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Zero sound modes of dilute Fermi gases with arbitrary spin
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Motivated by the recent success of optical trapping of alkali-metal bosons, we have studied the zero sound
modes of dilute Fermi gases with arbitrary spinwvhich are spirs excitations (6= S<2f). The dispersion of
the mode(S) depends on a single Landau paramdi&?, which is related to the scattering lengths of the
system through a simple formula. Measuremen(estn a subset pthese modes in finite magnetic fields will
enable one to determine all the interaction parameters of the s)<$¢9650-294{@9)07206-9

PACS numbg(s): 03.75.Fi

Since the discovery of Bose-Einstein condensatiREC) in our previous worK 3], our symmetry classification of the
in dilute gases of alkali-metal atonj4], there have been spin structurewhich is a crucial step in our solutipralso
experimental efforts to cool alkali-metal fermions such asapplies to arbitrary potentials.

5Li and %K down to the degenerate limit. In current experi-  In addition to homogeneity, we shall also consider the

ments, alkali-metal atoms are confined in magnetic traps/€2K magnetic field limit, i.e., when the Zeeman energy is

which confine only the spin states aligned with the localmuch smaller than the kinetic energy of the system. These
. are the regimes where the spinor nature of the Fermi gas is

. $nanifested most clearly. As demonstrated by the recent ex-
suppressed. The recent success of optical trafi#hdiow-  periments at MIT[4], this limit can be easily achieved by

ever, changes the situation. In optical traps, different spirgpecifying the total spin of the system. Since the low energy
components are degenerate in the absence of magnetic fiel@§mnamics of the system is spin conserv|ig, the specified
One therefore has the opportunity to study dilute Bose gasespin cannot relax. The system, therefore, sees an effective
with integer hyperfine spin®r simply spin f>0 and Fermi magnetic field with which its spin would be in equilibrium, a
gases with spin§>1/2. In a recent papdB], we have dis- field that can be much smaller than the external 3. In
cussed the structure of Cooper pairs of alkali-metal fermionghe following, we shall refer to this effective field simply as

in optical traps. Since most alkali-metal fermions have spin magnetic field” B, with the understanding that it is a
f>1/2, their Cooper pairs can haegenspinJ ranging from Lagrange multiplier that determines the total spin of the sys-
0'to 2f— 1. The internal structures of these large spin Coopef€M[4]-
pairs will give rise of to a great variety of superfluid phe-
nomena.

The purpose of this paper is to study a keyrmalstate We begin with the linearized kinetic equation for the dis-
property of dilute Fermi gases with general sgimn the  tribution function matrixéiﬁp in the collisionless regime,
degenerate limit—their collisionless or “zero” sound. We
shall show that in addition to the ordinary density mode, the a5ﬁp(r,t) - (?ng -
system has additional modes corresponding to coherent in- T+Vp'v ong(r,t) = ﬁﬁfp(r't) =0. (D
terconversions of different spin species. These modes are the P
generalizations of the spin waves of spin 1/2 Fermi liquids.Our notations in Eq(l) are the same as in Réb]. Here,ng
As we sr]all_ sfee, the disptlalrski]on_s of the zero sound mo;:iq§ the T=0 Fermi function,v,=V se,, 5ﬁp is a(2f+1)
contain the information omll the interaction parameters o ; : ; -
the system, i.e., the set sfwave scattering lengthia } of x(2f+1) matrix in - spin - space, [ony(r,t)las

: _ _ = [dxe P Xy (r—=XI21) b (r +x/21)) where i, is the
two spinf atoms in the total spid channel. Thus, observa- .. o . .
. . . X field operator. The energy matri% describes the change in
tion of these modes will not only provide evidence of the o >
degenerate nature of the system, but also information abolff€ Hamiltonian due t@n,
the scattering Iengthaj, and hence the existence of super-

fluid ground state as well as their transition temperatures. [56p]a,8:f d7'fy gs(P,P NG 15y, 2
As in our previous study3], we shall focus on the ho-

mogenous case, i.e., without external potential. This is a nesvheredr’ meansdp’/(2)3, andf,, g5(p,p’) are the Lan-

essary step before studying trapped fermions. Moreover, it idau parameters, which can be extracted from the Hamil-

conceivable that optical traps of the form of cylindribaixes  tonian of the system derived by one of [i&. It is shown in

(rather than harmonic we)lde constructed in the future. In Ref. [5] that only the lowest hyperfine statésith spin f)

that case, the discussions here will be directly applicable. Awill remain in the optical trap and that the interactions be-
tween these spifi-atoms are spin conserving, of the form

A. Zero magnetic field

2f-1 J
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where and

Oum(r) == o p{IM[ T aB) i, (1) (1),

(IM|f,f,aB) are the Clebsch-Gordan coefficients for form-

ing a spind object from a spinF; and a spinf, particle[7],
gJ=47rh2aJ/MF, and M¢ is the mass of the atom. Pauli
principle implies that only eved’s exist in Eq.(3). Evalu-

ating (H;,) in Hartree-Fock approximation, and using the

fact that & l/fi(l’)l/fﬁ(r»:de[ Np(r) g, it is straightfor-
ward to show that

2f-1 J
foy.85= ZJ:ozz gJM:E_J (IM|ffya)(IM|FTSB), (4)

which is momentum independent as a resuls-ofave inter-
action. Note that |ig <0, the system will have a superfluid

instability towards spln} Cooper pairs at a sufficiently low
temperatureT(J) [3]. Our discussions for negatngg s there-

fore apply to temperatures abo¥é” but low enough that

the Fermi gas is degenerate. Before proceeding, we simplify

Eq. (1) by writing &n,=(—dn3/dey) v, which tums Egs.
(1) and(2) into
at;5+vp~V(;,3+62,3)=0, 52,;=N,:fa%55<13,3>, (5)

where Ne=mk:/27%#2 is the density of state of a single
spin component at the Fermi surfaég, is the Fermi wave

vector, and(( ))= f(dp/4m)( ) denotes the angular average
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2f—1 4k a
Fo—— 3 223+ 1)W(FFFF;3S),  (10)
J=0,2

where we have used the fact thN'q:gJ=2kFaJ/w and
(—1)?""J=—1 in obtaining Eq(10). Equations(8) and(9)
imply that

ot

dJ S,M S,M
— V- V)yé )+F<S>vp-v<y§) =0, (11

which is precisely the equation for the ordinary zero sound
mode with only /=0 spin-symmetric Landau parameter
FS_, nonzero[6] and is given byF(®,

The dispersion relations of modes described by(E#). is
well known[6]. They are

(12

The properties of the modes depend crucially on the sign of
the parameter§®. WhenF(®>0, one has a well-defined
propagating mode. When-1<F(®®<0, the zero sound
mode is Landau damped. WhéH{9<—1, the system is
unstable against spig-distortions. Because of the dilute
limit, kra<1 and hencdF®|<1, stability against spits
distortions is guaranteed.

It is instructive to consider some special cases.

over the Fermi surface. Note that the quasiparticle energy (i) The density modesS=?) for fermions with arbitrary

625 is isotropic ink space as a consequence of theave
interactions between the particles.

Next, we note that a rotatio in spin space will cause a
changea,—D{}(6)as, whereD!) is the rotation matrix in
the spinf space. This mphe@—w’zf)‘”%f)“’*. From
Egs.(2) and (4), one can see thaiép transforms the same
way, de,— DM 5e,DN*. Sincev is made up of two spiri-
objects, it can be decomposed into a sum of spaquantities
»SM) - which  transform  as [DpEMHN+]
=[SM7], D, where 0=S<2f, —S<M<S. The so-
lution of this equation is easily seen to f@n(S™], g
«(fa|STMB). We then have the representation

(SM)(r t)
Se (SM)(r t) ©

Substituting Eq(6) into Eq. (5) and using the identity

( [Vp(rit)]aﬁ
[Oep(rt) ]ag

) E (fa|STMB)

> (M| ffya)(IM'|FE8B)(f5|STMy)

yoMm'

=(—)2"3(23+ 1)W(Ff ;9 (fa|STMBY), 7

whereW is the Racah coefficiei8], Eq. (5) becomes diag-
onal in the §,M) modes,
oM vy V(M 4 5e5M) <0, ®)

SeSM = FO ({5, 9

spin f Using the fact thatW(ffff;J0)=(—1)?""Y/(2f
+1), we have

4

(5=0)=—
F 7T(2f+1) J=

(2+1kea. (13

In particular, if there are no superfluid instabilities in all
angular momenturd channel, therF($=9>0 and the den-
sity mode will not be Landau damped.

(i) Fermions with spin-1/2, 3/2and 5/2 For f=1/2, Eq.
(13) reduces to the well-known resul&(S=0=—F(=1)
=Nggo=2kray/mh [6]. Forf=23/2, using the tabulated val-
ues of the § symbols[9] to calculate the Racah coefficients,
we find FG& 9=k (ay+5a,)/m, FEV=FE=3)
=—kg(apg+ay)/m, and F(5=2)=k(ag—3ay,)/w. Thus the
S=1 and 3 modes are always degenerate, and the degen-
eracy between th&=0 andS=2 modes are lifted only by
the interaction in thd=2 channel. If there are no superfluid
instabilities in anyJ channel, i.e., bothay,a,>0, thenS
=1 andS=3 modes are always Landau damped.

For largef’s there are no obvious systematics except for
the S=0 result noted above. Modes for differeSts are
typically not degenerate, barring accidental valuegjtﬁ. In

the case of =5/2, such as®Na and2Rb, we obtain
F(O=(2ay/3+ 10a,/3+ 6a,) kg /7,
FM=—(2a,/3+46a,/21— 6a,/7)ke / 7,
F@)=(2ay/3+a,/3—3a,)kg/,

F®=—(2ay/3—29,/21+ 19a,/7)kg / ,
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F4=(2ay/3—5a,/3—a,)ke /1, 1.0
and ®
F(S): - (2a0/3+ 25a2/21+ a4/7) k;: /.
(i) Undamped zeroth sound modes in the dilute limit.
Zero sound modes3M) with F(®>0 are propagatin6]. 05 |
Because of the dilute conditiokea <1, we haveF(9<1.
In this limit, Eq. (12) can be integrated to giVié],
0®(q)=que(1+2e 26 2F), (14)
Since F®<1, the exponential term in Eq14) will have
0.0

little contribution. The frequencies of zero sound for&#re 015
essentially given byjur. As a result, it will be difficult to qv,
obtain information on the interaction parameters from zero

sound frequencies in zero field. On the other hand, we shall FIG. 1. The zero sound mode f6(%=0.5>0, f arbitrary, and
see that even a small magnetic field will cause significanf)=+0.2. From upper to lower, the curves correspond Mo
changes in the zero sound dispersions, which lead to many—2,-1,0, 1, and 2, respectively, qug, andQ) are plotted
observable features and enable one to determine all the imvith arbitrary units. The vertical intercepts of curviels=—2 and

1.0

teraction parameters.

B. Weak magnetic fields

When B#0, the kinetic equation, Eq(l), will have

an additional termZ,=(i/%)[€,,n,] on the left-hand

side [6]. At the same time, theequilibrium distribution
function and quasiparticle energgienoted aég’B and EEVB,
respectively are altered from the zero field value&g(and
€)). The difference ded=eg—e€y s [5ep]aﬁ
=—uBF g+ [dr oy pal SN0 15y,

with  6n° —an n
=(dn°/dep) 5%8. These two relations imply

[Seplap=—uBFiz—Nefy, s S€plsy (15

whereu is the magnetic moment of the atom, dﬁﬁﬁ is the
matrix representation of the component of the hyperfine
spinF operator. The solution of E¢15) is 5e =cF?2. Using
the fact that £7),5%(fa|1f0B), it is easy to show from
Egs.(6), (10), and(15) that
Seg=— uBF?,

Bef=B/(1+F®). (16)

Linearizing about the equilibrium configuraticﬁﬁB and
€55, We haveZ,=(i/4)([ 53, 8n,]+[ Se,,8n3]). From the

definition ~ on,=—(dn%/de,) vy, the relation &nd
=(&n°/aep)529 and the property d&—pB)[vplap
—ESM<fa|SfM,8)Mv(SM) which follows from Eq.(6), we
have

[
[Zo)as= h( )E (falstMBY QM) (v + 56>,
(17)
where Q= uB®"/#. With this additional term on the left-

-1 arew?® 2=20(1+F®) and 0 Y=0Q(1+F®), respec-
tively. The horizontal intercepts of tHd =1 andM =2 curves are
gqve=Q andg,ve=2Q), respectively. Zero sound modes for other
S have different number of branches but behave similarly.

Thus, the zero sound modes can still be classified by the
quantum numbers§;M) in the weak field limit. The equa-
tion for the dispersion now becomes

1dx quex—QOM
1:F(S)f _qF—, (19)
,12 w+QM—QvFX
which, upon integration, gives
i ) Iw+QM+QvF _ uB 20
FO  2que Mot QM= que 1+FD°

Since the collective modes are excitations above the
ground state, we only need to study the-0 solutions of
Eqg. (20). In the following, we shall discuss only the zero
sound modes that are not Landau damped, which require
|o+QM|>que in Eg. (20). While many features of these
propagating modes can be obtained analytically, we first dis-
play the numerical solutions of Eq20) for S=3/2 with
FOO>0 andF®<0 in Figs. 1 and 2, respectively. The no-
table features of these modes are:

(i) Zero sound modes near =0. Near =0,
que/|OM|<F®; it is easily seen from E¢(20) that[10]

el

Since wSM>0, only QM <0 modes can be excited gt
=0. Note thatall g=0 modes in finite field are not Landau

—OM(1+FO) 1+

oM (q) =

que
EG QM

(21)

hand side of Eq(1) and repeating the procedure as before,damped irrespective of the sign ofSE From Eq.(21), one

we find that Eq.(9) remains unchanged, whereas E8)
becomes

(S M) (S M)

oS+ vy V=iQMIEM + 5l 0. (19

can also see that a#(S M) modes increasédecreaseas
g® for F®>0 and<0 (see also Figs. 1 and.2

(i) The F®>0 caseFor F(®>0, zero sound modes with
OM>0 emerge fromw=0 when q>qMEQM/vF (see
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FIG. 2. The zero sound mode for the ca&8&=—0.2<0, f
arbitrary. From upper to lower, the curves correspondite —2
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(iii) The F®®<0 case.We find that theQM <0 modes
decrease monotonically ag increases, and vanish eqw

=|QM|/vg in @a manner similar to Eq22). The entire mode
M lies below the corresponding particle-hole continuum, i.e.,
w<—QOM—qug. Solving Eq.(20) graphically, one can also
see that there are no solutions wig™>0 when QM >0,
implying the absence of zero sound modes vt >0.
Determination of scattering lengthsFor scattering
lengths|a | ~100ag whereag is the Bohr radius, a Fermi
gas of density~10" cm™* will have kra ~107*, which
implies {F®}~10"1. As mentioned in PartA), it will be
hard to determine the scattering Iengtlnjsfrom theB=0
zero sound modes for these valueqBf9} because of their
small contributions. On the other hand, in the presence of
magnetic field, different zero sound mode&xN1) are sepa-
rated. Since the interaction contributions to the zero sound

and—1. The value of} and the expressions for the vertical inter- frequency aq=80. and to the critical wave-vectayy are of .
cepts are identical to those in Fig. 1. The horizontal intercepts aréhe form 1+ F( instead of the essential singularity form in

q_we=Q andq_,vg=2(), respectively.

Fig. 1). Expanding Eq(20) about (@w=0,0=qy), one finds
that the dispersion in this neighborhood is

w—(qQue—QM)=2QMe 1T IFOAMIW) (59
Another simple feature one can derive from E20) is that
as q increases so thatr>|OM|, oM (q)—w®(q)
— QM. The dispersions for all§,M) modes become paral-
lel to w=qug, with all QM <0(>0) modes shifted up
(down) by an amount ofM Q| (see Fig. L Itis also straight-
forward to show that zero sound modes wittM #0 lie
above the particle-hole continuum of that particullastate,
e, 0>—-—QM+que.

Eqg. (14), their contributions should be measurable keg,
~107! or even smaller. Note also that there are only (2
+1)/2 scattering Iength&aj,(‘]=0,2, ..., X—=1)] whereas
the number of zeroth sound modes in finite field is
>2" (2S+1)=(2f+1)2. Even though some of these modes
may not be excitedas in the case df(®<0), there are still
more the conditions oa, provided by the zero sound fre-

quencies than the number aj themselves. Thus, it is pos-
sible to determine the entire set of scattering Ieng{mﬁ,
from the zero sound dispersions.
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