony-Holt~CHSH! inequality @3#, is in-
vestigated in the case of independent errors and constan
ficiency. The resulting inequality is~in the notation of@2#!

uE136E23u1uE147E24u<4h2122

†Eq. ~1.9! of Ref. @2#‡. The left-hand expression above
similar to the usual sum of correlations, but here single a
nondetection events have been removed. Quant
mechanical predictions also violate this inequality, but o
if h is larger than the mentioned 82.83%, e.g., in the id
case (h51) the right-hand side equals 2 as in the origin
CHSH inequality. Furthermore, it is shown that below t
bound, there exists a local-variable model that yields co
lations that are as large as the quantum-mechanical one
the bound is necessary and sufficient. In@4# this result is
extended to apply even for dependent errors and noncon
efficiency.

Another test of local realism is the Greenberger-Hor
Zeilinger ~GHZ! paradox@5–7#, which is often presented a
the final argument against local variables, as it implies t
any attempt to construct a local-variable model describ
the GHZ setup inevitably results in a contradiction. T
stronger result is enabled by the three particles with th
three associated measurements, whereas in the Bell ine
ity there are two particles with two associated measureme
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In this three-particle setting, a quantum state is chosen
that a full contradiction is obtained instead of comparing
correlations in an inequality:

1

A2
~ u111&2u222&)ZZ8Z9 , ~1!

whereu1&Z denotes ‘‘spin up’’ in thez direction andu2&Z
denotes ‘‘spin down.’’ Below, the measurement results w
be denotedX when measuring in thex direction on the first
particle,Y8 when measuring in they direction on the second
particle, and so on.

The GHZ paradox uses the following four prerequisite
~i! Realism. Measurement results can be described

probability theory.
~ii ! Locality. A measurement result should be independ

of the detector orientation at the other particles.
~iii ! Measurement result restriction. Only the results61

are allowed.
~iv! GHZ requirement. The following results should be

obtained for the corresponding measurements@from the
quantum state in Eq.~1!#:

XY8Y951,

YX8Y951,

YY8X951,

XX8X9521.

If ~i!–~iv! hold except on a set of probability zero, theX’s
andY’s would have values independently of each other a
we would have
4801 ©1999 The American Physical Society
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215XX8X95XX8X9•Y2
•Y82

•Y92

5XY8Y9•YX8Y9•YY8X951, ~2!

except on the mentioned zero-probability set, which is ob
ously a contradiction.

II. INEFFICIENCY IN THE GHZ PARADOX

The GHZ paradox is also subject to the inefficien
‘‘loophole,’’ but here there is no inequality, so the derivatio
of the bounds uses a slightly different technique than in
Bell inequality. Only a brief presentation of that techniq
will be made here~a more formal exposition is available i
@8#!.

By ~i!, theX’s andY’s above are random variables~RVs!
defined on the ‘‘hidden-variable’’ probability spaceL con-
sisting of all possible values of the hidden variablel. At an
inefficient detector, three things may happen: a11 detec-
tion, a 21 detection, and a detection error. Often this l
event is signalled by letting the numerical result of the e
periment be 0, but here another description will be usedno
value will be assignedto the RV when a measurement err
occurs, and thusX is only defined on asubsetLX of L.
‘‘Deterministic local variables’’ are used here, but the ge
eralization to the ‘‘stochastic’’ case is straightforward.

The prerequisites~i!–~iv! above do not change very muc
by this generalization. The most notable change is that
products in~iv! quite naturally are required to hold only o
the set where all three RVs are defined, e.g., the prod
XY8Y9 is defined on the set

LXY8Y95LXùLY8ùLY9 . ~3!

This is also reflected in Eq.~2!, which is now only valid on
the set where the product of all six RVs is defined:

LXX8X9YY8Y95LXùLX8ùLX9ùLYùLY8ùLY9 . ~4!

If this set has a probability larger than zero, the contradict
remains, but if the probability is zero, the prerequisites@es-
pecially ~iv!# need not hold on this set, and there is no co
tradiction. However, the probability of this set cannot
obtained directly from experiment.

To obtain the probability of the above intersection we w
use the efficiency of the measurement setup. Because n
tra assumptions are made on the properties of the er
there are four different ways of measuring efficiency.

h1: The least probability of a detection at a chosen det
tor.

h2,1: Given that there is a detection at a chosen detec
the least probability of a detection at another chosen de
tor.

h3,2: Given that there are detections at two chosen de
tors, the least probability of a detection at the last detect

h3,1: Given that there is a detection at a chosen detec
the least probability of a detection at both the other detect

There is a slight difference between the first of the abo
and the remaining three. While the first is often intuitive
used as detector efficiency, it may be difficult to estimate
accurately~e.g., by calorimetric methods!. The three remain-
ing measures are not as intuitive, but have the additio
i-
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bonus of being directly available in the coincidence da
When the errors are dependent, all four of the above may
different.

These are used to estimate the probability of the inters
tion in Eq. ~4! by using probabilistic inequalities comparin
probabilities of sets and their intersections. The necess
and sufficient bounds obtained from this are

h1.
5

6
'83.33%, ~5a!

h2,1.
4

5
580%, ~5b!

h3,2.
3

4
575%, ~5c!

h3,1.
3

5
560%. ~5d!

The four different bounds are a consequence of the gen
nature of the result. The result is necessary and sufficien
the sense that if one of the efficiency measures is above
bound, there cannot be a local-variable model that yields
prescribed results, but if all of them are below the bound,
explicit model is available that has the prescribed meas
ment results of~iv! @and furthermore, the measurement r
sults from the model presented in@8# correspond to that of
the quantum state~1! when measuring in any combination o
the x andy orientations#.

However, the nondetection errors in that model are
independent, because the model is constructed to provi
counterexample in a theorem where no assumptions
made on the properties of the nondetection errors. There
possibility that the bound would be lowered for the case
independent errors and constant efficiency, and therefore
purpose of the present paper is to examine this case in de

III. CONSTANT EFFICIENCY AND INDEPENDENT
ERRORS

The two properties we are interested in can be state
the following way.

~v! Constant detector efficiency. The probability of a de-
tection at any detector at any orientation ish.

h5P~LX!5P~LX8!5P~LX9!

5P~LY!5P~LY8!5P~LY9!.

~vi! Independent nondetection errors. The detection errors
are probabilistically independent for detection at differe
detectors at any orientation, e.g.,

P~LYX9!5P~LY!P~LX9!,

P~LXY8Y9!5P~LX!P~LY8!P~LY9!.

With these assumptions, the four different efficiency me
sures above reduce to one (h) because of the following:

h15h2,15h3,25h, ~6a!
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FIG. 1. The model in the case of independent errors at 75%~constant! efficiency. Each point in the sample space is assigned va
according to the model~e.g., for the pointl548, the measurement results areX521, X8511, X9511, Y521, Y8521, andY9 is
undefined at this point, denoting a nondetection error!. There are 55 points in the sample space (l51, . . .,55) along the horizontal axis, an
these have different probabilities as shown by the width of the corresponding column@e.g.,P(l548)5 9

8 3
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h3,15h2. ~6b!

This is a trivial implication of~v! and ~vi!, and using these
assumptions, an immediate corollary of Theorem 2 of R
@8# is the following.

Corollary 1. Assuming~i!–~iv! except on a null set, and
in addition assuming~v! and ~vi!, there is a contradiction if
the following is satisfied:

h.
3

4
575%. ~7!

Furthermore, if Eq.~7! is not satisfied there exists a loca
variable model satisfying~i!–~vi! which yields the quantum
mechanical statistics of the GHZ state in theu &X( i ) andu &Y( i )

bases except for detector inefficiency.
Proof. The first statement is easily proven using the

equalities~5a!–~5d! and Eqs.~6a! and ~6b!. There is a vio-
lation if one of

h.
5

6
'83.33%, ~8a!

h.
4

5
580%, ~8b!

h.
3

4
575%, ~8c!

h2.
3

5
560% ~8d!

is satisfied, i.e., as soon as the lowest bound is. This is
~8c! since the square root of3

5 is greater than3
4 .

The second statement is, as in Theorem 2 of Ref.@8#,
proved by construction. In@8#, the model consists of a
sample spaceL of 48 points with equal probability, and
these points are assigned measurement results accordi
two tables in the paper~not repeated here, but see below!.
f.

-

q.

to

The model yields the required results and has constant
ciency, but the nondetection errors are dependent. The p
ability of a triple coincidence~e.g., atXX8X9 orientation! is
1
2 , which is too large, but even so, the model is useful a
will be used as a basic building block. This set of 48 poin
is used as a subset of the full sample space in the cons
tion below, denotedL2/3, the set of double or triple coinci
dences. The probability ofL2/3 should be such that

P~LXX8X9!5S 3

4D 3

5
27

64 S ,
1

2
5

32

64D , ~9!

and that is achieved by giving the subset a total probab
of 54

64 ~the model is symmetric in such a way that the oth
triple coincidences have the same probability!. In this subset,
the value assignment is done in the same way as in@8# ~see
Fig. 1!.

The probability of two or more detections at a particu
setup should be the square of3

4 , and indeed, using the abov
subset construction~which is symmetric for different setups!,

P~LXX8!5
2

3
3

54

64
5

9

16
5S 3

4D 2

. ~10!

The event where at least one detection occurs at a ce
setup should now have the probability of3

4 , but in the con-
struction so far, the probability of this is only

P~LXùL2/3!5
5

6
3

54

64
5

45

64 S ,
3

4
5

48

64D . ~11!

In addition, there are no purely single detections yet, o
double and triple coincidences. To add these events, c
struct a new subsetL1, the set of purely single detection
Let it consist of six points, because we want two points
each of the three particles~allowing for the two results61).
Assign equal probability to the points so that

P~LXùL1!5
3

4 S 12
3

4D 2

5
3

64
, ~12!
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which yields

P~LX!5P~LXùL1!1P~LXùL2/3!5
3

4
. ~13!

Thus, the total probability ofL1 should be 9
64 .

Last, the full sample space should include the set of
detection (L0) at a probability of

P~L0!5S 12
3

4D 3

5
1

64
, ~14!

and adding such a subset~consisting of one point!, the total
probability of the sample space adds to one.

Group Points P(point) (P

L2/3 ~double/triple coinc.! 48 9
8 3 1

64
54
64

L1 ~purely single detections! 6 3
2 3 1

64
9

64

L0 ~no detection! 1 1
64

1
64

The resulting model is visible in Fig. 1. The statistics a
precisely that of the GHZ quantum state using 75%~con-
stant! efficiency and independent errors.

One particle. Detection probability:3
4 . Measurement a

one site atX( i ) or Y( i ) orientation~six different possibilities!
yields two equally probable results (6).

Two particles. Probability of pair detection: (34 )2. Mea-
surement at two different sites, each atX( i ) or Y( i ) orienta-
tion ~12 different possibilities! yields four equally probable
results:11, 12, 21, and22.

Three particles. Probability of triple detection: (34 )3.
~a! Measurement at three sites atYY8Y9, XX8Y9, XY8X9,

or YX8X9 orientations yields eight equally probable resul
111, 112, 121, . . . , 222.
s

rs
o

:

~b! On measurement at three sites atXX8X9 orientation,
only four results appear. These four results are equally pr
able, and are222, 112, 121, and211, each with
an odd number of minus signs as in~iv!.

~c! On measurement at three sites atXY8Y9, YX8Y9, or
YY8X9 orientations, again only four results appear. In th
case, the four equally probable results are111, 122,
212, and 221, each with an even number of minu
signs as in~iv!.

The above statements are easily checked in Fig. 1, wh
the symmetry of the model simplifies the check significant
This completes the proof.

IV. CONCLUSIONS

The conclusion is that a GHZ experiment with indepe
dent errors and constant efficiency refutes local variable
and only if the efficiency is higher than 75%. An experime
at a lower efficiency would not be conclusive, since t
model presented in this paper is valid at 75%, and it is ea
extended to lower efficiency.

An important observation is that the dependent errors
the model in@8# are not an important feature of a loca
variable model mimicking quantum-mechanical behavi
The model in@8# is here modified to the case of independe
errors, and thus, there is no test below 75% that can rule
local variables on the basis that the nondetection er
should be independent.
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