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Ground-state energy of the spinor Bose-Einstein condensate

W.-J. Huang and S.-C. Gou
Department of Physics, National Changhua University of Education, Changhua 50058, Taiwan

~Received 4 September 1998!

It is known that for a weakly interacting Bose-Einstein condensate~BEC!, the assumption of a two-bodyd
interaction described by a constant coupling strength gives rise to a divergent ground-state energy. A similar
divergence occurs in the spinor condensate in which the spin-spin interaction is included in addition to the
repulsived interaction. In this paper, we examine, in the standard Bogoliubov approximation, the ground-state
energy of a homogeneous spinor BEC with hyperfine spinf 51. The renormalized coupling constants are
calculated and expressed in terms of the bare ones using the standard second-order perturbation method. With
these renormalized coupling constants, we show that the ultraviolet divergence of the ground-state energy can
be exactly eliminated.@S1050-2947~99!01106-3#

PACS number~s!: 03.75.Fi, 05.30.Jp
-

n
pi
e
n
ot

a
ns
th
p
ac
an
tin
e-
igu
ic

te
s.
y
er
ic
s

z
e

da
na
er
in
r-
t

de
a

n
e
o
w

ed
is is
nd-
d in
ral-
ltra-

t is,
re
pa-

ar-
ous
ous
sults
vide
ed

-
sed
ich
nti-
na-
ally
e
eeds
rre-
ek-
an
nge
th-
ds,
ous

gas
r-

e
set

e of
Recently, Stamper-Kurnet al. @1# have successfully con
fined a Bose-Einstein condensate~BEC! of 23Na atoms in an
optical dipole trap. In their experiment, a multicompone
BEC, which is characterized by the three hyperfine s
statesu f 51,mf561,0&, has been observed. This has open
an interesting possibility of exploring the multicompone
BEC with complicated internal spin dynamics in which n
only the global U~1! symmetry but also the rotational SO~3!
symmetry in spin space are involved@2,3#.

An important feature of the spinor condensate is th
in addition to the repulsive binary hard-core collisio
that give rise to the density-density interaction, atoms in
condensates can also couple to each other via the s
exchange interaction. Assuming that the interaction for e
spin exchange channel is again characterized by zero-r
delta-potential scattering, one thus obtains the interac
term Ŝ•Ŝ whereŜ is the spin-density operator. The comp
tition between these two interactions thus leads to an intr
ing scenario of the spin dynamics of the spinor BEC, wh
is characterized by a complex ground-state structure@2–4#.

The question that arises now is how these two-body in
actions alter the dynamical properties of the condensate
is known that in a weakly interacting Bose-condensed s
tem, the two-body interactions play a crucial role in det
mining the low-temperature properties of the systems, wh
will modify the ground state of the many-particle system
and cause a depletion of the condensate fraction even at
temperature. Moreover, a divergence could possibly app
when we calculate the ground-state energy in the stan
Bogoliubov approximation. This divergence is due to the
ive assumption of a constant matrix element of binary int
action irrespective of the relative momenta of the interact
particles. A well-illustrated example is the ultraviolet dive
gence occurring in the calculated ground-state energy of
one-component BEC where the two-body interaction is
scribed by the repulsive hard-core collisions with
momentum-independent coupling constant@8#. To eliminate
such a divergence and gain more insight into the grou
state properties of the condensates, one has to calculat
s-wave scattering length at least to second order in the c
pling constant. By expanding the coupling constant in po
PRA 591050-2947/99/59~6!/4608~6!/$15.00
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ers of thes-wave scattering length the previously mention
divergent ground-state energy can be rendered finite. Th
expected since in a physically sensible theory the grou
state energy must assume a finite value when expresse
terms of physically measurable quantities. In other gene
ized Bose condensed systems such as the spinor BEC u
violet divergences of the same sort could also appear. I
therefore, quite essential to verify if a similar procedu
could completely remove these divergences, and in this
per we address this issue in detail for thef 51 spinor BEC in
the presence of a constant magnetic field.

It should be noted that current BEC experiments are c
ried out in atomic traps, and the results for homogene
systems are less likely to be applicable when inhomogene
systems are under consideration. Nevertheless, the re
obtained from a homogeneous system may serve to pro
primary estimates for certain physical quantities of a trapp
BEC ~e.g., critical temperature@5# and damping rate of the
collective excitation@6#!. Moreover, in the WKB semiclassi
cal approximation, the homogeneous results are directly u
to determine the spectrum of elementary excitations, wh
is then exploited to calculate various thermodynamic qua
ties @7#. Apart from these, the extension of the present a
lytic approach to the inhomogeneous systems is technic
difficult. As will become clear later, in order to remove th
divergence and determine the ground-state energy, one n
precisely the elementary excitation spectra and the co
sponding wave functions of the system. Unfortunately, se
ing the closed forms of the elementary excitations for
inhomogeneous BEC remains as a great theoretical challe
even for the much simpler one-component BEC, to say no
ing of the more complicated spinor BEC. On these groun
we are therefore concerned mainly with the homogene
system in this paper.

Consider an assembly of homogeneous dilute Bose
with hyperfine spinf 51. The natural basis set to characte
ize such a system is the hyperfine spin statesumf561,0&.
However, in view of the special symmetrical forms of th
spin-1 matrix representations one may adopt the basis
$ux&,uy&,uz&% whose elements are defined as the eigenstat
4608 ©1999 The American Physical Society
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the ath component of the spin operator with eigenvalue
i.e., Saua&50(a5x,y,z) such that the matrix elements fo
theath spin component is given bŷguSaub&5 i«abg where
«abg is the Levi-Civita tensor. This representation enables
to relate the spin-1 matrix elements to those of the sp
rotation, allowing the order parameter to behave as a ve
under spin space rotation.

For thef 51 spinor BEC, the bosonic atomic field can b
described by the three-component field operatorC, with
componentsca(r )(a5x,y,z), and thus the particle numbe
and spin densities can be written asn̂5ca

†ca , and Ŝa

5cb
†Sacb52 i eabgcb

†cg , respectively. Note that we hav
used the summation convention over the indices of com
nent a,b, . . . throughout this paper. Now, without loss
generality, the Hamiltonian density can be constructed in
presence of a constant magnetic fieldB pointing to thez
direction @3#:

H52ca
† ¹2

2m
ca1

1

2
gnn̂21

1

2
gsŜ•Ŝ2V•Ŝ ~\51!,

~1!

where V5V ẑ5gmB (gm :gyromagnetic ratio) is the Lar
mor frequency in a vectorial notation. Expandingn̂ andŜa in
terms of the field operators, Eq.~1! can be expressed as

H52ca
† ¹2

2m
ca1

1

2
g1cb

†ca
†cacb1

1

2
g2cb

†cb
†caca

1 i eabgVgca
†cb , ~2!

where the two new coupling constants are given byg15gn
1gs ,g252gs . According to the recent spectroscopic e
periment by Abrahamet al. @9#, it is conceivable in genera
that g2 is comparable tog1 in magnitude and can be eithe
positive or negative. It is known that the positiveg2 implies
the ferromagnetic coupling while the negative one impl
the antiferromagnetic coupling for the spin-exchange in
action.

Since the system is homogeneous, the field operator
be expanded in terms of creation and annihilation opera
characterized by momentumk,

ca~r !5
1

AV
(

k
aa,ke

ik•r, ~3!

whereV denotes the volume of the system. Accordingly, t
Hamiltonian in momentum space now reads as

H5H01Hmag1H int , ~4!

where

H05(
k

ekaa,k
† aa,k , ~5!

Hmag5(
k

i«abgVgaa,k
† ab,k , ~6!
,

s
e

or

o-

e

s
r-

an
rs

H int5
g1

2V (
k11k25k31k4

ab,k4

† aa,k3

† aa,k2
ab,k1

1
g2

2V (
k11k25k31k4

ab,k4

† ab,k3

† aa,k2
aa,k1

. ~7!

In the ground state, most particles occupy thek50 states. As
a result, the scattering between two nonzero-momen
states can be ignored and the interacting part of the Ha
tonian can be replaced by

H int.
g1

2V Fab,0
† aa,0

† aa,0ab,01 (
kÞ0

~ab,k
† aa,2k

† aa,0ab,0

1ab,0
† aa,0

† aa,kab,2k12ab,k
† aa,0

† aa,kab,0

12ab,0
† aa,k

† aa,kab,0!G1
g2

2V Fab,0
† ab,0

† aa,0aa,0

1 (
kÞ0

~ab,k
† ab,2k

† aa,0aa,01ab,0
† ab,0

† aa,kaa,2k

14ab,k
† ab,0

† aa,kaa,0!G . ~8!

Before calculating thes-wave scattering lengths to secon
order, a couple of remarks are in order. First of all, for t
sake of simplicity we shall disregard the magnetic interact
Hmag for a moment. Second, thes-wave scattering lengths
are formally determined from the so-calledT~ransition! ma-
trix, which can be computed perturbatively by using the d
grammatic techniques. Moreover, it is known that the ene
correction due to the two-body interactions can be direc
related to the matrix elements of theT matrix @11#. Hence,
one expects that the desireds-wave scattering lengths can b
obtained from the calculations of energy correction. In fa
it is not hard to show that, to second order, our results ag
with those obtained by theT-matrix approach. However, a
the standard second-order perturbation methods are onl
quired in our paper, the calculations can be greatly sim
fied. With these remarks in mind we are motivated to co
pute the energy correction due toH int .

We first introduce a class of two-particle states defined

u0,0;w&5
1

A2
wa* wb* ab,0

† aa,0
† uvac&, ~9!

where wa are constant parameters anduvac& is the Fock
vacuum. Such states can be normalized by imposing the
dition wa* wa5uwu251. Quite clearly, the unperturbed energ
vanishes in the presence of the state Eq.~9!. It is easy to
show that the first-order energy correction due toH int is

Eint
(1)5^0,0;wuH intu0,0;w&5

g1

V
uwu41

g2

V
uw2u2. ~10!
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Next, we consider the second-order correction for the
ergy. Now, in view of the explicit form ofH int given in Eq.
~8!, the only possible intermediate states are those state
two noncondensate particles carrying opposite momenta

uk,2k;a,b&[aa,k
† ab,2k

† uvac&, ~11!

with which the unperturbed energy is given by

^k,2k;a,buH0uk,2k;a,b&5ek1e2k52ek . ~12!

Thus the second-order energy correction due toH int is

Eint
(2)52

1

2 (
kÞ0

u^0,0;wuH intuk,2k;a,b&u2

2ek20
. ~13!

The factor 1/2 in Eq.~13! is inserted in order to avoid th
double counting of the momentum states. Now, we have

^0,0;wuH intuk,2k;a,b&

5
g1

V
^0,0;wuab,0

† aa,0
† aa,kab,2kuk,2k;a,b&

1
g2

V
^0,0;wuab,0

† ab,0
† aa,kaa,2kuk,2k;a,b&dab

5
A2

V
@g1wawb1g2w2dab#, ~14!

and hence

Eint
(2)52

1

V2 (
kÞ0

ug1wawb1g2w2dabu2

2ek

52
1

V
@g1

2uwu41~2g1g213g2
2!uw2u2#E d3k

~2p!3

1

2ek
.

~15!

Obviously, the integral in Eq.~15! diverges asuku˜`.
Choosingwa in such a way thatuw2u50, yields

g15Eint
(1)V, ~16!

indicating thatg1 is proportional to the first-order energ
correction due to the two-particle interactionH int . At this
order, g1 is related to the correspondings-wave scattering
lengtha1 by

g15
4pa1

m
. ~17!

Hence, to second order,a1 is related tog1 by the following
equation:

4pa1

m
[g̃15~Eint

(1)1Eint
(2)!V5g12g1

2E d3k

~2p!3

1

2ek
.

~18!
-

of

Here g̃1 will be referred to as the renormalized couplin
constant ofg1. Writing the original couplingg1 in terms of
the renormalized couplingg̃1 , we have at the same order,

g15g̃11g̃1
2E d3k

~2p!3

1

2ek
, ~19!

which is equivalent to the results demonstrated in the o
component case@8#. Next, we consider the renormalizatio
of g2. Unlike g1 , g2 cannot be isolated directly in th
present formalism. Instead, we shall consider the sumg1
1g2 that is equivalent togn as g15gn1gs ,g252gs . To
this end, we may takew251 such thatg11g25Eint

(1)V and
hence,

g̃11g̃25~Eint
(1)1Eint

(2)!V

5g11g22~g1
212g1g213g2

2!

3E d3k

~2p!3

1

2ek
. ~20!

Subtracting Eq.~18! from Eq.~20! and using Eq.~18! again,
we have at this order,

g25g̃21~2g̃1g̃213g̃2
2!E d3k

~2p!3

1

2ek
. ~21!

Alternatively, gn and gs are related to the correspondin
renormalized couplings by

gn5g̃n1~ g̃n
212g̃s

2!E d3k

~2p!3

1

2ek
, ~22!

gs5g̃s1~2g̃ng̃s2g̃s
2!E d3k

~2p!3

1

2ek
.

It should be noted that the renormalized coupling consta
g̃1 and g̃2 are consistent with the one-loop renormalizati
obtained by using the Feynman diagram techniques@10#.
These results are actually unaltered in the presence of a
stant magnetic field. The point is that the two-body intera
tion term H int , in fact, commutes with the magnetic ter
Hmag. As a consequence, despite the fact that the magn
interaction would, inevitably, introduce a Zeeman ener
shift to each hyperfine spin state, the total Zeeman energ
conserved in the two-particle scattering processes. Base
this point, one can easily check that both Eqs.~19! and~21!
remain correct.

We now proceed to calculate the ground-state energy w
the foregoing results. In the standard Bogoliubov approxim
tion the operatorsaa,0 andaa,0

† are replaced by the classica
number FaAV and Fa* AV, respectively, such thatuFu2

5N0 /V5n0 represents the density of condensate partic
Making these replacements in Eqs.~6! and ~8! yields

Hmag→ iV«abgVgFa* Fb1 (
kÞ0

i«abgVgaa,k
† ab,k ~23!
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and

H int→
1

2
g1VuFu41

1

2
g2VuF2u21

g1

2 (
kÞ0

~FaFbab,k
† aa,2k

†

1Fa* Fb* aa,kab,2k12Fa* Fbab,k
† aa,k

12uFu2aa,k
† aa,k!1

g2

2 (
kÞ0

~F2ab,k
† ab,2k

†

1F* 2aa,kaa,2k14Fb* Faab,k
† aa,k!. ~24!

Using Eqs.~23! and ~24! we obtain the effective Hamil-
tonian,

Heff5Hcon1Hnon, ~25!

where

Hcon5E d3r F i eabgVgFa* Fb1
g1

2
uFu41

g2

2
uF2u2G

~26!

and

Hnon5 (
kÞ0

~aa,k
† Labab,k1 1

2Mab* aa,kab,2k

1 1
2Mabaa,k

† ab,2k
† ! ~27!

are the Hamiltonians for the condensate and nonconden
part, respectively. Here the matrix elements are given by

Lab5ekdab1 i«abgVg1g1uFu2dab1g1Fb* Fa

12g2Fa* Fb , ~28!

Mab5g1FaFb1g2F2dab .

Note that Heff is precisely the Hartree-Fock-Bogoliubo
Hamiltonian in the standard Bogoliubov approximation@10#
whose ground-state structure can be determined by minim
ing the integrand in Eq.~26!. As a result, two different
ground-state structures are found@2,3#:

F5An0~1/A2,i /A2,0! for n0g2.2V, ~29!

which is referred to as the ‘‘ferromagnetic’’ state and

F5An0~cosu,i sinu,0! for n0g2,2V, ~30!

as the ‘‘polar’’ state. Here the cosine and the sine in Eq.~30!
are given by

cosu5
1

2 SA11
V

ug2un0
1A12

V

ug2un0
D ,

sinu5
1

2 SA11
V

ug2un0
2A12

V

ug2un0
D . ~31!
ate

z-

SinceHeff is quadratic inaa,k
† andaa,k , we can diagonal-

ize this Hamiltonian by using the generalized Bogoliub
transformation,

aa,k5(
i

@ua,k
( i ) bk

( i )2va,2k
( i ) b2k

†(i )#, ~32!

wherei is the mode index anduua,k
( i ) u22uva,k

( i ) u251. In terms
of the quasiparticle creation and annihilation operatorsbk

( i )

andbk
†(i ) , the Hamiltonian takes the following form:

Heff5Hcon1(
i

(
kÞ0

Ek
( i )~bk

†(i )bk
( i )2uva,k

( i ) u2!. ~33!

We now define the ground state, which is annihilated by
bk

( i ) , i.e., bk
( i )uUGND&50, so that the ground-state energy

found to be

EGND5VF i«abgVgFa* Fb1
g1

2
uFu41

g2

2
uF2u2

2E d3k

~2p!3 (
i

Ek
( i )uva,k

( i ) u2G , ~34!

where the last integral indicates the energy shift due to
quasiparticle excitations. To calculate the ground-state
ergy, one needs to know precisely the values ofEk

( i ) andva,k
( i )

for the quasiparticle modes. This can be done by using
standard Hartree-Fock-Bogoliubov mean-field method, a
we have calculatedEk

( i ) andva,k
( i ) for the quasiparticle modes

In the following, we devote our attention to the case in whi
the ground state is ‘‘polar,’’ since for the ‘‘ferromagnetic
case the excitation spectrum consists of one phonon
mode and two free-particle modes@3# so that the expression
for the ground-state energy resembles that of the o
component scalar BEC@8#. As a result, we find that the low
lying excitations can be described by two gapless mo
Ek

(6) and one massive modeEk
(0) :

Ek
(6)5Aek~ek12n0g(6)!, Ek

(0)5Aek~ek12n0g(0)!1V2,
~35!

for which the corresponding nonvanishing mode functio
are given by@10#

S vx,k
(6)

vy,k
(6)D 5S 1A(6)

2B(6)Dbk
(6) , vz,k

(0)52S 12
V2

n0
2g2

2D bk
(0) ,

~36!

where

g(6)5
1

2 Fg16Ag1
214g2~g11g2!S 12

V2

n0
2g2

2D G ,

g(0)5ug2u, ~37!

bk
( i )5

n0g( i )

A2Ek
( i )~Ek

( i )1ek1n0g( i )!
~ i 56,0!, ~38!
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A(6)5
g1V/ug2u

Ah (6)21~g1V/g2!2
, B(6)5

2 ih (6)

Ah (6)21~g1V/g2!2
,

~39!

h (6)5n0~g122g(6)!1n0~g112g2!A12~V/n0ug2u!2.
~40!

Moreover, with the condensate wave functions describe
Eqs.~30! and ~31!, we obtain the following results:

uFu25n0 , uF2u25n0
2S 12

V2

n0
2g2

2D ,

i«abgVgFa* Fb52
V2

ug2u
. ~41!

However, one sees that all the three integrals,

E d3k

~2p!3
Ek

( i )uva,k
( i ) u2 ~ i 56,0!,

are divergent whenuku→`. Note also that they are esse
tially of second-order in the coupling constantsg1 and g2.
To eliminate these ultraviolet divergences we substitute E
~19! and ~21! into Eq. ~34!. The resulting expression for th
ground-state energy is

EGND5VF i«abgvgFa* Fb1
g̃1

2
uFu41

g̃2

2
uF2u2G

1VE d3k

~2p!3

1

2ek
H F g̃1

2

2
uFu41

1

2
~2g̃1g̃213g̃2

2!

3uF2u2G2(
i

Ek
( i )~ g̃1 ,g̃2!uva,k

( i ) ~ g̃1 ,g̃2!u2J . ~42!

Note that the condensate wave functionF determined by
minimizing the sum of terms in the first line of Eq.~42! has
the same form as that in Eq.~41! except that the renormal
ized coupling constants are substituted instead. Furtherm
the last term in Eq.~42! can be expanded in powers of th
renormalized coupling constants. Since Eq.~42! is valid only
up to second order in the renormalized couplings, it suffi
to substituteg15g̃1 , g25g̃2 in the expressions forEk

( i ) and
va,k

( i ) , i.e., in Eqs.~35!–~40!. On these grounds, we are no
ready to calculateEGND given by Eq.~42!. First, we note that

g̃(1)21g̃(2)25g̃1
212g̃1~ g̃11g̃2!S 12

V2

n0
2g̃2

2D , ~43!

and hence,
in

s.

re,

s

g̃1
2uFu41~2g̃1g̃213g̃2

2!uF2u25n0
2F g̃(1)21g̃(2)2

1S 12
V2

n0
2g̃2

2D g̃(0)2G .

~44!

The integral in Eq.~42! is then equal to

1

2
n0

2VE d3k

~2p!3 F (i 56
g̃( i )2S 1

2ek
2

1

~Ek
( i )1ek1n0g̃( i )!

D
1S g̃2

22
V2

n0
2 D S 1

2ek
2

1

~Ek
(0)1ek1n0ug̃2u!D G . ~45!

Note that the first two terms are the same as that of
one-component case@8#,

1

2
n0

2VE d3k

~2p!3
g̃(6)2S 1

2ek
2

1

~Ek
(6)1ek1n0g̃(6)!

D
5

2pn0
5/2

m
VS 128

15Ap
a(6)5/2D , ~46!

wherea(6)5mg̃(6)/4p are the correspondings-wave scat-
tering wavelengths. The last integral can be expressed a

1

2
n0

2VS g̃2
22

V2

n0
2 D E d3k

~2p!3

Ek
(0)2ek1n0ug̃2u

2ek~Ek
(0)1ek1n0ug̃2u!

5
2pV

m
n0

5/2S 128

15Ap
ua2u5/2D ~12t2!F~ t2!, ~47!

wheret5V/n0ug̃2u, and the function of integral is defined a

F~ t2!5
15A2

32
E

0

`

dx
12x21At212x21x4

11x21At212x21x4
for 0<t2<1,

~48!

which is a monotonically increasing function that cannot
analytically evaluated in general.

Finally, using Eq.~41! we get

F i«abgvgFa* Fb1
g̃1

2
uFu41

g̃2

2
uF2u2GV

5F g̃1n0
2

2
1

g̃2n0
2

2 S 12
V2

n0
2g̃2

2D 2
V2

ug̃2uGV

5
2pn0

2V

m
~an2t2as!, ~49!

and therefore the ground-state energy is given by
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EGND5
2pn0

2V

m F ~an2t2as!1
128

15Ap
n0

1/2

3@a(1)5/21a(2)5/21~12t2!F~ t2!as
5/2#G , ~50!

wherean5mg̃n/4p,as5mg̃s/4p. The terms proportional to
a(6)5/2 are caused by the two gapless modes and have
same form of the phononlike mode in the one-compon
BEC. The last term in Eq.~50! is due to the massive mode
which depends solely on the scattering lengthas for the spin
exchange channel and is suppressed by the increasing
netic field.

In conclusion, we have analytically calculated the groun
state energy of a homogeneous spinor BEC with hyper
spin f 51 based on the Bogoliubov approximation. In th
weakly interacting system, the two-body interactions are
-
e

A

p.
he
t

ag-

-
e

-

scribed by the hard-core collisions and the spin-excha
interaction, which are characterized by the coupling co
stantsg1 and g2, respectively. Using the second-order pe
turbation methods, the two bare coupling constantsg1 andg2

are expressed in terms of their renormalized onesg̃1 andg̃2,
which are directly related to the physically measura
s-wave wavelengths for the corresponding scattering ch
nels. It is found that the renormalization ofg1 has the same
form as that of the one-component scalar BEC. However,
renormalization ofg2 is more complicated and has a depe
dence on the renormalized coupling constantg̃1 . With the
renormalized coupling constants, we are able to show
the ultraviolet divergence occurring in the calculation
ground-state energy can be completely removed.
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