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Inclusion of nonadiabiatic effects in calculations on vibrational excitation of molecular hydrogen
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The nonadiabatic phase matrix method offers a unified, systematic treatment of vibrational dynamics in
calculations of low-energy inelastic electron-molecule cross sections. This formalism uses fixedRuclei
matrices to describe the region of configuration space near the target but—unlike its fully adiabatic counterpart,
the energy-modified adiabatic method—includes nonadiabatic effects, which are important for resonant scat-
tering and near a vibrational threshold. A most stringent test of this methedHisscattering below 10 eV,
where elastic and inelastic cross sections exhibit an enhancement around 3 eV which at the fixed-nuclei level
involves a range of physical effects, from nonresonant to resonant scattering, as the internuclear separation
varies from the smallest to largest relevant values. Here we describe an implementation of this method
appropriate to such systems, an assessment of its accuragyHfpscattering, and an appraisal of the impor-
tance of nonadiabatacity for the-©1 and 0—2 vibrational excitationg.S1050-294{@9)08901-5

PACS numbd(s): 34.80.Bm, 34.80.Gs

[. INTRODUCTION culty of including continuum channels in a close-coupling
formalism, even fore-H, scattering, alternative methods
Electron scattering by the hydrogen molecule has beesuch as the projection operator metH&14,19 have been
studied extensively by both theorists and experimentalistsised. This paper concerns the extension to extremely broad
(for reviews and references, see R¢ts:3)). Although H, is  resonances such as the one in ¢hld, system of an alterna-
the simplest of all neutral molecular targets, the presence difve treatment, the nonadiabatic phase mat(\NADP)
a fixed-nuclei shape resonance around 3 eV whose widtmethod[16-18,13.
varies drastically with internuclear separation presents a con- The NADP method has previously been applied to the
siderable challenge to the theory of vibrational excitationnarrower resonance structures observed in low-enerijy
from the ground statg4]. Direct calculation of theéS, com-  scattering 18]. Its advantage for electron-impact vibrational
plex potential-energy function, using quantum chemistryexcitation of e-H, in the 23, symmetry[13] is that this
techniques such as the complex self-consistent-field methagiethod includes nonadiabatic physics within a formulation
[5,6], indicate that this resonant state interacts strongly withwhich consistently treats the entire range of physical effects
the electron-scattering continuum for small values of interthat influencee-H, cross sections as the internuclear separa-
nuclear separation, but becomes bound for internuclear septien R varies, from strongly resonant scattering at laRy®
rations around &, [7]. purely background scattering at smgll
This 23, resonance enhances inelastic cross sections for The NADP method derives this advantage from the use of
excitation to low-lying vibrational states, induces a strongR matrices to treat the region near the targeor an alter-
resonant structure in the cross sections for excitation tmative R-matrix-based formalism for the inclusion of nona-
higher vibrational state$8], and is primarily responsible for diabatic effects, see Reffl9,20.) In a NADP calculation,
dissociative attachment into H and Hi3]. Different theoret-  body-frame fixed-nucleR matrices are used to define phase
ical formalisms and computational methods have been usemiatrices at eacR. Each phase matrix is decomposed addi-
to treat various consequences of this resonance, each adaptaely into foreground part and background parts. The latter
to a particular situation. For excitation to low-lying vibra- is then converted to a vibronic background phase matrix us-
tional states, modified adiabatic methods such as the firstng the EMAP approximatio21]. Following this method-
order nonadiabatic methd®,10] and the energy-modified ology, the foreground fixed-nuclei phase matrix is also con-
adiabatic phase matrix methdBEMAP) [11-13, which al-  verted to a foreground vibronic phase matrix by replacing
low for the transfer of kinetic energy to nuclear motion dur-functional forms determined by the electron continuum en-
ing an inelastic process but neglect explicitly nonadiabatieergy by matrix expressions defined by an operator which
effects, are appropriate. However, for deep inelastic scatteexplicitly contains the vibrational kinetic-energy operator.
ing or for dissociative attachment, it is expected that a fullyThe NADP procedureper seneed be applied only to the
nonadiabatic theory such as vibrational close coupling igesonant symmetry; nonresonant symmetries can be treated
necessary, in order to describe the relatively strong couplingvith the EMAP method. The case efH, scattering is par-
between electronic and vibrational motion. Due to the diffi-ticularly appropriate to calibrate this methodology because of
the diversity of the effects it scattering below 10 eV.
In Sec. Il we outline the theoretical foundation of the
*Electronic address: MORRISON@MAIL.NHN.OU.EDU EMAP and NADP methods and the role of tRematrix in
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these approximations. Section Ill is concerned with their tarrb(e;R,rO)=kg/ZR(e;R,ro)kélz, 3
implementation fore-H, scattering. In Sec. IV we concen-

trate on tests of the validity of the NADP and EMAP meth- wherek,, is a diagonal matrix ofbody-frame wave numbers
ods for excitation of low-lying vibrational states o, HHere  k,= J2e. This definition differs from that given previously
we report a systematic comparison of EMAP and NADP[17] by the energy-dependent factors kgf?, which render
total and differential cross sections with benchmark body-® dimensionless.

frame vibrational close-coupling calculatiof2]. To ensure In conventional scattering theory for a spherical interac-
meaningful comparisons among these methods, all calculaion potential, phase shifts are defined relative to free waves
tions use the same Hartree-Fock ground-statevive func-  via the usual asymptotic boundary conditid2§]. In con-
tion, the same representation of the static, exchange, angntional electron-molecule scattering theory, where the in-
correlation polarization terms in treH, interaction poten-  teraction potential is nonspherical, the analogous quantity is

tial, and comparable numerical precision. the eigenphase sum, which is calculated from the asymptotic
K matrix (see Ref[27], and references therginThe fixed-
Il. THEORY nuclei phase matrid (€;R,rg), however, is absolute in that

) ) ) it contains the variation witlR ande due to the free-electron
In the continuum Born-Oppenheimer approximati@8],  phase matrix. Relatiof2) indicates that, for a free electron,
where the vibrational and rotational kinetic energy operatorghe R matrix is diagonal with elements proportional to the

are neglectgd i.n equat?ons fo'r the scr_:tttering function, thg,erse logarithmic derivative of Ricatti-Bessel functions
coupled radial integrodifferential equations for an electronip, argument’

scattered by a diatomic molecule, written in the usual body-

fixed reference frame with the axis coincident with the e i (Kol'o)
internuclear axis, arfl] R, (&rg)=——"-6,,. 4
i,/7(Kplo)
2 AV
d__ /(‘/_+1)+k2 u, , (r:R) As a consequence of definitigi), the free-electron phase
dr? r2 b=/ ot matrix is a diagonal matrix whose elements are proportional
to the inverse tangent of the inverse logarithmic derivative of
:22 [V/y/,(r;R)+f//,/,(r;R)]u/,/o(r;R), 1) Ricatti-Bessel functions with argumert
/! _
FE (eroy=tan | yael Koro)
where the semicolon denotes the parametric statlg tie P, (ero)=tan \/Zj/,(kbro) s ®

value of which is fixed in this approximation. The subscript
/o denotes the entrance channel, &jt2= e is the energy To facilitate resonance analysis ferH, scattering, it is

of the projectile in the body framén Hartree units The  useful to subtract the contribution of the free-electron phase
quantum number” corresponds to the electronic angular matrix from the fixed-nuclei phase matrix. This subtraction
momentum of the scattering electron, akhdo its projection  defines thenodifiedphase matriXdenoted by the tilde

along the internuclear axis. The coupling potential matrix

elements areV, ,.(r;R) for the static plus (local) D(e;R,ro)=D(&R,1o)— P E(e;ry). (6)
correlation-polarization potential an&/,/,(r;R) for the _ ) o _
nonlocal exchange operator. We suppress the dependence\¢fre theR matrix radiusr, extended to infinity, the modi-

all matrix elements, radial functions, and scattering quantified fixed-nuclei phase matrig (€;R,ry) would correspond
ties onA and on the parity of the system, it being understoodto the usual eigenphase matrix obtained from the asymptotic
that all fixed-nuclei quantities are referred to particular val-reactance matriX. For finite ry, however, the modified

ues of these quantum numbers. phase matrix incorporates the effects of electron-molecule
The fixed-nucleiR matrix for a particular electron- interactions in the inner region only.

molecule symmetry, internuclear separatiyrand electronic Fixed-nuclei resonances correspond to local maxima of

continuum energy, is defined by[24,25 the energy derivative of the eigenphase 4@8,29. By ap-

plying resonance analysis to the modified phase ma@jix
d which corresponds to thie matrix radiusr,, we can define
U/,/o(ro?R):z R/ /(&Rro) au/,’/o(r;R)} - the energy and width of a “precursor resonance” at each
‘ "=To internuclear separatiofl7]. Each fixed-nuclei precursor
2) resonance can be associated with a physical scattering reso-
nance(if one exist3 when theR-matrix radiusr is extended
to infinity. Applying a single-pole Breit-Wigner resonance
analysis to the modified fixed-nuclei phase matrix

The sum over/’ includes values consistent with the
electron-molecule symmetry under consideratieny., for
the X, symmetry,/'=1,3,...). In theEMAP method -~ .
fixed-nuclei matrices become operators in the nuclear coof?(€;R.lo) at €edR,ro), we can determine the resonant
dinates[18]. Matrix elements of these operators are thenchannel eigenvectoy(R,ro) and width y(R,ro) from the
evaluated between vibrational wave functions. In order tcigenvalue equatiof80]

avoid integrating over poles, the fixed-nuckRimatrix is re- d 5

placed by thedimensionlesdixed-nuclei phase matrix de- —D(eR I).- YR =—=—y(Rro). (7)
fined by the matrix relation de e ¥(Rro)
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This precursor resonance analysis can be used to decom-

pose the phase matrik(e;R,r) into a rapidly varying part,
the foreground phase matrik(e;R,r,), and a slowly vary-
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Ry (E)=k; Y ®) (E)+®; ,(E)

+®FYE) s, , 1k, . (15)

ing background part. The foreground phase matrix then as-

sumes the form

Y(R.ro)

AewdRrg—e])” RO

®)

The background phase matrix is defined by subtraction as

dL(eR,ro)=y(R,ro)tan

DO(&;R,r0)=D(&;R, 1)~ DL(&R,ry). 9)

The method presented here prescribes, for both the bac

ground and foreground phase matrices, the formal replacep

ment of the fixed-nuclei electronic energyby the operator
[21]
e=E-HY, (10

where ) is the vibrational Hamiltonian. This operator acts

on functions of the vibrational coordinates. The foregroundions (1) contain static,

vibronic phase matrix is therefore constructed using a com
plete set of eigenfunctiongs(R) obtained by solving the
eigenvalue equation

[A)+ €red R o) Ixs(R)=Esxs(R) (11)
atrg in a basis of spline-delta functiofi81]. [For clarity, we
suppress the dependence xa{R) and E; on the R-matrix
radiusry.] The (v,v') block of the vibronic foreground
phase matrix is then calculated from

P, (Eiro)=tan '3 (,ly(Riro)y"(Rro)xs)

1
X SE—E) Kl VAR (R0l 611).

12

The separation of y(R,rp) into the product
YYAR,ro) YYAR,ro) is essential for the extension of this

method to dissociative attachment, and has been discussed L

Ref. [17].

the EMAP method, according to which the matrix elements
are

O, i (E)=($,|B) (&R IQ ). (13)
Because threshold behavior has been already introduced
the modified phase matrix6), it is appropriate here to
choose the continuum energyas the geometric med21]

ev,u’E[(E_Ev)(E_Ev’)]llz- (14)
Finally, the @,v") submatrices of the resulting vibroniR
matrix are calculated from the matrix relation

Note that, in this equation, the free-electron phase matrix,
which is independent of the internuclear separation, has been
reintroduced. The energy-dependent factdtsk(:) Y2 in
each ¢,v') submatrix result from the definition of the di-
mensionless fixed-nuclei phase matrix. It is important to note
that in this analysis the threshold behavior of the scattering
matrices arises from the free-electron phase matrix. The un-
modified R matrix, used in previous versions of the EMAP
and NADP methods, does not contain information relevant to
physical boundary conditions outside tRanatrix radiusr .
§|milarly, in the vibronicR matrix given by Eq(15), branch-

oint behavior above each vibronic channel threshold is can-
eled by these energy-dependent factors. Analytic continua-
tion into closed channels below threshold should remove the
apparent branch points.

lll. IMPLEMENTATION

The coupling potentials in the integrodifferential equa-
exchange, and correlation-
polarization terms. We calculate each component otthk
interaction potential from near-Hartree-Fock electronic
ground-state target wave functions on a grid of internuclear
separationR determined by the probability density of the
ground vibrational state. To obtain these electronic functions,
we solve the electronic Schifimger equation of the molecule
variationally [32] using a symmetry-adapted basis of con-
tracted nucleus-centered Gaussian type orbitals. This basis
includes compact polarization functions that allow for bond
formation[33] in the neutral molecule. When used to deter-
mine the polarization potential described below, this basis is
augmented by additional diffuse functions to allow for dis-
tortion of the neutral by the scattering electron. We use a
(5s2p/3s2p) basis for the neutral and a $8p/4s3p) basis

for the polarized molecule. The exponents and contraction
coefficients for these bases appear in Table | of R24].

The quadrupole moment produced by the resulting static po-
tential, averaged over the ground-state vibratioihdbrse
wave function of the target, is 0.4752(2), as compared to
the experimental valug35,36| of (0.4704= 0.034)ea(2). We
treat the exchange potential rigorously as a nonlocal operator
[37,38, using in the exchange kernel the samfimaug-
mented near-Hartree-Fock molecular orbitals as were used

gco calculate the static potentiébr details, see Ref27)).

The final component of our interaction potential accounts
for (long-rangé polarization and(short-rangg correlation
and dynamic distortion effects with a local, energy-
independent potential. This function includes adliabatic
polarization effects exactly via linear variational calculations
on the polarized and unpolarized targBefs.[34,39 detail
the calculation of these potentials ferH,). This potential
further allows for nonadiabati¢correlation effects via a
non-penetrating approximatidd0] according to which the
two-electron bound-free electrostatic interactions are set to
zero whenever the radial coordinate of the projectile is less
than that of the one-particle density function of the target.
For e-H,, this potential can be very accurately represented
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by thedipoleterm in the moment expansion of this potential 25—

[39]; hence we have adopted the form christened by Gibson -

and Morrison [34,39 the ‘“better-than-adiabatic dipole” E/ 204

(BTAD) potential. This potential is parameter free. Analytic ¢ (5 /f

forms for the equilibrium BTAD potentials foe-H, are Z 1

given in Egs.(6) and(7) of Ref. [41]. From the asymptotic & '

form of this potential at eacR we extract the polarizabilities & . 4 e

ap(R) and a,(R). The averages of these values over the = , \“\\\“2\1\::23:\‘\3\‘3‘3:{{9:”

ground vibrational state are 5.43€7and 1.45782, respec- Lo S

tively. These polarizabilities can be assessed by comparisor - = “\22311::\\{{:\:::;‘{{:{\(‘

to the experimental values (5.4268.02)a3 for the spheri- TEL A= % -
cal polarizability, as determined from measurements of the e : A %(/Kj\ = T
refractive index at 290 K42], and (1.356% 0.0023)g3 for =L S

the nonspherical polarizability, as determined in molecular-
beam resonance experimes].

We calculate the vibrational wave functions in the vibra-
tional close-couplingVCC) and adiabaticEMAP, NADP)
calculations reported here from the Morse potential

FIG. 1. The precursor eigenphase sumdédf, scattering in the
3., symmetry evaluated from fixed-nuclei phase matrices at
= lan .

of 7 to each inverse tangent of the eigenvalues results in
_ —2aX__ 5 ax adding nonintegral multiples af to the phase matrix.
V(R)=D(e 2e", (16 Outside theR-matrix region ¢>rgy), powerful computa-
tional methods facilitate solving the scattering equations out
wherex=(R—Rg)/R,. For H,, the dissociation energy at to a matching radius in the asymptotic region where the scat-
equilibrium is D,=0.181%,,, and the parameter, deter- tering matrix can be extracted. In this outer region, we ex-
mined from measured spectroscopic constddd, is « plicitly allow for vibrational coupling, including vibrational
=1.4110. states in the coupled equations fox 3. Here the interaction
Fixed-nuclei R matrices are constructed at a radiys  potential is local, a combination of terms due to permanent
=10.0, for a grid of 45 electronic energies which vary multipole moments of the targgbredominantly the quadru-
from 0.005 to 10.0 eV. For §{ this R-matrix radius ensures pole interaction and terms due to polarization distortions of
that the molecular bound-state wave functions have effecthe target induced by the projectile, which in this region can
tively vanished atry, and consequently that exchange isbe considered to move adiabatically with respect to these
fully included in the inner region. For scattering in the,  distortions[45]. For low-energye-H, scattering, one need
andX ; symmetries, fixed-nuclé® matrices are calculated at include only the induced polarizability interacti¢p84]. The
internuclear separations @, 0.8, 1.08y, 1.28,, 1.4a,, vibronic R matrix [Eqg. (15)] atr,= 1008, is calculated from
1.6ay, 1.88y, 2.08y, 2.29;, 2.43,, and 2.3,. To account its counterpart at the boundary of tliRematrix regionr
for the rapid variation of the fixed-nuclei phase matrix as ausing standardr-matrix propagation method26—49. For
function of internuclear separation in tkg, symmetry, ad- large enough radial values%r,>rg), these adiabatic po-
ditional fixed nuclei R matrices are included for internuclearlarization potentials reduce to their analytic multipolar forms
separations 0&a;, 0.9,,1.1a,, 1.3y, 1.585,1.78;, 1.9, [39]. In this outermost region, beyond, the coupled scat-
2.1ay, and 2.3, . tering equations can be solved by asymptotic expansions,
At each value of the fixed-nuclei electronic energy and ofwhich are evaluated analytically by converting ttdiver-
the internuclear separation, the fixed-nu@anatrices, mul- gen) asymptotic series to continued fractioi—52.
tiplied by an appropriate energy factor as in E8), are To complete the description of the scattering matrix, we
diagonalized, and fixed-nuclei phase matrices are constructeequire elements for symmetries other than the lowest three
from the inverse tangents of the eigenvalues using the corré2 4, %, andIl,), and for partial waves within these three
sponding eigenvectors. Multiples ef are added to the re- symmetries of order higher than are required to converge the
sulting eigenvalues in order to ensure a smooth variatiofixed-nucleiR matrix atry. (In the present fixed-nuclei cal-
with both energy and internuclear separation. If the fixed-culations forr<r, we include four partial waves per sym-
nuclei R matrices have degenerate eigenvalues at particulanetry) We calculate these additionglmatrix elements us-
values of electronic energy and internuclear separation, theing the first Born approximation which, because of the
additional multiples ofr are added over the whole energy centrifugal barrier term in the effective Hamiltonian for the
range and for all internuclear separations, in order to ensurgcattering electron, gives accurate approximations to
a smooth variation of the phase matrix in regions whereK-matrix elements at any scattering energy for sufficiently
R-matrix eigenvalues exhibit avoided crossings. Far fromhigh / (for further discussion, see Ref&3] and[54]).
such regions, the matrix of eigenvectors is close to a unit Figure 1 shows the variation in the, symmetry of the
matrix. In this situation, multiples ofr can be added inde- precursor eigenphase sum as a function of the fixed-nuclei
pendently to each of the eigenvalues, i.e., to the fixed-nucletlectronic energy and internuclear separatidh We em-
phase matrix. In contrast, when the eigenvalues of the fixedphasize that this quantity is not the physical eigenphase sum
nuclei R matrix exhibit avoided crossings, the correspondingone would calculate from the asymptoti¢ matrix [28];
matrix of eigenvectors deviates significantly from a unit ma-rather it is the analogous quantity calculated from the fixed-
trix. In such situations, the independent addition of multiplesnuclei phase matrix at the-matrix boundary = 10a,. This
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BO—— 7T T T ] linear functions of the energy that exhibit characteristic
C behavior near threshold due to the energy-dependent factor
- k=\2e. In Fig. Ab), we compare th&, eigenphase sum
'§ for our smallest and largest valuesRf0.58, and 2.5, to
210.0 the sum of the diagonal elements of the free-electron phase
E i matrix to the3, symmetry. This comparison indicates that
° I the variation of the precursor eigenphase sum is largely de-
2 r termined by that of the corresponding free-electron eigen-
s C phase sum. By considering the difference between these two
§ 5.0 quantities, we see that, like the asymptotic eigenphase sum,
] I the precursor eigenphase sum of Fig. 2 shows a pronounced
resonance structure near threshold for large valud? &y
contrast, for small values dR the precursor resonance is
00T Tl e superimposed on a strongly decreasing background and is
0.0 2.0 4.0 6.0 80 10.0 difficult to characterize.
Energy (eV) This point is reinforced in Fig. &), which shows the
variation of themodifiedphase matrixthe fixed-nuclei phase
16.0 (e e matrix minus the free-electron matjias a function of and
N ] R. This variation closely resembles that of the asymptotic
,\14'0 - eigenphase sums calculated from g K matrix[13]. It is
8120 | important to recall that the quantity shown in Figa@de-
s § pends on th&k-matrix radius, and as such only includes the
E100 effect of the potential in the inner regionssr. Figures 3b)
° 8.0 i and 3c), respectively, show the variation withand e of the
§ ) i background and foreground phase matrices obtained when
260 the precursor resonance analysis described in Sec. Il is ap-
g ¥ plied to the modified phase matrix. These graphs demon-
i 4.0 o strate that this analysis leads to a background phase matrix
20 which varies smoothly witlR and e, while the rapidly vary-
. ing part of the modified phase matrix is described by the
0.0 "t e foreground phase matrix. This point further illustrates the
00 20 40 60 80 100 reason for using two different methods—the EMAP and
Energy (eV) NADP approximations—to treat vibrational dynamics in the

FIG. 2. (a) Free-electron eigenphase shifts and their $satid backgroun_d gnd f(_)re_ground phase matrlges, respectively.
line) for the dominant partial waves of scattering in g symme- The variation with internuclear separation of the precursor
try, 1=1, 3, and 5(b) Fixed-nucleiS., precursor eigenphase sums at 'éSonance energy curve and the corresponding width ob-
the extreme values of internuclear separation that are relevant to tgined by the resonance analysis are shown in Figs.ahd
0—1 and 0—2 excitationsR=0.5a, andR=2.53,. Also shown 4(b). Figure 4a) shows that the precursor resonance energy

is the sum of the free-electron eigenphaggsen circles from (a)  curve differs from the potential of the target molecule for all
(solid line). internuclear separations. The corresponding width in Fig.

4(b) increases rapidly with decreasify and the resonance
o ) fades smoothly into the background and ceases to affect the
quantity is a smooth function of bothandR. For each value  iprational dynamics significantlyyet at these small values
of the internuclear separation, ¥, eigenphase sum in- of the internuclear separation the decomposition of the
creases rapidly with increasing energy. This behavior is esphase matrix continues to be well defined, even though its
pecially pronounced at large valuesRyfwhere the precursor physical effects are negligibl&lectron scattering from fis
eigenphase sum shows a rapid variation for energies frorprototypical of situations in which a fixed-nuclei resonance
threshold to around 1.0 eV. This characteristic behavior ohas a minimal influence on excitation to the first vibrational
the eigenphase sum above threshold and at internuclear sepaate. A comparison between=0 to v =1 cross sections
rations near 2&, corresponds to a true fixed-nuclei reso- from NADP and EMAP calculations in thg,, symmetry is
nance wherr, is extended into the asymptotic region. therefore particularly useful as a test of this assumption and
As the internuclear separation decreases, however, thigill be the subject of the next section.
precursor resonance structure vanishes for values of internu- Finally, we emphasize that the computational implemen-
clear separation less than a4) there the precursor eigen- tation of relation(12) requires special care due to avoided
phase sum tends to a smooth function of the energy. Terossing in the eigenvalues of the vibronic foregro&ha-
understand the behavior of this quantity better, it is useful tarix. It should be noted that this inconvenience depends on
consider its counterpart for a free electron. the system as well as on assumptions inherent in the interac-
In Fig. 2(@), we show the variation of diagonal elements tion potential. It arises in the present application because of
of the free-electron phase matrix calculated atl0a, for  the large range of energies under consideration, from 0 to
partial wave orders”=1, 3, and 5, the dominant contribu- 10.0 eV. To overcome this difficulty, irregularities in the
tions to theX,, precursor eigenphase sum. As expected fronforeground vibronic phase matrit2) are identified by com-
Eg. (5), the diagonal elements of the phase matrix are nonparison to the equivalent transformation
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FIG. 4. (a) The effective potential energy for the precursor reso-
nance(solid ling): the sum ofe,{R,rg) and the ground electronic
state potential energy of H represented by a Morse potentiling
dashed ling (b). Variation of the precursor resonance width func-
tion y(R,ro) with internuclear separation. Both quantities were cal-
culated at theR-matrix radiusr o= 10a,.
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{xs(R)} in Eqg.(8), and by choosing as the continuum energy

o= 5%% the arithmetic mean of the eigenvalues of the operagg
"‘E&}*TA*»;& e —e. Despite this approximation, Eq17) allows a direct
©) R S construction of the vibronic phase matrix without the need to
<> -2 - = T

diagonalize the correspondirlg matrix. Where valid, this

alternative procedure thus allows a construction of the vi-
FIG. 3. (8) Modified precursor eigenphase sums ésH, scat-  Pronic foreground phase matrix even if the vibronic resonant

tering in theS,, symmetry, evaluated from fixed-nuclei phase ma- R-matrix eigenvalues manifest avoided crossings.

trices atry=10a, by subtracting the free-electron phase matrix

from the fixed-nuclei precursor eigenphase matrix. This phase ma- IV. RESULTS
trix is decomposed int¢) background andc) foreground parts, as
described in the text. In this section we investigate the validity of the phase

matrix decomposition(9) and of the NADP method via a
- systematic comparison of NADP integral and differential
@i'v,(E) = 2 tan (¢, |y(R,ro)| xs) cross sections against results from its fully adiabatic counter-
s.s' part, the EMAP method, and from fully nonadiabatic VCC

(Riro) calculations. We consider excitations to the=1 and 2
X { x4l LASAY Ixs) states. The thresholds for these states are 0.5156 and
(Esc—E)+(Egy—E) 1.001127 eV, respectively@4].
X(xs' |y (Rro)by,1). 17

A. Integral cross sections

When found, irregular elements of the phase matrix are re- Partial integral cross sections in the dominaft, sym-
placed by values from this relation. Equatic) is obtained = metries §4, 2, andll,) and their sum, as calculated using
by twice introducing the complete set of eigenfunctionsthe NADP, EMAP, and VCC methods are shown in Fig. 5
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FIG. 5. Partial integral cross sections in g2, (b) %, and(c) I1, symmetries for the 8- 1 vibrational excitation of Hand(d) their
sum. Results for the EMARshort dashed lineand NADP (long dashed lineapproximations are compared with benchmark VCC results
(solid line).

forv=1 and in Fig. 6 forv =2. These data are presented at The EMAP approximation does not account rigorously
selected energies in Table I; a full list is available from thefor the loss of kinetic energy of the continuum electron dur-
authors upon request. Comparison between the NADP anidg excitation; this energy loss is properly included in adia-
EMAP cross sections in Figs. 5 and 6 validates the decombatic theories that use off-shell fixed-nuclei scattering matri-
position of the fixed-nuclei phase matrix into foreground andces, such as the first-order nondegenerate adiabatic
background parts even for small values of the internuclea@pproximation[9,10. However, the EMAP method im-
separation, where no physical resonance appears in thi@oves on the conventional adiabatic-nuclei approximation
(asymptoti¢ fixed-nuclei eigenphase sum. Furthermore,by calculating elements of the vibronic phase matrix at en-
comparison to the VCC results shows that both the EMAFergies appropriate to each vibrational channel. In the present
and NADP methods provide a reliable descriptionesfi, ~ implementation, the geometric me@) of the eigenvalues
partial cross sections even in the acutely sensitive energyf the operatore are used, so precise agreement of the
regime near threshold. Cross sections in this energy regioBEMAP and VCC results is not expected. It should be noted,
are especially sensitive to conservation of energy in the colhowever, that here, as in applications of the EMAP method
lision; violation of this requirement is the reason for the fail- directly to the asymptoti& matrix [13], this procedure does
ure near threshold of the usual adiabatic-nuclear-vibratioprovide a reliable description of the inelastic cross section
approximation 2,55,56. without imposing the computational burden of off-shell
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FIG. 6. Same as 5 for the-02 excitation.

fixed-nuclei scattering calculations. For both excitations,nuclear separations influences the»@ cross section more
VCC, NADP, and EMAP cross sections tend to the samehan the 6-1 cross section—hence the need to account for
values for scattering energies large enough that the loss efonadiabatic effects to describe the former process accu-
kinetic energy of the continuum electron is negligible com-rately.
pared to the scattering energy, i.e., above about 7.0 eV. Although the maximum value of the-82 NADP cross
For the 0—1 cross section in Fig. 5, comparison of VCC section appears in good agreement with its VCC counterpart,
and NADP results confirms the ability of the NADP to in- a mild dip is evident in the NADP result at energies between
corporate nonadiabatic effects for this excitation. The com2.0 and 3.0 eV. Within the limits of the interaction potential
parison between EMAP and VCC results for this excitationused to calculate the fixed-nuclRimatrices, which is based
shows that nonadiabatic effects exert minimal influence oron a Hartree-Fock representation of the electronic ground
this cross section at energies near the enhancement at 3.0 &fate wave function, the NADP method appears to overesti-
More interesting is the corresponding comparison of themate the influence of the nonadiabatic effects slightly in this
0—2 cross sections in Fig. 6. For this excitation larger dif-energy region.
ferences are evident between NADP, EMAP, and VCC re- The accuracy of these results is limited by the discrete set
sults, especially in the magnitude and position of the maxiof internuclear separations used in the calculations. For
mum in theX, and total cross sections. These differencesNADP and VCC calculations, the largest values of internu-
clearly indicate that the fixed-nuclei resonance at large interelear separation are 2% and 2.6, respectively. Further-
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TABLE |. Partial integral cross sectior{i aé) and their sum B. Differential cross sections

the total 01 cross sectionfor e-H, scattering at selected ener- . . . ,
(. . n o T2 o g . . Because differential cross sectiofi¥CS’s) are more sen-
gies from the following theories: vibrational close couplifWCC:

top line for each energythe nonadiabatic phase mat¥ADP) sitive to the scattering dynamics than integral cross sections,

method(second ling and the energy-modified adiabatic phase ma-they more clearly reveal the strengths and weaknesses of the
trix (EMAP) approximation(third line). The NADP method is re- approximations inherent in the NADP and EMAP methods.

quired only for theS,, symmetry; the “NADP total cross sections” Figures 7 and 8 show DCS'’s at selected energies for the 0
in the last column therefore include EMAP contributions from the —1 and 0—2 excitations. The most significant differences

34 andIl, symmetries. in the 0—1 DCS'’s of Fig. 7 appear at 0.8 eV, an energy near
the threshold of this excitation at 0.516 eV. Figur&@)7
E Method 2 2, 11, total shows that at 0.8 eV nonadiabatic effects are somewhat more
0.60 VvCC 0.0126 0.0211 0.0013 0.0349 Important for scattering angle=90° than at smaller
NADP _ 0.0316 _ 0.0405 aqgles. Throug_hout the angular range, the NADP method
EMAP 00081 0.0149 00008 00238 Slightly overestimate the DCS’s, while the EMAP method
0.80 Viole 0.0222 0.1331 0.0063 0.1616 underestimates them, most noticeably#sr90 °. These dif-
NADP _ 0.1522 _ 0.1754 ferences are washed out by integration over scattering angle
EMAP 0.0187 0.1124 0.0045 0.1356 @n the integral cross s_ectio_ns shown in Fig. 5. As ;ht_a energy
1.20 Volo 0.0327 05449 00181 05957 Increases and nonadiabatic effects become negligible, both
NADP . 0.5578 _ 0.6033 methods reproduce the VCC cross sections well. Note that
EMAP 0.0316 0.5152 0.0138 05607 this statement ho_Ids even at 3.0 G_JV, the peak of the broad,
1.40 VCC 00361 08241 00239 0.8841 Weakresonance in this cross section.
More pronounced differences are evident at the lowest
NADP — 0.8451 — 0.8996 A , .
energy in Fig. 8, the 8:2 DCS'’s at 1.6 eV. Both approxi-
EMAP 0.0359 0.7960 0.0186 0.8505 . . . .
mations underestimate these cross sections, with the NADP
1.60 VCC 0.0387 1.1187 0.0292 1.1866 .
result closer to the VCC values at all angles. At a slightly
NADP — 1.1500 — 1.2120 . - . .
EMAP 0.0391 10860 00232 1.1480 higher energy, 2.0 eV in Fig.(B), the NADP approximation
' . : . proves excellent while the EMAP approximation still gives a
2.00 vee 0.0425 1.5974 0.0382 16781 ragult below the VCC cross section. By 3.0 eV, in Fi¢c)8
NADP - 1.6000 - 16750 4| three methods give identical DCS’s. But the level of
EMAP 0.0438 1.5420  0.0314 1.6170 agreement at this energy is slightly misleading. As Figl) 8
3.00 vee 0.0471  1.8415  0.0502  1.9388 ghows, the EMAP and NADP cross sections move slightly
NADP — 1.8740 — 1.9660  above the VCC result except near theWave maximum at
EMAP 0.0495 1.8520 0.0429 1.9440 90 °' where all three agree.
4.00 vCC 0.0486  1.5967  0.0505  1.6957 With still further increases in energgnot shown, the
NADP — 1.5980 — 16930  EMAP and NADP G-2 DCS’s rapidly come into agreement
EMAP 0.0514 15950  0.0439  1.6900 with the VCC results, as happens in Fig. 7 for-@ DCS'’s
5.00 VCC 0.0488 1.2505 0.0449 1.3442 at and above 1.6 eV. For both excitations, this concurrence
NADP — 1.2530 — 0.1344  simply reflects the relative unimportance of nonadiabatic ef-
EMAP 0.0518 1.2550  0.0393 1.3460 fects for these excitations at energies above a few eV, and
7.00 VCC 0.0477 0.7464 0.0301 0.8242 the increasing validity of the approximate treatment of en-
NADP — 0.7532 — 0.8304 ergy conservation inherent in the NADP and EMAP meth-
EMAP 0.0506 0.7541 0.0266  0.8313 0ds. This concurrence is not surprising in light of the analo-
8.00 VCC 0.0469 0.5885 0.0238 0.6592 gous phenomenon in DCS’s from conventional adiabatic-
NADP _ 0.5940 _ 0.6648  huclear-vibrational calculations at energies well above

EMAP 00497 05946 00211  0.6654 threshold56]. _
At all energies, 6-2 DCS’'s show the influence of

p-wave %, scattering in their shapes, which are essentially

more, the NADP and EMAP methods are based on matrixsymmetrlc about 90°, although minor contributions from

lati d. for the i . lculati f other partial waves are evident below 3.0 eV. By contrast,
relations and, for e, syr,nme fy, require a caicuialion ot o 1 pcs's in Fig. 7 exhibit more substantial partial-
vibrational submatricesu(v') of the phase matrix for vibra-

i . ave mixing at all energies. Even at 3.0 eV, the energy of
tional quantum numbers larger than that of the final state o he maximum in the 6-1 integral cross section, the DCS's

the excitation of interest. Thus, for the-02 cross sections reveal that the scattering is not purglywave, indicating

in Figs. 6, vibronic phase matrices were constructed usingyinimal influence of the larg& fixed-nuclei resonance on
blocks forv andv’ from 0 to 3. This may introduce a slight this cross section, and suggesting that it may be inappropri-
error, because, fag-H, scattering, the =3 vibrational state gte to think of it as “resonant scattering.”

is appreciable aR=2.5a,. The errors due to renormaliza-  Becausep,(R), the final-state vibrational wave function
tion of the vibrational wave function on the interval of inter- for the 0—2 excitation, is appreciable at larger valuesRof
nuclear separations considered here, and to neglect of hightitan is ¢,(R), the DCS'’s for the 0-2 excitation are more
values ofR where the fixed-nuclei resonance is even morenfluenced by thg-wave shape resonance in the fixed-nuclei
pronounced, are difficult to assess. 3. S matrix for largeR than are those for the-81 excita-
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FIG. 7. Differential cross sections for the-01 vibrational excitation of H at (a) 0.8, (b) 1.6, (c) 2.0, and(d) 3.0 eV. Results for the
NADP (long-dashed lineand EMAP (short-dashed lineapproximations are compared with benchmark VCC regstifid line).

tion. Consequently, the shape of the-@ DCS’'s more lustrate this effect, we conclude with Fig. 9, which shows
clearly manifest the symmetric shape of-avave resonance integral cross sections for the-03 excitation in H. The
(especially near 3.0 eMhan do the 6-1 DCS. This obser- NADP cross sections show clear evidence of the character-
vation is consistent with the increased importance of nonaistic near-resonant structures found when nonadiabatic phys-
diabatic effects in this excitation evident in Fig. 6. ics is importan{15,14. This structure is wholly absent from

Such effects become significantly more important as théghe EMAP cross sections, further verifying their origin in
final-state vibrational quantum number increak@s To il- nonadiabaticity.



PRA 59

0.006 |

0.005

Differential Cross Section (a,?sr)

INCLUSION OF NONADIABIATIC EFFECTS N.. ..

0.004 [

0.003 |

0.030 [

0.025 |

Differential Cross Section (a,/sr)
o
2
[3)]

0.020 |

0.002 | S | 0.010
N . , ’ i
0.001 | j 0.005 |
e | L | L L | | 1 1
0 0.000
40 80 120 160
Scattering Angle (deg)
0.020 T T T t L 0.030 |
(b) E=2.0eV -2 i

e
o
-l
T

Differential Cross Section (a;%sr)

0.005 |

0.000

0.010 |

80

120

0.025

0.020

0.015

Differential Cross Section (a,/sr)

0.005

0.000

0.010 |

120

487

Scattering Angle (deg) Scattering Angle (deg)

FIG. 8. Differential cross sections for the-02 vibrational excitation of K at (a) 1.6, (b) 2.0, (c) 3.0, and(d) 3.4 eV. Results for the
NADP (long-dashed lineand EMAP (short-dashed lineapproximations are compared with benchmark VCC regstifid line).

V. CONCLUSIONS pose of the present paper is to calibrate a modified version of
the method which systematically includes nonadiabatic ef-
The NADP method has previously proven its mettle infects for systems in which the range of relevant valueR of
calculations on resonarg-N, scattering[18], where the encompasses quite different scattering mechanisms—here

fixed-nuclei eigenphase sum exhibits an unambiguous shapanging from nonresonant scattering at snilflo resonant

resonance at all relevant internuclear separations. The puseattering at larg®. The key equations of the present modi-
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of the ground-state electronic energy of End the fixed-

0030 T T
,' ‘\ ; 0—>3 ] nuclei precursor resonance energy, is the potential curve of
— Py %, Fig. 4, the key computational device of the NADP method.
0.025 P YN ] The expansion basisys(R)} corresponding to this potential
) 1 therefore represents the effective response of the nucddi to
|

i \
] the electrons, bound and continuum, in the syst6i.
\ ] Two limitations of the NADP method should be kept in
\ ] mind. First, although the method exploits Bimatrix for-
: \ : malism to connect to formally exact VCC theory outside the
0.015 I i N, ] R-matrix boundaryr,, it invokes simplifying approxima-
' AN ] tions insider,. Whereas the VCC method is limited by a
i S 1 necessarily incomplete vibrational bagighich omits the vi-
i - ] brational continuury) the NADP method replaces functions
| o of operators by simplified algebraic forms that neglect cer-
0.005 - : ~] tain commutators |_nvo_lv!ng the rovibrational kmeuc-em_argy
1 operator. Thus it is difficult to assess the formal residual
/ ] errors in a NADP result except by the type of detailed nu-
0.000 — A merical comparisons presented here. Second, the procedure
1 2 3 4 5 6 7 8 for evaluating off-diagonal matrix elements in the EMAP
Energy (eV) method, which we use for the background phase matrix, is
rather arbitrary, and the resulting formulas may not be ap-

FIG. 9. Partial cross section in ti¥&, symmetry for the 6-3 - .
excitation of H, as calculated in the NADBsolid curvé and EMAP propriate for scattering near threshpld, \(vhere ang-range po-
(dashed curyeapproximations. tentials play an important role. This point requires separate

study in particular cases, as has been done for rotational

) - ' effects in dipolar scatteringl8].
fied NADP method are the redefinitigh. (3)] of the fixed- e The thrust of the comparisons of NADP and VCC integral
nd differential cross sections for the-QL and 0—2 exci-

nuclei phase matrix as dimensionless, and the removal of tha
tations in Sec. IV are, first, to validate the method by dem-

free-electron phase matris) prior to the precursor reso-
naq_(;]ee ?(r;alysstf Oi;t?ﬁefﬁiggufggrﬁgisrg gat(:‘ﬁ;x re IacementonStrating concurrence with fully nonadiabatic VCC results,

y step placer and, second, to probe the breakdown of these approximations
elsewhere. Introducing the fully adiabatic EMAP results to

of the fixed-nuclei electronic energy by the operatore
=E-H® in the fixed-nuclei foreground phase matrix this picture reveals, especially in DCS comparisons, the na-

®(e;R,rp). This replacement introduces nonadiabatic ef-ture and importance of nonadiabatic effects for low-lying
fects into a procedure that, throughout the inner region vibrational excitations of K. These effects, of course, be-
<ry, is based solely on fixed-nuclei quantities; it thereforecome far more important for excitation to higher-lying states
allows a transfer of energy between the kinetic energy of thand for dissociative attachment. It is in the study of such
vibrational motion and the continuum energy of the projec-processes, the next stage of this research, that the NADP
tile. In e-H, scattering, such an energy transfer is vital tomethod as formulated and calibrated here will be most valu-
able.
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high-lying vibrational excitationsu;=0—v=3) and to dis-

sociative attachment.
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