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Revival and fractional revival in the quantum dynamics of SU1,1) coherent states
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We have used a generic two-mode Hamiltonian with two associated time scales to study the evolution of
generalized SW,1) coherent states, in particular the pair and Perelomov coherent states, which have been
realized in many systems such as radiation fields, trapped ions, and phonons. We have found that their
dynamics does not depend on the ratio of these time scales but is instead determined crucially by the difference
in photon numbers of the two modes. This is in stark contrast to the previously studied harmonic-oscillator
coherent states and can be attributed to the different nature of the underlying algebra. We provide analytical
results for their revival and fractional revival along with numerical plots of the autocorrelation function and the
quadrature distribution and demonstrate the formation of Slihger cats. The results are extremely sensitive
to the Casimir invariant and the complex parameters characteriziity, Bldoherent states.
[S1050-294{@9)07906-9

PACS numbds): 42.50.Ar, 03.65.Fd, 42.50.Md

I. INTRODUCTION The SUZ1,1) group plays a very important role in many
problems in optic$11]. For example, optical parametric pro-
Coherent states, introduced by Safinger to describe cesses that create or destroy photons in pairs can be de-
nonspreading wave packets for harmonic oscillators, havecribed by Hamiltonians that are linear in @\L) genera-
many interesting properties, chief among which is that theséors. Two well-studied classes of §lJ1) coherent states are
are minimum uncertainty states and therefore most classicéhe so-called pair coherent statgs?] and the Perelomov
within the framework of quantum theory. In recent years, thecoherent statef8]. These two apparently different sets of
nonlinear quantum dynamics of these states have revealetates were found to be special cases of what may be called
some striking features. It was found that under the action ofjeneralizedSU(1,1) coherent state§l3]. In view of their
a Hamiltonian that is anonlinear function of the photon importance it is therefore of considerable interest to investi-
number operatgs) only, an initial coherent state loses its gate their revival featureéf any) and to see whether they
coherent structure quickly due to quantum dephasing inean form Schrdinger cats. It may also be noted that in re-
duced by the nonlinearity of the Hamiltonian and then re-cent times the importance of $11) states in connection
gains it(revival) after an interval. At fractions of this time with the motion of an ion in a two-dimensional trap has been
interval, the initial coherent state breaks up into a superposiemphasized.
tion of two or more coherent states that also can have a It is well known that the formation of Schadinger cats is
coherent structure. This is an example of the quantum pheelosely connected with the nonlinearity of the underlying
nomenon of fractional revival1-6] or the formation of Hamiltonian. For HO coherent states, the Hamiltonian was
Schralinger cat and catlike stat¢#] that, unlike a coherent nonlinear in the photon-number operator whereas for the
state, have many nonclassical properties. atomic coherent states the nonlinearity was with respect to
The concept of coherent states itself has been generalizeble population inversion operator. For our purpose, therefore,
[8] to describe systems other than harmonic oscillators we choose a phase-insensitive two-mode generic Hamil-
radiation field$. From a group-theoretic point of view, the tonian that is quadratic in terms of the generators of1SU).
harmonic oscillator(HO) coherent states arise in systems The Hamiltonian was generic in the sense that it models a
whose dynamical symmetry group is the so-calledwide range of systems from elliptically polarized light pass-
Heisenberg-Weyl group. Coherent states of other symmetring through a fiberf14] to binary Bose condensates. We
groups also exist. For example, the atomic, Bloch, or spirshow that under the action of this Hamiltonian revivals and
coherent states are described by the algebra of spin operatdractional revivals do indeed occur in the nonlinear dynamics
that are generators of %), the simplest compacgroup. of even the generalized $U1) coherent states. Owing to
Similarly, one can construct coherent states fordimplest the generic nature of the Hamiltonian and the generality of
noncompacgroup SU1,1) [9]. the states on which it operates, our present study assumes a
A gquestion arises whether revival and fractional revivalgreater significance in that it not only fills a long-standing
(Schralinger cat formationpoccur for the coherent states of void in the quantum dynamics of coherent states but also
these groups as well. With the formation of atomic Sehro reveals the inherent SW,1) symmetry of many nonlinear
dinger cat stategl0], the answer is obtained in the affirma- systems.
tive for the SU2) group. In this paper we focus our attention ~ The plan of the paper is as follows. In Sec. Il we give a
on the SU1,1) coherent states. brief but self-contained review of the generalized ()
coherent states. We also comment on the production and
importance of SL,1) coherent states in connection with the
*Also at Jawaharlal Nehru Centre for Advanced Scientific Re-states of the radiation field, the motion of ions in a trap
search, Bnagalore, India. [15,16, and even squeezed phonons in solidg,18. In
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Sec. lll we study their dynamics by means of autocorrelation

functions and quadrature distributions. Explicit analytical re- (axb)i=— k; , €jajby, 1#z
sults are provided for their revival and fractional revival. The Jrey,
paper ends with some concluding remarks in Sec. IV. ®)
(axXb),= > €2j1@; by s
Il. SU(1,1) COHERENT STATES Ik=xy
A. Definition

wheree,,, is 1 (—1) for even(odd permutation ofx,y,z
The SU1,1) algebra is spanned by the set of operatorsande;; =0 if any two ofi,j,k are the same. In the following
K=(Ky.Ky,K,) obeying the commutation relations all the dot prod_ucts WI||.be defined in t_he sense of Hj.
The uncertainty relation corresponding to E8). reads
[Ki.Kyl=—iK,, [Ky K ]=iKy, [KZ,KX]ziKy.(l)
- -> > - 1 - - -
A(a-K)2A(b-K)?= Z[(axb)~K]2. (6)
The Casimir invariant of SU,1) is the operatorQ=K?2

212 : - -
+Ky—K3. The operatoK, is compact and its spectrum is Recall that the uncertainty relation is satisfied with equality

discrete. For a given eigenvalue Qf the eigenvalues o,  for those stateky) that solve the eigenvalue equation
differ by an integer. The operatoks, andK,, on the other

hand, are noncompact. Their spectra are continuous. The op- .

eratorsK , =K, +iK, andK_=K,—iK, act as the raising [a-K+ikb-K][4)=¢|y) (7)
and lowering operators, respectively, on the eigenstates of

K,. There are several representations of 80) [19]. How-  and that the variance in the two components is equal if
ever, we confine our attention to the so-called discrete rep= = 1. We defind 13] the coherent states of $11) as those
resentation, which is of interest in quantum optics, especiallyninimum-uncertainty states for which the variance in the
in t'r_e study 0]1‘ Ogtiﬂiall)pa?memt(): pflgceszfs;r mlt<he t(W?'mOdﬂNo orthogonal components & is the same, i.e., the states
realization o ), K_=abh, K,=b'a", K,=(a'a ; . >0

Fb'b+1)/2, and Q—Ky(1—Kg), where Ko—(a‘a—b'b that satisfy Eq(7) for A==1 anda-b=0.

+1)/2 is a constant. Note that this constraint on the photon _
numbers was absent in our earlier wd0] for the two- B. Construction
mo.de harmonic oscillator cpherent states that ob(_ey the sinced andb are mutually orthogonal, we can transform
Heisenberg-Weyl algebra. Without any loss of generality, let . - . -

us assume tha'a—b'b=q=0. Then the state space con- the paira-K andb-K by means of an SU,1) transforma-
sists of two-mode Fock states of the tyjpe-+q,m) (where tion to a pair of operators fromx, Ky, andK,. Note that a
m, q=0, 1, 2, 3, .. ), which are simultaneous eigenstates ofgeneraJ SWL,1) transformatiorl) transforms an SU,1) op-

a'a andb'b with eigenvaluesn+q andm, respectively. It ~eratorw-K to w’-K=U(w-K)U" such thatw’-w’=w-w.

follows that Sincew-w is 1 for the noncompact operatoks K, and
—1 for the compact operatds,, it follows that the signs of
K m+q,m)=[m+(q+1)/2]jm+q,m), a-a andb-b determine to which one of the operatdts,
Ky, and K, one can transforma-K and b-K. However,
K_|m+g,m)=ym(m+q)|m-1+q,m—1), sincea-b=0, the signs ofi-a andb-b cannot be arbitrary
2 and at most one of them can be negative.
K. |m+q,m)= \/(m+1)(m+1+q)|m+1+q,m+1>, In our (Ztl)ldimen%ional Minkowski space, we define
unit vectorsd, ¢, andr whose Cartesian components are

Q|m+q,m>=(1—q2)/4|m+q,m>_ given by

_ . _ _ _ 6= (coshd cos¢, coshd sin ¢,sinh6),
The commutation relation§l) can be written in an in-

structive compact forni13] -

¢=(—sing¢,co0s®,0), (8)

[a-K,b-K]=i(axb)-K, 3 - . S
r=6x ¢=(sinhé cos¢,sinhf sin ¢,cosh)

where the vectors in Eq3) are taken to belong t@+1)- oL L ..
dimensional Minkowski space in which the scalar product isso thaté- 6= ¢- ¢=1, whereas -r = —1. We also construct
defined as the SU1,1) group transformation

a-b=a,b,+a,b,—ah,, (4) U(0,¢)=exli 0¢-K). )

whereas the cross product in E§) is given by For botha-a andb-b positive, we choose
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a= 5cos¢— <?>Sin¢> b= ésinqﬂ— q3005¢ (10) a two-mode realization of SW,1) is a pair coherent state
’ ’ [12]. The pair coherent states can be expressed in terms of

so thata-a=b-b=1, anda-b=0. When one of the norms, the eigenstates d{,. Thus

saya-a, is negative, we choose )

&
a=—r, b=6cos¢p—dsing (11) |[B(£a))= N(fq)z o Jnl(n+q)!

so tham-a=—1,b-b=1, anda-b=0. It can be shown that \nere
for the set(10), U(a-K)U=K, and U'(b-K)U=K,,

[n+q,n), (15

whereas for the sefl1), U'(a-K)U=K, and UT(b-K)U N B i gz ] 16
=K,. Thus there are two unitarily inequivalent forms into (&,0)= =onl(n+q)! (16)
which the eigenvalue problerf7) can be “transformed”
[21]: Next we use the disentangling theorem to write the operator
U in the normal form

[9)=U(6,9)|®(£,0), 1

where either U(6,¢)=exp(nK.)exp 7K )exp(— n*K_), (17)
K.|®)=§E D) (13)  where
or n=exp —i¢)tani(|6|/2), n,=—2Incosk]6|/2),
K,=iK,)|P)= ¢ D). 14
( z x)| > §| > ( ) |'r]|<1. (18)

In what follows we will choose E¢(13) to solve for|®).
Since there is no normalizable eigenstatekaf, the so-  The operation olJ on |®) is now straightforward and one
lution of Eq.(13) can only be an eigenstate léf , which for  obtains|#)=|¢(7,£,9)), where

* n

+1
(1|72 T J(nF ) (ntn +q)!
n—o '(n'+1) i=0 ni(n+q)!

In+n’+q,n+n’). (19

This is thegeneralized SU(1,1) coherent stamhose dy-  strength of the variable$and ». Even for the same value of
namical evolution will be studied. Note that this state is char-¢, different unitary transformations will yield different dis-
acterized by two parameteng and &, which are in general
complex, and an integer parametgwhich is related to the (a) (b) (c)
Casimir invariant (1 g2)/4.
If U is trivially the identity transformation 4—0), then
| ) is equal to|®), which we recall is an eigenstate Kf . /
If Uis as given by Eq(17) but £=0, then|#) reduces to /

[}

|
2 (ppq)| rap).
(20)

R el

Jat

|W(7,9))=

which is the expression for the $11) coherent states as
defined by Perelomaj8]. In general, howevety)) is neither
an eigenstate oK _ nor a Perelomov coherent state. This is
clearly seen in the initial quadrature distributions. Recall that (d) (e) ()

the quadrature distribution for a state vedt(t)) is defined

asP(xT,y,t) - |(x,y| lll(t)T>|2’ Where|x,y> is the eigenvector of FIG. 1. Contour plots of thquadraturedistributionP(x,y,t) at
(a+a")/y2 and p+b")/V2 with eigenvalues andy, re-  _g for the SU1,1) coherent statéy(£, ,0)) when(a) £€=0, 7

spectively. The S(,1) coherent statds/( 7,£,q)) willhave  — _j qapha/a: (b) €=3, 7=0; (¢) £=—3i, 7=0; (d) =i, 7
different initial distributions for different values of, §, and  —j tanhw/4; (e) ¢=3i, n=—itanh37/20; and (f) £=3i, 7
g. In Fig. 1 we show a few such cases fpr=0. The corre- = —ij tanh 21/5. Note that caséa) is a Perelomov coherent state,

sponding cases fay=1 are shown in Fig. 2. It is clear that casegb) and(c) represent pair coherent states, and cédesf) are
the patterns are very sensitive to both the phase and theore general.
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It is clear from the foregoing that each mathematical

(a) (b) (©)
transformation involved in the definition of $U1) coherent
state(19) is physically realizable, suggesting that this more
/ general class of coherent states can also be produced. We
/ have given examples corresponding to the radiation field and
the motional degrees of freedom of a trapped ion. Clearly
there are other systems where such states have (@ren
would be realized. For example, Perelomov-like @LL)
states for phonons have been studj@é8] and have been
experimentally realized in KTaJ17].
I1l. WAVE-PACKET DYNAMICS
(d) (e) M

We have studied the wave-packet dynamics of the
SU(1,1) coherent states under the action of a generic two-
FIG. 2. Same as in Fig. 1, but fog(¢, 7,1)). mode Hamiltonianiwe usef=1)

_ t532 th 21— c.atap’
tributions[see Figs. (e),2(e), and 1f),2(f)]. For the Perelo- H=cy[(a'a)*+(b'b)“]—c,a’'ab'b, (22
mov coherent states, it can be shown that which can be expressed in terms of the(81) operatorK,

1| g7\ @+ D)2 andK, as
<X-Y|‘I’(77,Q)>:(7T2qq!)_1/2(1T772—) -
H=Z[(ZKZ—1)2/T_+(2K0—1)2/T+], (23

2
O S N Il 2 O PR
ex 2 1= 2 7 a4 1=2 72| whereT.. = 7/(2¢c,*Cy). Note thatK, is a constant and thus

the second term in the above Hamiltonian will only provide
(21)  an overall phase factor in the evolution operator. Conse-
quently, T, does not play an active role and although the

For purely imaginary values of (»=—i|#|), the above above Hamiltonian has two time scal€s andT_, the re-
expression(21) yields a Gaussian for even values@but vival features of the S(1,1) coherent states under the action
has a vortex structur22] for odd values ofg. of this Hamiltonian will not depend on the ratio of the time

scales. This is in stark contrast with what was observed for

the harmonic-oscillator coherent stafeg]. In what follows

we will suppress overall phase factors containing the con-
In this section we review briefly the possible methods tostant termg?(1+T_ /T, ). Since the S(L,1) coherent states

produce SUL,1) coherent states. There are a number of veryare expressed in terms of the eigenstatek of we start by

interesting special cases of H39) that have been realized. considering the evolution of the latter set.

(a) Pair coherent stated5) have been realized for the two

modes of the radiation fiel@il2] as well as for the two-

dimensional motion of the trapped iph5]. For the radiation o ] .

field one considers two-photon absorption and emission pro- |f ¢(t)=exp(=iHt) is the corresponding evolution opera-

cesses in a system of three-level atoms under the conditid®" then it is seen that for odd values qf

that the response time of the atoms is fast. Theoretical cal- _

culations show12] that under such a condition the field is UT-)lp+d.p)=[p+a,p), (24)

produced in a pair cc_Jherent state of the_ foﬁ'hﬁ'a_). For the whereas for even values of

case of the trapped ion one drives the ion with a laser on

C. Production

A. Revival

resonance and two other lasers with appropriately chosen UT-)|p+a,p)=exp—imp)|p+a,p), (25
directions of propagation and tuned to the second lower vi-
brational side band. Calculatiof5] show that in the Lamb- U2T_)|p+q,p)=|p+a,p). (26)

Dicke limit, the ion is found in the statd5). We also note in

passing that Meekhodt al. [16] have demonstrated how to Using these relations in the expression f¢( 7,£,q)), we
produce a state such &s,0). (b) After almost two decades infer the following result](7,£,q)) revives atall integer

of work on squeezed states one understands very well hovalues ofr=t/T_ if qis odd and atevenvalues ofr if q is
Perelomov states can be produced in parametric interactionsven. This is a remarkable result in the following sense. A
Parametric amplification with a classical pump is preciselytwo-mode SW1,1) coherent state with a large number of
equivalent to the unitary transformati¢h?) [23]. For one-  photons in each mode will have its revival time changed by
dimensional motion of a trapped ion Meekhefal. have  a factor of 2 if it were prepared again with only an extra
again demonstrated how Perelomov states can be producgshoton in either mode. Using E(R5), we find that for even
Further theoretical work in this direction is described byvalues ofq,

Gou, Steinbach, and Knigh4]. It is possible to generalize

the above works to two-dimensional motion. UT )| p(5,£Q)=(—n,— £Q9)). (27)
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B. Fractional revival (a)

In between revivals, let=(r/s)T_, wherer ands are

mutually prime withr <s. Note that \

UrT_Is)|p+a,p)=exp(—imrp[p+al/s)|p+q,p). *
(28)

The phase factor that is quadratic in the indexs now
expressed in terms of phase factors that are linegr oy IS

means of a discrete Fourier transfof@b] %& ‘
‘

1-1

eXp(_impZ/S):EO a9 exp( = 2mipj/l), (29 ﬁﬁ
=

(d) (€) ®

FIG. 3. Same as in Fig. 1, but &= T _/2.

DT

SN

where

s ifr#s(mod?2

= 2s if r=s=1(mod 2. (30 B 2jls if r#s(mod?2 -
- (r.9) . " 1(2j+1)/s if r=s=1(mod 2,
The coefficientsaj > are given by
(r.s) i
171 _ o 509 @, If r#s(mod?2 39
af" 9= pgo exp(—imrp?/s+2impjll)  (31) 5T a9, if r=s=1(mod 2.
and can be evaluated analyticall#6]. Substituting in Eq. Let us now consider a few simple cases
(28) we get UT W7, 60)=i(~n,—£0), (39
-1
UrT_Is)|p+a,p)= ("8) exp( —ipy:)|p+a,p), exp(—im/4)
(32 2
where +ilg(—n,— £0)], (40)
¥j=qr/s+2j/l. (33 exp(—iml4

UT-12)[9p(n,£,1))= T)[ll/f(—i 7,—1£,1))

Using the above relatio(82), one obtains

i e, "
UTT_19)| Yl 7,£,9)) e(im,ig1)] (41

C. Evolution of quadrature distributions

-1
= Z "I (nexp(—imy)),Eexp(—imy)),q), The initial distributions shown in Figs. 1 and 2 are coher-
1=0 (34) ent structures. As the system evolves, this coherence is lost
rather quickly, but is restored partiallgr fully) at times of

which is a superposition of SW,1) coherent statef27]. fractional (or total) revival. Following Eqs.(24)—(26), it is
By appropriate changes of the summation index and usin§'€ar that for odd values af, P(x,y,T_)=P(x,y,0). For
the periodicity properties of{"¥ | the arguments ofy can  €ven values ofg, on the other hand,P(x,y,2T )

be made independent of the variablehus the sum in Eq.  — P (X,¥,0) provided¢ and » are not pure imaginary. Oth-
(34) can be written as erwise, one can use E@39) and the fact that the scalar

product (x,y|p+q,p) is real to show thatP(x,y,T_)
s =P(x,y,0) for even values of] as well.
> ,3].(“5)|¢(77 exp—inl)), Eexp(—inT)),q)). We will now seek signatures of fractional revivals in the
=1 evolution of P(x,y,t) for various SUW1,1) coherent states as
defined in Sec. II B. In Figs. 3 and 4 we have shown the
contour plots of the quadrature distribution for the ($4)
coherent statefy(&,7,0)) and | (€, 7,1)), respectively, at
t=T_/2.
(r.s) i d Although the evolution of the two-mode system is effec-
IB(r,s): A[s¥1-qniz-j If r#s(mod2 (36) tively governed by one time scaleee comments below Eq.
' alid gy if r=s=1(mod 2. (23)], its structure at times of fractional revival is not neces-
sarily simple, although exact analytical results can be ob-
For even values o, tained in some cases. Thus for the Perelomov coherent states

For odd values ofj,

Fj=(s+1-2j)ls, (35
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(©)
- (a)
)

A®)

(b)
05 |
(d) (e)
FIG. 4. Same as in Fig. 2, but 6T _/2. 0.0 L L
0.0 0.5 1.0 1.5 2.0
vT

one can use Eqs21) and (40) to show that forg=0, o
P(x,y,T_/2)=0 whenevexy=nm(1+|7/%/8|7|), wheren FIG. 6. Same as in Fig. 5, but for=1.
is an odd integer. The hyperbolic dark fringes are clearly D. Evolution of autocorrelation functions

visible in the corresponding plot of Fig. 3. The point to note,

however, is that these structures do not seem to contain |<Ir1]ﬂ((l):)l|gl;(.t)§|2a0r}d ab;r g;% ggtrce)fgrqgllat(;gﬂergztcggt(etz)s are
clearly distinguishable replicas of the initial distribution. The n

lexi . d terf hat | plotted forq=0 andg=1, respectively. These plots are in
complexity arises due to quantum interference that is aUGsomplete agreement with the analytical results pre-

mented not only by the two-mode nature of the system butented in the paper. Indeed, for=0, A(2T_)=1 and
also by the built-in correlation between the modes via thor q=1, A(T_)=1. Furthermore, for pair coherent

constraint on the photon number differerqceNevertheless, states, (D(£,0)|P(£,0)=1 and (D(&0)|P(—£,0)

we have been able to identify a situation where Sdlmger  =J,(2|£[)/15(2|¢]), whereas for Perelomov coherent
cats of these S(,1) coherent states are formed. This is thestates, (¥ (%,0)|¥(5,0))=1 and (¥ (%,0)|¥ (- »,0))
case for the pair coherent states wiign0. Using Eqs(39) = (1—|7/?)/(1+]|7|?). These scalar products can be used in

and (40), we note that at=T_, é— — ¢ so that the initial ~ conjunction with Eqs(39) and(40) to check the value of the
distribution (Fig. 2, top row, middle columirotates bym/2. autocorrelation fur)ction for t_hese statestatT_ andT_/2
At t=T_/2, these two distributions add incoherently as thewhenq=0. A similar analysis can be made fgq=1 and
components of the wave function, being2 out of phase, do &0 for other types of SU,1) coherent states. We note in
not interfere with each other. The same is not trueqferl ~ Passing that for pair coherent state¢¢,0), the autocorrela-
as é—*i¢ for the two componentfsee Eq.(41)], which ~ ton function can be made to vanishtat T_ if £ is chosen

results in strong interference between them. such that 2] is a root .Of the Be_ssel f_uncticxﬂb(x). In that
case, the autocorrelation function will be exactly 1/2tat

=T_/2.

(a) IV. CONCLUSION

In conclusion, we have studigtoth analytically and nu-
i i merically) the evolution of SW1,1) coherent states, in par-
ticular, the pair and Perelomov coherent states, under the
action of a phase-insensitive Hamiltonian that is quadratic in
terms of the generators of $U1) dynamics. As mentioned

' — ' ' in Sec. Il, many of these coherent states have been realized
(b) for a number of different physical systems. For a generic
two-mode Hamiltonian with two associated time scales, we
found that the revival dynamics of $U1) coherent states
05| i does not depend on the ratio of these time scales. Instead, it
depends crucially on the difference in photon humbers of the
two modes. These findings are unlike what one obtains for
harmonic-oscillator coherent stafgX)] and can be traced to
0.0 05 110 15 20 the different nature of the underlying algebra. However, as in

T the case of the HO coherent states, we found that the quan-
tum phenomena of revival and fractional revivat the for-
FIG. 5. Autocorrelation functiomA(t)=|(#(0)|#(t))|? of (@  mation of Schrdinger cats also occur for the SU,1) co-

pair coherent stateg/(0)=®(&,q) and (b) Perelomov coherent herent states. We have provided analytic results for their
statesy(0)=V(7,q) for g=0. We have choseg=3 and = revival and fractional revival along with numerical plots of
—i tanh#/4. the autocorrelation function and the quadrature distribution.

AQt)

0.0 ! : :
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