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Quantum-state transformation by dispersive and absorbing four-port devices
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The recently derived input-output relations for radiation at a dispersive and absorbing four-port device@T.
Gruner and D.-G. Welsch, Phys. Rev. A54, 1661 ~1996!# are used to derive the unitary transformation that
relates the output quantum state to the input quantum state, including radiation and matter and without placing
frequency restrictions. It is shown that for each frequency component the transformation can be regarded as a
U~4! group transformation, which can directly be calculated from the underlying complex refractive-index
profile of the device without additional postulates. If for narrow-bandwidth radiation far from the medium
resonances the absorption matrix of the four-port device can be disregarded, the well-known U~2! group
transformation for a lossless device is recognized. Explicit formulas for the transformation of Fock states,
coherent states, and phase-space functions are given.@S1050-2947~99!03406-X#

PACS number~s!: 42.50.Ct, 42.25.Bs, 42.79.2e
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I. INTRODUCTION

Four-port devices such as beam splitters are indispens
to optical investigation, and a number of fundamental exp
ments in quantum optics necessarily require the use of th
The quantum theory of dispersionless and nonabsorb
beam splitters has been well established@1–7#. A beam split-
ter can be realized by a multislab dielectric plate, which i
dispersive and absorbing device in general. Even if the
fects of dispersion and absorption~in a chosen frequency
interval! are small, their influence on nonclassical radiati
should be considered carefully. On the other hand, in p
tice multislab dielectric configurations with strongly varyin
dispersive and absorptive properties, e.g., near optical b
gaps, have been of increasing interest, and a descriptio
their action in the quantum domain is desired.

To give a quantum theory of dispersive and absorb
four-port devices, a Kramers-Kronig consistent quantizat
scheme of the electromagnetic field in dispersive and abs
ing inhomogeneous media is required@8–12#. Recently,
quantization of the electromagnetic field within the fram
work of the phenomenological Maxwell theory~with given
complex permittivity in the frequency domain! has been per-
formed, using an expansion of the electromagnetic field
erators in terms of the Green function of the classical pr
lem and an appropriately chosen infinite set of bosonic b
fields @8,11,12#. This quantization scheme applies to any li
ear inhomogeneous, dispersive, and absorbing matter—c
for which familiar concepts of mode expansion fail—and
fully consistent with both the Kramers-Kronig relations a
the canonical~equal-time! field commutation relations in
QED @11,12#.

The formalism has been used in order to derive inp
output relations for radiation at a dispersive and absorb
~multilayer! dielectric plate described in terms of a compl
refractive-index profilen(x,v) (x, space coordinate;v, fre-
quency! and to express the~low-order! moments and corre
lations of the outgoing fields in terms of those of the inco
ing fields and the ~initial! dielectric-matter excitations
PRA 591050-2947/99/59~6!/4716~11!/$15.00
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@9,10,13,15#, without any additional assumptions and a
proximations. Such a complex refractive-index profile m
serve as a model for a number of four-port devices, such
beam splitters, mirrors, thin films, interferometers, and op
cal fibers. The results have been used for studying low-or
correlations in two-photon interference effects@13,14,16#.

In this paper we study the transformation of the quant
state as a whole and present closed formulas that enable
calculate for a given complex refractive-index profilen(x,v)
the output quantum state from the input quantum state.
worth noting that the theory applies to optical fields at ar
trary frequencies and bandwidths. Since the action of
device is fully determined by its complex refractive-inde
profile, there is no need to heuristically introduce into t
theory device parameters such as transmission and refle
coefficients and postulate relations between them. All th
quantities and relations including their specific depende
on frequency are natural consequences of the basic theo
cal QED concept.

In particular, for narrow-bandwidth light whose freque
cies are far from medium resonances so that dispersion
absorption may be disregarded and a frequency-indepen
real refractive-index profile may be assumed, the we
known results of mode expansion and U~2! group transfor-
mation are observed. In the general case of nonvanish
absorption it turns out that for each frequency componen
U~4! group transformation must be performed. Each of th
U~4! group transformations can be decomposed into U~2!
group transformations, which correspond to a network
lossless four-port devices for radiation and matter. This
composition also follows from the basic theory and need
be postulated. In particular, for each frequency compon
the U~4! matrix and the U~2! matrices can be exactly calcu
lated from the underlying complex refractive-index profile

The paper is organized as follows. In Sec. II the under
ing theory is outlined and the basic input-output relations
given. The problem of quantum-state transformation is st
ied in Sec. III and closed solutions are presented. To ill
4716 ©1999 The American Physical Society
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PRA 59 4717QUANTUM-STATE TRANSFORMATION BY DISPERSIVE . . .
trate the theory, in Sec. IV explicit transformation rules f
Fock states and coherent states as well as for phase-s
functions are presented. A summary and some conclus
are given in Sec. V.

II. BASIC EQUATIONS

Let us consider two light beams~of fixed polarization!
that propagate along the~positive! x1 and x2 axes and im-
pinge on a dispersive and absorbing four-port device
gives rise to two outgoing beams propagating along
~positive! y1 andy2 axes. Following@13#, the operator of the
vector potential in each of the four channels of the dev
can be given by

Âj~zj !5E
0

`

dv FA \b j~v!

4pcve0nj
2~v!A

3eib j (v)vzj /cĉ~zj ,v!1H.c.G ~1!

( j 51,2), where

nj~v!5Ae j~v!5b j~v!1 i g j~v! ~2!

is the complex refractive index of the adjacent medium
the j th side of the device (A, plan area of the beam!. In Eq.
~1!, ĉ j (zj ,v) stands for the amplitude operatorsâ j (xj ,v)
and b̂ j (yj ,v), respectively, of the incoming and outgoin
damped waves at frequencyv. The input-output relations fo
the amplitude operators can be derived to be

b̂ j~ ȳ j ,v!5 (
j 851

2

Tj j 8~v!â j 8~ x̄ j 8 ,v!1 (
j 851

2

Aj j 8~v!ĝ j 8~v!,

~3!

where it is assumed that the incoming beams enter the de
at xj5 x̄ j and the outgoing beams leave the device atyj

5 ȳ j . The bosonic operatorsĝ j (v) play the role of operator
noise sources and describe device excitations. The 232 ma-
tricesTj j 8(v) andAj j 8(v), respectively, are the characteri
tic transformation and absorption matrices of the device
are given in terms of its complex refractive-index profi
n(x,v) †for the calculation ofTj j 8(v) and Aj j 8(v), see
@13# ‡. Whereas the matrixTj j 8(v) describes the effects o
reflection and transmission, the matrixAj j 8(v) results from
the losses inside the device.

For notational reasons it is convenient to introduce
definitions

â~v!5S â1~v!

â2~v!
D , ~4!

ĝ~v!5S ĝ1~v!

ĝ2~v!
D , ~5!

b̂~v!5S b̂1~v!

b̂2~v!
D ~6!
ace
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@ â j (v)[â j ( x̄ j ,v),b̂ j (v)[b̂ j ( ȳ j ,v)#, and

T~v!5S T11~v! T12~v!

T21~v! T22~v!
D , ~7!

A~v!5S A11~v! A12~v!

A21~v! A22~v!
D . ~8!

The input-output relations for radiation at a four-port devi
can then be given in the compact form of

b̂~v!5T~v!â~v!1A~v!ĝ~v!. ~9!

When the device is embedded in vacuum, then the matr
T(v) and A(v) can be shown to satisfy the relation, s
@13#,

T~v!T1~v!1A~v!A1~v!5I , ~10!

and the amplitude operators of both the incoming and out
ing waves are bosonic operators. When the device is em
ded in a medium, then the photonic amplitude operators
not bosonic operators in general. In this case a unitary tra
formation can be introduced such that the transformed op
tors are bosonic operators at least at one position, so tha
corresponding~scaled and transformed! transformation and
absorption matrices satisfy the condition~10!.

III. QUANTUM-STATE TRANSFORMATION

The operator input-output relation~9! enables one to cal
culate arbitrary correlations of the outgoing beams from
correlations of the incoming beams and the device exc
tions @13#. To obtain the quantum state of the outgoin
beams as a whole, the question arises of which quant
state transformation in the ‘‘Schro¨dinger picture’’ corre-
sponds to the operator input-output relation~9! in the
‘‘Heisenberg picture.’’ To answer the question, let us assu
that for any frequency the input-output relation~9! is rewrit-
ten as a unitary operator transformation

b̂~v!5Û†â~v!Û, Û†5Û21. ~11!

Further, let%̂ in be the density operator of the quantum sta
the incoming fields and the device are prepared in. The ef
of the device can then equivalently be described by leav
the photonic operatorsâ j (v) unchanged but transformin
the input-state density operator%̂ in to obtain the output-state
density operator%̂out as

%̂out5Û%̂ inÛ
†. ~12!

A. Lossless device

Let us first restrict attention to fields in a sufficiently sma
frequency interval of widthDv in which absorption may be
disregarded. For this frequency window the four-port dev
can be regarded as being lossless, and Eqs.~9! and ~10!
approximately reduce to

b̂~v!5T~v!â~v!, ~13!



is

u
-

-

s
si

r
r
r

he

Eq.

ces
l
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T~v!T1~v!5I . ~14!

Equation~13! @together with Eq.~14!# is an example of a
U~N! @or, if the determinant of the transformation matrix
equal to unity, SU(N)] group transformation forN52,
which can be handled using standard Lie algebra techniq
~see, e.g.,@17#!. Following @1,5#, the unitary exponential op
erator Û that corresponds to the U~2! @or, if detT(v)51,
SU~2!# group transformation matricesT(v) can then be
given by

Û5 expF2 i E
Dv

dv @ â†~v!#TV~v!â~v!G , ~15!

where for chosenv the 232 Hermitian matrixV(v) is re-
lated to the matrixT(v) as

exp@2 iV~v!#5T~v! ~16!

~for possible factorizations ofÛ, see, e.g.,@5#!. Note that in
Eq. ~15! the superscriptT introduces transposition of the vec
tor operatorâ†(v), so that

@ â†~v!#TV~v!â~v!5 (
j , j 851

2

â j
†~v!Vj j 8~v!â j 8~v!.

~17!

B. Dispersive and absorbing device

1. Transformation law

In order to extend the formalism to arbitrary device
without restriction to frequencies far from absorption tran
tions, we first express the input-output relation~9! @together
with Eq. ~10!# in terms of a U~4! group transformation. Fo
this purpose we combine the two-dimensional vector ope
tors â(v) andĝ(v) to obtain a four-dimensional input vecto
operator

â~v!5S â~v!

ĝ~v!
D 5S â1~v!

â2~v!

ĝ1~v!

ĝ2~v!

D ~18!

and supply the two-dimensional vector operatorb̂(v) with
some other two-dimensional vector operatorsĥ(v) to obtain
a four-dimensional output vector operator

b̂~v!5S b̂~v!

ĥ~v!
D 5S b̂1~v!

b̂2~v!

ĥ1~v!

ĥ2~v!

D . ~19!

Now we relate the four-dimensional vectorsb̂(v) andâ(v)
to each other as

b̂~v!5L~v!â~v!, ~20!
es

,
-

a-

L~v!L1~v!5I , ~21!

where the U~4! group transformation matrixL(v) is chosen
such that the input-output relation~9! betweenb̂(v) and
â(v) is preserved. As we have shown in Appendix A, t
matrix L(v) can be expressed in terms of the 232 matrices
T(v) andA(v) as

L~v!5S T~v! A~v!

2S~v!C21~v!T~v! C~v!S21~v!A~v!
D ,

~22!

where

C~v!5AT~v!T1~v! ~23!

and

S~v!5AA~v!A1~v! ~24!

are commuting positive Hermitian matrices, and

C2~v!1S2~v!5I . ~25!

The unitary matrixD(v) that appears in Eq.~A11! in Ap-
pendix A has been omitted in Eq.~22!, since it corresponds
to an irrelevant change of the device variablesĥ(v), as can
be seen from the second line in the large parentheses in
~22!. Note that after separation of phase factorseiw(v) and
eic(v), respectively, from the matricesT(v) and A(v) and
inclusion of them in the operatorsâ(v) andĝ(v) the matrix
L(v) can be regarded as an SU~4! matrix.

The U~4! @or SU~4!# group transformation~20! implies
the unitary operator transformation

b̂~v!5Û†â~v!Û, ~26!

where the unitary operatorÛ that corresponds to the 434
unitary matricesL(v) can be given by

Û5expF2 i E
0

`

dv @â†~v!#TF~v!â~v!G . ~27!

Here,F(v) is a 434 Hermitian matrix which is related to
the matrixL(v) by

exp@2 i F~v!#5L~v!. ~28!

Note that the integrand in Eq.~27! explicitly reads as

@â†~v!#TF~v!â~v!5 (
n,n851

4

ân
†~v!Fnn8~v!ân8~v!.

~29!

For narrow-bandwidth radiation far from medium resonan
thev integral in Eq.~27! can be restricted to a small interva
in which absorption may be disregarded,A(v)'0, and
hence

L~v!'S T~v! 0

0 I D , ~30!
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F~v!'S V~v! 0

0 0D . ~31!

In this case Eq.~27! reduces to Eq.~15! and the U~2! @or
SU~2!# group transformation for a lossless device is rec
nized.

Combining Eqs.~12! and~27!, we obtain the output quan
tum state%̂out, from which the quantum state of the outgoin
fields, %̂out

(F) , can be derived,

%̂out
(F)5Tr(D)$%̂out%5Tr(D)$Û%̂ inÛ

†%, ~32!

where Tr(D) means the trace with respect to the device. T
input density operator%̂ in is an operator functional ofâ(v)
and â†(v),

%̂ in5%̂ in@â~v!,â†~v!#, ~33!

and hence the transformed density operator%̂out can be given
by

%̂out5%̂ in@Ûâ~v!Û†,Ûâ†~v!Û†#. ~34!

Recalling Eqs.~20! and ~26!, we see that

Ûâ~v!Û†5L1~v!â~v!, ~35!

Ûâ†~v!Û†5LT~v!â†~v!, ~36!

and hence

%̂out5%̂ in@L1~v!â~v!,LT~v!â†~v!#. ~37!

Combining Eqs.~32! and ~37! yields

%̂out
(F)5Tr(D)$%̂ in@L1~v!â~v!,LT~v!â†~v!#%. ~38!

Using the formulas given in@13#, both the matricesT(v)
and A(v) can directly be calculated from the underlyin
complex-valued refractive-index profilen(x,v) of the matter
for any frequency. The unitary operatorÛ in Eq. ~27! to-
gether with Eq.~28! and the matricesL(v) expressed in
terms ofT(v) andA(v), Eq.~22!, then enables us to derive
for chosen input quantum states, closed solutions for the
put quantum states in a straightforward way, Eqs.~32! and
~34! and Eqs.~37! and ~38!, without placing any frequency
restrictions. It is worth noting that the formulas are al
suited for studying the behavior of quantum states in
vicinity of absorption lines~Sec. IV! where commonly used
mode expansion fails. Since the presence of matter is f
described by the complex refractive-index profile, there is
need for introducing phenomenological replacem
schemes.

Radiation fields are frequently described in terms of d
crete modes. Let us restrict our attention to~quasi! mono-
chromatic discrete modes. We subdivide the frequency
into sufficiently small intervalsDvm with midfrequencies
vm and define the bosonic input operators
-

e

t-

e

ly
o
t

-

is

âm5
1

ADvm
E

Dvm

dv â~v!, ~39!

and the bosonic output operatorsb̂m accordingly. The opera-
tor input-output relation~20! then reads as

b̂m5Lmâm ~40!

@Lm[L(vm)#, which can be rewritten as, according to E
~26!,

b̂m5Û†âmÛ5Ûm
† âmÛm , ~41!

where@in place of Eq.~27!#

Û5)
m

Ûm , ~42!

with

Ûm5 exp~2 i @âm
† #TFmâm!, ~43!

@Fm[F(vm)#. The matricesFm andLm are related to each
other according to Eq.~28!, and Eqs.~30!–~38! apply ac-
cordingly.

2. Relation to U(2) and SU(2) group transformations

The U~4! group transformation defined by the matrixL in
Eq. ~A11! @or Eq. ~22!# can be decomposed in differen
ways. As we have shown in Appendix B, it can be given
terms of five U~2! group transformations. That is to say, fo
chosen frequency component the action of an absorb
four-port device formally corresponds, e.g., to the combin
action of five lossless four-port devices†for possible factor-
izations of a U~N! matrix into U~2! matrices, see also@18# ‡.
Each of the lossless devices contributes a unitary operato
the type given in Eq.~15!,

Û@M ;q̂#[ expF2 i E
0

`

dv @ q̂†~v!#TW~v!q̂~v!G , ~44!

to the overall~product! unitary operator. In Eq.~44!, W(v)
is a 232 Hermitian matrix that is related to a U~2! group
transformation matrixM (v) as

exp@2 iW~v!#5M ~v!, ~45!

and q̂(v) is a vector whose two components are boso
operators. Note that for narrow-bandwidth radiation far fro
medium resonances Eq.~44! @together with Eq.~45!# corre-
sponds to Eq.~15! @together with Eq.~16!#, with M (v)
5T(v), W(v)5V(v), andq̂(v)5â(v).

When the irrelevant matrixD(v) in Eq. ~A11! is set equal
to the unit matrixI , then Eq.~A11! reduces to Eq.~22!. As
shown in Appendix B, the unitary operatorÛ[Û@L;â#
given in Eq.~27! can be decomposed into a product of eig
operatorsU@M ;q̂# as follows:

Û@L;â#5Û@C1 iS;~ i â1ĝ!/A2#Û@C2 iS;~ â1 i ĝ!/A2#

3Û@S21A;ĝ# Û@C21T;â# ~46!
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4720 PRA 59KNÖLL, SCHEEL, SCHMIDT, WELSCH, AND CHIZHOV
@cf. Eqs. ~B13!, ~B18!, and ~B24!#, and decomposition o
Û@C2 iS;(â1 i ĝ)/A2# and Û@C1 iS;( i â1ĝ)/A2# eventu-
ally yields

Û@L;â#5Û†@P;d̂2# Û†@P;d̂1#Û@C1 iS;ĝ# Û@C2 iS;â#

3Û@P;d̂2# Û@P;d̂1#Û@S21A;ĝ# Û@C21T;â#,

~47!

where

d̂j~v!5S â j~v!

ĝ j~v!
D ~48!

( j 51,2) and

P5
1

A2
S 1 i

i 1D ~49!

@cf. Eqs. ~B26! and ~B27!#. It should be pointed out tha
whenL(v) is an SU~4! group transformation, then the ma
trices P, S21(v)A(v), and C21(v)T(v) correspond to
SU~2! group transformations. The matricesC(v)1 iS(v)
andC(v)2 iS(v) correspond to U~2! group transformations
in general, i.e., SU~2! transformations and additional pha
shifts. Further it is worth noting that all the matrices can
exactly calculated from the underlying complex refractiv
index profile n(x,v), because they follow from the bas
theoretical concepts of QED and need not be introduced p
nomenologically within ‘‘beam splitter’’ replacemen
schemes. Needless to say, each of the operatorsÛ@M ;q̂# on
the right-hand side in Eq.~47! can be further factored@5#.

IV. APPLICATIONS

A. Fock-state and coherent-state bases

To illustrate the theory, let us first consider the transf
mation of Fock states as fundamental basis states
quantum-state representation. Here and in the following
restrict our attention to single-mode radiation of chosen
quency~in each channel!, so that the mode subscript can b
omitted. The results can easily be extended to multim
fields by taking the direct product of single-mode states.

%̂ in5uc in&^c inu, ~50!

uc in&5un1 ,n2 ,n3 ,n4&5 )
n51

4 ân
†nn

Ann!
u0&, ~51!

be the density operator of the system in the case whenn1 and
n2 photons impinge on the device that is excited in Fo
states withn3 and n4 quanta. From application of Eq.~37!
we then obtain

%̂out5ucout&^coutu, ~52!

with
e
-

e-

-
or
e
-

e
t

k

ucout&5 )
n51

4
1

Ann!
S (

m51

4

Lmnâm
† D nn

u0&. ~53!

We use the decomposition

S (
m51

4

Lmnâm
† D nn

5 (
$knm%

8 )
m51

4
nn!

knm!
~Lmnâm

† !knm, ~54!

where the notation(8 is used to indicate that the~non-
negative! integersknm satisfy the condition

(
m51

4

knm5nn , ~55!

and rewrite Eq.~53! as

ucout&5(
$km%

Ck1 ,k2 ,k3 ,k4
uk1 ,k2 ,k3 ,k4&. ~56!

Here the coefficientsCk1 ,k2 ,k3 ,k4
are given by

Ck1 ,k2 ,k3 ,k4
5S )

n51

4

Ann! D S )
m51

4

Akm! D (
$knm%

9 )
m,n51

4 Lmn
knm

knm!
,

~57!

the knm satisfying the conditions

(
m51

4

knm5nn , (
n51

4

knm5km ~58!

~notation(9). Obviously, when the input state is a superp
sition of Fock states~51!, then the output state is the corre
sponding superposition of Fock states~56!. Application of
Eq. ~38! eventually yields the density operator of the outg
ing fields,

%̂out
(F)5Tr(D)$ucout&^coutu%. ~59!

In particular, for a single Fock state we obtain, on usi
Eqs.~56! and ~57!,

%̂out
(F)5 (

k1 ,k2
(

k18 ,k28
Dk1 ,k2 ,k

18 ,k
28
uk1 ,k2&^k18 ,k28u, ~60!

Dk1 ,k2 ,k
18 ,k

28
5 (

k3 ,k4

Ck1 ,k2 ,k3 ,k4
Ck

18 ,k
28 ,k3 ,k4

* . ~61!

Alternatively, the density operator%̂out
(F) can be repre-

sented as follows. Let us define linear combinations

x̂n
†5(

i 51

2

L in âi
† ~62!

and

ŷn
†5(

i 51

2

L21 i n ĝi
† ~63!

of photonic and device operators, respectively. Writing
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(
m51

4

Lmnâm
† 5 x̂n

†1 ŷn
† , ~64!

and combining Eqs.~53! and ~59! yields

%out
(F)5 (

$pm%$qn%
Y$pm%$qn% )

m51

4

x̂m
†pmu0(F)&^0(F)u)

n51

4

x̂n
qn

~65!

(pm ,qn50,1, . . . ,nn), where

Y$pm%$qn%5F )
n51

4
1

Ann!
S nn

qn
D GF )

m51

4
1

Anm!
S nm

pm
D G

3K 0(D)US )
n51

4

ŷn
nn2qnD S )

m51

4

ŷm
†nm2pmDU0(D)L ,

~66!

u0(F)& and u0(D)&, respectively, being the field and devic
ground states. The device ground-state expectation valu
Eq. ~66! can be calculated by moving the operatorsŷn from
the left to the right, employing the commutation relatio
betweenŷn andŷm

† . In this wayY$pm%$qn% can be expressed i

terms of the complex numbersynm ,

ynm5@ ŷn ,ŷm
† #, ~67!

which form a 434 matrixy that is related to the matricesT
andA as

y5S I2T1T 2T1A

2A1T I 2A1AD . ~68!

Next let us consider the transformation of coherent sta

uc in&5ug&5 exp@gTâ†2g* Tâ#u0&, ~69!

where

g 5S c

dD , ~70!

with ci anddi ( i 51,2), respectively, being the coherent am
plitudes of the input fields and the device. Application of E
~37! yields Eq.~52!, whereucout& is the coherent state

ucout&5ug8&, ~71!

with

g85Lg ~72!

in place ofg in Eq. ~69!. The extension to a superposition
coherent states is straightforward.

From Eqs.~59!, ~71!, and ~72! it follows that when the
incoming modes and the device are prepared in cohe
states, then the outgoing modes are prepared in cohe
states, i.e.,

%̂out
(F)5uc8&^c8u. ~73!
in

s

-
.

nt
ent

Note that the coherent amplitudesc18 andc28 of the outgoing
modes are not only determined by the characteristic trans
mation matrixT but also by the absorption matrixA via the
coherent-state amplitudes of the device, as can be seen
Eq. ~72!,

c85Tc1Ad. ~74!

B. Phase-space functions

It is often useful to describe quantum states in terms
phase-space functions~see, e.g.,@19#!. For notational conve-
nience we will again restrict our attention to single-mo
fields. LetPin(a;s) be thes-parametrized phase-space fun
tion of an input state%̂ in . Equation ~37! implies that the
phase-space functionPout(a;s) that corresponds to%̂out is
simply given by

Pout~a;s!5Pin~L1a;s!, ~75!

so that the phase-space functionPout
(F)(a;s) of the outgoing

radiation reads as

Pout
(F)~a;s!5E d2g Pout~a;s!5E d2g Pin~L1a;s!, ~76!

where the notation

a 5S a

gD ~77!

has been introduced, withai and gi ( i 51,2), respectively,
being the complex phase-space variables of the fields and
device. We change the variables,

g5S21~Ca2C21g8!, ~78!

d2g5udet~CS!21u2 d2g8, ~79!

and rewrite Eq.~76! as, on recalling Eqs.~22!–~24!,

Pout
(F)~a;s!5E H d2g8

udetT detAu2
PinF S T21g8

A21~a2g8!
D ;sG J .

~80!

Equations~75! and ~76! @or Eq. ~80!# are the most genera
relations fors-parametrized phase-space functions at an
bitrary, linear four-port device.

When the states of the input field and the device are
entangled, then the phase-space functionPin(a;s) is a prod-
uct of the phase-space functions of the incoming fields
the device,

Pin~a;s!5Pin
(F)~a;s!Pin

(D)~g;s!. ~81!

In this case Eq.~80! reads as

Pout
(F)~a;s!5E H d2g8

udetT detAu2
Pin

(F)~T21g8;s!

3Pin
(D)@A21~a2g8!;s#J . ~82!



lu
an
er
re
.,
ro
e

r
e
le

t

a
t

uu

f

,
ce

t
on

e
odes
ral,

ns
d
t in

lute

tter,
e

rans-
ton

-

the

-

n as
d

4722 PRA 59KNÖLL, SCHEEL, SCHMIDT, WELSCH, AND CHIZHOV
The phase-space function of the outgoing field is a convo
tion of the phase-space functions of the incoming fields
the device, the arguments being transformed by the inv
transformation matrix and the inverse absorption matrix,
spectively. Note that when absorption is disregarded, i.e
Eqs. ~80! and ~82! the absorption matrix approaches ze
then the well-known relation for nonabsorbing four-port d
vices is recognized,

Pout
(F)~a;s!5Pin

(F)~T21a;s!. ~83!

C. Simple examples

To illustrate the new possibilities offered, let us conside
single dielectric plate in the ground state and assum
single-resonance medium of Lorentz type whose comp
permittivity can be given by

e511
es21

12~v/v0!222igv/v0
2

. ~84!

Using the formulas given in@13#, we have calculated the
reflection coefficient uT11u2, the transmission coefficien
uT21u2, and the absorption coefficient (12uT11u22uT21u2). In
Fig. 1 they are shown as functions ofv for es51.5, g/v0
50.01, and plate thickness 2c/v0.

1. z1,0,0,0l Fock state

In the simplest case when one of the quasimonochrom
input modes is prepared in a single-photon Fock state and
other input mode and the device are prepared in the vac
state, Eq.~51! reads as

uc in&5u1,0,0,0&. ~85!

The input Wigner functionWin(a)[Pin(a;0) is then given
by

Win~a!52S 2

p D 4

L1~4ua1u2! exp~22uau2! ~86!

†Lk(z), Laguerre polynomial; for the Wigner function o
Fock states, see, e.g.,@20# ‡. Applying Eq. ~75! yields

FIG. 1. The reflection coefficientuT11u2 ~solid line!, the trans-
mission coefficientuT21u2 ~dashed line!, and the absorption coeffi
cient (12uT11u22uT21u2) ~dotted line! of a dielectric plate are
shown as functions of frequencyv for es51.5 andg/v050.01 in
Eq. ~84!, and the plate thickness 2c/v0.
-
d
se
-

in
,
-

a
a
x

tic
he
m

Wout~a!52S 2

p D 4

L1S 4U(
n51

4

Ln1* anU2D exp~22uL1au2!,

~87!

from which the Wigner function of the outgoing fields
Wout

(F)(a), is easily obtained by integration over the devi
variablesg according to Eq.~76!. Further integration over
a2 (a1) yields the Wigner function of the field in the firs
~second! output channel. After some algebra we obtain,
recalling the definition~22! of the unitary matrixL,

Wout
(F)~ai !5

4

p
@ uTi1u2~2uai u221!1 1

2 #exp~22uai u2! ~88!

( i 51,2). The matrix elementsTi1 are to be taken at the
midfrequencyv of the quasi-monochromatic radiation mod
considered. The states of the reflected and transmitted m
are mixtures of zero- and one-photon Fock states in gene
which can be easily seen, rewriting Eq.~88! as

Wout
(F)~ai !5~12uTi1u2!W0~ai !1uTi1u2W1~ai !, ~89!

whereWk(ai) is the Wigner functions of thek-photon Fock
state,

Wk~ai !5
2~21!k

p
Lk~4uai u2!exp~22uai u2!. ~90!

The dependence on frequency of the Wigner functio
Wout

(F)(a1) and Wout
(F)(a2) of the reflected and transmitte

fields are shown in Figs. 2 and 3, respectively. Note tha
the case under considerationWout

(F)(a1) andWout
(F)(a2) are ra-

dial symmetric, because they only depend on the abso
valuesua1u and ua2u @see Eq.~88!#. Sufficiently far from the
medium resonance (v/v0!1) the relation uT11u21uT21u2
'1 holds, and the plate acts like a lossless beam spli
with uT11u2'0 anduT21u2'1. In this case the reflected mod
is prepared in a state close to the vacuum state and the t
mitted mode is prepared in a state close to a single-pho
Fock state. Near resonance (v/v0'1) the transmission co
efficient approaches zero,uT21u2'0, and the transmitted
mode is prepared in a state close to the vacuum. Since

FIG. 2. The~radial-symmetric! Wigner functionWout
(F)(a1) of the

quantum state of the field reflected at a dielectric plate is show
a function of frequencyv for a single-photon Fock input state an
the plate data given in Fig. 1.
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reflection coefficient is less than unity owing to absorptio
the reflected mode is prepared in a state that deviates fro
single-photon Fock state.

2. zn,0,0,0l Fock state

The above given results can easily be extended to
n-photon input state such that

uc in&5un,0,0,0&, ~91!

with the Wigner function

Win~a!5~21!nS 2

p D 4

Ln~4ua1u2!exp~22uau2!. ~92!

The Wigner function of the mode in thei th output channel
reads then

Wout
(F)~ai !5 (

k50

n S n

kD uTi1u2k~12uTi1u2!n2kWk~ai !. ~93!

Needless to say, Eq.~93! holds for any phase-space functio
and reveals that the density operator of the mode in thei th
output channel,%̂out i

(F) , can be expanded in the Fock basis

%̂out i
(F) 5 (

k50

n S n

kD uTi1u2k~12uTi1u2!n2kuk&^ku, ~94!

which also can be obtained by applying Eqs.~65! and~66! in
Sec. IV A which give

%̂out
(F)5 (

k50

n S n

kD yn2k
x̂1

† k

Ak!
u0(F)&^0(F)u

x̂1
k

Ak!
, ~95!

with

x̂1
†5T11â1

†1T21â2
† ~96!

and

y5y11512uT11u22uT21u2, ~97!

FIG. 3. The~radial-symmetric! Wigner functionWout
(F)(a2) of the

quantum state of the field transmitted through a dielectric plat
shown as a function of frequencyv for a single-photon Fock inpu
state and the plate data given in Fig. 1.
,
a

n

s

or equivalently,

%̂out
(F)5 (

k50

n S n

kD yn2k (
p,q50

k AS k

pD S k

qD
3T11

p T11*
qT21

k2pT21*
k2qup,k2p&^q,k2qu. ~98!

Tracing over one output channel yields Eq.~94!.

3. z1,1,0,0l Fock state

Finally let us consider the case when both input fie
modes are prepared in single-photon Fock states. In this
we have

uc in&5u1,1,0,0&. ~99!

Following the line given above, after some algebra we obt

%̂out
(F)5 x̂1

†x̂2
† u0(F)&^0(F)u x̂1x̂21y11x̂2

† u0(F)&^0(F)u x̂2

1y12x̂1
† u0(F)&^0(F)u x̂21y21x̂2

† u0(F)&^0(F)u x̂1

1y22x̂1
† u0(F)&^0(F)u x̂11@y11y221y12y21# u0(F)&^0(F)u,

~100!

where

x̂i
†5T1i â1

†1T2i â2
† , ~101!

and y i j are the elements of the matrixy of Eq. ~68!. After
tracing over one output channel we get

%̂out i
(F) 5@12uTi1u2~12uTi2u2!2uTi2u2~12uTi1u2!#u0&^0u

1~ uTi1u21uTi2u224uTi1u2uTi2u2!u1&^1u

12uTi1u2uTi2u2u2&^2u. ~102!

It should be pointed out that for a lossless 50%:50% be
splitter Eq.~102! reduces to

%̂out i
(F) 5 1

2 ~ u0&^0u1u2&^2u!, ~103!

and the well-known effect of photon correlation is observe
The dependence on frequency of the Wigner funct
Wout

(F)(a1) is shown in Fig. 4. Note thatWout
(F)(a2)

5Wout
(F)(a1), because of the equal input states and the pr

erties of the plate thatuT11u25uT22u2 and uT12u25uT21u2.
Let us briefly address the degree of entanglement of

two output states. A quantitative measure of the degree
entanglement can be defined@21#, employing the von Neu-
mann entropy. The index of correlationI c is defined by

I c5S11S22S12, ~104!

where Si is the von Neumann entropy of thei th single-
channel output state%̂out i

(F) @Eq. ~102!#,

Si52 Tr@%̂out i
(F) ln %̂out i

(F) #, ~105!

andS12 is the entropy of the~entangled! density matrix of the
two-channel output state%̂out

(F) ,

is
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S1252 Tr@%̂out
(F) ln %̂out

(F)#. ~106!

The index of correlationI c is bounded from below by zero
and from above byS11S2. As already mentioned, in th
case under consideration the relation%̂out 1

(F) 5%̂out 2
(F) is valid,

so thatS15S2, and the possible maximum value of the ind
of correlation~for every frequencyv) is given by

I c
max5S11S252S152S2 . ~107!

Figure 5 presents the index of correlationI c as a function of
frequency. The output states are maximally entangled
about 0.68v0 and 1.35v0, whereas at the resonance fr
quencyv0 they are not correlated at all because the in
photons are reflected or absorbed and there is no mixin
their states by the device. Far below the resonance w
absorption is small, the index of correlation approximat
equals its theoretically possible maximum value~107!.

V. SUMMARY

Starting from the canonical quantization of the elect
magnetic field in arbitrary linear Kramers-Kronig media, w
have developed the quantum theory of the action of disp
sive and absorbing optical four-port devices. In particu
we have presented formulas for calculating the comp
quantum state of the outgoing fields from the quantum st

FIG. 4. The~radial-symmetric! Wigner functionWout
(F)(a1) of the

quantum state of the field in the first output channel of a dielec
plate is shown as a function of frequencyv for the two-photon
Fock input stateu1,1,0,0& and the plate data given in Fig. 1.

FIG. 5. Index of correlationI c ~full line! and maximal index of
correlationI c

max52S1 ~dashed line! as a function of frequency fo
the plate data given in Fig. 1.
at
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of the incoming fields and the device for given compl
frequency-dependent refractive-index profile of the devi
without any frequency restriction. The theory is a natu
extension of the standard theory of lossless four-port dev
where mode expansion applies.

Given the complex frequency-dependent refractive-ind
profile of a device, for each frequency component a U~4!
group transformation matrix can be calculated that inclu
transmission, reflection, and absorption. The U~4! matrices
can be decomposed in different ways. In particular, each
trix can be decomposed into five U~2! matrices. That is to
say, for a chosen frequency the action of an absorbing fo
port device formally corresponds, e.g., to the combined
tion of five lossless four-port devices for radiation and m
ter. From a more fundamental point of view, the theory c
be regarded, in a sense, as justification for the concept
replacement schemes. From the point of view of practi
computations the theory enables one to exactly calculate
relevant device parameters from the complex refracti
index profile. Obviously, the introduction of replaceme
schemes for broadband radiation makes little sense.

In consequence of absorption the quantum state of
outgoing radiation depends on the quantum state the de
is prepared in when the incoming fields impinge on the
vice. In combination with conditional measurement this o
fers novel possibilities of quantum-state manipulation.
particular, the theory enables one to study~in the linear re-
gime! the effect of resonance frequencies on quantum-s
transformation and the action on quantum fields of dielec
structures whose complex refractive-index profile sho
strongly varying dispersion and absorption.
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APPENDIX A: DERIVATION OF THE U „4… GROUP
MATRIX

Let us write the sought U~4! matrix L(v) as

L~v!5S T~v! A~v!

F~v! G~v!
D , ~A1!

whereT(v) and A(v) are defined in Eqs.~7! and ~8! and
satisfy the relation~10!. The 232 matricesF(v) andG(v)
are to be determined such thatL(v) is unitary, i.e.,

F~v!F1~v!1G~v!G1~v!5I , ~A2!

F~v!T1~v!1G~v!A1~v!50. ~A3!

From Eq.~A3! we find that

F~v!52G~v!A1~v!@T1~v!#21. ~A4!

We substitute in Eq.~A2! for F(v) the result of Eq.~A4! and
derive

G~v!$I1A1~v!@T~v!T1~v!#21A~v!%G1~v!5I ,
~A5!

c
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and hence

I1A1~v!@T~v!T1~v!#21A~v!5@G1~v!G~v!#21.
~A6!

Recalling Eq.~10!, from Eq. ~A6! we find that

G1~v!G~v!5I2A1~v!A~v!. ~A7!

A particular solution of Eq.~A7! is

G~v!5C~v!S21~v!A~v!, ~A8!
s
l

ta
to
where C(v) and S(v) are defined in Eqs.~23! and ~24!,
respectively. Obviously, the general solution reads as

G~v!5D~v!C~v!S21~v!A~v!, ~A9!

whereD is an arbitrary unitary 232 matrix. From Eq.~A4!
it then follows thatF(v) is given by

F~v!52D~v!S~v!C21~v!T~v!. ~A10!

Combining Eqs.~A1!, ~A9!, and~A10!, we obtain
L~v!5S T~v! A~v!

2D~v!S~v!C21~v!T~v! D~v!C~v!S21~v!A~v!
D , ~A11!
a

which reveals that for given matricesT(v) and A(v) the
U~4! matrix L(v) is only determined up to a U~2! matrix
D(v).

APPENDIX B: FACTORIZATION OF THE U „4… GROUP
TRANSFORMATION

The U~4! matrix L(v) in Eq. ~A11! can be rewritten as a
product of three U~4! matrices as follows:

L~v!5L3~v! L2~v! L1~v!, ~B1!

where

L1~v!5S D~v!C21~v!T~v! 0

0 D~v!S21~v!A~v!
D ,

~B2!

L2~v!5S D~v!C~v!D1~v! D~v!S~v!D1~v!

2D~v!S~v!D1~v! D~v!C~v!D1~v!
D ,

~B3!

L3~v!5S D1~v! 0

0 I D . ~B4!

When we choose the matrixD(v) such that the matrice
D(v)C(v)D1(v) and D(v)S(v)D1(v) become diagona
matrices@note thatC(v) andS(v) defined in Eqs.~23! and
~24!, respectively, can be diagonalized by the same uni
matrix#, then the U~4! group transformation corresponds
five U~2! group transformations.

Let D(v) be the unit matrix,D(v)5I . In this case Eq.
~B1! reduces to

L~v!5L2~v! L1~v!, ~B5!

where now

L1~v!5S C21~v!T~v! 0

0 S21~v!A~v!
D ~B6!

and
ry

L2~v!5S C~v! S~v!

2S~v! C~v!
D . ~B7!

The matrixL2(v) can be given by the unitary transform of
quasidiagonal matrixL28(v),

L2~v!5Y1L28~v!Y, ~B8!

where

L28~v!5S C~v!2 iS~v! 0

0 C~v!1 iS~v!
D ~B9!

and

Y5
1

A2
S I i I

i I I D . ~B10!

Combining Eqs.~B5! and ~B8!, we obtain

L~v!5Y1L28~v!YL1~v!, ~B11!

which corresponds to a decomposition of the U~4! group
transformation into eight U~2! group transformations.

Using Eqs.~20! and~B5! and recalling Eqs.~26!–~28!, we
may write

b̂~v!5L2~v! L1~v! â~v!5L2~v! Û1
†â~v!Û1

5Û1
† L2~v! â~v! Û15Û1

† Û2
† â~v! Û2Û1

5Û† â~v! Û, ~B12!

with

Û[Û@L;â#5Û@L2 ;â#Û@L1 ;â#. ~B13!

Here, Û i[Û@Li ;â# ( i 51,2) is given by Eq.~27!, with
Fi(v) in place ofF(v), and

exp@2 i Fi~v!#5Li~v!. ~B14!
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From the quasidiagonal structure ofL1(v), Eq. ~B6!, it then
follows that

F1~v!5S W1~v! 0

0 0D 1S 0 0

0 W2~v!
D , ~B15!

where

exp@2 iW1~v!#5C21~v!T~v! ~B16!

and

exp@2 iW2~v!#5S21~v!A~v!. ~B17!

Thus, Û@L1 ;â# can be expressed in terms of two unita
operators of the type given in Eq.~44! @together with Eq.
~45!#,

Û@L1 ;â#5Û@S21A;ĝ# Û@C21T;â#. ~B18!

To decomposeÛ@L2 ;â#, we note that Eq.~B8! implies
that

Û@L2 ;â#5Û@L28 ;Y~v!â#, ~B19!

where

exp@2 i F28~v!#5L28~v! ~B20!

and

Y~v!â~v!5
1

A2
S â~v!1 i ĝ~v!

i â~v!1ĝ~v!
D . ~B21!

The quasidiagonal structure ofL28(v), Eq. ~B9!, enables us
to write
un

r

ys
F28~v!5S W3~v! 0

0 0D 1S 0 0

0 2W3~v!
D , ~B22!

where

exp@2 iW3~v!#5C~v!2 iS~v!, ~B23!

so thatÛ@L2 ;â# can also be expressed in terms of two u
tary operators of the type given in Eq.~44! @together with Eq.
~45!#,

Û@L2 ;â#5Û@C1 iS;~ i â1ĝ!/A2#Û@C2 iS;~ â1 i ĝ!/A2#.
~B24!

Recalling the definitions ofd̂j (v), Eq. ~48!, andP, Eq. ~49!,
it is seen that (â1 i ĝ)/A2 and (i â1ĝ)/A2 can be given by

1

A2
S â j~v!1 i ĝ j~v!

i â j~v!1ĝ j~v!
D 5P d̂j~v!5Û†@P;d̂j # d̂j~v! Û@P;d̂j #

~B25!

( j 51,2), and hence

Û@C2 iS;~ â1 i ĝ!/A2#

5Û†@P;d̂1# Û†@P;d̂2# Û@C2 iS;â# Û@P;d̂2# Û@P;d̂1#,

~B26!

Û@C1 iS;~ i â1ĝ!/A2#

5Û†@P;d̂1# Û†@P;d̂2# Û@C1 iS;ĝ# Û@P;d̂2# Û@P;d̂1#.

~B27!
s.
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