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Atom-atom correlations induced by resonant coupling with a laser field

Yves Gontier
Commissariat a` l’Energie Atomique, Service de Photons et des Mole´cules, Centre d’Etudes de Saclay,

91191 Gif-sur-Yvette Cedex, France
~Received 24 September 1998!

The correlations arising between identical atoms resonantly coupled with the same radiation field are studied
within a fully quantized theory. The atoms do not interact with each other and may be widely separated. We
study how a modulation of the atom-field parameter of any one atom is transmitted to the others. This exchange
of informations between remote systems was predicted in a previous account in the case of two atoms~signal
transmission by optical correlations!. In this paper, the theory is generalized to more than two atoms in order
to model the effect of onlooker atoms. Outlines of experiments enabling investigation of the observability of
these correlations and the applications that can be made are presented.@S1050-2947~99!05106-9#
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I. INTRODUCTION

The situation which is the topic of interest of this work
that of identical two-level atoms not interacting with ea
other but resonantly coupled with an external radiation fi
~laser!. It has been shown@1,2# that a pair of two such atom
coupled with the field via single-photon resonances are
related. The conditions under which these correlations oc
are satisfied by atoms confined within interaction volum
whose size is much smaller than the wavelength of the
diation. We have called the regions, occupied by ident
atoms, where the field parameters~phase, polarization, wave
length! can be considered as constantreciprocal areas.

In order to generalize what holds inside a single recip
cal area, we note that many identical atom-field syste
along the laser beam exist. These hot points are sepa
from each other by integer multiples of the wavelength a
are themselves correlation centers. Such a cloning of re
rocal areas is made possible because the properties o
laser field show a spatial periodicity. Therefore, owing to
indistinguishability of the atom-field systems inside remo
reciprocal areas, the events occurring in each of them
influenced by similar events occurring inside the other on
in the same way as they are within the same area. Then
modulation of one or several atom-field parameters~inten-
sity, polarization, energy of atomic levels, etc.! in any recip-
rocal area changes the strength of the correlation with
other ones and can be detected. This mechanism, which
ables remote experimental devices to exchange informa
has been namedsignal transmission by optical correlation
~STOC!.

The aim of the present work is~i! to revisit the problem of
resonant single-photon emission from a system of two id
tical two-level atoms initially in the upper state,~ii ! to gen-
eralize the calculation to the case of three atoms, and~iii ! to
propose the principles of experiments proving the existe
of such correlations and displaying an application which c
be made.

The problem is to calculate the probabilities of reson
single-photon emission by the atoms lying inside a recipro
area. By comparing the values of these probabilities,
deduces the presence and the strength of the correlations
PRA 591050-2947/99/59~6!/4747~9!/$15.00
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example, in the case of two atoms, we assume that ato
emits the photon while atom 2 is an onlooker and we cal
late the probability for this event. Then, without changing t
atom-field parameters, we calculate the emission probab
for atom 2. One verifies that, as expected, the sum of
probabilities is unity, which implies that if the value of on
of them varies, the other is altered correlatively. In oth
words, the atoms share the emission probability which
unity for an external observer whose sees the two ato
while two local observers, who ignore the presence of e
other, will measure the probability rate~<1! corresponding
to the atom they look after. In the case of strictly identic
atom-field systems, the correlation is shown to be maxim
and the probability is shared at equal rates. Since the at
are correlated via photon emission this correlation manife
itself in the entanglement of the photons emitted by the
oms. Therefore, one can speak of atom or photon corr
tions interchangeably.

To study the correlation occurring between two photo
emitted at different places~remote reciprocal areas! we resort
to an experimental device, a part of which is used to test
nonlocality of quantum mechanics via fourth-order interfe
ometry@3,4#. In such an experiment, two strongly correlat
photons are launched on two interferometers~Mach-Zehnder
or Michelson! which, in contrast to usual second-order inte
ferences, provide high coincidences rates for path-length
ferences much larger than the coherence length of the p
tons. Conversely, in the case where large coincidence r
are observed for path-length differences much greater t
the coherence length of the radiation, one deduces that
photons impinging on the detectors are correlated. The
perimental arrangement becomes an efficient apparatus
the measurement of correlations of unknown photons.

The emission processes taking place in the reciproca
eas are correlated because the exchanges of photons be
the atoms and the field are not located and infinite in numb
Thus the entanglement of photon states involving two rem
reciprocal areas can be efficiently tested with the above
perimental device. The photons are supplied by sub-be
deflected at right angles of a laser beam interacting wit
two-level atomic vapor.

An interesting application of STOC is to provide an alte
4747 ©1999 The American Physical Society
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4748 PRA 59YVES GONTIER
nate way for quantum cryptography. The interest in us
quantum cryptography to exchange information is that a
eavesdropper who tries to break the secret of the cipher
turbs the signal in such a way that the sender and the rece
easily detect the presence of the eavesdropper. To mode
consequences of an eavesdropper in STOC, one introd
additional atoms and calculates the resulting distortions
the two-atom results. To this end, some results of the ca
lations involving a third atom are reported.

II. THEORY

A. Spin-1
2 formalism

In what follows, the interaction between thejth atom and
the field proceeds via the exchange of a photon labelek.
The indexk accounts for all the features of the field in
well-defined region of space. It enables one to compare
values of the field at different places of the beam. The
gions of space for whichk5k8 are indistinguishable and th
events occurring at these places are space independent.
two-level atoms are involved, the Hamiltonian of the ato
plus-field system may be expressed within the spin-1

2 formal-
ism. The correlations are related to the commutation re
tions of the field operators expressed in terms of spin-
operators.

In order to take into account all the contributions to t
correlations, we do not use the rotating wave approximat

The Hamiltonian for ann-atom system is~in atomic units!

H5(
j 51

n

v0 jS3
j 1(

j ,k
~ak

j S2
j 1ak

j* S1
j !~ak2ak

†!

1(
k

vkak
†ak , ~2.1!

whereS35s3/2, s3 being the Pauli matrix, andS6
j are the

spin-flip operators@5# obeying the following commutation
relations:

@S6
j ,S7

j 8#2562S3
j d j j 8 ~2.2!

and

@S3
j ,S6

j 8#256S6
j d j j 8 , ~2.3!

where, as Dicke did@6#, the operatorsS3 andS6 are labeled
by the indexj.

In Eq. ~2.1!, the coefficienta j
k is expressed in terms of th

photon frequency vk , the single-photon flux F8/F0
(F85flux/photon number,F053.2231034 cm22 s21), and
the dipole matrix element corresponding to thejth atom as

ak
j 5 i S F8

F0
D 1/2

vk
1/2

j^6urW j•«W ku7& j , ~2.4!

where«W k is the photon polarization while the upper and t
lower states of thejth atom are denoted byu1& j and u2& j ,
respectively.

The Hamiltonian of Eq.~2.1! can be rewritten in the fol-
lowing form:
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H5H0
A1HF1(

j 51

n

(
k

~Vj ,k
1 1Vj ,k

2 !, ~2.5!

where

H0
A5(

j 51

n

v0 jS3
j , ~2.6!

HF5(
k

vkak
†ak , ~2.7!

and

Vj ,k
2 5~Vj ,k

1 !* 5~ak
j S2

j 1ak
j* S1

j !ak ~ j 51•••n!,
~2.8!

where for more generality, the energy level separationsv0 j
are assumed to be different.

From Eqs.~2.2! and ~2.3! one obtains the commutatio
relations for the operatorsV6,

@Vj ,k
6 ,Vj ,k

6 #250 ~2.9!

and

@Vj ,k
6 ,Vj ,k8

7
#256$~ak

j* ak8
j 8S1

j S2
j 81ak

j ak8
j 8S2

j S2
j 8!

1c.c.%dk,k8 . ~2.10!

Equation~2.10! is the condition for correlations to stand b
tween identical atoms labeled byj indices. It shows interest
ing features which are corroborated by numerical calcu
tions, ~i! the occurrence of correlations does not depend
the intensity~absence of field operator! and ~ii ! the commu-
tator does not vanish forj Þ j 8, which indicates that
absorption-emission processes may involve two identical
mote atoms~we note that in contrast to the field operato
the j’s designate the atoms, not their states!.

B. Nonperturbative model

The effect we are concerned with involves the reson
coupling of two and three atoms with a radiation field. O
knows that lowest-order perturbation theory fails when
magnitude of the~intensity-dependent! interaction energy
becomes comparable to that of an eigenenergy of the un
turbed system, or when the energy difference between
two atomic levels vanishes~resonances!. In this case, the
perturbative series representing the solution to the prob
under consideration diverges and the lowest-order term
unable to predict the behavior of the system. The releva
of the theory may be restored by making exact resummat
of the perturbation series in order to increase their radius
convergence.

Here, we are faced with the complicated problem of ha
dling four ~two atoms! and six~three atoms! noncommuting
absorption and emission operators. The problem has b
exactly solved in the case of two and four operators. F
more than two atoms, the number of contributions~dia-
grams! rapidly increases and the solution to the problem c
only be found by isolating a hard core of contributions whi
account for the effect of additional atoms.



be
hi

el

It
e

on

d

o

in
nc
nd
d
th

ce
e
ph
ir

s

nt
a-

is

-

en-
e,

p-
s ap-
ion

e
n is
xi-
of

n.

-
net

it a
se

but
rk.
ed
cal

ber

PRA 59 4749ATOM-ATOM CORRELATIONS INDUCED BY RESONANT . . .
In theS-matrix theory, the behavior of any system can
predicted once the time evolution operator is known. T
operator can be calculated from the resolvent operatorG(z)
by means of the inversion integral

U~ t !5
1

2p i R e2 iztG~z!dz, ~2.11!

where

G~z!5
1

z2H
. ~2.12!

The resolvent theory is well known and has been wid
utilized for many purposes@7#. In particular, it provides a
powerful tool within the formalism of the dressed atom.
enables the resummation of diagrams within a tim
independent theoretical scheme. For the sake of brevity,
the salient results are recalled below.

According to Eqs.~2.5! and~2.12!, G(z) can be expresse
as

G~z!5G0~z!1G0~z!HIG~z!, ~2.13!

where

HI5(
j 51

n

~Vj
11Vj

2!, ~2.14!

and

G0~z!5
1

z2~H0
AT1HF!

. ~2.15!

In Eq. ~2.14!, the subscriptk referring to the field state is
dropped because it is assumed that the field is the same
erywhere. The solution of Eq.~2.13! is obtained by iteration
techniques providing infinite series of increasing powers
the interactionHI .

The problem under consideration consists of calculat
the resonant emission probability for atom 1 in the prese
of atoms 2,3, . . .n ~which also can resonantly absorb a
emit photons of the field!. Initially, all the atoms are assume
to be in their upper states. The initial and final states of
system are ua1 ,a2 , . . . ,an ;nk& and ub1 ,a2 , . . . ,an ;nk
11&, respectively, i.e., atom 1 emits a photon by making
transition from the upper statea1 toward the lower stateb1 ,
by the time atoms 2,3, . . . ,n remain in their initial states
labeleda2 ,a3 , . . . ,an while nk , the number of photons in
the modek is increased by one unit. Notice that the influen
of atoms 2, 3, etc. on atom 1 is independent of the choic
the states. It can be shown that the entanglement of the
ton states still holds if atoms 2, 3, etc. are initially in the
lower states.

In the general case ofn atoms, the matrix element one ha
to calculate is

~nk11!Gb1 ,a2 , . . . ,an ;a1a2 , . . . ,an
~z!

5^b1a2 , . . . ,an ;nk11u ~nk11!G~z!ua1a2 , . . . ,an ;nk&,

~2.16!
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where (nk11)G(z) is the operator describing the resona
emission of a photon by atom 1. As a result of the resumm
tion, this operator can be expressed as

~nk11!G~z!5G~z!BG1~z!, ~2.17!

where

G~z!5
1

12r1~z!2r2~z!
, ~2.18!

G6~z!5
1

12r6~z!
, ~2.19!

and

r1~z!5(
j 51

n

BjG
1~z!Aj , ~2.20!

r2~z!5(
j 51

n

AjG
2~z!Bj , ~2.21!

where the subscriptk has been dropped since the field
assumed to be the same everywhere.

The absorption-emission operatorsAj ,Bj of the jth atom
appearing in Eqs.~2.17!, ~2.20!, and ~2.21! are defined by
Aj5G0Vj

2 , Bj5G0Vj
1 , respectively. To get the computa

tional formulas, we replaceG6(z) in Eqs.~2.20! and ~2.21!
by their values obtained from Eq.~2.19! by iteration and then
one substitutes the obtained expressions into Eq.~2.18!.

The operators entering into the calculation ofG(z) are
much simplified compared to those obtained from the g
eral theory@1#. In particular, to make the problem tractabl
we only retain the terms where the operatorsG6(z) are
switched between the lowest-order absorption~emission! and
emission ~absorption! operatorsA(B) and B(A), respec-
tively. Higher-order irreducible absorption and emission o
erators have been discarded. The consequences of thi
proximation can be evaluated via the total emiss
probability, which must be unity. The numerical results w
have obtained in most cases show that this last conditio
fulfilled to a high degree of accuracy. Therefore, the appro
mation which consists of discarding certain classes
higher-order diagrams does not affect the final conclusio

III. QUANTITATIVE ANALYSIS

A. Analytic formulation

Equations ~2.16!–~2.21! enable us to compute self
consistently, to all orders, the probability for the resonant
emission of a photon by atom 1 in the case wheren21 other
atoms, submitted to the same field, are also able to em
photon. The formulation of the problem is done in the ca
where atom 1 is isolated while then21 remaining ones are
grouped at a remote place in the same reciprocal area,
other situations can be studied within the same framewo
In particular, the numerical results of Sec. III C are obtain
in the case where the onlooker atom lies inside the recipro
area containing atom 1~active atom!. The computational
codes we handle are made tractable by limiting the num
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of iterations of the continued fractions to that ensuring
stability of the results. The most convenient way to form
late the problem is to put the matrix element of Eq.~2.16!
e
-
into a form characteristic of two-level problems. In doing s
the matrix element corresponding to the net emission o
photon by atom 1 is
r

of the

tains
~nk11!Gb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an
~z!5

a1

Fz2v01/22(
j 52

n

v0 j /22Ra1a1
~z!GFz2v1v01/22(

j 52

n

v0 j /22Ra2a2
~z!G2ua1u2

,

~3.1!

where it is assumed that the atoms are initially in the upper state. This formula is called thetwo-level formulabecause it has
the same form as the one encountered in the theory of two-level atoms.

In Eq. ~3.1!, the origin of energies has been changed by subtracting the quantitynkv everywhere. On the other hand, fo
each atom this origin is half the distance of the~naked! levels, i.e.,v0(1,2)5uva(1,2)2vb(1,2)u/2. The atom-field parametersa j
are given by Eq.~2.4! where the subscripts and the superscripts are replaced by a single subscript. Thea’s are related to the
intensity by the relation

I 5
14.03831016

^u«W •rWu&2
aJ

2, ~3.2!

which, in the case of the 1S-2P transition in hydrogen reduces toI 52.53310173a2, whereI is in W/cm2 anda is in a.u. The
operatorR(z) is called the effective operator or the shift operator because it provides the contributions to the shifts
levels a1 and b1 . Its matrix elements are expressed in terms of continued fractions ofa j , v, andv0 j whose number and
complexity rapidly increase. For brevity, we do not write the most general expressions of theR-matrix elements. We display
the formulas obtained in the case of three atoms and we write only the beginning of the continued fractions. One ob

Ra1a1
~z!5

ua1u2

z1v1
v01

2
2

v02

2
2

v03

2
2

ua1u2

z12v2
v01

2
2

v02

2
2

v03

2
2•••

2
ua2u2

z12v1
v01

2
1

v02

2
1

v03

2
2•••

2
ua3u2

z12v1
v01

2
2

v02

2
2

v03

2
2•••

1
ua2u2

z1v2
v01

2
1

v02

2
2

v03

2
2

ua1u2

z12v1
v01

2
1

v02

2
2

v03

2
2•••

2
ua2u2

z12v2
v01

2
2

v02

2
2

v03

2
2•••

2
ua3u2

z12v2
v01

2
1

v02

2
1

v03

2
2•••

1
ua3u2

z1v2
v01

2
2

v02

2
1

v03

2
2

ua1u2

z12v1
v01

2
2

v02

2
1

v03

2
2•••

2
ua2u2

z12v2
v01

2
1

v02

2
1

v03

2
2•••

2
ua3u2

z12v2
v01

2
2

v02

2
2

v03

2
2•••

~3.3!

and

Rb1b1
~z!5

ua1u2

z22v2
v01

2
2

v02

2
2

v03

2
2

ua1u2

z23v1
v01

2
2

v02

2
2

v03

2
2•••

2
ua2u2

z23v2
v01

2
1

v02

2
2

v03

2
2•••

2
ua3u2

z23v2
v01

2
2

v02

2
1

v03

2
2•••

1
ua2u2

z1
v01

2
1

v02

2
2

v03

2
2

ua1u2

z1v2
v01

2
1

v02

2
2

v03

2
2•••

2
ua2u2

z1v1
v01

2
2

v02

2
2

v03

2
2•••

2
ua3u2

z1v1
v01
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1
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2
1

v03

2
2•••

1
ua2u2

z22v1
v01

2
1

v02

2
2

v03

2
2

ua1u2

z23v2
v01
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1

v02

2
2

v03

2
2•••

2
ua2u2

z23v2
v01

2
1

v02

2
2

v03

2
2•••

2
ua3u2

z23v1
v01

2
1

v02

2
1

v03

2
2•••
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One must note that these matrix elements ofR(z) contain the
whole physics of the process we are concerned with. Th
the correlations come from crossed processes where on
several photon emissions or absorptions by any one ato
followed by an equivalent number of absorptions or em
sions by the other ones. More precisely, the atoms are
related via the mixing of different species of atom-fie
quantities in the continued fractions. This process seem
have no classical equivalent.

B. Diagrammatic representation

The operatorR(z) is represented in Fig. 1 by diagrams
increasing orders inspired by the many-body theory. Acco
ing to the usual rules, these diagrams are read upward.

FIG. 1. Diagrammatic representation of the shift operatorR(z)
in the case of two correlated atoms. The left- and the right-h
side vertical lines represent atoms 1 and 2, respectively. The ar
arriving at a fermion line are the photon absorptions and the arr
leaving the fermion lines are the photon emissions. The diagr
are read upward. The diagrams displayed in the first three lines
the contributions to level shifts of atoms 1 and 2. The diagram
the last line concern atom-atom correlations. They mix the eve
occurring in the two atoms. No Coulomb interaction line appe
between the fermion lines since we assume that the wave func
never overlap.
s,
or
is
-
r-

to

-
or

each diagram, the fermion line on the left-hand side rep
sents atom 1 while those on the right-hand side are assig
to atoms 2, 3, etc. The photon absorptions and emissions
represented by horizontal lines located on the left-hand s
and on the right-hand side of each fermion line, respectiv
There is no Coulomb interaction between the fermion lin
since it is assumed that the wave functions of the atoms
not overlap. Concerning the topology, we encounter to e
order diagrams containing~i! only absorption and emissio
operators of atom 1, atom 2, etc., and~ii ! mixings of absorp-
tion and emission operators coming from different atom
This last class of crossed diagrams is responsible for
correlations because they mix the events correspondin
atoms 1, 2, etc. Obviously these diagrams do not factor
Their occurrence is the consequence of the equivalenc
the atom-field systems.

C. Numerical results

To calculate the integral of Eq.~2.11! by the
technique of residues, one needs the poles
(nk11)Gb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an

(z). They are determined to
any desired accuracy by a method which consists of sea
ing the position of the divergences induced by these po
Once the value of the poles is known one calculates
residues in the usual way by isolating the regular part
(nk11)Gb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an

(z).
One finds that the residue corresponding to the pole

energyv i is

Res~v i ,t !5 ~nk11!Hb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an
~z!e2 iv i t,

~3.5!

where (nk11)Hb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an
(z) is the regular part

of (nk11)Gb1 ,a2 , . . . ,an ;a1 ,a2 , . . . ,an
(z) around the polev i .

The time-dependent probability is

P~ t !5U(
i

Res~v i ,t !U2

. ~3.6!

The expression of the probability~3.6! contains many oscil-
lating terms. Most of them oscillate at very high frequenc
while few of them exhibit low time variations. The sum o
these contributions leads to probability curves display
slowly varying functions of time modulated by high
frequency oscillations. These oscillations can be elimina
by calculating the probability per unit time or by averagin
over a large number of systems. These procedures which
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FIG. 2. Single-photon emission by two correlated two-level atoms. The solid lines and the dashed lines represent the probab
would be measured by a detector placed near atoms 1 and 2, respectively. The intensityI 1 at the place of atom 1 is kept constant and eq
to 0.045 a.u. (5.12331014 W/cm2). The corresponding intensity for atom 2 isI 2 . Curves~a!, ~b!, ~c!, and~d! are calculated for intensity
ratiosI 2 /I 1 equal to 0.4, 0.8, 1, and 1.5, respectively. Near resonance the two probabilities represented by the solid and the dashed
to unity according to the probability conservation principle.
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easily handled analytically are not appropriate to numer
analysis, especially if no rotating wave approximation
used. Since only the low-frequency energy-conserving te
have a physical sense, they provide the main support to
discussion. Accordingly, the quantity which is plotted
Figs. 2–4 as a function ofv01 is the maximum probability
that atom 1 emits a photon. Notice that the behavior of
l

s
he

e

correlations with respect to intensity and frequency does
depend on the way the probability is defined.

The field frequencyv whose value is unity in the calcu
lations is used as a scaling parameter. Three iterations o
continued fractions are enough to ensure a good stabilit
the solution. There exist a great number of poles in the
ergy plane which come from higher-order iterations. Ho
procal area
d lines
FIG. 3. Same as Fig. 2 except that the photon emission concerns three atoms. Atoms 1 and 2 are confined within the same reci
located at a place where the intensity isI 1 . The probabilities that atom 1 or 2 emits a photon are represented by solid lines. The dashe
in ~a!, ~b!, ~c!, and ~d! are the probabilities that atom 3 emits a photon at places where the intensity ratioI 2 /I 150.4, 0.8, 1, and 1.5,
respectively. As in Fig. 2, the probabilities sum to unity near resonance.
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ever, the contribution of such poles to the probability
much smaller than that provided by the three principal po
lying within the energy range@z50, z52v].

As was previously mentioned, one obtains the maxim
correlation when the atom and the field parameters are id
tical at the places of the atoms. Conversely one may alter
indistinguishability of the two atom-field systems by chan
ing either the field or the atom parameters. In what follow
we study the value of the emission probability of atom
when the intensity at the places of atom 2~two atoms! or 3
~three atoms! is varied. According to what it is usually done
the resonance curves are scanned by varying the 1S-2P en-
ergy gap of atom 1, i.e., by varyingv01.

The intensity value at the place of atom 1 is chosen to
0.045 a.u., which corresponds toI 55.12331014 W/cm2.
This intensity, which is required to get a good precision
the calculations concerning the 1S-2P transition in hydro-
gen, can be lowered by considering other transitions cha
terized by larger oscillator strengths. In this respect, mu
level atoms provide an interesting investigation field beca
there exist many possibilities for selecting transitions ch
acterized by large oscillator strengths. The introduction
nonresonant levels in the theory does not modify the beh

FIG. 4. ~a! Single-photon emission from two correlated atom
The curves correspond to the emission probability of atom 1 s
mitted to intensityI 150.045 a.u. in the presence of atom 2, whi
is affected by the intensityI 2 . From top to bottom, the six curve
correspond to intensity ratiosI 2 /I 150.2, 0.4, 0.8, 1, 1.5, 2, succes
sively. ~b! Single-photon emission from three correlated atom
Atom 2 lies in the same reciprocal area as atom 1. The curves
the same meaning as in~a! and are calculated for the same values
the intensity ratio.
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ior of the system near resonance because any multilevel a
behaves like a two-level atom. In contrast, it is expected t
the additional levels change the probability curves far fro
resonance, i.e., in regions where nonresonant transitions
not negligible.

The situation would be somewhat different in the case
multiphoton transitions. I plan to discuss this problem, wh
is out of the scope of the present work, in future.

In Figs. 2 and 3 are displayed the resonant single-pho
probabilities of a system of two and three correlated ato
respectively. In the case of two atoms, the solid line rep
sents the single-photon emission probability correspond
to atom 1 and intensityI 150.045 a.u. while the dashed lin
is the probability that the photon emission comes from at
2. In Figs. 2~a!, 2~b!, 2~c!, and 2~d! the intensity ratioI 2 /I 1
is equal to 0.4, 0.8, 1, and 1.5, respectively.I 2 is the value of
the intensity at the place of atom 2.

In the case of three atoms, the curves have the s
meaning except that it is assumed that atoms 1 and 2 be
to the same reciprocal area where the field intensity isI 1
50.045 a.u. while atom 3 lies inside another~remote! area
where the intensity isI 2 . Both areas are submitted to me
surements performed by two observers named Alice
Bob, respectively. Since it is assumed that Alice and Bob
not exchange any information with each other, the emiss
probabilities they observe~which are not independent o
each other! are to be calculated separately. In the absenc
losses, these probabilities must sum to unity because so
or later the photon will be emitted and detected by an
server looking at both experimental devices. On the ot
hand, since Alice cannot determine which atom emits
photon, one has to make symmetric the final states of at
1 and 2 in the case of three atoms. As a result of elemen
algebra, one finds a probability that is twice the emiss
probability for a single atom.

The probability predicted by our calculations for Alice
and Bob’s measurements is represented by the solid and
dashed lines, respectively. Near resonance, their sums d
from unity by factors less than 1%. These small discrep
cies come from the truncation of the continued fractions a
from the lack of certain classes of higher-order absorpti
emission contributions which have been discarded.

We note that the probabilities measured by Alice and B
sum to unity only near resonance. This is a consequenc
the assumptions which have been made. It is well known
the probability conservation requires the summation of
probabilities of all the processes occurring in a well-defin
system. In the presence of a resonance, some terms pr
over the remaining ones. They are sufficient to ensure
probability conservation to a high degree of accuracy.
contrast, far from resonance many~nonresonant! processes
become equally probable and are to be included in the s
In the present case, the discussion holds only near reson
since many processes ensuring probability conservation
from resonance are ignored.

Figures 4~a! and 4~b! display the resonant single-photo
emission probabilities for atom 1 in the case of two and th
atoms, respectively. Alice performs measurements in its
ciprocal area containing atom 1 or atom 1 and 2 accordin
whether two atoms or three atoms are involved. The inten
at Alice’s place isI 150.045 a.u. while the intensity in Bob’s
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device is I 2 . The curves displayed in Figs. 4 correspon
from top to bottom, to values of the intensity ratioI 2 /I 1
equal to 0.2, 0.4, 0.8, 1, 1.5, and 2.

We note that the perturbations suffered by Alice’s re
nance curves are important when the intensity ratio beco
equal to or greater than unity. These alterations do not v
linearly with intensity as they would in single-photon em
sion. For example, a variation of the intensity value by
factor of 10 changes the probability by factors of 4.5 and
for systems composed of two and three atoms, respectiv
This indicates that the variations of the probability com
from more complex mechanisms than mere intensity mo
lations. Such a behavior reveals the presence of atom-a
correlations which play an essential role in the effect nam
STOC @2#.

This discussion holds for more than three atoms confi
within more than two reciprocal areas.

IV. EXPERIMENTS

The first step of experimental investigations consists
proving the entanglement of photons emitted by an ensem
of two-level atoms not interacting with each other but re
nantly coupled with a radiation field. To this end, we pr
posed, in Fig. 5, the outline of an experiment, a part of wh
is widely encountered in problems dealing with nonlocal
of quantum theory@3,4#. A cell containing a vapor of two-
level atom is placed inside a laser beam. The atoms are r
nantly coupled with the laser field. Two photon beams
deflected at right angles and are sent separately at the
of two Mach-Zehnder~or Michelson! interferometers, each
of them containing a long and a short path. The difference
transit times over the two paths is the same for the two
terferometers and is much larger than the coherence tim
the photons. Under these conditions, each interferomete
unable to give rise to second-order interferences, i.e.,
signals delivered separately by the two counters are inde
dent of path-length difference between the long and the s
paths. It is not so if the rate of simultaneous arrival of ph
tons upon the detectors is measured. It has been shown@3,4#
that when the photons which are launched at the entry of
interferometers are correlated, the coincidence counting
shows a cosine variation with the path-length difference. T
fourth-order interferences which appear come from phot
having traveled via long-long and short-short paths. This
periment, involving strongly correlated photons generated
down-conversion or cascade decay, has been extensive
volved for testing nonlocality of quantum mechanics. T
difference between this experiment and the one we prop
consists of replacing correlated photons by photons wh
correlation is unknown. Since the counting rate is direc
related to the degree of correlation of the photons imping
upon the interferometers, the experimental device of Fig
becomes a correlation detector which discriminates am
the different species of photons contained in the beams. O
photons coming from reciprocal areas exhibit, as expec
large coincidence rates~maximum correlation!.

The random motion of atoms in the vapor has little infl
ence on the emission yield because the probability that
atoms lie at places where the field is the same, by the t
the emission takes place, is very large.
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The problem of collector location becomes crucial wh
few atoms are concerned. In this case, to increase the c
cidence rates one has to slow down~cooling! the atom mo-
tion and use subnanometer displacement devices to sca
hot points of the interaction volume.

Another interesting experiment to be done consists of
serting a removable screen inside a laser beam interac
with a two-level vapor, according to Fig. 6. The measu
ment of large coincidence counting rates~high fringe visibil-
ity! of photons emitted on both sides of the screen will pro
that correlations result from nonlocal interactions. As a co
sequence, the signals provided by Alice’s and Bob’s det
tors will depend on the field parameters on both sides of
screen. If one observes the photon emission taking plac
the lower part of the screen, one expects that, accordin
the probability curves previously displayed, any intens
variation of the upper~Bob’s! sub-beam will modify the
lower ~Alice’s! detector yield. This enables Bob to transm
information to Alice via atom-atom correlations~STOC!.

By examining the curves of Figs. 2~c! and 3~c!, ones sees
that the presence of an eavesdropper is easily detecte
only Alice and Bob are concerned and for identical ato
field parameters, the corresponding two-atom curves@Fig.

FIG. 5. Outline of an experiment enabling investigation of t
correlations of photons emitted by two-level atoms resonan
coupled to a laser beam. The photons are collected at right angl
the beam and are launched at the entry of an experimental de
identical to that of Ref.@4#. From the dependence of the coinc
dence counting rate with respect to the path difference in the
interferometers, one can deduce the degree of correlations of
known photons impinging upon this correlation detector.
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FIG. 6. Principle of an experiment enabling testing of the ability for a signal to be transmitted from a point to another point of
beam via atom-atom correlations. The intensity modulation at the place of reciprocal area 1 ‘‘crosses’’ the screen and influences the
rate of atom 2 in the lower part of the beam. The role of the beam attenuator is to compensate the losses coming from the mod
the
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2~c!# share at equal rates the probability of detecting
emitted photon~the two curves are superposed!. The pres-
ence of a third observer is modeled by an additional atom
this case, the curves of Fig. 3~c! show that the probabilities
measured by Alice~solid curve! and Bob~dashed curve! will
never be equal. Therefore, they know that there exists
eavesdropper without exchanging any information via a c
sical channel.

V. CONCLUDING REMARKS

The correlations between photons emitted by atoms in
acting with the same radiation field have been discus
within an all-order quantum theory. The process conside
is the single-photon emission by two-level atoms confin
inside a single area of small dimensions compared to
wavelength of the field or inside several areas separate
multiples of the wavelength. In every case, the existence
correlations comes from the indistinguishability of atom
plus-field systems which enable the photons to be indif
ently emitted by any atom. Accordingly, the theory is spa
independent and accounts for probability conservation. S
v.
n
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d

e
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e

the sum of the probabilities that each atom emits a photon
unity, each individual probability is strongly dependent o
the other ones. In particular, for remote atoms the probabil
fluctuations experienced by any one of them are felt by t
remaining ones and provide a way for transmitting inform
tion ~STOC!. This effect, which was previously studied in
two-atom systems, is also observed in the case of three
oms. From unpublished results obtained in four-atom sy
tems, it appears that the number of atoms has little influen
upon the entanglement of photon states. The sensitivity
correlations with respect to intensity could be improved wi
multiphoton transitions. As in the case of multiple atoms, th
calculation is to be done by resorting to a nonperturbati
theory, which implies making resummations of perturbatio
series of more than two noncommuting operators.

Our main concern is to prove the existence of such cor
lations via an indisputable experiment. To this end we res
to an experimental device that has given beautiful resu
concerning locality violation in quantum theory. We expe
that the question one asks about the nature of the pho
states will get an answer via the results supplied by th
fourth-order interference experiment.
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