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Quantum-state transformation by dispersive and absorbing four-port devices
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The recently derived input-output relations for radiation at a dispersive and absorbing four-port[device
Gruner and D.-G. Welsch, Phys. Rev.54, 1661(1996] are used to derive the unitary transformation that
relates the output quantum state to the input quantum state, including radiation and matter and without placing
frequency restrictions. It is shown that for each frequency component the transformation can be regarded as a
U(4) group transformation, which can directly be calculated from the underlying complex refractive-index
profile of the device without additional postulates. If for narrow-bandwidth radiation far from the medium
resonances the absorption matrix of the four-port device can be disregarded, the well-ki@wgrdup
transformation for a lossless device is recognized. Explicit formulas for the transformation of Fock states,
coherent states, and phase-space functions are §8#&050-2947®9)03406-X]

PACS numbgs): 42.50.Ct, 42.25.Bs, 42.79¢e

I. INTRODUCTION [9,10,13,1%, without any additional assumptions and ap-

Four-port devices such as beam splitters are indispensabjgoximations. Such a complex refractive-index profile may
to optical investigation, and a number of fundamental experiserve as a model for a number of four-port devices, such as
ments in quantum optics necessarily require the use of thenbeam splitters, mirrors, thin films, interferometers, and opti-
The quantum theory of dispersionless and nonabsorbingal fibers. The results have been used for studying low-order
beam splitters has been well established7]. A beam split-  correlations in two-photon interference effefis,14,18.
ter can be realized by a multislab dielectric plate, which is a In this paper we study the transformation of the quantum
dispersive and absorbing device in general. Even if the efstate as a whole and present closed formulas that enable us to
fects of dispersion and absorptidm a chosen frequency calculate for a given complex refractive-index profil, w)
interva) are small, their influence on nonclassical radiationthe output quantum state from the input quantum state. It is
should be considered carefully. On the other hand, in pracworth noting that the theory applies to optical fields at arbi-
tice multislab dielectric configurations with strongly varying trary frequencies and bandwidths. Since the action of the
dispersive and absorptive properties, e.g., near optical bardkvice is fully determined by its complex refractive-index
gaps, have been of increasing interest, and a description giofile, there is no need to heuristically introduce into the
their action in the quantum domain is desired. theory device parameters such as transmission and reflection

To give a quantum theory of dispersive and absorbingcoefficients and postulate relations between them. All these
four-port devices, a Kramers-Kronig consistent quantizatiomquantities and relations including their specific dependence
scheme of the electromagnetic field in dispersive and absorlen frequency are natural consequences of the basic theoreti-
ing inhomogeneous media is requiréd-12]. Recently, cal QED concept.
guantization of the electromagnetic field within the frame- In particular, for narrow-bandwidth light whose frequen-
work of the phenomenological Maxwell theofwith given  cies are far from medium resonances so that dispersion and
complex permittivity in the frequency domaihas been per- absorption may be disregarded and a frequency-independent
formed, using an expansion of the electromagnetic field opreal refractive-index profile may be assumed, the well-
erators in terms of the Green function of the classical probknown results of mode expansion and2Ugroup transfor-
lem and an appropriately chosen infinite set of bosonic basimation are observed. In the general case of nonvanishing
fields[8,11,19. This quantization scheme applies to any lin- absorption it turns out that for each frequency component a
ear inhomogeneous, dispersive, and absorbing matter—case$4) group transformation must be performed. Each of these
for which familiar concepts of mode expansion fail—and isU(4) group transformations can be decomposed int@) U
fully consistent with both the Kramers-Kronig relations andgroup transformations, which correspond to a network of
the canonical(equal-time field commutation relations in lossless four-port devices for radiation and matter. This de-
QED[11,12. composition also follows from the basic theory and need not

The formalism has been used in order to derive inputbe postulated. In particular, for each frequency component
output relations for radiation at a dispersive and absorbinghe U4) matrix and the (2) matrices can be exactly calcu-
(multilayen dielectric plate described in terms of a complex lated from the underlying complex refractive-index profile.
refractive-index profilen(x,w) (X, space coordinatey, fre- The paper is organized as follows. In Sec. Il the underly-
guency and to express th@ow-orden moments and corre- ing theory is outlined and the basic input-output relations are
lations of the outgoing fields in terms of those of the incom-given. The problem of quantum-state transformation is stud-
ing fields and the (initial) dielectric-matter excitations ied in Sec. lll and closed solutions are presented. To illus-
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trate the theory, in Sec. IV explicit transformation rules for[a_(w)zé_(; )b (w)=Db;(y: ,w)], and
Fock states and coherent states as well as for phase-spacé A I
functions are presented. A summary and some conclusions Ti(w) Tifw)
are given in Sec. V. T(w)= ( o) Tzz(w))' (7)
II. BASIC EQUATIONS Ap(w) Apw)
Let us consider two light beam®f fixed polarization A(w):<A2 (0) Aypw)]’ ®

that propagate along thgositive x; andx, axes and im-

pinge on a dispersive and absorhing four-port device thathe input-output relations for radiation at a four-port device
gives rise to two outgoing beams propagating along thesan then be given in the compact form of

(positive y; andy, axes. Followind13], the operator of the R R R

vector potential in each of the four channels of the device b(w)=T(w)a(w)+A(w)g(w). 9

can be given b
g y When the device is embedded in vacuum, then the matrices

48 T(w) and A(w) can be shown to satisfy the relation, see
B](w) [13]
477Cweon]-2(w)A 1

T(0) T (w)+A(w)AY (w)=1, (10

Aj(zj)=fwdw

0

xe'Ail@)ezleg(z; w)+H.c. (1) and the amplitude operators of both the incoming and outgo-

ing waves are bosonic operators. When the device is embed-

(j=1,2), where ded in a medium, then the photonic amplitude operators are
= not bosonic operators in general. In this case a unitary trans-
nj(w)= /—ej(w)=Bj(w)+i ¥i(®) (2)  formation can be introduced such that the transformed opera-

tors are bosonic operators at least at one position, so that the
is the complex refractive index of the adjacent medium orcorrespondingscaled and transformgdransformation and
the jth side of the deviceA, plan area of the beamin Eq.  absorption matrices satisfy the condititt0).

(1), ¢(z,w) stands for the amplitude operataas(x; ,w)
and Bj(yj ,w), respectively, of the incoming and outgoing lll. QUANTUM-STATE TRANSFORMATION
damped waves at frequenay The input-output relations for ~ The operator input-output relatia®) enables one to cal-

the amplitude operators can be derived to be culate arbitrary correlations of the outgoing beams from the
2 9 correlations of the incoming beams and the device excita-

Pl B s - ~ tions [13]. To obtain the quantum state of the outgoing

bj (¥}, @) El Tijr(@)aj (x; ’w)+j21 Ajir(@)gj (@), beams as a whole, the question arises of which quantum-

(3)  state transformation in the “Schimger picture” corre-
o . . sponds to the operator input-output relati¢®) in the
where it is assumed that the incoming beams enter the devicg{ejsenberg picture.” To answer the question, let us assume

at x;=x; and the outgoing beams leave the deviceyat that for any frequency the input-output relati®) is rewrit-

=y, . The bosonic operatogg(w) play the role of operator €N as a unitary operator transformation

noise sources and describe device excitations. The Pna- . e

tricesT;,(w) andAj;,(w), respectively, are the characteris- b(w)=U'a(w)U, U'=U"" (11)

tic transformation and absorption matrices of the device and .

are given in terms of its complex refractive-index profile Further, letgi, be the density operator of the quantum state
n(x,w) [for the calculation ofTj;/(w) and Ajj,(w), see the incoming fields and the _dewce are prepar(?d in. The eff_ect
[13]]. Whereas the matrifT;; (w) describes the effects of of the device can thenAequaIentIy be described by leaving
reflection and transmission, the matdy;.(w) results from  the photonic operators;(w) unchanged but transforming

the losses inside the device. the input-state density operator, to obtain the output-state
For notational reasons it is convenient to introduce thedensity operato@ as
definitions out
i (él(w)) Qout:UQinUT- (12
a(lw)=| . , (4)
ax(w) A. Lossless device

(5) frequency interval of widthA @ in which absorption may be
disregarded. For this frequency window the four-port device
can be regarded as being lossless, and Egjsand (10)

( E)l(w)> approximately reduce to

) Let us first restrict attention to fields in a sufficiently small

(6) . .
b(w)=T(w)a(w), (13
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T(0) T (w)=1. (14 Aw)AT(w)=1, (21

Equation(13) [together with Eq.(14)] is an example of a where the W) group transformation matriA(w) is chosen
U(N) [or, if the determinant of the transformation matrix is such that the input-output relatiof®) betweenb(w) and

equal to unity, SUK)] group transformation forN=2, a(w) is preserved. As we have shown in Appendix A, the

which can be handled using standard Lie algebra teChniqU(?ﬁatrix A(w) can be expressed in terms of the 2 matrices
(see, e.g.}17)). Following[1,5], the unitary exponential op- T(w) andA(w) as

erator U that corresponds to the(B) [or, if defT(w)=1,
SU(2)] group transformation matrice$(w) can then be T(w) A(w)

given by A=l g ) @) T(0) C(0)S H0)A(0))’

(22)
U=exg—i| dol[a'(w)]V(e)a 15
exr{ |JM wl[a(w)]'V(wa(w)|, (15 where
where for chosemw the 2<X2 Hermitian matrixV(w) is re- C(w)=VT(0)T (w) (23
lated to the matrixT (w) as
and
exd —iV(w)]=T(w) (16)
A S(w)=VA(0)A" () (24)
(for possible factorizations dfl, see, e.g.[5]). Note that in ) N N )
Eq. (15) the superscripT introduces transposition of the vec- aré commuting positive Hermitian matrices, and
tor operatora’(w), so that C2w)+ () =1. 25
2
[AT(0)]V(0)a(0)= S é}(w)v“,(w)éj,(w). The unitary matrixD(w) that appears in EqA11) in Ap-

pendix A has been omitted in ER2), since it corresponds

(170  to an irrelevant change of the device variabiés), as can
be seen from the second line in the large parentheses in Eq.
B. Dispersive and absorbing device (22). Note that after separation of phase facter&“) and
e'"() respectively, from the matriceB(w) and A(w) and
inclusion of them in the operatos§») andg(w) the matrix
In order to extend the formalism to arbitrary devices, A(w) can be regarded as an W matrix.
without restriction to frequencies far from absorption transi-  The U4) [or SU4)] group transformatior(20) implies

tions, we first express the input-output relati@ [together  the unitary operator transformation
with Eqg. (10)] in terms of a W4) group transformation. For

hi'=1

1. Transformation law

this purpose we combine the two-dimensional vector opera- Blw)=UTa(w)U, (26)
torsa(w) andg(w) to obtain a four-dimensional input vector A
operator where the unitary operatdd that corresponds to the>d4
. unitary matricesA(w) can be given by
a;(w) .
. a(w) ay( o) Ozexp[—if do[a'(w)]"®(w)aw)|. (27
a(w)=| . =( . (18 0
g(w) g1(w) . . . L
- Here,®(w) is a 4X4 Hermitian matrix which is related to
g2(w) the matrixA(w) by
and supply the two-dimensional vector operaw) with exd —i®P(w)]=A(w). (29
some other two-dimensional vector operaﬂ&f&;) to obtain ) . o
a four-dimensional output vector operator Note that the integrand in E§27) explicitly reads as
. 4
b(w) [ ()] () a(w)= 2 al(0)®,,(0)a, (o).
. bw)| [ by(w) et
Blw)= ( ; ) =15 (19) (29
(@) Al(w) For narrow-bandwidth radiation far from medium resonances
h,(w) the w integral in Eq.(27) can be restricted to a small interval

in which absorption may be disregarded{w)~0, and
Now we relate the four-dimensional vectg8éw) ande(w)  hence
to each other as

T(w) O
(@) ) | 30

Blw)=A(0)d ), (20
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v 0
D(w)~ (@) : (31 a,= ! do a(w), (39
O O m \/A(l)m Awm ( )

In this case Eq(27) reduces to Eq(15) and the W2) [or  and the bosonic output operatgBs, accordingly. The opera-
SU(2)] group transformation for a lossless device is recoggy input-output relatior(20) then reads as
nized.

Combining Egs(12) and(27), we obtain the output quan- B=Amaim (40)
tum statep ., from which the quantum state of the outgoing

fields,égﬁz, can be derived, [Am=A(wmy) ], which can be rewritten as, according to Eqg.

(26),
eSd=Tr{ oo =Tr*{Ue;,,0™, (32 Br=0ta,0=01 8,0, (41)

where TfP) means the trace with respect to the device. Thavhere[in place of Eq.(27)]
input density operatop;, is an operator functional of(w)

and a'(o), 0=1;[ Un, (42)
Qin=0Qinla(),a'(0)], 33 with
and hence the transformed density operatgy can be given U= exp —i[al]"®nam), (43
> [®,=P(w,)]. The matricesb,, and A, are related to each
0ou=0i[Ua()0T,0al (0)01]. (34) %r;girngﬁ/c'ording to Eq(28), and Eqs.(30)—(38) apply ac-

Recalling Eqs(20) and(26), we see that _ _
2. Relation to U(2) and SU(2) group transformations

Ua(w)0T=A" (o) w), (35) The U4) group transformation defined by the matrixin
Eq. (All) [or Eqg. (22)] can be decomposed in different
Ual(0)0T=AT(0)a' (o) (36)  Ways. As we have shown in Appendix B, it can be given in

terms of five U2) group transformations. That is to say, for
chosen frequency component the action of an absorbing
four-port device formally corresponds, e.g., to the combined
A Ay - T, \~t action of five lossless four-port devic¢for possible factor-
Qou=Cin[ A" (w) a(w),A (0) &’ (w)]. 37 izations of a WN) matrix into U(2) matrices, see algd.8]].
. . Each of the lossless devices contributes a unitary operator of
Combining Egs(32) and(37) yields the type given in Eq(15), y op

and hence

o) =TrP{ o, [AT(0)a(w),AT(w)a’ . (38 A = . .

Qou=Tr el A" (0)a(w), Al (@) (0)]}. (38) U[M;q]Eexr{—iJO do[q"(0)]"W(w)q(w)|, (44
Using the formulas given ifl3], both the matrice3 (w)

and A(w) can directly be calculated from the underlying to the overall(produc} unitary operator. In Eq44), W(w)

complex-valued refractive-index profilg X, w) of the matter is a 2x2 Hermitian matrix that is related to a(2) group

for any frequency. The unitary operatbr in Eq. (27) to-  transformation matriM () as

gether with EQ.(28) and the matrices\(w) expressed in e _

terms ofT(w) andA(w), Eq.(22), then enables us to derive, exf —iW(w)]=M(w), (45
for chosen input quantum states, closed solutions for the Ou%{nd j(w) is a vector whose two components are bosonic
put quantum states in a straightforward way, E@2) and qlw P

: : operators. Note that for narrow-bandwidth radiation far from
(34) and Egs.(37) and(38), without placing any frequency ; . i
restrictions. It is worth noting that the formulas are alsomeoIIum resonances Eql4) [together with Eq(49)] corre

suited for studying the behavior of quantum states in thesponds to Eq(15) [together with Eq.(18)], with M(w)

vicinity of absorption linegSec. IV) where commonly used = 1(®), W(w)=V(0), andg(w)=a(w). _

mode expansion fails. Since the presence of matter is fully When the irrelevant matri(w) in Eq.(A11) is set equal

described by the complex refractive-index profile, there is nd® the unit matrixi, then Eq.(A11) reduces to Eq(22). As

need for introducing phenomenological replacemenshown in Appendix B, the unitary operatdt=U[A; ]

schemes. given in Eq.(27) can be decomposed into a product of eight
Radiation fields are frequently described in terms of dispperatorsU[M;q] as follows:

crete modes. Let us restrict our attention(tmas) mono-

chromatic discrete modes. We subdivide the frequency axis U[A;a]=U[C+iS;(ia+g)/y2]0[C—iS;(a+ig)/ 2]

into sufficiently small intervalsA w,, with midfrequencies R o R

oy, and define the bosonic input operators XU[S 'A;g]U[C 'T;a] (46)
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[cf. Egs. (B13), (B18), and (B24)], and decomposition of 4 4 R
O[c—-is;(a+ig)/y2] and O[C+iS;(ia+g)/\2] eventu- |'r/fout>:Hl\/:|( Zl A,wa,t) |0). (53
ally yields rmEAR e

N aAlon A ~ NN . We use the decomposition
U[A;a]=0T[P;d,] UT[P;d,JU[C+iS;g] U[C—iS;a] ,

4 n
. A A A SN - ~ Y , n, -
x O[P;d,] U[P;d,]0[S *A;g] U[C'T;a], (2 A,wa;) ={k2} I1 (o (Aal)on, (54
=1 v =1 vy
(47 " S
where the notatio®’ is used to indicate that thénon-
where negative integersk,,, satisfy the condition
a(w) .
A aj(w -
o|j(w)=(AJ ) (48) 2, K=, (59
gj(w
) and rewrite Eq(53) as
(j=1,2) and
1 (1 i Wout)z{kZ} Chy iy kg kgl K1 K2 K3, Ka). (56)
P=—|. (49 #
J2\lio1

Here the coe1‘ficient§:kl,kzksyk4 are given by

[cf. Egs. (B26) and (B27)]. It should be pointed out that 4 4 4 Ak
when A(w) is an SU4) group transformation, then the ma- _ " wy
trices P, S }(w)A(w), and C™}(w)T(w) correspond to Chy iy K by (Vﬂl \/n_"l)(,}_—ll \/k_"'> %} M,lll K,
SU(2) group transformations. The matric€y w)+iw) (57)
andC(w) —iS(w) correspond to (2) group transformations o .

in general, i.e., S(?) transformations and additional phase thek,,. satisfying the conditions

shifts. Further it is worth noting that all the matrices can be 2 4

exactly calculated from the underlying complex refractive- _ _

index profile n(x,w), because they follow from the basic M2:1 K=y Vzl K=Ky 8
theoretical concepts of QED and need not be introduced phe-

nomenologically within “beam splitter” replacement (notation="). Obviously, when the input state is a superpo-
schemes. Needless to say, each of the OperQIEM;;E{] on  Sition of Fock state$51), then the output state is the corre-

the right-hand side in Eq47) can be further factorefb]. sponding superposition of Fock stat6). Application of
Eq. (38) eventually yields the density operator of the outgo-

ing fields,

IV. APPLICATIONS
~E)
A. Fock-state and coherent-state bases 05 =TrO{ | o Youl}- (59

To illustrate the theory, let us first consider the transfor- |n particular, for a single Fock state we obtain, on using
mation of Fock states as fundamental basis states fqrgs.(56) and(57),
guantum-state representation. Here and in the following we
restrict our attention to single-mode radiation of chosen fre- ~(F)_ L
guency(in each channgl so that the mode subscript can be Qout_kEK E Dklvk2'k;/|_'ké k1, ka)(ki.kal,  (60)
omitted. The results can easily be extended to multimode 172 ke
fields by taking the direct product of single-mode states. Let

_ *
D, ik, k= > Chey iz kg kg Okt g g kg (61)

0in=| i) inl, (50) Ka ks
4 otn, Alternatively, the density operatop!") can be repre-
| in)=1IN1,N5,N3,N4) = H i |0), (52 sented as follows. Let us define linear combinations
v=1 ‘/nv!
i i xI=> A, af (62)
be the density operator of the system in the case whemd v & v
n, photons impinge on the device that is excited in Fock
states withn; andn, quanta. From application of E¢37) and
we then obtain
2
- ot oAt
Qout:|’pout><¢oulla (52) yV igl A2+I v g' (63)

with of photonic and device operators, respectively. Writing
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4 o Note that the coherent amplitude§ andc; of the outgoing
2 AWaL=xI+ y,T,, (64 modes are not only determined by the characteristic transfor-
w=1 mation matrixT but also by the absorption matri via the
and combining Eqs(53) and (59) yields (é(;h((e;(;;t-state amplitudes of the device, as can be seen from
4 4 ' ’
At 24, {—
efl= > Y{p#}{qy}]:_[ X, 00| H X ¢’ =Tc+Ad. (74)
{puHa,t w=1 v=1
(65) B. Phase-space functions
(p..9,=0,1,...n,), where It is often useful to describe quantum states in terms of
4 4 phase-space functiorisee, e.g.[19]). For notational conve-
v _ 1—[ 1 (n 1—[ 1 (n, nience we will again restrict our attention to single-mode
{puHat = LY \/n—v, A/ || a=1 Vn 1 \p, fields. LetP;,(«;s) be thes-parametrized phase-space func-

tion of an input statep;,. Equation(37) implies that the

0(®) phase-space functioR,(«;s) that corresponds t@out is
' simply given by

!
4
% < o H ;‘/Tn#—p#)
p=1"*

4
( I1 yZ"_q”)
v=1

(66) Pou( @) =Pin(A" @;5), (75)
|0 and |0, respe(_:tively, being the field an_d device so that the phase-space functigﬁa%(a;s) of the outgoing
ground states. The device ground-state expectation value A diation reads as

Eq. (66) can be calculated by moving the operatpysfrom
the left to the right, employing the commutation relations p(F)

~ ~ ) _ ;s)= | d’gP ;=fd2P-A+;,76
betweery, andyL.InthlswayY{pH}{qv} can be expressed in out(&:) f 9Pouf @:5) 9Pin(A"ais), (76

terms of the complex numbets,, , Where the notation

v =Y, YL, (67) a
a=( (77)

g

which form a 4<X 4 matrix v that is related to the matricds

andA as . _ . .
has been introduced, with; andg; (i=1,2), respectively,

being the complex phase-space variables of the fields and the

I-T* T -T*A
= ) (68)  device. We change the variables,

\—ATT I-ATA

—_o1 _ 14
Next let us consider the transformation of coherent states g=S(Ca—Cg), (78)

. - 2, —1|2 427
Uy =|n=exdy’a’ -~ T@l0), (69 d"g=|derCs) T dg, 79

and rewrite Eq(76) as, on recalling Eq922)—(24),

2~/ —17
c g (199 ( T 9 )}
":(d)’ 70 Poul®:9) f||detTdetA|2Pm A Ya-g))°|]

(80)
with ¢; andd; (i=1,2), respectively, being the coherent am- )
plitudes of the input fields and the device. Application of Eq.Equations(75) and (76) [or Eq. (80)] are the most general

where

(37) yields Eq.(52), where| i, is the coherent state relations fors-parametrized phase-space functions at an ar-

bitrary, linear four-port device.
o =17, (7D When the states of the input field and the device are not

entangled, then the phase-space funcig«;s) is a prod-

with uct of the phase-space functions of the incoming fields and
the device,

Y =Ay (72) - ©)
in place ofy in Eq. (69). The extension to a superposition of Pin(@;8) =Py (&5)Piy*(9;S). (81
coherent states is straightforward. In this case Eq(80) reads as
From Egs.(59), (71), and (72) it follows that when the

incoming modes and the device are prepared in coherent d%g’

states, then the outgoing modes are prepared in coherent Péﬁ%(a;s)=f —ZPi(nF)(T_lg’;S)

states, i.e., |detT detA|

2=l 3 xPi(r?)[Al(a—g’);S]]. @)
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|Tul?, [Tal?, [1 = [Tl — T2 [?]

1 —— —_———

~ w/wo

FIG. 1. The reflection coefficier|iT;,? (solid line), the trans-
mission coefficien{T,,|? (dashed ling and the absorption coeffi-
cient (1—|T14?—|T2|?) (dotted line of a dielectric plate are
shown as functions of frequeney for e;=1.5 andy/wy=0.01 in
Eq. (84), and the plate thicknessc2w,.

FIG. 2. The(radial-symmetrig Wigner functionW{")(a,) of the
quantum state of the field reflected at a dielectric plate is shown as
a function of frequency» for a single-photon Fock input state and

The phase-space function of the outgoing field is a convolut"® Plate data given in Fig. 1.

tion of the phase-space functions of the incoming fields and 4 4 »
the device, the arguments being transformed by the inverse _ 4 * B 12
transformation matrix and the inverse absorption matri, re- Woul @==|—| Li| 4 Zl Aa| | exp(—2[A"af%),
spectively. Note that when absorption is disregarded, i.e., in (87
Egs. (80) and (82) the absorption matrix approaches zero, _ _ _ _ _
then the well-known relation for nonabsorbing four-port de-from which the Wigner function of the outgoing fields,

vices is recognized, Wf;{(a), is easily obtained by integration over the device
variablesg according to Eq(76). Further integration over
PP (a;5)=P{(T ta;s). (83 a, (a;) yields the Wigner function of the field in the first

(secondl output channel. After some algebra we obtain, on

C. Simple examples recalling the definition22) of the unitary matrixA,

To illustrate the new possibilities offered, let us consider a Fy, o 4 ) ) N )

single dielectric plate in the ground state and assume a Wou(a)=—[|Til*(2]a[*~1)+z]exp(—2[a[") (88

single-resonance medium of Lorentz type whose complex

permittivity can be given by (i=1,2). The matrix element3;; are to be taken at the

midfrequencyw of the quasi-monochromatic radiation mode

€1 considered. The states of the reflected and transmitted modes

(84) are mixtures of zero- and one-photon Fock states in general,

which can be easily seen, rewriting E§8) as

1— (0l wg)?—2i yw/wg-

Using the formulas given if13], we have calculated the W)
reflection coefficient|T,,?, the transmission coefficient out
|T,4/?, and the absorption coefficient €1 T,4|?—|T5?). In
Fig. 1 they are shown as functions effor ec=1.5, y/wg
=0.01, and plate thicknessclw,.

(@) =(1—|Tig)>)Wo(ay) +[Tis|*Wy(a), (89

whereW,(a;) is the Wigner functions of th&-photon Fock
state,

2(— 1)

1.|1,0,0,0 Fock state W, (a;)= L(4|a|?)exp(—2]ai|?).  (90)

In the simplest case when one of the quasimonochromatic
input modes is prepared in a single-photon Fock state and the The dependence on frequency of the Wigner functions

other input mode and the device are prepared in the vacuurwgf,{(al) and ngl{(az) of the reflected and transmitted

state, Eq(51) reads as fields are shown in Figs. 2 and 3, respectively. Note that in
the case under consideratiov{?)(a;) andW{)(a,) are ra-
|¢in)=11,0,0,0. (85  dial symmetric, because they only depend on the absolute

values|a,| and|a,| [see Eq(88)]. Sufficiently far from the
The input Wigner functionVi,(a)=Pin(a;0) is then given  medium resonancea/ wy<1) the relation|T;y|?+|T?
by ~1 holds, and the plate acts like a lossless beam splitter,
with | T14)2~0 and|T,;|?~1. In this case the reflected mode
is prepared in a state close to the vacuum state and the trans-
mitted mode is prepared in a state close to a single-photon
Fock state. Near resonance/wy~1) the transmission co-
[Li(2), Laguerre polynomial; for the Wigner function of efficient approaches zerdT,,|?~0, and the transmitted
Fock states, see, e.§20]]. Applying Eq.(75) yields mode is prepared in a state close to the vacuum. Since the

2 4
Wm<a)=—(;) Li(4lal?) exa—2af®) (80
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or equivalently,

X T8 TH TS, PT5,5 p.k—p)(a.k—al. (98)
Tracing over one output channel yields E§4).

3.]1,1,0,0 Fock state

Finally let us consider the case when both input field
modes are prepared in single-photon Fock states. In this case
we have

|#in)=11,1,0,0. (99)

quantum state of the field transmitted through a dielectric plate is

shown as a function of frequeney for a single-photon Fock input

state and the plate data given in Fig. 1.

reflection coefficient is less than unity owing to absorption,
the reflected mode is prepared in a state that deviates from a

single-photon Fock state.

2.|n,0,0,0 Fock state

The above given results can easily be extended to an

n-photon input state such that

|¢in>=|n1010791 (91)

with the Wigner function

2 4
Win(a)=(—1)”(;) Ln(4las]?)exa —2[af?). (92

The Wigner function of the mode in th¢h output channel

reads then

Wod(a) =2, (E)|Ti1|2k<1—lTillz)“-kwk<ai>. (93

Needless to say, E¢93) holds for any phase-space function
and reveals that the density operator of the mode initihe

output channelp(R). , can be expanded in the Fock basis a

n

~ n
eEL%sEO(k)|Ti1|2k<1—lTillz)”-klk><kl, (94

which also can be obtained by applying E(5) and(66) in
Sec. IV A which give

" In x] XX
5(F) — n—k_=_[o(F)\y/oF)| =
el kZO(k)v 10PN PI ==, (99
with

Xi=Tpal+Tpal (96)

and

v=vp= 1Ty >~ |T2?, 97

Following the line given above, after some algebra we obtain

05 =x1x3 [0P) (0P| X1+ v12%3 |0 (0| X,

+ 12X} [0F)(0F)] Xp+ w05 [0F)) (0P X,

+ X} [0F))(0F)] Xg +[wy300+ v15024] [0F))(0F),
(100

here

x =Tyal+Tyal, (102

andv; are the elements of the matrix of Eq. (68). After
tracing over one output channel we get

o) =[1—|Ti|A(1—[Ti2>) = | Tiol2(1—| Ti1])1]0)(0|
+ (| Tia) 2+ T2l 2= 4] Ti1 A Tial D1 1)(1]
+2|Ti1)4Tial?2)(2]. (102

It should be pointed out that for a lossless 50%:50% beam
splitter Eq.(102) reduces to
eSdi=3(10)(0+2)(2), (103

and the well-known effect of photon correlation is observed.

SThe dependence on frequency of the Wigner function

WE,E{(Fal) is shown in Fig. 4. Note thatW)(a,)
=W{)(a;), because of the equal input states and the prop-
erties of the plate thai;4|2=|T,)? and|T1,?=|T,|?.

Let us briefly address the degree of entanglement of the
two output states. A quantitative measure of the degree of
entanglement can be defing2il], employing the von Neu-
mann entropy. The index of correlatiop is defined by

lc=S1+S,— S, (109

where S; is the von Neumann entropy of thi¢h single-
channel output statg{"). [Eq. (102)],

S=—Trloau Inesd] (109

andS;, is the entropy of théentangled density matrix of the
two-channel output state")
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of the incoming fields and the device for given complex

frequency-dependent refractive-index profile of the device,
without any frequency restriction. The theory is a natural

extension of the standard theory of lossless four-port devices
where mode expansion applies.

Given the complex frequency-dependent refractive-index
profile of a device, for each frequency component @)U
group transformation matrix can be calculated that includes
transmission, reflection, and absorption. Thel)Umatrices
can be decomposed in different ways. In particular, each ma-
trix can be decomposed into five(2) matrices. That is to
say, for a chosen frequency the action of an absorbing four-
port device formally corresponds, e.g., to the combined ac-
tion of five lossless four-port devices for radiation and mat-

FIG. 4. The(radial-symmetrig Wigner functionW(F)(a,) of the  ter. From a more fundamental point of view, the theory can
quantum state of the field in the first output channel of a dielectrid?€ regarded, in a sense, as justification for the concepts of
plate is shown as a function of frequenay for the two-photon  replacement schemes. From the point of view of practical

Fock input state1,1,0,0 and the plate data given in Fig. 1. computations the theory enables one to exactly calculate all
relevant device parameters from the complex refractive-
S=— T e Ino®). (106  index profile. Obviously, the introduction of replacement
schemes for broadband radiation makes little sense.
The index of correlation, is bounded from below by zero ~ In consequence of absorption the quantum state of the

and from above byS;+S,. As already mentioned, in the outgoing radiation depends on the quantum state the device
case under consideration the relatio %1=é5,522 is valid, 'S prepared in when the incoming fields impinge on the de-

so thatS,; =S,, and the possible maximum value of the index :,’;g rllg\gl)mt(’)'g;gﬂirt‘ievgtgfcoBg;'&ﬁ!sgfgsﬁr:melﬂ;gﬁ Olfr_1
of correlation(for every frequency) is given by P q P '

particular, the theory enables one to studythe linear re-

IM*= S, +S,=25,=2S,. (107) gime) the effect of resonance frequencies on quantum-state
transformation and the action on quantum fields of dielectric

Figure 5 presents the index of correlatinas a function of ~ structures whose complex refractive-index profile shows

frequency. The output states are maximally entangled agtrongly varying dispersion and absorption.

about 0.68, and 1.3, whereas at the resonance fre-

guency wg they are not correlated at all because the input ACKNOWLEDGMENTS

photons are reflected or absorbed and there is no mixing of

their states by the device. Far below the resonance Whe]%r

absorption is small, the index of correlation approximately,[h

equals its theoretically possible maximum vali€7).
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APPENDIX A: DERIVATION OF THE U (4) GROUP

V. SUMMARY MATRIX

Starting from the canonical quantization of the electro-
magnetic field in arbitrary linear Kramers-Kronig media, we
have developed the quantum theory of the action of disper- T(w) Alw)
sive and absorbing optical four-port devices. In particular, Alw)= )
we have presented formulas for calculating the complete Flw) G(w)

guantum state of the outgoing fields from the quantum State\?/hereT(w) andA(w) are defined in Eqs(7) and (8) and
satisfy the relatiof10). The 2x2 matricesF(w) andG(w)

Let us write the sought (4) matrix A(w) as

(A1)

1o, 251 are to be determined such th&fw) is unitary, i.e.,
rofy
2 AR F(0)F* (0)+G(0)G* (0)=1, (A2)
1.5 AN
: VALY \\ F(0)TH (@) +G(w)A* (0)=0. (A3)
¥ [ \
1 Vo \ From Eq.(A3) we find that
\
0.5 \\ Flw)=—-G(0)A™(0)[T ()] " (A4)
G T % — =~ w/wo We substitute in Eq(A2) for F(w) the result of Eq(A4) and
derive

FIG. 5. Index of correlation (full line) and maximal index of
correlationl 7= 2S, (dashed lingas a function of frequency for G(o){Il+AT(0)[T(0) T (0)] *A(0)}GT (w)=I,
the plate data given in Fig. 1. (A5)
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and hence

| +A+(w)[T(w)T+(w)]_1A(w)=[G+(w)G(w)]_1(-A

Recalling Eq.(10), from Eg.(A6) we find that

GHw)G(w)=1-A"(w)A(w). (A7)
A particular solution of Eq(A7) is
G(w)=C(0)S Hw)A(w), (A8)
|
T(w)

Alw)=

which reveals that for given matricé(w) and A(w) the
U(4) matrix A(w) is only determined up to a (@) matrix
D(w).

APPENDIX B: FACTORIZATION OF THE U (4) GROUP
TRANSFORMATION

The U4) matrix A(w) in Eq. (A11) can be rewritten as a

product of three (¥) matrices as follows:

A(w)=Az(w) Ay(w) A(w), (B1)
where
_(D(w)Cl(w)T(w) 0 )
Aslw)= 0 D(w)S Y w)A(w)]’
(B2)
_( D(w)C(w)D" (w) D(w)S(w)D+(w))
A= b(w)S(0)D (@) D(@)C(w)D (@)’
(B3)
D*(w) O
As@)=| I). (B4)

When we choose the matri®(w) such that the matrices

D(w)C(w)D* (w) and D(w)S(w)D" (w) become diagonal
matrices[note thatC(w) andS(w) defined in Eqs(23) and

(24), respectively, can be diagonalized by the same unitary
matrix], then the W4) group transformation corresponds to

five U(2) group transformations.
Let D(w) be the unit matrixD(w)=1. In this case Eq.
(B1) reduces to

Alw)=Ay(w) Ay(w), (B5)
where now
Ay(w)= C Hw)T(w) 1 (B6)
0 S (w)A(w)
and

QUANTUM-STATE TRANSFORMATION BY DISPERSIVE ...
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where C(w) and S(w) are defined in Eqs(23) and (24),
respectively. Obviously, the general solution reads as
G(w)=D(w)C(0)S Hw)A(w), (A9)

whereD is an arbitrary unitary X2 matrix. From Eq(A4)
it then follows thatF(w) is given by

F(w)=—D(0)S(w)C Y w)T(o). (A10)
Combining Egs(Al), (A9), and(A10), we obtain
A(w) )
D(w)C(w)S Y w)A(w)]’ (AL1)
|
Clow) Sw)
AZ(‘”):( ~S(w) C<w>)' (B7)

The matrixA,(w) can be given by the unitary transform of a
quasidiagonal matrixA;(w),

Ad0) =Y AY@)Y, ©9)
where
Clw)-iS(w)
Aé(“’):( 0 C<w>+i8<w>) (89
and
1 /1 il
Y=E<“ |)' (B10)
Combining Eqs(B5) and (B8), we obtain
Al0) =Y AY(0)YA(0), ®11

which corresponds to a decomposition of thé4JUgroup
transformation into eight (2) group transformations.

Using Eqgs(20) and(B5) and recalling Eq926)—(28), we
may write

B(w)=Ay(0) As(0) a(w)=Ay(w) O]a(w)0,
=0] Ax(o) a(w) U;=0] 0] a(w) 0,0,
=0T a(w) U, (B12

with

U=0[A;a]=U0[A,;a]U[A;;a]. (B13)

Here, U;=U[A,;a] (i=1,2) is given by Eq.(27), with
®,(w) in place of®(w), and

exd —i®(w)]=Ai(w). (B14)
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From the quasidiagonal structure Af(w), Eq. (B6), it then
follows that

Wi(w) O\ (0 0
<I>1(w)=( 0 o Flo Wz(w)>, (B15)
where
ex —iWy(@)]=C () T(w) (B16)
and
ex —iWy(w)]=S"Hw)A(w). (B17)

Thus, U[A;;a] can be expressed in terms of two unitary

operators of the type given in E¢44) [together with Eqg.

(49)],
O[A;;a]=0[S 'A;g]0[C 'T;a]. (B19)

To decomposdJ[A,;a], we note that Eq(B8) implies
that

O[A,;a]=0[A}; Y (w)a], (B19)
where
exd — i ®)(w)]=A)(w) (B20)
and
Y(0)a(w)= i(éfw)ﬂ?(“’)). (B21)
V2\ia(w)+9(w)

The quasidiagonal structure df;(w), Eq. (B9), enables us
to write

KNOLL, SCHEEL, SCHMIDT, WELSCH, AND CHIZHOV
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@ —(W3(w) 0)+(0 ) B22

A= 5 o/ Tlo —wyw) ©%?
where

exg —iW3(w)]=C(w)—iSw), (B23)

so thatU[ A, ; @] can also be expressed in terms of two uni-
tary operators of the type given in E@d4) [together with Eq.
(45)],

U[A,;a]=0[C+iS;(ia+g)/\2]0[C—iS;(a+ig)/\2].
(B24)

Recalling the definitions oﬁij(w), Eq. (48), andP, Eq. (49),
it is seen that4+ig)/\2 and (a+g)/y2 can be given by
1 (éj<w>+iéj(w>

. N =Pd(w)=U"[P;d;]d(w) U[P;d,
\/5 iaj(w)+gj(w)) J((’)) [ ]] ]((1)) [ J]

(B25)
(j=1,2), and hence
O[C—iS;(a+ig)/V2]
=0'P;d,]U'[P;d,] U[C—iS;a] U[P;d,] U[P;d4],
(B26)
U[C+iS;(ia+g)/V2]
=0TP;d,] UP;d,] O[C+iS;g] U[P;d,] U[P;d,].
(B27)
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