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Bose-Einstein condensation of a trapped gas in dimensions
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The critical temperature for Bose-Einstein condensation, ground-state fraction, and heat capacity of an ideal
gas of Bose particles that are confined bynadimensional generic power-law potential trap are derived. The
conditions for Bose-Einstein condensation and the discontinuous conditions of the heat capacity at critical
temperature are obtained. All these quantities and conditions are found to vary markedly with the dimension-
ality of space, characteristics of particles, and shape of the external potential. The results obtained here are
universal.[S1050-29479)07306-0

PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj

At present there is a renewed interest in Bose-Einsteition is valid[10]. Thus, the total number of particlésand
condensationBEC), particularly after the achievement to the total energyJ of the system may be expressed, respec-
create BEC in magnetically trapped alkali gafgs3]. The tively, as
constrained role of the external potential for atomic gases g g [ d"pdx,...dx
may change the performance of gases. It can be said that the N = N0+2 ——m— =No+ 5 ﬁ}ﬂ_”
external potential creates favorable conditions for controlling e Mt -1 h z e -1
degenerate atomic gases and quantitatively investigating @
their performance. On the other hand, there are differening
properties for Bose gases in different dimensions and differ-
ent kinematics characteristics of particlds-9]. Therefore, it U= gs g [ edpdx...dx, 3
is very important to investigate thoroughly the main charac- T glempKT_q T pn kT_q

—1,¢
z e
teristics and to obtain some general theoretical conclusions . ] .

In this paper, we investigate the conditions for BEC andh @re, respectively, the Boltzmann and the Plank constgnts,
the continuity conditions of the heat capacity of an ideal!S he Spin degenerate factar|s the chemical potential, and
Bose gas with any kinematics characteristic confined by af— €XPW/KT) is the fugacity. Using the Bose integration,
n-dimensional generic power-law potential trap. First, we de- 1 (= x—1
rive the critical temperatur@_, ground-state fraction, and 9(2)= T
heat capacity of the system. Then, from these results, we
deduce the two conditions mentioned above and make somghe can obtain
significant discussions.

e @

We consider am-dimensional ideal Bose gas with the n n ﬁ 1 )
energy spectrum, 2'gCy I S +1 1L al E+1 9,(2)(KT)
N = N0+ n
n It hnan/sH Sil/li
_ St 120 i=1
e=ap™t 2, e (1) )
and
wherea, s a;, ¢;, andt; (i=1,2,...n) are all positive con- n n 1
stantsp is the momentum of a particle, anx¢l are the com- 2"gCon(g+ 1) H aI t—_+ 1 gpﬂ(z)(kT)”+1
ponents of coordinate in the directidrof a particle. When _ =1 !
the particle number in the system is larger and the level e n "
spacing is much smaller than the mean kinetic energy of h"a Iﬂl e
particles(this condition is often satisfied; for example, in the 6)

experiment of Andersont al.[1] in 1995 considering BEC,
when the frequency of the harmonic potentia=27  from Egs.(2) and(3), respectively, where
X 200k is adopted and the temperature approaches a conden-

n
sate temperaturdl,~170nK, one still has#w/kT~5.6 p:EJFE 1 )
x 10 3<1), the Thomas-Fermi's semiclassical approxima- s =t
I =F '“le7vdy, 8
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is the Gamma function, an@,= 7"%/T (n/2+1). 1
WhenT—T,, there areu—0 andNy=0. Then, we ob-
tain
n 1lp
Nh"a"/s 1#;
1 I
Tc:E n 9

ger| D41 II ar 1+1
gt, s i=1al g(P)

t;

NN,

from Eq.(5), where(x) is the Riemann zeta function which
equalsg,(1) whenx=1. At a temperaturd& below T, from
Egs.(5) and(9), one can obtain the ground-state fraction,

No
W_

T\P 0 T 1
Te) -

(10) ‘

) ) o - FIG. 1. Ground-state fractioNy/N as a function of scaled tem-
For a three-dimensional nonrelativistic system familiar to UsperatureT/T,, for different p.

all, n=3 ands=2. Equationg9) and(10) can be reduced to
the corresponding results obtained in Ré&fl]. However, the It is worthwhile to point out that this does not imply that the
results derived in the present paper not only are the generehergy spectrum E@l) may be written as an isotropic form:
forms of some important conclusions obtained in current lit-
erature, but also may be used to derive some general conclu-
sions about BEC.

It can be seen from Ed9) that the relevant quantity that

determines whether or not the system can condense is givéyhere bothb andr, are positive constants amds the coor-
by p. That is, only when the following equation, dinate of a particle. But, it can be shown that when the en-

ergy spectrum is isotropic, Eq13) is also valid. This also

e=ap’+b

r t
a) - 19

n M1 shows that Eq(11) is quite general.
p= §+ E t_> 1, (11 From Egs.(10) and(11), one can obtain
=
dNo| N
is satisfied, may BEC take place. Equatidi) shows that T >T—C- (15

the conditions for BEC of a Bose gas depend not only on the Te

dimensionality of spaca and the kinematics characteristic . N .
of particless, but also on the shape of the external potentialfqu‘?'on(la t'mg!'es. twalt\tl VﬂtgoﬂdNO/ dT| >tthT ata CBeléc
determined by all exponents. For a Bose gas witm/s _ﬁ:n gmpelrta ur tWII b 0™ ™ grEeCCf?‘””o he an¥ 't'.
=<1, an external potential has a decisive effect on the occur- IS IS quite natural, because IS a phase ftransition,

rence of BEC. For example, for a two-dimensional nonrelaVhich makes a finite fraction of the particles in the system

tivistic Bose gasn=2 ands=2. When the system is free, occupy the ground state. Thus, HA5) depicts a common

t,—o0 andt,—ee [11]. BEC cannot take place according to characteristic at the onset of BEC and has universal signifi-
cance. Therefore, the curvesh§— T are always convex for

Eq. (11). But when the system is trapped in a harmonic PO"Bose systems in BEC phase, even though their curvatures

tential, t;=t,=2 and BEC may take place. Equatiohl . ) g
also shéwszthat when a propgr exter[z]al pote?nial (i)s t)ake ay be different for different Bose systems, as shown in Fig.

BEC may take place in any dimensional space.
For a free Bose gas, al|—. Then, Eq.(11) may be
written as

Now, we discuss the heat capacity of the trapped Bose
gas. It is necessary to point out that the heat capacities dis-
cussed here are ones with external potential being kept con-
n stant rather than the heat capacities at constant volume or
“>1. (12 pressure. Under the condition that an external potential is
S kept constant, from Eq$5) and(6), one can obtain the heat

. . . ) . capacity of the system at a temperatiliraboveT, as
Equation(12) is consistent with the conditions for BEC ob-

tained in Ref[5]. This shows that the conditions derived in o1, 0,:1(2) g,(2)
this paper are more general, especially that they can be usedCT>Tc= Tsz p(p+1) =2 o .
to expound the effect of external potential on the occurrence 9,(2) 9p-1(2) (16)
of BEC.
When the external potential is symmetric, i.¢;=t, For a temperaturd below T., there isz=1, so gp+1(z)

=---=t,=t, Eq.(11) may be simplified as ={(p+1) and Eq.6) may be expressed as

n n {p+1) [ T\

st L (13 Ur<1,=NkTp 0 Tc) : 17
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The derivative of Eq(17) with respect toT gives the heat Moreover, Egs.(18) and (19) show that bothCTC— and

capacity of the system at a temperatlirbelow T, as ACq_increase monotonically as the paramegencreases,
p+1) [ T\P while Cr+ is not a monotonical function op and has a
Cr<1,=Nkp(p+ 1)—§(p) 7] (18 minimum, but the minimum value is close to the value of
C

C++ atp=2. This indicates that, in general, in the vicinity of
Cc

From Egs.(16) and (18), we obtain the difference between T, the larger the value of, the larger the energy that is
the heat capacities at critical temperatiiteas required to raise a Bose system to a higher temperature state,
particularly for the system in the BEC phase.
ACs = Coe— Cor = Nko? 9,(1) (19 On the other hand, it can be seen from Ep) that when
T T, Te P g,-1(1)" the temperature is quite |O\KET<TC decreases gsincreases,

) h hat d di h and the larger the value @f, the more quickly that:T<Tc
Equation(19) shows that depending on the parameer Itends to zero. There is no difficulty in understanding it. At

g;%?éi;ecmartn?y Ohr, may not display a discontinuity in the heavery Iovv_ temperatures, the larger the valuepothe larger
¢ the fraction of Bosons in the ground state, such that the less
n 1 the number of Bosons excited when the temperature raises.
p= —+2 —>2, (20 In summary, to our knowledge it is the first time for giv-
S b ing the general conditions for Bose-Einstein condensation of
a trapped Bose gas in any dimension and for judging whether
the heat capacity of the system at critical temperature is con-
1<p<2, (21)  tinuous or not. Although we have restricted the discussion in
this paper to the case of the ideal gas, the essential physics
C will be continuous aff ;. It can be seen from E@20) that  can be revealed. Of course, the inclusion of interactions be-
whenn/s<2, an external potential will decide whether the tween the particles profoundly changes the nature of the
heat capacity of the system at critical temperature is continuBEC phase transitiof12], and is important for the occur-
ous or not. For example, for a three-dimensional nonrelativrence of a macroscopic phase. When the interactions be-
istic ideal Bose gasn=3 ands=2. Then,n/s=3/2<2.  tween the particles are considered, the two conditions ob-
When the system is confined in a rigid container of volifne tained here can be changed but Etp) is still valid. Some
(i.e., t;—», t,—», andtz—x), C(=C,) is continuous at calculated results show that the effects of the weak interac-
T. becausep=3/2<2. When the system is confined by a tion on the two conditions may only change the boundg. of
harmonic potential, i.et;=t,=t;=2, Cis discontinuous at It would be very interesting to study further how the inter-

C will be discontinuous aT ... If p satisfies

T. becausep=3>2. actions would affect the conditions presented here.
[1] M. H. Andersonet al., Science269, 198 (1995. [8] H. E. Haber and H. A. Weldon, Phys. Rev. Le#, 1497
[2] C. C. Bradelyet al,, Phys. Rev. Lett75, 1687(1995. (1981.
[3] K. B. Daviset al, Phys. Rev. Lett75, 3969(1995. [9] W. Ketterle and N. J. van Druten, Phys. Rev. 54, 656
[4] S. R. de Groott al, Proc. R. Soc. London, Ser. 203 266 (1996.
(1950. [10] T. T. Chouet al, Phys. Rev. A53, 4257(1997).
[5] R. Beckmanret al, Phys. Rev. Lett43, 1277(1979. [11] V. Bagnatoet al, Phys. Rev. A35, 4354(1987).
[6] H. P. Rojas, Phys. Lett. 234, 13 (1997). [12] K. Huang, Statistical Mechanics2nd ed.(Wiley, New York,
[7] S. H. Kim, Int. J. Bifurcation Chaos Appl. Sci. Eng, 1053 1987.

(1999.



