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Creating macroscopic quantum superpositions with Bose-Einstein condensates

D. Gordon* and C. M. Savage
Department of Physics and Theoretical Physics, The Australian National University, Australian Capital Territory 0200, Austra

~Received 16 November 1998!

We use a simple two-mode model to investigate the quantum state dynamics of a two-species Bose-Einsten
condensate, such as that produced in recent experiments, undergoing weak Josephson coupling. We find that in
certain parameter regimes the quantum state of the system evolves into a macroscopic superposition of two
states which differ in the atom number difference between the two species. The ‘‘size’’ of the macroscopic
superposition created by such a method can be varied by adjusting the Josephson coupling coefficient, and is
found to be near maximal for a certain critical value of this coefficient.@S1050-2947~99!01906-X#

PACS number~s!: 03.75.Fi, 03.65.Bz, 32.80.2t
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I. INTRODUCTION

The question of the compatibility of quantum mechan
with macroscopic realism is one of the important, as
unanswered, philosophical questions posed by quantum
chanics. Macroscopic realism asserts that a system with
eral macroscopically distinguishable states available to it
always be in one of these states. This is incompatible w
quantum mechanics, which permits superpositions of dif
ent states@1#. If we are to believe in macroscopic realism
then we must modify quantum mechanics in such a way
superpositions will exist only on a microscopic level. F
example, Penrose@2# and others have suggested that suc
modification might involve a quantum theory of gravit
Such theories should be testable, in the sense that the
duction of macroscopic or mesoscopic superposition st
could put limits on the regime of state vector reduction.

Recently there have been several experiments perfor
in which two-species Bose-Einstein condensates~BECs! are
created and manipulated@3–6#. These experiments have in
volved two-species BECs in which the two species consis
two hyperfine sublevels of87Rb—the uF,mf&5u1,21& and
u2,2& sublevels in the case of@3# and theu1,21& and u2,1&
sublevels in the case of@4–6#. Such a configuration has th
advantage that the two species can be coupled to one an
via a Josephson-type coupling realized by a multipho
transition, allowing a rich variety of experiments to be pe
formed.

At the time of writing, there are at least two proposals
producing macroscopic superpositions or Schro¨dinger cat
states using such systems. Ciracet al. @7# have shown that if
the two species are Josephson coupled, then in certain
rameter regimes the ground state of the Hamiltonian i
superposition of two states involving a particle number i
balance between the two species. Such a state represe
superposition of two states which are macroscopically~or
mesoscopically! distinguishable, and hence can be called
Schrödinger cat state. Using the scheme described in@7#, the
production of such a state would involve the adiabatic tra
fer of the double condensate to the ground state of the
sephson coupling Hamiltonian. Ruostekoskiet al. @8# have
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also shown that such states can be created by a mecha
involving the coherent scattering of far-detuned light field
Their model neglects the collisional interactions betwe
particles. One might also put forward a scheme analogou
the Yurke-Stoler scheme of quantum optics@9#. The major
drawback of such a scheme is that the time needed to ev
to a cat state can be shown to be rather long, and thus p
lems due to decoherence would be greatly increased.

In this paper, we use a two-mode model to investigate
quantum state dynamics of such a system, including b
interspecies and intraspecies two-body collisions between
oms. We show that the interplay between the atom-atom
lisions and the Josephson coupling can lead to evolu
which results in macroscopic superposition states of the t
discussed in Ciracet al. @7# and Ruostekoskiet al. @8#. The
‘‘size’’ of the Schrödinger cat can be adjusted by changi
the strength of the Josephson coupling. Our scheme for
ducing cat states differs from@7# in that the macroscopic
superposition is produced by the normal dynamic evolut
of the system rather than by adiabatic transfer to the gro
state of the Josephson coupling Hamiltonian. Indeed, in
parameter regimes we investigate, the ground state sh
squeezing in the relative particle number and is thus certa
not a Schro¨dinger cat state@10#.

Our scheme may be compared to a typical experimen
quantum optics, where a coherent light beam is pas
through a nonlinear crystal. During the time it takes for o
photon to traverse the length of a crystal, the quantum s
of the beam is modified by the nonlinearity—for examp
squeezing or second-harmonic generation could take pl
In the situation which we describe here, the nonlinearity
provided by the various collisional interactions and the
sephson coupling. We envisage preparing the initial state
then turning on the Josephson coupling for some amoun
time. The period during which the Josephson coupling
active is analogous to the time spent by the light field in
crystal; after the Josephson coupling is turned off, the qu
tum state of the system will have been modified. In the
ample here, the end result will be a Schro¨dinger cat state.

Although the production of such states would no dou
involve considerable experimental difficulty, we believe th
it would be worthwhile, since the investigation of the boun
ary between the quantum~microscopic! world and the every-
4623 ©1999 The American Physical Society
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4624 PRA 59D. GORDON AND C. M. SAVAGE
day macroscopic world is sure to provide fertile ground
new discoveries.

II. THE MODEL

The two-mode model is derived from the multimod
Hamiltonian as follows: We label the two species of atom
A andB. The condensate modes for speciesA andB are those
wave functions which satisfy the coupled two-species Gro
Pitaevskii equations or Hartree-Fock equations, i.e., they
those spatial modes for speciesA and B which are macro-
scopically occupied. We also include a set of nonconden
modes such that we have a complete orthonormal basisuf i&
~such modes could be determined by the Hartree-Fock e
tions @11#!.

In such a basis, the second quantized Hamiltonian is

H5(
i , j

Hi j
Aâi

†â j1Hi j
Bb̂i

†b̂ j1
1

2
l i j ~ âi

†b̂ j1b̂ j
†âi !

1 (
i , j ,k,l

1

2
Wi jkl

AA âi
†â j

†âkâl1
1

2
Wi jkl

BB b̂i
†b̂ j

†b̂kb̂l

1Wi jkl
AB âi

†b̂ j
†âkb̂l . ~1!

The Hi j
A(B) are the matrix elements of the single-partic

Hamiltonian in our basis:

Hi j
A(B)5^f i up̂2/~2m!1VA(B)~r !uf j&. ~2!

The l i j are the matrix elements describing the Joseph
coupling between the two species, which for a positio
independent coupling is defined by

l i j 5LE d3rf i
A~r !f j

B~r !, ~3!

whereL describes the strength of the coupling and thef ’s
are taken to be real. TheWi jkl

pq are the matrix elements of th
two-body potentials describing collisions between an atom
speciesp and an atom of speciesq, wherep andq stand for
A or B:

Wi jkl
pq 5U0

pqE d3rf i
p~r !f j

q~r !fk
p~r !f l

q~r !. ~4!

The U0
pq are the two-body interaction parameters:

U0
pq54papq\

2/m, ~5!

whereapq is the scattering length for a two-body collisio
between an atom of speciesp and an atom of speciesq, and
m is the mass of the atom.

The two-mode approximation consists in neglecting
modes except the condensate modes. At zero tempera
this amounts to ignoring the atoms which have left the c
densate mode due to the two-body potentials. The validity
this approximation is discussed at the end of Sec. IV.

Under this approximation the Hamiltonian becomes
r

s
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Ĥ5EAâ†â1EBb̂†b̂1
1

2
l~ â†b̂1b̂†â!1

WAA

2
â†2â2

1
WBB

2
b̂†2b̂21WABâ†b̂†âb̂, ~6!

where EA(B)5H00
A(B) , Wpq5W0000

pq , l5l00, and the con-
densate modes have the index 0. This is the same as
two-mode system considered by Ciracet al. @7#, who then
went on to investigate some of the effects of including t
full multimode structure; in the dynamic regime consider
here we shall content ourselves with this simpler form of
Hamiltonian.

For example, if we consider the case where there are
equal number of particles in each species, equal cylindric
symmetric harmonic trapping potentials for each species,
scattering lengths satisfyingaAA5aBB and aAB<aAA ,aBB ,
then we find that the ground-state solution to these equat
hasf0

A(r )5f0
B(r ), and thus we can easily solve the coupl

Gross-Pitaevskii equations for the condensate wave func
in the Thomas-Fermi limit. Doing so yields

Wpq5
23152/5

7 S mv'
6 la

2\4

N3~a1aAB!3D 1/5

apq , ~7!

where we have setaAA5aBB5a, v' is the trap angular
frequency of the trap perpendicular to the axis of cylindric
symmetry, andla is the trap anisotropy, i.e., the rati
v i /v' , wherev i is the angular frequency parallel to th
axis of cylindrical symmetry.

Angular-momentum basis

We find it convenient to use operators satisfying the us
angular-momentum commutation relations:

Ĵx5
1

2
~ b̂†â1â†b̂!,

Ĵy5
i

2
~ b̂†â2â†b̂!, ~8!

Ĵz5
1

2
~ â†â2b̂†b̂!,

for which the Casimir invariant isĴ25N̂(N̂11/2), where
N̂5(1/2)(â†â1b̂†b̂). Note that for the Hamiltonian~6!, N̂ is
a constant of motion. We shall limit ourselves to work wi
eigenstates of this operator. Hence we make the substitu
N̂→N in what follows. We use as a basis for the state of
system the eigenstates of the operatorĴz . Such a restricted
basis contains 2N11 basis vectors defined by

Ĵzum&5mum&, ~9!

wherem runs from2N to N.
In terms of the operators~8! and neglecting terms which

simply describe a shift in the zero point of the energy, t
Hamiltonian~6! is
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H5@EA2EB1~N2 1
2 !~WAA2WBB!# Ĵz

1~W2WAB!Ĵz
21l Ĵx , ~10!

where we have definedW5(WAA1WBB)/2. We can see
from the structure of this Hamiltonian that we lose no ge
erality by considering the caseWAA5WBB5W, since the
term proportional toWAA2WBB can be compensated for b
changing the values ofEA and EB . In the case whereEA
2EB1(N21/2)(WAA2WBB)50, which holds if both traps
are identical and the two species have equal intraspe
scattering lengths, the first term in the Hamiltonian is ze
and the expression is formally the same as the Hamilton
considered by Milburnet al. @12# in their analysis of the
double-well system. Note, however, the parameter dep
dence of the second term, which can be close to zero
realistic experimental parameters@6#. In such a case the de
cay time of the relative phase between the two species
proaches infinity, an effect noted by Lawet al. @13# with a
macroscopic model of collapse and revival and by Villa
et al. @14# with a fully quantum-field model. The system wi
then exhibit purely sinusoidal Rabi-type Josephson osc
tions.

In our chosen basis we have the following:

Ĵxum&5
1

2
@A~N2m!~N1m11!um11&

1A~N1m!~N2m11!um21&],
~11!

Ĵyum&5
i

2
@A~N1m!~N2m11!um21&

2A~N2m!~N1m11!um11&],

Ĵzum&5mum&,

so that it can be seen that the matrix representingH is tridi-
agonal. In the limit of zero Josephson coupling,H is diago-
nal so that the unitary evolution matrix can immediately
written down, and the dynamics solved. For nonzero Jose
son coupling we need to first diagonalize a real tridiago
matrix, which is in general the simplest kind of diagonaliz
tion to perform numerically. The time needed to perfo
such a diagonalization scales asN3, and we have solved fo
values ofN up to a few thousand.

III. QUANTUM STATE DYNAMICS

Before considering the creation of Schro¨dinger cat states
it is interesting to consider the evolution of some basic
pectation values. We shall consider in turn the limits of ze
Josephson coupling, small Josephson coupling, and larg
sephson coupling. For simplicity we shall also assume
the two condensates are in the same trap and that the
traspecies scattering lengths are equal, so that we havEA
5EB andWAA5WBB5W.

A. Initial state

In current experiments, the two-species BEC is created
coupling two hyperfine sublevels with electromagnetic fie
-

es
o
n

n-
or

p-

-

h-
l

-

-
o
Jo-
at
in-

y
s

@3–6#. If we start with all 2N atoms in stateA and apply a
strongp/2 pulse~strong in the sense that the pulse durati
is smaller than the time scale characterizing the dynamic
the system!, then we will end up with the state

uc&522N (
m52N

N

exp@ i ~N1m!f#AS 2N

N2mD um&,

~12!

wheref5p/2 for the situation described here@15#.
This state is a particular case of anatomic coherent state,

or Bloch state@12,16#. It describes a state with a well define
relative phasef between the two species.

In what follows, we will need to consider a range of va
ues of f—in particular, thef50 state will be shown to
evolve into a Schro¨dinger cat state. One way of varyingf
would be to apply a strong pulse~such as a highly detune
intense light field! to one or both of the species, in order
shift the zero point of their energy. Providing that the pu
interacts with each species with different coupling strengt
this will result in fast phase evolution which will change th
relative phase between the two species.

Another scheme for changing the relative phase betw
the two components involves shifting the phase of the li
fields providing the Josephson coupling. We imagine app
ing thep/2 pulse to create the initial state, and then switc
ing to Josephson coupling beams with a different phase t
that of the originalp/2 pulse. If we remain in our origina
basis, then this change of phase will show up as comp
matrix elements for the Josephson coupling term:

HJOS5
1

2
@l exp~ idf!b̂†â1l exp~2 idf!â†b̂#5l Ĵx8 ,

~13!

where Ĵx85(1/2)@exp(idf)b̂†â1exp(2idf)â†b̂#. This opera-
tor can be obtained fromJx by a unitary transformation cor
responding to a phase rotation ofdf. Under this same uni-
tary transformation,Jz remains unchanged. Thus, if we app
this unitary transformation to the new Hamiltonian whic
has complex Josephson coupling matrix elements, we
end up with a Hamiltonian which again looks like the orig
nal Hamiltonian~10!. However, in making our change o
basis we must also apply this unitary transformation to
state vector; doing so is found to rotate the relative ph
between the two species by an amountdf. Thus, in sum-
mary, if we change the phase of our Josephson coup
beams immediately following the initialp/2 pulse, and then
make a certain unitary change of basis, then the system
be unchanged except that the relative phase between the
species will have been rotated.

B. Zero Josephson coupling

In this case, as has been remarked, the Hamiltonia
diagonal and is given by

H5~W2WAB!Ĵz
2 . ~14!

The dynamics can be immediately solved and is given b



f

ive

ei
t

h
s
tw

re
o

e
-
th
aw

os
s

u

s
fin
lin

e

y
a

ut

is
lli-

ich
ake

ak
dy-

f
an
t
ero

state
di-

in
mi-

wo

s-

r in

ou-
te of

ri-
rap
hich
s, is
n

ou-
he

as
tely

4626 PRA 59D. GORDON AND C. M. SAVAGE
^muc&5expS 2
i

\
~W2WAB!m2t D . ~15!

For the initial state~12! with f50, the expectation value o
the operatorâ†b̂5 Ĵx1 i Ĵy is given by

^~ â†b̂!~ t !&5222N (
m52N

N21

~N2m!S 2N

N2mD
3expS 2

2i

\
~W2WAB!m tD . ~16!

The real part of this equation gives the expectation value
Ĵx and the imaginary part gives the expectation value ofĴy .
The operatorâ†b̂ can be considered to describe the relat
phase between the two condensates: for largeN, the state
~12! is approximately an eigenstate of this operator with
genvalueN exp(2iNf), and for a product of two coheren
states in speciesA and B, the expectation value ofâ†b̂ is
precisely this value. We can see from the expression~16!
that its expectation value for the state~12! evolving under
the Hamiltonian~14! consists of a sum of sinusoids wit
periods Tm5\p/(m@W2WAB#). Such a system exhibit
collapse and revival of the relative phase between the
components. As in the single condensate calculation of@17#,
the collapse time can be calculated by considering the sp
in frequency over the spread in relative particle number
the state, and for the case of Eq.~16! is given by

TC'
2p\

uW2WABuA2N
. ~17!

It is apparent that the collapse time will go to infinity in th
caseW5WAB , and indeed the system will exhibit no dy
namics other than the normal rotation of the phase of
entire wave function. This effect has been noted by L
et al. @13# and Villain et al. @14#.

C. The effect of Josephson coupling

The atom number dynamics of the system including
term describing Josephson coupling are identical to th
described by Milburnet al. @12#, since under the condition
EA5EB and WAA5WAB5W, the Hamiltonian~10! is for-
mally the same as that considered by these authors. Milb
et al. @12# consider the evolution of̂Jz& ~i.e., the particle
number difference between the species! from an initial state
in which all the atoms are of the same species. In term
the notation and physical system used in this paper, they
that there exists a critical value of the Josephson coup
parameterl given by

lC5
N

2
~W2WAB!. ~18!

For l@lC , the system oscillates in a Rabi-type mann
between all particles being speciesA and all particles being
speciesB. These oscillations are eventually ‘‘damped’’ b
the phase diffusion in the system, and also exhibit reviv
due to the finite particle number.
of

-

o

ad
f

e

a
e

rn

of
d
g

r

ls

For l,lC , the particle number difference oscillates, b
incompletely, so that forl appreciably less thanlC most of
the particles remain in the initial species for all times. Th
effect describes a kind of self-trapping, and is due to co
sional terms in the Hamiltonian. Smerziet al. @18# have
found the same effect in their mean-field calculations, wh
neglect the quantum statistical effects in the system, but t
into account the spatial variation of the wave function.

It is interesting to note that the presence of even we
Josephson coupling can have a large effect on the phase
namics of the system, even when the expectation value oJz
remains constant or nearly constant. This is illustrated for
initial state ~16! with f50 in Fig. 1. Such a state is no
expected to exhibit Josephson oscillations due to the z
phase difference between the two species, however the
vector is affected by the Josephson coupling, greatly mo
fying the picture of collapse and revival.

IV. MACROSCOPIC SUPERPOSITION STATES

In the following section we shall show that in certa
parameter regimes the system considered here will dyna
cally evolve into states which are a superposition of t
macroscopically~or mesoscopically! distinguishable states
— so-called ‘‘Schro¨dinger’s cat states.’’ As in the cases di
cussed by Ciracet al. @7# and Ruostekoskiet al. @8#, these
states consist of superpositions of two states which diffe
average relative particle number. Ciracet al. @7# have shown
that forWAB.W and certain strengths of the Josephson c
pling parameter, such states can arise as the ground sta

FIG. 1. Expectation value ofJx for an initial state withf50
and weak Josephson coupling. Parameters areN53000 ~6000 at-
oms total!, W2WAB52.631023\ m21, giving lC53.9\ s21.
The parameterW2WAB was chosen to be consistent with expe
mental values for87Rb, except that we have chosen to scale the t
frequencies such that the collapse time for the relative phase, w
could be considered to give a time scale for the phase dynamic
equivalent to that of a total of 53105 atoms in the trap as used i
recent experiments. The solid line shows the case ofl52
31023\ s21 and the dotted line shows the zero Josephson c
pling case (l50). It can be seen that, in the former case, t
relative phase initially follows the standard~approximately Gauss-
ian! collapse, but instead of staying at zero until some long time
would be the case for no Josephson coupling, it is immedia
partially revived.
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PRA 59 4627CREATING MACROSCOPIC QUANTUM SUPERPOSITIONS . . .
the Hamiltonian. Steel and Collett@10# demonstrate this re
sult from a slightly different viewpoint. Ruostekoskiet al.
@8# have considered the dynamic production of Schro¨dinger’s
cat states in a pair of free condensates by a mechanism
volving the stimulated scattering of light between the tw
components, where the atom-atom collisions are ignored
this paper, we show that similar states can arise from
unitary evolution under the Hamiltonian~10! due to the in-
terplay between the Josephson coupling and the atom-a
collisions. The production of these states does not require
condition thatWAB.W as in @7#. Properties of the states
such as the ‘‘size’’ of the Schro¨dinger’s cat or the degree o
number squeezing, can be controlled by varying the stren
of the Josephson coupling parameter. Once the system
evolved to such a state, the Josephson coupling can
switched off, effectively ‘‘freezing’’ the evolution of the
number distribution.

Up until now we have looked at expectation values
relevant quantities. In what follows, we shall instead conc
trate on the dynamics of the state vector evolving under
Hamiltonian ~10! and for an initial state~12!. Figure 2~a!
shows the result forl@lC and for a phase difference ofp/2,
such as would be expected if we started with one specie
atom and applied ap/2 pulse. We see that the Rabi-lik
Josephson dynamics are due to a wave-packet-like motio
the state backwards and forwards. If we now consider
case wherel,lC , we can see from Fig. 2~b! that the Jo-
sephson oscillations are of smaller amplitude and are c
tered aroundm50—an effect similar to the self-trappin
effect discussed previously.

As has been discussed, ap/2 pulse will produce an initial
state with relative phase off5p/2 between the two compo
nents but can be varied by either applying a strong light fi
to one or both species or by changing the phase of the
sephson coupling relative to the initialp/2 pulse. In what
follows, we will concentrate on the casef50. In this case,
the distribution of relative particle number must remain sy
metric aroundm50, since both the state vector and t
Hamiltonian will be invariant under the interchangeA↔B.
For WAA2WAB50, the initial state is an eigenstate of th
Hamiltonian, and thus the number distribution remains c
stant in time. ForWAA2WABÞ0, the dynamics will be af-
fected by the diffusive collisional terms in the Hamiltonia
Figure 3 shows the evolution of the state vector forl
,lC . We see that the interplay of collisional effects a
Josephson coupling leads to the creation of a state whic
doubly peaked aboutm50, similar to the case of@7,8#. One
peak describes a situation in which more of the atoms ar
be found in speciesA, and the other peak describes the co
verse.

We find that by varying the strength of the Josephs
coupling parameterl, the ‘‘size’’ of the cat can be varied
For l5lC the distribution has peaks atm56N, so that the
size of the cat is maximal in this case: the state is close
superposition of 2N atoms in speciesA and 2N atoms in
speciesB.

We can get a better idea about the quantum state by lo
ing at theQ function on the Bloch sphere@10,16#. This func-
tion is defined in terms of the so-called Bloch states
atomic coherent states, of which the states~12! are a particu-
lar case. They are defined in our basis as
in-
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uu,f&5(
m
AS 2N

N2mD sinN1m~ 1
2 u!

3cosN2m~ 1
2 u!exp@2 i ~N1m!f#um&. ~19!

The parameteru fixes the number of particles in each sp
cies, withu5p/2 giving equal numbers of particles in eac
species. The parameterf describes the relative phase b
tween the two species. The BlochQ function is defined as

Q~u,f!5 z^cuu,f& z2. ~20!

Figure 4 shows theQ function for the state shown in Fig
3~b!. It can be seen that the two peaks in number differe
are correlated with two separate phases. This means th
phase measurement would be able to distinguish between
two macroscopic states. The dissipative decay of such st
would thus be sensitive to processes which mimicked ph
measurements as well as those which detected atoms
given species.

FIG. 2. The evolution of the state vector under strong Joseph
coupling. The initial state is given by Eq.~12! with f5p/2. All
parameters except forl are the same as those given in Fig. 1;
before we havelC53.9\ s21. cm denotes them component of the
state vector.~a! l512\ s21.lC . The Rabi-like Josephson osci
lations can be seen to be due to a highly coherent wave-pa
motion back and forth. Some wave-packet spreading is evident;
is due to the presence of collisional terms in the Hamiltonian a
will eventually lead to a collapse of the oscillations.~b! l
52.5\ s21,lC . The oscillations are seen to be incomplete; this
due to the same self-trapping mechanism discussed in Milb
et al. @11#.
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4628 PRA 59D. GORDON AND C. M. SAVAGE
This evolution into Schro¨dinger cat states can be partial
understood by considering the effect of the phase diffus
on the Josephson dynamics while ignoring the effect of
Josephson coupling on the phase dynamics. This approx
tion will be valid only for some short time. Att50, the
condensate starts in a state with well defined relative ph
and equal particle numbers in each species. The phase
diffuses due to the energy spread which is present in
initial state of the condensate and which is caused b
spread in relative particle number and the atom-atom co
sions. The Josephson coupling then acts on these diffe
phases present in the state vector, causing the negative p
half of the wave function to move in the direction of increa
ing m and the positive phase half to move in the direction
decreasingm, eventually causing the wave function
‘‘split’’ into two wave packets evolving in opposite direc
tions. These wave packets are eventually stopped in t
motion by the self-trapping mechanism mentioned earl
and become highly peaked.

V. VALIDITY AND FEASIBILITY

In making the calculations above, we have relied on
two-mode approximation. In order for this approximation
provide a reasonably accurate picture, we must assume
the parametersEA,B , WAA,BB,AB , andl are reasonably con
stant for the cases investigated. These parameters all de
on the self-consistently defined condensate modes of the
tem, which in turn depend on the particle numbersNA and

FIG. 3. ~a! Evolution of the relative number distribution forl
50.1\ s21,lC and the other parameters as in Fig. 1. Att'4 s it
can be seen that the number distribution has become doubly pe
this state represents a macroscopic quantum superposition sta
order to give a better idea of the gross features of the probab
distribution, the state vector has been ‘‘smoothed’’ to eliminate fi
structure.~b! shows the smoothed probability distribution att50 s
~dotted line! and t54 s ~solid line!.
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NB . Thus the two-mode approximation will be most accura
when the state vector has a highly localized particle num
distribution. This introduces a possible problem for our a
proach: we want to investigate the production of Schro¨dinger
cat states consisting ofsuperpositionsof states with different
relative particle number, and thus, to some degree at le
we wish to move away from regimes in which the partic
number distribution is highly localized.

However, we can always find regimes in which the d
pendence of the density profile on the particle number dis
bution is weak. Some examples are as follows.~i! Low den-
sity of particles: in this case, the density profiles for the tw
species approach the single particle eigenfunctions for
ground state of the trap and thus do not vary greatly w
particle number.~ii ! The regime in whichWAA5WBB and
WAB is only slightly less thanWAA/BB . In this case, although
we do not show it here, the dependence of the density p
files on the relative particle number between the two spe
is weak and can be made to approach zero. However, we
that in such regimes, the characteristic evolution time is s
and the production of Schro¨dinger cat states could take
long time, thus exacerbating problems due to decohere
~iii ! If the density of atoms is high enough such that t
healing lengths of the two-species condensate are small c
pared to the size of the trap, then ‘‘hard’’ traps such
square well traps also show little dependence of the den
profiles on particle numbers, providing we are working in t
regime in which the two species form a homogeneous m
ture, e.g.,WAA5WBB andWAB,WAA/BB .

ed;
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FIG. 4. Q-function plot on the Bloch sphere for the state show
in Fig. 3~b! for t54 s. The coordinatesu andf label the spherical
polar coordinates on the Bloch sphere.f can be equated with the
relative phase between the two components, andu describes the
particle number difference:u50 and u5p describe the extreme
situations in which all atoms are in one species, andu5p/2 de-
scribes equal numbers of atoms in each species (m50). It can be
seen that the state is a superposition between two macrosc
states of differing phase as well as differing particle number.
time progresses, the ‘‘ends’’ of theQ-function distribution shown
above curl around towardsf50,2p andu5p/2 and also become
much more highly peaked, leading to a better defined
‘‘smaller’’ Schrödinger cat state. The resulting relocalization of t

phase shows up as a partial revival of^Ĵx& such as is shown in
Fig. 1.
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Furthermore, even in regimes in which the two-mode
proximation is not accurate, Schro¨dinger cat states might b
produced under that same conditions as are predicted by
two-mode approximation; this was found to be the case
the calculations of Ciracet al. @7#.

Such states would be hard to produce in practice. O
serious experimental problem would be decoherence; in
extreme example of a maximal Schro¨dinger cat state with a
superposition betweenm52N andm5N, the ‘‘detection,’’
or loss, of one atom would be enough to destroy the su
position, since such a detection would tell us which spec
was populated and hence allow us to distinguish between
two macroscopic states. For less extreme cases, this co
tion would relax somewhat, but certainly a macroscopic~me-
soscopic! loss from the system would always be enough
destroy a macroscopic~mesoscopic! superposition state.

The paper of Ciracet al. @7# also lists as a condition fo
the production of such states cooling close to the collec
ground state, which is far more restrictive than simply d
manding Bose-Einstein condensation, i.e., off-diagonal lo
range order. In terms of the single-particle states, the co
tion they give is that less than one atom can be out of
single-particle ground state. This condition is equivalent
demanding that the many-body wave function has a sign
cant population in the collective ground state~for exactly one
particle not in the single-particle ground state, it turns o
that the fraction of the many-body population in thecollec-
tive ground state is 1/e, which is of the order of 50%). The
rest of the many-body wave functions will be thermally d
tributed among the other eigenstates of the many-b
Hamiltonian, which will have very different number and/
relative phase distributions from the Schro¨dinger cat state. In
summary, the scheme of Ciracet al. @7# relies on cooling to
.
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a particular eigenstate of the many-body Hamiltonian.
The present scheme is somewhat different, since it re

on unitary evolution rather than cooling in order to arrive
a cat state. In the present case, the effect of having non
temperature would be to produce an incoherent ensemb
initial states, each containing a slightly different total numb
and/or relative number of atoms. Thus in order to be able
observe a Schro¨dinger cat state, we would want the fin
state for each member of the initial ensemble to have a s
lar number distribution and relative phase. We would th
demand that the final state not be too sensitive to change
the initial state. In the worst case scenario, in which vary
the particle number by one atom would be enough to co
pletely destroy the characteristics of the Schro¨dinger cat
state, then we would recover the condition of Ciracet al.,
since we would thenneeda significant population in a par
ticular many-body state in order to observe the effects o
Schrödinger cat state.

We have found that the most critical factor here appe
to be that the peak of the atom distribution must be ac
rately centered aboutm50 compared to the spread in th
relative number distribution. Since this latter quantity is
the orderAN, we require that the variation in the averag
relative particle number be significantly less thanAN. If this
condition is not satisfied, then the cat will be lopsided, i.
‘‘more alive than dead’’ orvice versa. Recall the condition
of Ciracet al. @7# that no more than one particle be out of th
single-particle ground state. In the present case, varying
particle number by one will cause a variation in the relat
particle number of one, which is much less than the sprea
relative particle number (AN). Thus we believe that the
present scheme might exhibit Schro¨dinger cats at higher tem
peratures than that of Ciracet al. @7#.
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