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Creating macroscopic quantum superpositions with Bose-Einstein condensates
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We use a simple two-mode model to investigate the quantum state dynamics of a two-species Bose-Einsten
condensate, such as that produced in recent experiments, undergoing weak Josephson coupling. We find that in
certain parameter regimes the quantum state of the system evolves into a macroscopic superposition of two
states which differ in the atom number difference between the two species. The “size” of the macroscopic
superposition created by such a method can be varied by adjusting the Josephson coupling coefficient, and is
found to be near maximal for a certain critical value of this coefficif®1.050-29409)01906-X]

PACS numbd(s): 03.75.Fi, 03.65.Bz, 32.86t

[. INTRODUCTION also shown that such states can be created by a mechanism
involving the coherent scattering of far-detuned light fields.
The question of the compatibility of quantum mechanicsTheir model neglects the collisional interactions between

with macroscopic realism is one of the important, as yetparticles. One might also put forward a scheme analogous to
unanswered, philosophical questions posed by quantum méese Yurke-Stoler scheme of quantum opti€®§. The major
chanics. Macroscopic realism asserts that a system with sedrawback of such a scheme is that the time needed to evolve
eral macroscopically distinguishable states available to it wilko a cat state can be shown to be rather long, and thus prob-
always be in one of these states. This is incompatible withems due to decoherence would be greatly increased.
guantum mechanics, which permits superpositions of differ- |, this paper, we use a two-mode model to investigate the
ent state§1]. If we are to believe in m_acrpscopic realism, guantum state dynamics of such a system, including both
then we must modify quantum mechanics in such a way thafyerspecies and intraspecies two-body collisions between at-
superpositions will exist only on a microscopic level. For 5.« \ve show that the interplay between the atom-atom col-
example, PenroseZ] and others have suggested that such isions and the Josephson coupling can lead to evolution

modification might involve a quantum theory of gravity. which results in macroscopic superposition states of the type

Such theories should be testable, in the sense that the PO cussed in Ciraet al [7] and Ruostekosket al. [8]. The
duction of macroscopic or mesoscopic superposition states . ) SLE

could put limits on the regime of state vector reduction. size” of the Schralinger cat can be adjusted by changing

Recently there have been several experiments performé§e _strength of the Jpsephson co_upling. Our scheme for_ pro-
in which two-species Bose-Einstein condens#BECS are ucing C"?‘t, stgtes differs frorfr] in that the macroscopic
created and manipulatd8—6]. These experiments have in- superposition is produced by th.e normal dynamic evolution
volved two-species BECs in which the two species consist off the system rather than by adiabatic transfer to the ground
two hyperfine sublevels of’Rb—the|F,m¢)=|1,—1) and state of the Jo_sephson gouplmg Hamiltonian. Indeed, in the
|2,2) sublevels in the case ¢8] and the|1,—1) and|2,1)  Parameter regimes we investigate, the ground state shows
sublevels in the case ¢#—6]. Such a configuration has the squeezing_in the relative particle number and is thus certainly
advantage that the two species can be coupled to one anotHgt a Schrdinger cat stat¢10].
via a Josephson-type coupling realized by a multiphoton Our scheme may be compared to a typical experiment in
transition, allowing a rich variety of experiments to be per-quantum optics, where a coherent light beam is passed
formed. through a nonlinear crystal. During the time it takes for one
At the time of writing, there are at least two proposals forphoton to traverse the length of a crystal, the quantum state
producing macroscopic superpositions or Sdimger cat of the beam is modified by the nonlinearity—for example,
states using such systems. Cigdal.[7] have shown that if squeezing or second-harmonic generation could take place.
the two species are Josephson coupled, then in certain phlr the situation which we describe here, the nonlinearity is
rameter regimes the ground state of the Hamiltonian is @rovided by the various collisional interactions and the Jo-
superposition of two states involving a particle number im-sephson coupling. We envisage preparing the initial state and
balance between the two species. Such a state representshen turning on the Josephson coupling for some amount of
superposition of two states which are macroscopicédly time. The period during which the Josephson coupling is
mesoscopically distinguishable, and hence can be called aactive is analogous to the time spent by the light field in the
Schralinger cat state. Using the scheme describdd@jnthe  crystal; after the Josephson coupling is turned off, the quan-
production of such a state would involve the adiabatic transtum state of the system will have been modified. In the ex-
fer of the double condensate to the ground state of the Jample here, the end result will be a Sdiirger cat state.
sephson coupling Hamiltonian. Ruostekoskial. [8] have Although the production of such states would no doubt
involve considerable experimental difficulty, we believe that
it would be worthwhile, since the investigation of the bound-
*Electronic address: Dan.Gordon@anu.edu.au ary between the quantutmicroscopi¢ world and the every-
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day macroscopic world is sure to provide fertile ground for R A o 1 i Waae, o
new discoveries. H=E,a'a+ EBbTb+§>\(aTb+ bfa)+ Ta’fza2

Wgga~ - ;man
Il. THE MODEL + ZBBbTZbZ-FWABaTbTab, (6)
The two-mode model is derived from the multimode

Hamiltonian as follows: We label the two species of atom aSyhere Eae)= Hé(()B) qu:W8goo A=N\go, and the con-
AandB. The condensate modes for spedleandB are those  jansate modes have the index 0. This is the same as the

wave functions which satisfy the coupled two-species Grossgyo0-mode system considered by Ciratal. [7], who then
Pitaevskii equations or Hartree-Fock equations, i.e., they arg ot on to investigate some of the effects of including the

those spatial modes for speciésand B which are macro- ¢, myitimode structure; in the dynamic regime considered
scopically occupied. We also include a set of noncondensatg,

- ere we shall content ourselves with this simpler form of the
modes such that we have a complete orthonormal basjs Hamiltonian.

(such modes could be determined by the Hartree-Fock equa- £or example, if we consider the case where there are an

tions[11). : . o equal number of particles in each species, equal cylindrically
In such a basis, the second quantized Hamiltonian is gy mmetric harmonic trapping potentials for each species, and

scattering lengths satisfyingap=agg and asg=<anpna,agg,

then we find that the ground-state solution to these equations

has¢h(r)=¢o(r), and thus we can easily solve the coupled

Gross-Pitaevskii equations for the condensate wave function

PN Arn 1 o
Hzizj Hijala;+Hib/b;+ S\ ;j(afb;+b/a)

1 mpmrn A1 PN . S . .
n the Thomas-Fermi limit. Doing so yields
+ij§k,| Ewﬁlﬁaﬁa}akal+§Wﬁﬁbrb}bkbl ! i limit. Doing so yi
e 2x 1575 maba2at |\
+WhBalblab; . 1 W= a , @
A W U7 INYatan)?)

The H® are the matrix elements of the single-particle

. o . where we have seti,p=agg=a, w, is the trap angular
Hamiltonian in our basis: AA" BB L b ang

frequency of the trap perpendicular to the axis of cylindrical
AB) ~ B symmetry, and\, is the trap anisotropy, i.e., the ratio
HA® = ([ p? (2m) +VA®)(1)| ;). (20 wjlw, , wherew| is the angular frequency parallel to the
axis of cylindrical symmetry.
The \j; are the matrix elements describing the Josephson
coupling between the two species, which for a position- Angular-momentum basis

independent coupling is defined b
P ping y We find it convenient to use operators satisfying the usual

angular-momentum commutation relations:
m,—=Af d3repf(r) (1), &) L
jx=§(6Té+éT6),

where A describes the strength of the coupling and #ie

are taken to be real. Thaf}, are the matrix elements of the 0L

two-t_)ody potentials describing_ collisions between an atom of Jyzz(b’fa— a'b), ©)]
specieg and an atom of speciap wherep andq stand for

AorB:

Wi =ugt[ @rgtngin s gt @

for which the Casimir invariant igf2=N(N+1/2), where

The US® are the two-body interaction parameters: N=(1/2)(@"a+b'b). Note that for the Hamiltonia(6), N is
a constant of motion. We shall limit ourselves to work with
UBI=4ma,fi2/m (5) eigenstates of this operator. Hence we make the substitution
Pa !

N— N in what follows. We use as a basis for the state of the

wherea,, is the scattering length for a two-body collision System the eigenstates of the operalpr Such a restricted
between an atom of specipsand an atom of specias and  basis contains I8+ 1 basis vectors defined by
m is the mass of the atom. R
The two-mode approximation consists in neglecting all J,/m)y=m|m}, 9)
modes except the condensate modes. At zero temperature,
this amounts to ignoring the atoms which have left the conwherem runs from—N to N.
densate mode due to the two-body potentials. The validity of In terms of the operator&) and neglecting terms which
this approximation is discussed at the end of Sec. IV. simply describe a shift in the zero point of the energy, the
Under this approximation the Hamiltonian becomes Hamiltonian(6) is
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H=[Ep—Eg+(N—2)(Waa—Wgp)1J, [3—6]. If we start with aI.I AN atoms in stated and apply a.
ap strong /2 pulse(strong in the sense that the pulse duration
+(W=Wpp)J;+ Ny, (10)  is smaller than the time scale characterizing the dynamics of

) the system then we will end up with the state
where we have definelV=(Wxp+Wgg)/2. We can see

from the structure of this Hamiltonian that we lose no gen- N N . 2N

erality by considering the casé/,n=Wgg=W, since the lpy=2"N > exdi(N+m)¢] N— |m),
. m=—N m

term proportional tdN,,—Wpgg can be compensated for by

changing the values dt, and Eg. In the case wher&,

—Ep+(N—1/2)(Waa—Wag) =0, which holds if both traps where ¢= /2 for the situation described hef&5).

are identical and the two species have equal intraspecies This state is a particular case of atomic coherent state

scattering Iengths, the first term in the Hamiltonian IS Z€10r Bloch statd12,16. It describes a state with a well defined
and the expression is formally the same as the Hamiltonian

considered by Milburret al. [12] in their analysis of the relative phasab between the two species.

double-well system. Note, however, the parameter depen- In what follows, we will need to consider a range of val-

dence of the second term, which can be close to zero fol#es of ¢—in particular, the¢=0 state will be shown to

realistic experimental parametdi®]. In such a case the de- \?V\g?me t;gt?oaaSclhm:ngt?éncat ﬁfgéicﬁgi \gaﬁ; Ohfl Vzlgtll??e d
cay time of the relative phase between the two species a PRy 9p gnly

proaches infinity, an effect noted by Last al. [13] with a intense light fieldl to one or both of the species, in order to

macroscopic model of collapse and revival and by ViIIainfs’hlft the zero point of their energy. Providing that the pulse

et al.[14] with a fully guantum-field model. The system will m'gerapts with gach species with di_fferen'g coupling strengths,
then exhibit purely sinusoidal Rabi-type Josephson osciIIaEh'S will result in fast phase evolution which will change the
tions relative phase between the two species.

In our chosen basis we have the followina: Another scheme for changing the relative phase between
g the two components involves shifting the phase of the light

(12

R 1 fields providing the Josephson coupling. We imagine apply-
Jy|my= E[\/(N—m)(N+m+ 1)|m+1) ing the /2 pulse to create the initial state, and then switch-
ing to Josephson coupling beams with a different phase than
+J(N+m)(N-m+1)|m-1)], that of the original7/2 pulse. If we remain in our original

(11) basis, then this change of phase will show up as complex
matrix elements for the Josephson coupling term:

3y|m>=ii[\/(N+m)(N—m+1)|m—1>

1 . aon i non A,
_ \/(N_ m)(N+ m+ 1)|m+ 1>], HJOSZE[)\ eXF(| 5¢))bTa+)\ EX[X— | 5¢)aTb]:}\JX s

- (13
3,/m)=m]m), ) N N
where J), = (1/2)[ exp(d¢p)b'a+exp(—idp)a'b]. This opera-

o N tor can be obtained frord, by a unitary transformation cor-
agonal. In the I|m|F of zero Jo_sephson COUpl!'hg’S d!ago— responding to a phase rotation &f%. Under this same uni-
nallttso tgat the ug|ttﬁ1ry devolut_lon mlatnC)i( cI::an |mmed|a5ely betary transformation], remains unchanged. Thus, if we apply
written down, and the dynamics Solved. For NoNZero JoSep;o unitary transformation to the new Hamiltonian which
son _coupll_ng we need to first d!agonallz_e a real_ trldlag_ona as complex Josephson coupling matrix elements, we will
matrix, which Is in ge”‘?ra' the S|mp_lest kind of dlagonahza-end up with a Hamiltonian which again looks like the origi-
tion to perform numerically. The time needed to perform

h a di lizati los & and h ved f nal Hamiltonian(10). However, in making our change of
such a diagonalization scales s, and we have Solved 101,455 e must also apply this unitary transformation to the
values ofN up to a few thousand.

state vector; doing so is found to rotate the relative phase
between the two species by an amouii. Thus, in sum-
mary, if we change the phase of our Josephson coupling

Before considering the creation of ScHioger cat states, P€ams immediately following the initiat/2 pulse, and then
it is interesting to consider the evolution of some basic ex/Make a certain unitary change of basis, then the system will
pectation values. We shall consider in turn the limits of zerd?® Unchanged except that the relative phase between the two
Josephson coupling, small Josephson coupling, and large JeP€cies will have been rotated.
sephson coupling. For simplicity we shall also assume that
the two condensates are in the same trap and that the in- B. Zero Josephson coupling
traspecies scattering lengths are equal, so that we Bave
=Eg andWy,=Wgg=W.

so that it can be seen that the matrix representrig tridi-

[ll. QUANTUM STATE DYNAMICS

In this case, as has been remarked, the Hamiltonian is
diagonal and is given by

A. Initial state H=(W- WAB)jg. (14
In current experiments, the two-species BEC is created by
coupling two hyperfine sublevels with electromagnetic fieldsThe dynamics can be immediately solved and is given by
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i 3000
(m| z//>=ex;( — (W= WAB)mZt) . (15
2500
For the initial statg12) with ¢»=0, the expectation value of 2000
~ T" _ ~ . A . .
the operatom'b=J,+iJ is given by % 1500
N—1 \"
nin 2N
(@bym)=2- 3 (N—m)( ) 1000
m==—N N—m
500
2i
xexp — 2 (W=Wug)m t]. (16) O\ S
-500
The real part of this equation gives the expectation value of 0 020 30 40 50
J, and the imaginary part gives the expectation valud,of t(s)
The operatoéTB can be considered to describe the relative ) o )
phase between the two condensates: for ldigehe state FIG. 1. Expectation value al, for an initial state with¢=0

and weak Josephson coupling. ParametersNexe3000 (6000 at-

12) is approximately an eigenstate of this operator with ei-
(12 PP y g P oms tota), W—W,g=2.6x10"3% m™1, giving \c=3.9%% s .

genvalueN exp(~iN¢), and for a product of two coherent The parametelWV—W,g was chosen to be consistent with experi-

states in specieé and B, the expectation value d'Dis  mental values fof’Rb, except that we have chosen to scale the trap
precisely this value. We can see from the expresskB)  frequencies such that the collapse time for the relative phase, which
that its expectation value for the statE2) evolving under  could be considered to give a time scale for the phase dynamics, is
the Hamiltonian(14) consists of a sum of sinusoids with equivalent to that of a total of 10° atoms in the trap as used in
periods T,=A7/(M[W—W,g]). Such a system exhibits recent experiments. The solid line shows the case\ef2
collapse and revival of the relative phase between the twox 10734 s ! and the dotted line shows the zero Josephson cou-
components. As in the single condensate calculatigri 6f pling case £=0). It can be seen that, in the former case, the
the collapse time can be calculated by considering the spreadiative phase initially follows the standatdpproximately Gauss-
in frequency over the spread in relative particle number ofan) collapse, but instead of staying at zero until some long time as
the state, and for the case of E@b) is given by would be the case for no Josephson coupling, it is immediately
partially revived.
2wh
Tem e —. (17) For A<\, the particle number difference oscillates, but
lW— WAB"/m incompletely, so that fox appreciably less thak: most of

the particles remain in the initial species for all times. This

It is apparent that the collapse time will go to infinity in the effect describes a kind of self-trapping, and is due to colli-

caseW=W,g, and indeed the system will exhibit no dy- sional terms in the Hamiltonian. Smeret al. [18] have

namics other than the normal rotation of the phase of th(?ound the same effect in their mean-field calculations, which

entire wave function. This effect has been noted by Law - .
et al. [13] and Villain et al. [14]. neglect the quantum statistical effects in the system, but take

into account the spatial variation of the wave function.

It is interesting to note that the presence of even weak
Josephson coupling can have a large effect on the phase dy-
The atom number dynamics of the system including ahamics of the system, even when the expectation value of
term describing Josephson coupling are identical to thosgemains constant or nearly constant. This is illustrated for an

described by Milburret al. [12], since under the conditions initial state (16) with ¢=0 in Fig. 1. Such a state is not

Er=Eg and Wyy=W,g=W, the Hamiltonian(10) is for-  expected to exhibit Josephson oscillations due to the zero

mally the same as that considered by these authors. Milburphase difference between the two species, however the state

et al. [12] consider the evolution ofJ,) (i.e., the particle vector is affected by the Josephson coupling, greatly modi-

number difference between the spegieem an initial state  fying the picture of collapse and revival.

in which all the atoms are of the same species. In terms of

the notation qnd phys!c_al system used in this paper, they fjnd IV. MACROSCOPIC SUPERPOSITION STATES

that there exists a critical value of the Josephson coupling

parameten given by In the following section we shall show that in certain

parameter regimes the system considered here will dynami-

cally evolve into states which are a superposition of two

macroscopically(or mesoscopically distinguishable states

— so-called “Schrdinger’s cat states.” As in the cases dis-
For A\> )\, the system oscillates in a Rabi-type mannercussed by Ciraet al. [7] and Ruostekoskét al. [8], these

between all particles being speci@sand all particles being states consist of superpositions of two states which differ in

speciesB. These oscillations are eventually “damped” by average relative particle number. Ciretcal. [7] have shown

the phase diffusion in the system, and also exhibit revivalghat forW,g>W and certain strengths of the Josephson cou-

due to the finite particle number. pling parameter, such states can arise as the ground state of

C. The effect of Josephson coupling

N
Ae=% (W=Wpg). (18
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the Hamiltonian. Steel and Colldtt0] demonstrate this re- (a)
sult from a slightly different viewpoint. Ruostekoskt al.

[8] have considered the dynamic production of Sdimger’s

cat states in a pair of free condensates by a mechanism in-
volving the stimulated scattering of light between the two
components, where the atom-atom collisions are ignored. In
this paper, we show that similar states can arise from the
unitary evolution under the Hamiltoniaid0) due to the in-
terplay between the Josephson coupling and the atom-atom
collisions. The production of these states does not require the
condition thatW,g>W as in[7]. Properties of the states,
such as the “size” of the Schdinger’s cat or the degree of
number squeezing, can be controlled by varying the strength
of the Josephson coupling parameter. Once the system has
evolved to such a state, the Josephson coupling can be
switched off, effectively “freezing” the evolution of the
number distribution.

Up until now we have looked at expectation values of
relevant quantities. In what follows, we shall instead concen-
trate on the dynamics of the state vector evolving under the
Hamiltonian (10) and for an initial statg12). Figure Za)
shows the result fox>\ . and for a phase difference af2,
such as would be expected if we started with one species of
atom and applied ar/2 pulse. We see that the Rabi-like
Josephson dynamics are due to a wave-packet-like motion of
the state backwards and forwards. If we now consider the
case wheren<\c, we can see from Fig.(B) that the Jo-
sephson oscillations are of smaller amplitude and are cen-
tered aroundnm=0—an effect similar to the self-trapping
effect discussed previously. coupling. The initial state is given by E12) with ¢=m/2. Al

AS hgs beer) discussedzd2 pulse will produce an initial parrfme%ers except for are thge sameyasqthose givg)n in Fig. 1; as
state with relative ph_ase Qj:_ /2 betwe_en the two COMPO- pefore we hava.=3.% s . 4, denotes then component of the
nents but can be var_led by either applymg a strong light field; 40 vector(a) \=12k s '>\c. The Rabi-like Josephson oscil-
to one or both species or by changing the phase of the Jgations can be seen to be due to a highly coherent wave-packet
sephson coupling relative to the initial/2 pulse. In what  motion back and forth. Some wave-packet spreading is evident; this
follows, we will concentrate on the cage=0. In this case, is due to the presence of collisional terms in the Hamiltonian and
the distribution of relative particle number must remain sym-will eventually lead to a collapse of the oscillation&) X\
metric aroundm=0, since both the state vector and the =2.51 s <\ . The oscillations are seen to be incomplete; this is
Hamiltonian will be invariant under the interchange- B. due to the same self-trapping mechanism discussed in Milburn
For Waa—W,ag=0, the initial state is an eigenstate of the et al.[11].

Hamiltonian, and thus the number distribution remains con-

[Wml2

[Wml2

FIG. 2. The evolution of the state vector under strong Josephson

stant in time. FOM/,,—W,ag# 0, the dynamics will be af- 2N\ )

fected by the diffusive collisional terms in the Hamiltonian. 10,4)=2 Nem sin*™(3 0)

Figure 3 shows the evolution of the state vector for m

<Ac. We see that the interplay of collisional effects and x cod "ML g)ex —i(N+m)$]|m). (19

Josephson coupling leads to the creation of a state which is

doubly peaked aboun=0, similar to the case df7,8]. One  he parametep fixes the number of particles in each spe-
peak desgrlbes a situation in which more of thg atoms are teies, with 6= /2 giving equal numbers of particles in each
be found in specied, and the other peak describes the CON-ghecies. The parameter describes the relative phase be-

verse. ; P ;
tween the two species. The Blo€hfunction is defined as
We find that by varying the strength of the Josephson P @
coupling parametek, the “size” of the cat can be varied. Q(8,0)=(4]6, ). (20)

For A =\ the distribution has peaks at= =N, so that the
size of the cat is maximal in this case: the state is close to a Figure 4 shows th€) function for the state shown in Fig.
superposition of R atoms in specied®\ and 2N atoms in  3(b). It can be seen that the two peaks in number difference
speciesB. are correlated with two separate phases. This means that a
We can get a better idea about the quantum state by lookshase measurement would be able to distinguish between the
ing at theQ function on the Bloch sphefd0,16. This func-  two macroscopic states. The dissipative decay of such states
tion is defined in terms of the so-called Bloch states omwould thus be sensitive to processes which mimicked phase
atomic coherent states, of which the state® are a particu- measurements as well as those which detected atoms of a
lar case. They are defined in our basis as given species.
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Q(8,9)
& 0.01 0.01{
£ L
S 0005 °°°g -

W

AR

0
t(S) 0 500 m
(b)

0.01 : ™ . o

0.008} 37/8
o -7
£ L
E 0.006

C FIG. 4. Q-function plot on the Bloch sphere for the state shown
0.004| co in Fig. 3(b) for t=4 s. The coordinateg and ¢ label the spherical
S polar coordinates on the Bloch sphege.can be equated with the

0.002¢ relative phase between the two components, amtescribes the
0 [ - | particle number differencef=0 and 6= 7 describe the extreme
-1000 -500 0 500 1000 situations in which all atoms are in one species, @admr/2 de-

m scribes equal numbers of atoms in each speaies Q). It can be
. . o seen that the state is a superposition between two macroscopic
FIG. 3. () Evolution of the relative number distribution far states of differing phase as well as differing particle number. As

— —1 in i ;
_O'lbﬁ s <t);10 tat?ld the o;he;petlr_%mtt_eter; asbln Fig. 1(';%?)'5 It K time progresses, the “ends” of th@-function distribution shown
can be seen that the number distribution has become doubly pea ejﬁove curl around toward$= 0,27 and 6= 7/2 and also become

this state represents a macroscopic quantum superposition state. . . )
. . I~ ch more highl eaked, leading to a better defined but
order to give a better idea of the gross features of the probability. gy’ p 9

distribution, the state vector has been “smoothed” to eliminate fine smaller” Schradinger cat state. The refulting relocalization of the
structure.(b) shows the smoothed probability distributiontato s~ Phase shows up as a partial revival ) such as is shown in
(dotted ling andt=4 s (solid line). Fig. 1.

This evolution into Schidinger cat states can be partially Ng. Thus the two-mode approximation will be most accurate
understood by considering the effect of the phase diffusionvhen the state vector has a highly localized particle number
on the Josephson dynamics while ignoring the effect of thelistribution. This introduces a possible problem for our ap-
Josephson coupling on the phase dynamics. This approxim@roach: we want to investigate the production of Sdimger
tion will be valid only for some short time. At=0, the cat states consisting stiperposition®f states with different
condensate starts in a state with well defined relative phagelative particle number, and thus, to some degree at least,
and equal particle numbers in each species. The phase thag wish to move away from regimes in which the particle
diffuses due to the energy spread which is present in theumber distribution is highly localized.
initial state of the condensate and which is caused by a However, we can always find regimes in which the de-
spread in relative particle number and the atom-atom collipendence of the density profile on the particle number distri-
sions. The Josephson coupling then acts on these differehttion is weak. Some examples are as follodsLow den-
phases present in the state vector, causing the negative phagity of particles: in this case, the density profiles for the two
half of the wave function to move in the direction of increas-species approach the single particle eigenfunctions for the
ing m and the positive phase half to move in the direction ofground state of the trap and thus do not vary greatly with
decreasingm, eventually causing the wave function to particle number(ii) The regime in whichW,,=Wpgg and
“split” into two wave packets evolving in opposite direc- Wag is only slightly less tham/, g . In this case, although
tions. These wave packets are eventually stopped in thewe do not show it here, the dependence of the density pro-
motion by the self-trapping mechanism mentioned earlierfiles on the relative particle number between the two species

and become highly peaked. is weak and can be made to approach zero. However, we find
that in such regimes, the characteristic evolution time is slow
V. VALIDITY AND EEASIBILITY and the production of Schdinger cat states could take a

long time, thus exacerbating problems due to decoherence.
In making the calculations above, we have relied on thgiii) If the density of atoms is high enough such that the
two-mode approximation. In order for this approximation to healing lengths of the two-species condensate are small com-
provide a reasonably accurate picture, we must assume thpared to the size of the trap, then “hard” traps such as
the parameterka g, Waagsag, and\ are reasonably con- square well traps also show little dependence of the density
stant for the cases investigated. These parameters all depepibfiles on particle numbers, providing we are working in the
on the self-consistently defined condensate modes of the sygegime in which the two species form a homogeneous mix-
tem, which in turn depend on the particle numbilisand  ture, e.g. Waa=Wpgg andWag<Wppes-
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Furthermore, even in regimes in which the two-mode ap-a particular eigenstate of the many-body Hamiltonian.
proximation is not accurate, Scliioger cat states might be The present scheme is somewhat different, since it relies
produced under that same conditions as are predicted by ti# unitary evolution rather than cooling in order to arrive at
two-mode approximation; this was found to be the case ird cat state. In the present case, the effect of having nonzero
the calculations of Ciraet al. [7]. temperature would be to produce an incoherent ensemble of

Such states would be hard to produce in practice. On#litial states, each containing a slightly different total number
serious experimental problem would be decoherence; in thand/or relative"number of atoms. Thus in order to be able to
extreme example of a maximal Schiinger cat state with a Observe a Schdinger cat state, we would want the final
superposition betweem= —N andm= N, the “detection,”  state for each member of the initial ensemble to have a simi-
or loss, of one atom would be enough to destroy the supe,lar number distribution and relative phase. We would thus
position, since such a detection would tell us which specieslemand that the final state not be too sensitive to changes in
was populated and hence allow us to distinguish between tH&€ initial state. In the worst case scenario, in which varying
two macroscopic states. For less extreme cases, this condfe particle number by one atom would be enough to com-
tion would relax somewhat, but certainly a macroscapie-  pletely destroy the characteristics of the Sclinger cat
soscopit loss from the system would always be enough tostate, then we would recover the condition of Cietcal,
destroy a macroscopignesoscopicsuperposition state. since we would themeeda significant population in a par-

The paper of Cira@t al.[7] also lists as a condition for ticulgr many-body state in order to observe the effects of a
the production of such states cooling close to the collectivéSchralinger cat state.
ground state, which is far more restrictive than simply de- We have found that the most critical factor here appears
manding Bose-Einstein condensation, i.e., off-diagonal longto be that the peak of the atom distribution must be accu-
range order. In terms of the single-particle states, the condfately centered aboun=0 compared to the spread in the
tion they give is that less than one atom can be out of théelative number distribution. Since this latter quantity is of
single-particle ground state. This condition is equivalent tathe ordery/N, we require that the variation in the average
demanding that the many-body wave function has a signifirelative particle number be significantly less théN. If this
cant population in the collective ground stéfier exactly one  condition is not satisfied, then the cat will be lopsided, i.e.,
particle not in the single-particle ground state, it turns out‘more alive than dead” owice versa Recall the condition
that the fraction of the many-body population in thallec-  of Ciracet al. [7] that no more than one particle be out of the
tive ground state is &/ which is of the order of 50%). The single-particle ground state. In the present case, varying the
rest of the many-body wave functions will be thermally dis- particle number by one will cause a variation in the relative
tributed among the other eigenstates of the many-bodparticle number of one, which is much less than the spread in
Hamiltonian, which will have very different number and/or relative particle number (N). Thus we believe that the
relative phase distributions from the Sctimger cat state. In  present scheme might exhibit ScHiager cats at higher tem-
summary, the scheme of Cirat al. [7] relies on cooling to  peratures than that of Ciraat al.[7].
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