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Revival and fractional revival in the quantum dynamics of SU„1,1… coherent states

J. Banerji and G. S. Agarwal*
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

~Received 7 December 1998; revised manuscript received 8 February 1999!

We have used a generic two-mode Hamiltonian with two associated time scales to study the evolution of
generalized SU~1,1! coherent states, in particular the pair and Perelomov coherent states, which have been
realized in many systems such as radiation fields, trapped ions, and phonons. We have found that their
dynamics does not depend on the ratio of these time scales but is instead determined crucially by the difference
in photon numbers of the two modes. This is in stark contrast to the previously studied harmonic-oscillator
coherent states and can be attributed to the different nature of the underlying algebra. We provide analytical
results for their revival and fractional revival along with numerical plots of the autocorrelation function and the
quadrature distribution and demonstrate the formation of Schro¨dinger cats. The results are extremely sensitive
to the Casimir invariant and the complex parameters characterizing SU~1,1! coherent states.
@S1050-2947~99!07906-8#

PACS number~s!: 42.50.Ar, 03.65.Fd, 42.50.Md
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I. INTRODUCTION

Coherent states, introduced by Schro¨dinger to describe
nonspreading wave packets for harmonic oscillators, h
many interesting properties, chief among which is that th
are minimum uncertainty states and therefore most class
within the framework of quantum theory. In recent years,
nonlinear quantum dynamics of these states have reve
some striking features. It was found that under the action
a Hamiltonian that is anonlinear function of the photon
number operator~s! only, an initial coherent state loses i
coherent structure quickly due to quantum dephasing
duced by the nonlinearity of the Hamiltonian and then
gains it ~revival! after an interval. At fractions of this time
interval, the initial coherent state breaks up into a superp
tion of two or more coherent states that also can hav
coherent structure. This is an example of the quantum p
nomenon of fractional revival@1–6# or the formation of
Schrödinger cat and catlike states@7# that, unlike a coheren
state, have many nonclassical properties.

The concept of coherent states itself has been genera
@8# to describe systems other than harmonic oscillators~or
radiation fields!. From a group-theoretic point of view, th
harmonic oscillator~HO! coherent states arise in system
whose dynamical symmetry group is the so-cal
Heisenberg-Weyl group. Coherent states of other symm
groups also exist. For example, the atomic, Bloch, or s
coherent states are described by the algebra of spin oper
that are generators of SU~2!, the simplest compactgroup.
Similarly, one can construct coherent states for thesimplest
noncompactgroup SU~1,1! @9#.

A question arises whether revival and fractional reviv
~Schrödinger cat formation! occur for the coherent states o
these groups as well. With the formation of atomic Sch¨-
dinger cat states@10#, the answer is obtained in the affirma
tive for the SU~2! group. In this paper we focus our attentio
on the SU~1,1! coherent states.

*Also at Jawaharlal Nehru Centre for Advanced Scientific R
search, Bnagalore, India.
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The SU~1,1! group plays a very important role in man
problems in optics@11#. For example, optical parametric pro
cesses that create or destroy photons in pairs can be
scribed by Hamiltonians that are linear in SU~1,1! genera-
tors. Two well-studied classes of SU~1,1! coherent states ar
the so-called pair coherent states@12# and the Perelomov
coherent states@8#. These two apparently different sets
states were found to be special cases of what may be ca
generalizedSU~1,1! coherent states@13#. In view of their
importance it is therefore of considerable interest to inve
gate their revival features~if any! and to see whether the
can form Schro¨dinger cats. It may also be noted that in r
cent times the importance of SU~1,1! states in connection
with the motion of an ion in a two-dimensional trap has be
emphasized.

It is well known that the formation of Schro¨dinger cats is
closely connected with the nonlinearity of the underlyi
Hamiltonian. For HO coherent states, the Hamiltonian w
nonlinear in the photon-number operator whereas for
atomic coherent states the nonlinearity was with respec
the population inversion operator. For our purpose, theref
we choose a phase-insensitive two-mode generic Ha
tonian that is quadratic in terms of the generators of SU~1,1!.
The Hamiltonian was generic in the sense that it mode
wide range of systems from elliptically polarized light pas
ing through a fiber@14# to binary Bose condensates. W
show that under the action of this Hamiltonian revivals a
fractional revivals do indeed occur in the nonlinear dynam
of even the generalized SU~1,1! coherent states. Owing to
the generic nature of the Hamiltonian and the generality
the states on which it operates, our present study assum
greater significance in that it not only fills a long-standi
void in the quantum dynamics of coherent states but a
reveals the inherent SU~1,1! symmetry of many nonlinea
systems.

The plan of the paper is as follows. In Sec. II we give
brief but self-contained review of the generalized SU~1,1!
coherent states. We also comment on the production
importance of SU~1,1! coherent states in connection with th
states of the radiation field, the motion of ions in a tr
@15,16#, and even squeezed phonons in solids@17,18#. In

-
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Sec. III we study their dynamics by means of autocorrelat
functions and quadrature distributions. Explicit analytical
sults are provided for their revival and fractional revival. T
paper ends with some concluding remarks in Sec. IV.

II. SU„1,1… COHERENT STATES

A. Definition

The SU~1,1! algebra is spanned by the set of operat

KW [(Kx ,Ky ,Kz) obeying the commutation relations

@Kx ,Ky#52 iK z , @Ky ,Kz#5 iK x , @Kz ,Kx#5 iK y .
~1!

The Casimir invariant of SU~1,1! is the operatorQ5Kx
2

1Ky
22Kz

2 . The operatorKz is compact and its spectrum
discrete. For a given eigenvalue ofQ, the eigenvalues ofKz
differ by an integer. The operatorsKx andKy , on the other
hand, are noncompact. Their spectra are continuous. The
eratorsK15Kx1 iK y and K25Kx2 iK y act as the raising
and lowering operators, respectively, on the eigenstate
Kz . There are several representations of SU~1,1! @19#. How-
ever, we confine our attention to the so-called discrete r
resentation, which is of interest in quantum optics, especi
in the study of optical parametric processes. In the two-m
realization of SU~1,1!, K25ab, K15b†a†, Kz5(a†a
1b†b11)/2, and Q5K0(12K0), where K05(a†a2b†b
11)/2 is a constant. Note that this constraint on the pho
numbers was absent in our earlier work@20# for the two-
mode harmonic oscillator coherent states that obey
Heisenberg-Weyl algebra. Without any loss of generality,
us assume thata†a2b†b5q>0. Then the state space co
sists of two-mode Fock states of the typeum1q,m& ~where
m, q50, 1, 2, 3, . . .!, which are simultaneous eigenstates
a†a andb†b with eigenvaluesm1q andm, respectively. It
follows that

Kzum1q,m&5@m1~q11!/2#um1q,m&,

K2um1q,m&5Am~m1q!um211q,m21&,
~2!

K1um1q,m&5A~m11!~m111q!um111q,m11&,

Qum1q,m&5~12q2!/4 um1q,m&.

The commutation relations~1! can be written in an in-
structive compact form@13#

@aW •KW ,bW •KW #5 i ~aW 3bW !•KW , ~3!

where the vectors in Eq.~3! are taken to belong to~211!-
dimensional Minkowski space in which the scalar produc
defined as

aW •bW 5axbx1ayby2azbz , ~4!

whereas the cross product in Eq.~3! is given by
n
-

s

p-

of

p-
ly
e

n

e
t

f

s

~aW 3bW ! i52 (
j ,k5x,y,z

e i jkajbk , iÞz

~5!

~aW 3bW !z5 (
j ,k5x,y

ez jkajbk ,

whereexyz is 1 (21) for even~odd! permutation ofx,y,z
ande i jk50 if any two of i , j ,k are the same. In the following
all the dot products will be defined in the sense of Eq.~4!.

The uncertainty relation corresponding to Eq.~3! reads

D~aW •KW !2D~bW •KW !2>
1

4
@~aW 3bW !•KW #2. ~6!

Recall that the uncertainty relation is satisfied with equa
for those statesuc& that solve the eigenvalue equation

@aW •KW 1 ilbW •KW #uc&5juc& ~7!

and that the variance in the two components is equal il
561. We define@13# the coherent states of SU~1,1! as those
minimum-uncertainty states for which the variance in t

two orthogonal components ofKW is the same, i.e., the state
that satisfy Eq.~7! for l561 andaW •bW 50.

B. Construction

SinceaW andbW are mutually orthogonal, we can transfor

the pairaW •KW andbW •KW by means of an SU~1,1! transforma-
tion to a pair of operators fromKx , Ky , andKz . Note that a
general SU~1,1! transformationU transforms an SU~1,1! op-

eratorwW •KW to wW 8•KW 5U(wW •KW )U† such thatwW 8•wW 85wW •wW .
SincewW •wW is 1 for the noncompact operatorsKx ,Ky and
21 for the compact operatorKz , it follows that the signs of
aW •aW and bW •bW determine to which one of the operatorsKx ,

Ky , and Kz one can transformaW •KW and bW •KW . However,
sinceaW •bW 50, the signs ofaW •aW andbW •bW cannot be arbitrary
and at most one of them can be negative.

In our ~211!-dimensional Minkowski space, we defin
unit vectorsuW , fW , and rW whose Cartesian components a
given by

uW 5~coshu cosf,coshu sinf,sinhu!,

fW 5~2sinf,cosf,0!, ~8!

rW5uW 3fW 5~sinhu cosf,sinhu sinf,coshu!

so thatuW •uW 5fW •fW 51, whereasrW•rW521. We also construct
the SU~1,1! group transformation

U~u,f!5exp~ iufW •KW !. ~9!

For bothaW •aW andbW •bW positive, we choose
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aW 5uW cosf2fW sinf, bW 5uW sinf1fW cosf, ~10!

so thataW •aW 5bW •bW 51, andaW •bW 50. When one of the norms
sayaW •aW , is negative, we choose

aW 52rW, bW 5uW cosf2fW sinf ~11!

so thataW •aW 521, bW •bW 51, andaW •bW 50. It can be shown tha

for the set ~10!, U†(aW •KW )U5Kx and U†(bW •KW )U5Ky ,

whereas for the set~11!, U†(aW •KW )U5Kz and U†(bW •KW )U
5Kx . Thus there are two unitarily inequivalent forms in
which the eigenvalue problem~7! can be ‘‘transformed’’
@21#:

uc&5U~u,f!uF~j,q!&, ~12!

where either

K6uF&5juF& ~13!

or

~Kz6 iK x!uF&5juF&. ~14!

In what follows we will choose Eq.~13! to solve foruF&.
Since there is no normalizable eigenstate ofK1 , the so-

lution of Eq.~13! can only be an eigenstate ofK2 , which for
ar
l

s

is
ha

t
t

a two-mode realization of SU~1,1! is a pair coherent state
@12#. The pair coherent states can be expressed in term
the eigenstates ofKz . Thus

uF~j,q!&5N~j,q! (
n50

`
jn

An! ~n1q!!
un1q,n&, ~15!

where

N~j,q!5F (
n50

` uju2n

n! ~n1q!! G21/2

. ~16!

Next we use the disentangling theorem to write the opera
U in the normal form

U~u,f!5exp~hK1!exp~hzKz!exp~2h* K2!, ~17!

where

h5exp~2 if!tanh~ uuu/2!, hz522 ln cosh~ uuu/2!,

uhu,1. ~18!

The operation ofU on uF& is now straightforward and one
obtainsuc&5uc(h,j,q)&, where
uc~h,j,q!&5N~j,q!exp~2jh* ! (
n850

`
hn8

G~n811!
(
n50

`
jn~12uhu2!n1

q11
2 A~n1n8!! ~n1n81q!!

n! ~n1q!!
un1n81q,n1n8&. ~19!
f
-

,

This is the generalized SU(1,1) coherent statewhose dy-
namical evolution will be studied. Note that this state is ch
acterized by two parametersh and j, which are in genera
complex, and an integer parameterq, which is related to the
Casimir invariant (12q2)/4.

If U is trivially the identity transformation (h→0), then
uc& is equal touF&, which we recall is an eigenstate ofK2 .
If U is as given by Eq.~17! but j50, thenuc& reduces to

uC~h,q!&5
~12uhu2!(q11)/2

Aq!
(
p50

`

hpA~p1q!!

p!
up1q,p&,

~20!

which is the expression for the SU~1,1! coherent states a
defined by Perelomov@8#. In general, however,uc& is neither
an eigenstate ofK2 nor a Perelomov coherent state. This
clearly seen in the initial quadrature distributions. Recall t
the quadrature distribution for a state vectoruc(t)& is defined
asP(x,y,t)5 z^x,yuc(t)& z2, whereux,y& is the eigenvector of
(a1a†)/A2 and (b1b†)/A2 with eigenvaluesx and y, re-
spectively. The SU~1,1! coherent statesuc(h,j,q)& will have
different initial distributions for different values ofh, j, and
q. In Fig. 1 we show a few such cases forq50. The corre-
sponding cases forq51 are shown in Fig. 2. It is clear tha
the patterns are very sensitive to both the phase and
-

t

he

strength of the variablesj andh. Even for the same value o
j, different unitary transformations will yield different dis

FIG. 1. Contour plots of thequadraturedistributionP(x,y,t) at
t50 for the SU~1,1! coherent stateuc(j,h,0)& when ~a! j50, h
52 i tanhp/4; ~b! j53, h50; ~c! j523i , h50; ~d! j5 i , h
5 i tanhp/4; ~e! j53i , h52 i tanh 3p/20; and ~f! j53i , h
52 i tanh 2p/5. Note that case~a! is a Perelomov coherent state
cases~b! and~c! represent pair coherent states, and cases~d!–~f! are
more general.
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tributions @see Figs. 1~e!,2~e!, and 1~f!,2~f!#. For the Perelo-
mov coherent states, it can be shown that

^x,yuC~h,q!&5~p2qq! !21/2S 12uhu2

12h2 D (q11)/2

3expFx22y2

2
2S x2hy

A12h2D 2GHqF x2hy

A12h2G .

~21!

For purely imaginary values ofh (h52 i uhu), the above
expression~21! yields a Gaussian for even values ofq but
has a vortex structure@22# for odd values ofq.

C. Production

In this section we review briefly the possible methods
produce SU~1,1! coherent states. There are a number of v
interesting special cases of Eq.~19! that have been realized
~a! Pair coherent states~15! have been realized for the tw
modes of the radiation field@12# as well as for the two-
dimensional motion of the trapped ion@15#. For the radiation
field one considers two-photon absorption and emission
cesses in a system of three-level atoms under the cond
that the response time of the atoms is fast. Theoretical
culations show@12# that under such a condition the field
produced in a pair coherent state of the form~15!. For the
case of the trapped ion one drives the ion with a laser
resonance and two other lasers with appropriately cho
directions of propagation and tuned to the second lower
brational side band. Calculations@15# show that in the Lamb-
Dicke limit, the ion is found in the state~15!. We also note in
passing that Meekhofet al. @16# have demonstrated how t
produce a state such asuq,0&. ~b! After almost two decades
of work on squeezed states one understands very well
Perelomov states can be produced in parametric interact
Parametric amplification with a classical pump is precis
equivalent to the unitary transformation~17! @23#. For one-
dimensional motion of a trapped ion Meekhofet al. have
again demonstrated how Perelomov states can be produ
Further theoretical work in this direction is described
Gou, Steinbach, and Knight@24#. It is possible to generalize
the above works to two-dimensional motion.

FIG. 2. Same as in Fig. 1, but foruc(j,h,1)&.
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It is clear from the foregoing that each mathematic
transformation involved in the definition of SU~1,1! coherent
state~19! is physically realizable, suggesting that this mo
general class of coherent states can also be produced
have given examples corresponding to the radiation field
the motional degrees of freedom of a trapped ion. Clea
there are other systems where such states have bee~or
would be! realized. For example, Perelomov-like SU~1,1!
states for phonons have been studied@18# and have been
experimentally realized in KTaO3 @17#.

III. WAVE-PACKET DYNAMICS

We have studied the wave-packet dynamics of
SU~1,1! coherent states under the action of a generic tw
mode Hamiltonian~we use\51)

H5c1@~a†a!21~b†b!2#2c2a†ab†b, ~22!

which can be expressed in terms of the SU~1,1! operatorsKz
andK0 as

H5
p

4
@~2Kz21!2/T21~2K021!2/T1#, ~23!

whereT65p/(2c16c2). Note thatK0 is a constant and thu
the second term in the above Hamiltonian will only provi
an overall phase factor in the evolution operator. Con
quently, T1 does not play an active role and although t
above Hamiltonian has two time scalesT1 andT2 , the re-
vival features of the SU~1,1! coherent states under the actio
of this Hamiltonian will not depend on the ratio of the tim
scales. This is in stark contrast with what was observed
the harmonic-oscillator coherent states@20#. In what follows
we will suppress overall phase factors containing the c
stant termq2(11T2 /T1). Since the SU~1,1! coherent states
are expressed in terms of the eigenstates ofKz , we start by
considering the evolution of the latter set.

A. Revival

If U(t)5exp(2iHt) is the corresponding evolution opera
tor, then it is seen that for odd values ofq,

U~T2!up1q,p&5up1q,p&, ~24!

whereas for even values ofq,

U~T2!up1q,p&5exp~2 ipp!up1q,p&, ~25!

U~2T2!up1q,p&5up1q,p&. ~26!

Using these relations in the expression foruc(h,j,q)&, we
infer the following result:uc(h,j,q)& revives atall integer
values oft5t/T2 if q is odd and atevenvalues oft if q is
even. This is a remarkable result in the following sense
two-mode SU~1,1! coherent state with a large number
photons in each mode will have its revival time changed
a factor of 2 if it were prepared again with only an ext
photon in either mode. Using Eq.~25!, we find that for even
values ofq,

U~T2!uc~h,j,q!&5uc~2h,2j,q!&. ~27!
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B. Fractional revival

In between revivals, lett5(r /s)T2 , where r and s are
mutually prime withr ,s. Note that

U~rT2 /s!up1q,p&5exp~2 iprp@p1q#/s!up1q,p&.
~28!

The phase factor that is quadratic in the indexp is now
expressed in terms of phase factors that are linear inp by
means of a discrete Fourier transform@25#

exp~2 iprp2/s!5(
j 50

l 21

a j
(r ,s) exp~22p ip j / l !, ~29!

where

l 5H s if rÞs~mod 2!

2s if r 5s51~mod 2!.
~30!

The coefficientsa j
(r ,s) are given by

a j
(r ,s)5

1

l (
p50

l 21

exp~2 iprp2/s12ipp j / l ! ~31!

and can be evaluated analytically@26#. Substituting in Eq.
~28! we get

U~rT2 /s!up1q,p&5(
j 50

l 21

a j
(r ,s) exp~2 ippg j !up1q,p&,

~32!

where

g j5qr/s12 j / l . ~33!

Using the above relation~32!, one obtains

U~rT2 /s!uc~h,j,q!&

5(
j 50

l 21

a j
(r ,s)uc„h exp~2 ipg j !,j exp~2 ipg j !,q…&,

~34!

which is a superposition of SU~1,1! coherent states@27#.
By appropriate changes of the summation index and us

the periodicity properties ofa j
(r ,s) , the arguments ofc can

be made independent of the variabler. Thus thej sum in Eq.
~34! can be written as

(
j 51

s

b j
(r ,s)uc„h exp~2 ipG j !,j exp~2 ipG j !,q…&.

For odd values ofq,

G j5~s1122 j !/s, ~35!

b j
(r ,s)5H a [s112qr]/22 j

(r ,s) if rÞs~mod 2!

as112qr22 j
(r ,s) if r 5s51~mod 2!.

~36!

For even values ofq,
g

G j5H 2 j /s if rÞs~mod 2!

~2 j 11!/s if r 5s51~mod 2!,
~37!

b j
(r ,s)5H a j 2qr/2

(r ,s) if rÞs~mod 2!

a2 j 112qr
(r ,s) if r 5s51~mod 2!.

~38!

Let us now consider a few simple cases

U~T2!uc~h,j,0!&5uc~2h,2j,0!&, ~39!

U~T2/2!uc~h,j,0!&5
exp~2 ip/4!

A2
@ uc~h,j,0!&

1 i uc~2h,2j,0!&], ~40!

U~T2/2!uc~h,j,1!&5
exp~2 ip/4!

A2
@ uc~2 ih,2 i j,1!&

1 i uc~ ih,i j,1!&]. ~41!

C. Evolution of quadrature distributions

The initial distributions shown in Figs. 1 and 2 are cohe
ent structures. As the system evolves, this coherence is
rather quickly, but is restored partially~or fully! at times of
fractional ~or total! revival. Following Eqs.~24!–~26!, it is
clear that for odd values ofq, P(x,y,T2)5P(x,y,0). For
even values of q, on the other hand,P(x,y,2T2)
5P(x,y,0) providedj and h are not pure imaginary. Oth
erwise, one can use Eq.~39! and the fact that the scala
product ^x,yup1q,p& is real to show thatP(x,y,T2)
5P(x,y,0) for even values ofq as well.

We will now seek signatures of fractional revivals in th
evolution ofP(x,y,t) for various SU~1,1! coherent states a
defined in Sec. II B. In Figs. 3 and 4 we have shown t
contour plots of the quadrature distribution for the SU~1,1!
coherent statesuc(j,h,0)& and uc(j,h,1)&, respectively, at
t5T2/2.

Although the evolution of the two-mode system is effe
tively governed by one time scale@see comments below Eq
~23!#, its structure at times of fractional revival is not nece
sarily simple, although exact analytical results can be
tained in some cases. Thus for the Perelomov coherent s

FIG. 3. Same as in Fig. 1, but att5T2/2.
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one can use Eqs.~21! and ~40! to show that forq50,
P(x,y,T2/2)50 wheneverxy5np(11uhu2/8uhu), wheren
is an odd integer. The hyperbolic dark fringes are clea
visible in the corresponding plot of Fig. 3. The point to no
however, is that these structures do not seem to con
clearly distinguishable replicas of the initial distribution. Th
complexity arises due to quantum interference that is a
mented not only by the two-mode nature of the system
also by the built-in correlation between the modes via
constraint on the photon number differenceq. Nevertheless,
we have been able to identify a situation where Schro¨dinger
cats of these SU~1,1! coherent states are formed. This is t
case for the pair coherent states whenq50. Using Eqs.~39!
and ~40!, we note that att5T2 , j→2j so that the initial
distribution~Fig. 2, top row, middle column! rotates byp/2.
At t5T2/2, these two distributions add incoherently as t
components of the wave function, beingp/2 out of phase, do
not interfere with each other. The same is not true forq51
as j→6 i j for the two components@see Eq.~41!#, which
results in strong interference between them.

FIG. 5. Autocorrelation functionA(t)5 z^c(0)uc(t)& z2 of ~a!
pair coherent statesc(0)5F(j,q) and ~b! Perelomov coheren
statesc(0)5C(h,q) for q50. We have chosenj53 and h5
2 i tanhp/4.

FIG. 4. Same as in Fig. 2, but att5T2/2.
y
,
in

g-
t

e

e

D. Evolution of autocorrelation functions

In Figs. 5 and 6 the autocorrelation functionA(t)
5z^c(0)uc(t)& z2 of pair and Perelomov coherent states a
plotted for q50 andq51, respectively. These plots are
complete agreement with the analytical results p
sented in the paper. Indeed, forq50, A(2T2)51 and
for q51, A(T2)51. Furthermore, for pair coheren
states, ^F(j,0)uF(j,0)&51 and ^F(j,0)uF(2j,0)&
5J0(2uju)/I 0(2uju), whereas for Perelomov cohere
states, ^C(h,0)uC(h,0)&51 and ^C(h,0)uC(2h,0)&
5(12uhu2)/(11uhu2). These scalar products can be used
conjunction with Eqs.~39! and~40! to check the value of the
autocorrelation function for these states att5T2 and T2/2
when q50. A similar analysis can be made forq51 and
also for other types of SU~1,1! coherent states. We note i
passing that for pair coherent statesF(j,0), the autocorrela-
tion function can be made to vanish att5T2 if j is chosen
such that 2uju is a root of the Bessel functionJ0(x). In that
case, the autocorrelation function will be exactly 1/2 at
5T2/2.

IV. CONCLUSION

In conclusion, we have studied~both analytically and nu-
merically! the evolution of SU~1,1! coherent states, in par
ticular, the pair and Perelomov coherent states, under
action of a phase-insensitive Hamiltonian that is quadratic
terms of the generators of SU~1,1! dynamics. As mentioned
in Sec. II, many of these coherent states have been rea
for a number of different physical systems. For a gene
two-mode Hamiltonian with two associated time scales,
found that the revival dynamics of SU~1,1! coherent states
does not depend on the ratio of these time scales. Instea
depends crucially on the difference in photon numbers of
two modes. These findings are unlike what one obtains
harmonic-oscillator coherent states@20# and can be traced to
the different nature of the underlying algebra. However, as
the case of the HO coherent states, we found that the q
tum phenomena of revival and fractional revival~or the for-
mation of Schro¨dinger cats! also occur for the SU~1,1! co-
herent states. We have provided analytic results for th
revival and fractional revival along with numerical plots
the autocorrelation function and the quadrature distributi

FIG. 6. Same as in Fig. 5, but forq51.
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