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Zero sound modes of dilute Fermi gases with arbitrary spin

S.-K. Yip* and Tin-Lun Ho
Physics Department, The Ohio State University, Columbus, Ohio 43210

~Received 6 October 1998!

Motivated by the recent success of optical trapping of alkali-metal bosons, we have studied the zero sound
modes of dilute Fermi gases with arbitrary spin-f , which are spin-S excitations (0<S<2 f ). The dispersion of
the mode~S! depends on a single Landau parameterF (S), which is related to the scattering lengths of the
system through a simple formula. Measurement of~even a subset of! these modes in finite magnetic fields will
enable one to determine all the interaction parameters of the system.@S1050-2947~99!07206-6#

PACS number~s!: 03.75.Fi
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Since the discovery of Bose-Einstein condensation~BEC!
in dilute gases of alkali-metal atoms@1#, there have been
experimental efforts to cool alkali-metal fermions such
6Li and 40K down to the degenerate limit. In current expe
ments, alkali-metal atoms are confined in magnetic tra
which confine only the spin states aligned with the lo
magnetic field. As a result, the spinor nature of the atom
suppressed. The recent success of optical trapping@2#, how-
ever, changes the situation. In optical traps, different s
components are degenerate in the absence of magnetic fi
One therefore has the opportunity to study dilute Bose ga
with integer hyperfine spins~or simply spin! f .0 and Fermi
gases with spinsf .1/2. In a recent paper@3#, we have dis-
cussed the structure of Cooper pairs of alkali-metal fermi
in optical traps. Since most alkali-metal fermions have s
f .1/2, their Cooper pairs can haveevenspinJ ranging from
0 to 2f 21. The internal structures of these large spin Coo
pairs will give rise of to a great variety of superfluid ph
nomena.

The purpose of this paper is to study a keynormal-state
property of dilute Fermi gases with general spinf in the
degenerate limit—their collisionless or ‘‘zero’’ sound. W
shall show that in addition to the ordinary density mode,
system has additional modes corresponding to coheren
terconversions of different spin species. These modes are
generalizations of the spin waves of spin 1/2 Fermi liqui
As we shall see, the dispersions of the zero sound mo
contain the information onall the interaction parameters o
the system, i.e., the set ofs-wave scattering lengths$a

J
% of

two spin-f atoms in the total spinJ channel. Thus, observa
tion of these modes will not only provide evidence of t
degenerate nature of the system, but also information a
the scattering lengthsa

J
, and hence the existence of supe

fluid ground state as well as their transition temperatures
As in our previous study@3#, we shall focus on the ho

mogenous case, i.e., without external potential. This is a n
essary step before studying trapped fermions. Moreover,
conceivable that optical traps of the form of cylindricalboxes
~rather than harmonic wells! be constructed in the future. I
that case, the discussions here will be directly applicable
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in our previous work@3#, our symmetry classification of the
spin structure~which is a crucial step in our solution! also
applies to arbitrary potentials.

In addition to homogeneity, we shall also consider t
weak magnetic field limit, i.e., when the Zeeman energy
much smaller than the kinetic energy of the system. Th
are the regimes where the spinor nature of the Fermi ga
manifested most clearly. As demonstrated by the recent
periments at MIT@4#, this limit can be easily achieved b
specifying the total spin of the system. Since the low ene
dynamics of the system is spin conserving@5#, the specified
spin cannot relax. The system, therefore, sees an effec
magnetic field with which its spin would be in equilibrium,
field that can be much smaller than the external fieldBext. In
the following, we shall refer to this effective field simply a
‘‘magnetic field’’ B, with the understanding that it is
Lagrange multiplier that determines the total spin of the s
tem @4#.

A. Zero magnetic field

We begin with the linearized kinetic equation for the d
tribution function matrixdn̂p in the collisionless regime,

]dn̂p~r ,t !

]t
1vp•“S dn̂p~r ,t !2

]np
o

]ep
dêp~r ,t ! D 50. ~1!

Our notations in Eq.~1! are the same as in Ref.@6#. Here,np
o

is the T50 Fermi function,vp5¹pep , dn̂p is a (2f 11)
3(2 f 11) matrix in spin space, @dn̂p(r ,t)#ab

5*dxe2 ip•x^cb
1(r2x/2,t)ca(r1x/2,t)& where ca is the

field operator. The energy matrixdê describes the change i
the Hamiltonian due todn̂,

@dep#ab5E dt8 f ag,bd~p,p8!@dnp8#dg , ~2!

wheredt8 meansdp8/(2p)3, and f ag,bd(p,p8) are the Lan-
dau parameters, which can be extracted from the Ham
tonian of the system derived by one of us@5#. It is shown in
Ref. @5# that only the lowest hyperfine states~with spin f )
will remain in the optical trap and that the interactions b
tween these spin-f atoms are spin conserving, of the form

H int5
1

2 (
J50,2, . . .

2 f 21

g
J (
M52J

J E drOJM
1 ~r !OJM~r !, ~3!i-
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where OJM(r )5(ab^JMu f f ab&ca(r )cb(r ), and
^JMu f 1f 2ab& are the Clebsch-Gordan coefficients for form
ing a spin-J object from a spin-f 1 and a spin-f 2 particle@7#,
g

J
54p\2a

J
/MF , and MF is the mass of the atom. Pau

principle implies that only evenJ’s exist in Eq.~3!. Evalu-
ating ^H int& in Hartree-Fock approximation, and using th
fact thatd^ca

1(r )cb(r )&5*dt@dnp(r )#ba , it is straightfor-
ward to show that

f ag,bd52 (
J50,2, . . .

2 f 21

g
J (
M52J

J

^JMu f f ga&^JMu f f db&, ~4!

which is momentum independent as a result ofs-wave inter-
action. Note that ifg

J
,0, the system will have a superflui

instability towards spin-J Cooper pairs at a sufficiently low
temperatureTc

(J) @3#. Our discussions for negativeg
J
’s there-

fore apply to temperatures aboveTc
(J) but low enough that

the Fermi gas is degenerate. Before proceeding, we sim
Eq. ~1! by writing dn̂p5(2]np

o/]ep) n̂ p̂ , which turns Eqs.
~1! and ~2! into

] tn̂ p̂1vp•“~ n̂ p̂1dê p̂!50, dê p̂5NFf ag,bd^n̂ p̂&, ~5!

where NF5mkF/2p2\2 is the density of state of a singl
spin component at the Fermi surface,kF is the Fermi wave
vector, and̂ ( )&[*(dp̂/4p)( ) denotes the angular averag
over the Fermi surface. Note that the quasiparticle ene
dê p̂ is isotropic ink space as a consequence of thes-wave
interactions between the particles.

Next, we note that a rotationuW in spin space will cause a
changeaa→Dab

( f ) (uW )ab , whereDab
( f ) is the rotation matrix in

the spin-f space. This impliesn̂→ n̂85D̂ ( f )n̂D̂ ( f )1. From
Eqs. ~2! and ~4!, one can see thatdêp transforms the same
way, dêp→D̂ ( f )dêpD̂

( f )1. Sincen̂ is made up of two spin-f
objects, it can be decomposed into a sum of spin-S quantities
n̂ (S,M ), which transform as @D̂ ( f )n̂ (S,M )D̂ ( f )1#ab

5@ n̂ (S,M8)#abDM8M
(S) , where 0<S<2 f , 2S<M<S. The so-

lution of this equation is easily seen to be@dn̂(S,M )#ab
}^ f auS f Mb&. We then have the representation

S @np~r ,t !#ab

@dep~r ,t !#ab
D 5(

S,M
^ f auS f Mb&S n p̂

(S,M )
~r ,t !

de p̂
(S,M )

~r ,t !
D . ~6!

Substituting Eq.~6! into Eq. ~5! and using the identity

(
gdM8

^JM8u f f ga&^JM8u f f db&^ f duS f Mg&

5~2 !2 f 2J~2J11!W~ f f f f ;JS!^ f auS f Mb&, ~7!

whereW is the Racah coefficient@8#, Eq. ~5! becomes diag-
onal in the (S,M ) modes,

] tn̂ p̂
(S,M )

1vp•“~ n̂ p̂
(S,M )

1dê p̂
(S,M )

!50, ~8!

de p̂
(S,M )

5F (S)^n p̂
(S,M )

&, ~9!
fy

y

F (S)52 (
J50,2, . . .

2 f 21 4kFa
J

p
~2J11!W~ f f f f ;JS!, ~10!

where we have used the fact thatNFg
J
52kFa

J
/p and

(21)2 f 2J521 in obtaining Eq.~10!. Equations~8! and~9!
imply that

S ]

]t
1vp•¹ D n p̂

(S,M )
1F (S)vp•“^n p̂

(S,M )
&50, ~11!

which is precisely the equation for the ordinary zero sou
mode with only l 50 spin-symmetric Landau paramet
F l 50

s nonzero@6# and is given byF (S).
The dispersion relations of modes described by Eq.~11! is

well known @6#. They are

15F (S)E
21

1 dx

2

qvFx

v2qvFx
. ~12!

The properties of the modes depend crucially on the sign
the parametersF (S). WhenF (S).0, one has a well-defined
propagating mode. When21,F (S),0, the zero sound
mode is Landau damped. WhenF (S),21, the system is
unstable against spin-S distortions. Because of the dilut
limit, kFa!1 and henceuF (S)u,1, stability against spin-S
distortions is guaranteed.

It is instructive to consider some special cases.
(i) The density modesn̂ (S50) for fermions with arbitrary

spin f. Using the fact thatW( f f f f ;J0)5(21)2 f 2J/(2 f
11), we have

F (S50)5
4

p~2 f 11! (
J50,2, . . .

2 f 21

~2J11!kFa
J
. ~13!

In particular, if there are no superfluid instabilities in a
angular momentumJ channel, thenF (S50).0 and the den-
sity mode will not be Landau damped.

(ii) Fermions with spin-1/2, 3/2, and 5/2. For f 51/2, Eq.
~13! reduces to the well-known resultsF (S50)52F (S51)

5NFg052kFa0 /p\ @6#. For f 53/2, using the tabulated val
ues of the 6j symbols@9# to calculate the Racah coefficient
we find F (S50)5kF(a015a2)/p, F (S51)5F (S53)

52kF(a01a2)/p, and F (S52)5kF(a023a2)/p. Thus the
S51 and 3 modes are always degenerate, and the de
eracy between theS50 andS52 modes are lifted only by
the interaction in theJ52 channel. If there are no superflui
instabilities in anyJ channel, i.e., botha0 ,a2.0, then S
51 andS53 modes are always Landau damped.

For largef ’s there are no obvious systematics except
the S50 result noted above. Modes for differentS’s are
typically not degenerate, barring accidental values ofg

J
’s. In

the case off 55/2, such as22Na and 86Rb, we obtain

F (0)5~2a0/3110a2/316a4!kF /p,

F (1)52~2a0/3146a2/2126a4/7!kF /p,

F (2)5~2a0/31a2/323a4!kF /p,

F (3)52~2a0/3229a2/21119a4/7!kF /p,
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F (4)5~2a0/325a2/32a4!kF /p,

and

F (5)52~2a0/3125a2/211a4/7!kF /p.

(iii) Undamped zeroth sound modes in the dilute lim
Zero sound modes (S,M ) with F (S).0 are propagating@6#.
Because of the dilute conditionkFa

J
!1, we haveF (S)!1.

In this limit, Eq. ~12! can be integrated to give@6#,

v (S)~q!5qvF~112e22e22/F(S)
!. ~14!

Since F (S)!1, the exponential term in Eq.~14! will have
little contribution. The frequencies of zero sound for allSare
essentially given byqvF . As a result, it will be difficult to
obtain information on the interaction parameters from z
sound frequencies in zero field. On the other hand, we s
see that even a small magnetic field will cause signific
changes in the zero sound dispersions, which lead to m
observable features and enable one to determine all the
teraction parameters.

B. Weak magnetic fields

When BÞ0, the kinetic equation, Eq.~1!, will have
an additional term Ip5( i /\)@ êp ,n̂p# on the left-hand
side @6#. At the same time, theequilibrium distribution
function and quasiparticle energy~denoted asn̂p,B

o and êp,B
o ,

respectively! are altered from the zero field values (n̂p
o and

êp
o). The difference dêp

o5 êp,B
o 2 êp

o is @dep
o#ab

52mBFab
z 1*dt8 f ag,bd@dnp8

o
#dg , with dn̂p

o5n̂p,B
o 2n̂p

o

5(]no/]ep)dêp
o . These two relations imply

@dep
o#ab52mBFab

z 2NFf ag,bd@dep
o#dg , ~15!

wherem is the magnetic moment of the atom, andFab
z is the

matrix representation of thez component of the hyperfine
spinF operator. The solution of Eq.~15! is dêp

o5cF̂z. Using
the fact that (Fz)ab}^ f au1 f 0b&, it is easy to show from
Eqs.~6!, ~10!, and~15! that

dêp
o52mBeffF̂z, Beff5B/~11F (1)!. ~16!

Linearizing about the equilibrium configurationn̂p,B
o and

êp,B
o , we haveIp5( i /\)(@dêp

o ,dn̂p#1@dêp ,dn̂p
o#). From the

definition dn̂p52(]np
o/]ep) n̂ p̂ , the relation dn̂p

o

5(]np
o/]ep)dê p̂

o , and the property (a2b)@np#ab

5(SM^ f auS f Mb&Mn p̂
(S,M ) which follows from Eq.~6!, we

have

@Ip#ab5
i

\ S ]no

]ep
D(

SM
^ f auS f Mb&~VM !~n p̂

(S,M )
1de p̂

(S,M )
!,

~17!

where V[mBeff/\. With this additional term on the left
hand side of Eq.~1! and repeating the procedure as befo
we find that Eq.~9! remains unchanged, whereas Eq.~8!
becomes

] tn̂ p̂
(S,M )

1@vp•“2 iVM #~ n̂ p̂
(S,M )

1dê p̂
(S,M )

!50. ~18!
.

o
all
t

ny
in-

,

Thus, the zero sound modes can still be classified by
quantum numbers (S,M ) in the weak field limit. The equa-
tion for the dispersion now becomes

15F (S)E
21

1 dx

2

qvFx2VM

v1VM2qvFx
, ~19!

which, upon integration, gives

1

F (S)
5

v

2qvF
ln

v1VM1qvF

v1VM2qvF
21, V5

mB

11F (1)
. ~20!

Since the collective modes are excitations above
ground state, we only need to study thev.0 solutions of
Eq. ~20!. In the following, we shall discuss only the zer
sound modes that are not Landau damped, which req
uv1VM u.qvF in Eq. ~20!. While many features of thes
propagating modes can be obtained analytically, we first
play the numerical solutions of Eq.~20! for S53/2 with
F (S).0 andF (S),0 in Figs. 1 and 2, respectively. The no
table features of these modes are:

(i) Zero sound modes near q50. Near q50,
qvF /uVM u!F (S); it is easily seen from Eq.~20! that @10#

v (S,M )~q!52VM ~11F (S)!F11
1

3F (S) S qvF

VM D 2

1•••G .

~21!

Since v (S,M ).0, only VM,0 modes can be excited atq
50. Note thatall q50 modes in finite field are not Landa
damped irrespective of the sign of F(S). From Eq.~21!, one
can also see that allv (S,2uM u) modes increase~decrease! as
q2 for F (S).0 and,0 ~see also Figs. 1 and 2!.

(ii) The F(S).0 case.For F (S).0, zero sound modes with
VM.0 emerge fromv50 when q.q

M
[VM /vF ~see

FIG. 1. The zero sound mode forF (2)50.5.0, f arbitrary, and
V510.2. From upper to lower, the curves correspond toM
522, 21, 0, 1, and 2, respectively.v, qvF , andV are plotted
with arbitrary units. The vertical intercepts of curvesM522 and
21 are v (2,22)52V(11F (2)) and v (2,21)5V(11F (2)), respec-
tively. The horizontal intercepts of theM51 andM52 curves are
q1vF5V andq2vF52V, respectively. Zero sound modes for oth
S have different number of branches but behave similarly.
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Fig. 1!. Expanding Eq.~20! about (v50,q5qM), one finds
that the dispersion in this neighborhood is

v2~qvF2VM !52VMe2(111/F(S))(2VM /v). ~22!

Another simple feature one can derive from Eq.~20! is that
as q increases so thatqvF@uVM u, v (S,M )(q)→v (S)(q)
2VM . The dispersions for all (S,M ) modes become para
lel to v5qvF , with all VM,0(.0) modes shifted up
~down! by an amount ofuMVu ~see Fig. 1!. It is also straight-
forward to show that zero sound modes withVMÞ0 lie
above the particle-hole continuum of that particularM state,
i.e., v.2VM1qvF .

FIG. 2. The zero sound mode for the caseF (2)520.2,0, f
arbitrary. From upper to lower, the curves correspond toM522
and21. The value ofV and the expressions for the vertical inte
cepts are identical to those in Fig. 1. The horizontal intercepts
q21vF5V andq22vF52V, respectively.
(iii) The F(S),0 case.We find that theVM,0 modes
decrease monotonically asq increases, and vanish atq

uM u

5uVM u/vF in a manner similar to Eq.~22!. The entire mode
M lies below the corresponding particle-hole continuum, i
v,2VM2qvF . Solving Eq.~20! graphically, one can also
see that there are no solutions withv.0 when VM.0,
implying the absence of zero sound modes withVM.0.

Determination of scattering lengths.For scattering
lengths ua

J
u;100aB where aB is the Bohr radius, a Ferm

gas of density;1013 cm21 will have kFa
J
;1021, which

implies $F (S)%;1021. As mentioned in Part~A!, it will be
hard to determine the scattering lengthsa

J
from the B50

zero sound modes for these values of$F (S)% because of their
small contributions. On the other hand, in the presence
magnetic field, different zero sound modes (S,M ) are sepa-
rated. Since the interaction contributions to the zero so
frequency atq50 and to the critical wave-vectorqM are of
the form 11F (S) instead of the essential singularity form
Eq. ~14!, their contributions should be measurable forkFa

J

;1021 or even smaller. Note also that there are only (f
11)/2 scattering lengths@a

J
,(J50,2, . . . ,2f 21)# whereas

the number of zeroth sound modes in finite field
(S50

2 f (2S11)5(2 f 11)2. Even though some of these mod
may not be excited~as in the case ofF (S),0), there are still
more the conditions ona

J
provided by the zero sound fre

quencies than the number ofa
J

themselves. Thus, it is pos

sible to determine the entire set of scattering lengths$a
J
%

from the zero sound dispersions.
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