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Bose-Einstein condensation of a trapped gas inn dimensions
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The critical temperature for Bose-Einstein condensation, ground-state fraction, and heat capacity of an ideal
gas of Bose particles that are confined by ann-dimensional generic power-law potential trap are derived. The
conditions for Bose-Einstein condensation and the discontinuous conditions of the heat capacity at critical
temperature are obtained. All these quantities and conditions are found to vary markedly with the dimension-
ality of space, characteristics of particles, and shape of the external potential. The results obtained here are
universal.@S1050-2947~99!07306-0#
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At present there is a renewed interest in Bose-Eins
condensation~BEC!, particularly after the achievement t
create BEC in magnetically trapped alkali gases@1–3#. The
constrained role of the external potential for atomic ga
may change the performance of gases. It can be said tha
external potential creates favorable conditions for controll
degenerate atomic gases and quantitatively investiga
their performance. On the other hand, there are differ
properties for Bose gases in different dimensions and dif
ent kinematics characteristics of particles@4–9#. Therefore, it
is very important to investigate thoroughly the main char
teristics and to obtain some general theoretical conclus
of a trapped Bose gas in any dimension.

In this paper, we investigate the conditions for BEC a
the continuity conditions of the heat capacity of an ide
Bose gas with any kinematics characteristic confined by
n-dimensional generic power-law potential trap. First, we
rive the critical temperatureTc , ground-state fraction, an
heat capacity of the system. Then, from these results,
deduce the two conditions mentioned above and make s
significant discussions.

We consider ann-dimensional ideal Bose gas with th
energy spectrum,

«5aps1(
i 51

n

« iUxi

ai
U t i

, ~1!

wherea, s, ai , « i , and t i ( i 51,2,...,n) are all positive con-
stants,p is the momentum of a particle, andxi are the com-
ponents of coordinate in the directioni of a particle. When
the particle number in the system is larger and the le
spacing is much smaller than the mean kinetic energy
particles~this condition is often satisfied; for example, in th
experiment of Andersonet al. @1# in 1995 considering BEC
when the frequency of the harmonic potentialv52p
3200/s is adopted and the temperature approaches a con
sate temperatureTc'170 nK, one still has\v/kT'5.6
31023!1), the Thomas-Fermi’s semiclassical approxim
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tion is valid @10#. Thus, the total number of particlesN and
the total energyU of the system may be expressed, resp
tively, as

N5N01(
g

e~«2m!/kT21
5N01

g

hn E dnpdx1 ...dxn

z21e«/kT21
~2!

and

U5(
g«

e~«2m!/kT21
5

g

hn E «dnpdx1 ...dxn

z21e«/kT21
, ~3!

whereN0 is the number of particles in the ground state,k and
h are, respectively, the Boltzmann and the Plank constang
is the spin degenerate factor,m is the chemical potential, and
z5exp(m/kT) is the fugacity. Using the Bose integration,

gl~z!5
1

G~ l ! E0

` xl 21

z21ex21
dx, ~4!

one can obtain
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and
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from Eqs.~2! and ~3!, respectively, where

r5
n
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, ~7!

G~ l !5E
0

`

yl 21e2ydy, ~8!
4657 ©1999 The American Physical Society



h

u

e
lit
c

t
iv

th
ic
tia

cu
la
,
to
o

e

-
in
us
nc

e
:

en-

.
ion,
m

nifi-

ures
ig.

ose
dis-

con-
e or
l is
t

-

4658 PRA 59ZIJUN YAN
is the Gamma function, andCn5pn/2/G(n/211).
WhenT→Tc , there arem→0 andN050. Then, we ob-

tain

Tc5
1

k F Nhnan/s)
i 51

n

« i
1/t i

2ngCnGS n

s
11D)

i 51

n

aiGS 1

t i
11D z~r!

G 1/r

~9!

from Eq.~5!, wherez(x) is the Riemann zeta function whic
equalsgx(1) whenx>1. At a temperatureT belowTc , from
Eqs.~5! and ~9!, one can obtain the ground-state fraction,

N0

N
512S T

Tc
D r

. ~10!

For a three-dimensional nonrelativistic system familiar to
all, n53 ands52. Equations~9! and~10! can be reduced to
the corresponding results obtained in Ref.@11#. However, the
results derived in the present paper not only are the gen
forms of some important conclusions obtained in current
erature, but also may be used to derive some general con
sions about BEC.

It can be seen from Eq.~9! that the relevant quantity tha
determines whether or not the system can condense is g
by r. That is, only when the following equation,

r5
n

s
1(

i 51

n
1

t i
.1, ~11!

is satisfied, may BEC take place. Equation~11! shows that
the conditions for BEC of a Bose gas depend not only on
dimensionality of spacen and the kinematics characterist
of particless, but also on the shape of the external poten
determined by all exponentst i . For a Bose gas withn/s
<1, an external potential has a decisive effect on the oc
rence of BEC. For example, for a two-dimensional nonre
tivistic Bose gas,n52 ands52. When the system is free
t1→` and t2→` @11#. BEC cannot take place according
Eq. ~11!. But when the system is trapped in a harmonic p
tential, t15t252 and BEC may take place. Equation~11!
also shows that when a proper external potential is tak
BEC may take place in any dimensional space.

For a free Bose gas, allt i→`. Then, Eq.~11! may be
written as

n

s
.1. ~12!

Equation~12! is consistent with the conditions for BEC ob
tained in Ref.@5#. This shows that the conditions derived
this paper are more general, especially that they can be
to expound the effect of external potential on the occurre
of BEC.

When the external potential is symmetric, i.e.,t15t2
5¯5tn5t, Eq. ~11! may be simplified as

n

s
1

n

t
.1. ~13!
s

ral
-
lu-

en

e

l

r-
-

-

n,

ed
e

It is worthwhile to point out that this does not imply that th
energy spectrum Eq.~1! may be written as an isotropic form

«5aps1bS r

r 0
D t

, ~14!

where bothb andr 0 are positive constants andr is the coor-
dinate of a particle. But, it can be shown that when the
ergy spectrum is isotropic, Eq.~13! is also valid. This also
shows that Eq.~11! is quite general.

From Eqs.~10! and ~11!, one can obtain

UdN0

dT U
Tc

.
N

Tc
. ~15!

Equation~15! implies that withoutudN0 /dTu.N/T at a cer-
tain temperatureT with N050, there cannot be any BEC
This is quite natural, because BEC is a phase transit
which makes a finite fraction of the particles in the syste
occupy the ground state. Thus, Eq.~15! depicts a common
characteristic at the onset of BEC and has universal sig
cance. Therefore, the curves ofN02T are always convex for
Bose systems in BEC phase, even though their curvat
may be different for different Bose systems, as shown in F
1.

Now, we discuss the heat capacity of the trapped B
gas. It is necessary to point out that the heat capacities
cussed here are ones with external potential being kept
stant rather than the heat capacities at constant volum
pressure. Under the condition that an external potentia
kept constant, from Eqs.~5! and~6!, one can obtain the hea
capacity of the system at a temperatureT aboveTc as

CT.Tc
5

]UT.Tc

]T
5NkFr~r11!

gr11~z!

gr~z!
2r2

gr~z!

gr21~z!G .
~16!

For a temperatureT below Tc , there isz51, so gr11(z)
5z(r11) and Eq.~6! may be expressed as

UT,Tc
5NkTr

z~r11!

z~r! S T

Tc
D r

. ~17!

FIG. 1. Ground-state fractionN0/N as a function of scaled tem
peratureT/T0 for different r.
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The derivative of Eq.~17! with respect toT gives the heat
capacity of the system at a temperatureT below Tc as

CT,Tc
5Nkr~r11!

z~r11!

z~r! S T

Tc
D r

. ~18!

From Eqs.~16! and ~18!, we obtain the difference betwee
the heat capacities at critical temperatureTc as

DCTc
5CT

c
22CT

c
15Nkr2

gr~1!

gr21~1!
. ~19!

Equation~19! shows that depending on the parameterr,
the system may or may not display a discontinuity in the h
capacityC at Tc . If

r5
n

s
1(

1

t i
.2, ~20!

C will be discontinuous atTc . If r satisfies

1,r<2, ~21!

C will be continuous atTc . It can be seen from Eq.~20! that
when n/s<2, an external potential will decide whether th
heat capacity of the system at critical temperature is cont
ous or not. For example, for a three-dimensional nonrela
istic ideal Bose gas,n53 and s52. Then, n/s53/2,2.
When the system is confined in a rigid container of volumeV
~i.e., t1→`, t2→`, and t3→`), C(5Cv) is continuous at
Tc becauser53/2,2. When the system is confined by
harmonic potential, i.e.,t15t25t352, C is discontinuous at
Tc becauser53.2.
t

u-
-

Moreover, Eqs.~18! and ~19! show that bothCT
c
2 and

DCTc
increase monotonically as the parameterr increases,

while CT
c
1 is not a monotonical function ofr and has a

minimum, but the minimum value is close to the value
CT

c
1 at r52. This indicates that, in general, in the vicinity o

Tc , the larger the value ofr, the larger the energy that i
required to raise a Bose system to a higher temperature s
particularly for the system in the BEC phase.

On the other hand, it can be seen from Eq.~18! that when
the temperature is quite low,CT,Tc

decreases asr increases,
and the larger the value ofr, the more quickly thatCT,Tc

tends to zero. There is no difficulty in understanding it.
very low temperatures, the larger the value ofr, the larger
the fraction of Bosons in the ground state, such that the
the number of Bosons excited when the temperature rais

In summary, to our knowledge it is the first time for giv
ing the general conditions for Bose-Einstein condensation
a trapped Bose gas in any dimension and for judging whe
the heat capacity of the system at critical temperature is c
tinuous or not. Although we have restricted the discussion
this paper to the case of the ideal gas, the essential phy
can be revealed. Of course, the inclusion of interactions
tween the particles profoundly changes the nature of
BEC phase transition@12#, and is important for the occur
rence of a macroscopic phase. When the interactions
tween the particles are considered, the two conditions
tained here can be changed but Eq.~15! is still valid. Some
calculated results show that the effects of the weak inte
tion on the two conditions may only change the bounds or.
It would be very interesting to study further how the inte
actions would affect the conditions presented here.
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