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Ground-state energy of the spinor Bose-Einstein condensate
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It is known that for a weakly interacting Bose-Einstein conden€EC), the assumption of a two-body
interaction described by a constant coupling strength gives rise to a divergent ground-state energy. A similar
divergence occurs in the spinor condensate in which the spin-spin interaction is included in addition to the
repulsived interaction. In this paper, we examine, in the standard Bogoliubov approximation, the ground-state
energy of a homogeneous spinor BEC with hyperfine dpiril. The renormalized coupling constants are
calculated and expressed in terms of the bare ones using the standard second-order perturbation method. With
these renormalized coupling constants, we show that the ultraviolet divergence of the ground-state energy can
be exactly eliminated.S1050-2947@9)01106-3

PACS numbds): 03.75.Fi, 05.30.Jp

Recently, Stamper-Kuret al. [1] have successfully con- ers of thes-wave scattering length the previously mentioned
fined a Bose-Einstein condenséBEC) of *Na atoms in an divergent ground-state energy can be rendered finite. This is
optical dipole trap. In their experiment, a multicomponentexpected since in a physically sensible theory the ground-
BEC, which is characterized by the three hyperfine spirstate energy must assume a finite value when expressed in
stateg f=1m;=*1,0), has been observed. This has openederms of physically measurable quantities. In other general-
an interesting possibility of exploring the multicomponentized Bose condensed systems such as the spinor BEC ultra-
BEC with complicated internal spin dynamics in which not yiplet divergences of the same sort could also appear. It is,
only the global W1) symmetry but also the rotational 88  therefore, quite essential to verify if a similar procedure
symmetry in spin space are involvez3]. could completely remove these divergences, and in this pa-

_An Important feature Of the spinor condensate IS .thatperwe address this issue in detail for fhel spinor BEC in
Lﬂaf‘d.d'“of‘ to trr']e c;epu_lswde bl_nar_y hard_—core CO”'S.'Onsthe presence of a constant magnetic field.

give rise to the density-density interaction, atoms in the 'y, 14 he noted that current BEC experiments are car-
condensates can also couple to each other via the spin- . .
exchange interaction. Assuming that the interaction for eacﬁIed out in atomic traps, and the results for homogeneous

spin exchange channel is again characterized by zero-ran%gﬁemS are less likely to be applicable when inhomogeneous

delta-potential scattering, one thus obtains the interactin ystems are under consideration. Nevertheless, the res_ults
btained from a homogeneous system may serve to provide

term S-S whereS is the spin-density operator. The compe- _ . ; . . »
tition between these two interactions thus leads to an intrigugrllznc]ag estngsl Iggnceégﬂrg]y:ﬁgl g:rimi'rt]'esr;];aotfr?ﬁged
ing scenario of the spin dynamics of the spinor BEC, which 9. P ping

is characterized by a complex ground-state strudt@ret]. collective ¢x0|t§1t|or[6]). Moreover, in the WKB sen_1|cIaSS|-
The question that arises now is how these two-body intergal approximation, the homogeneous results are directly used

actions alter the dynamical properties of the condensates. P détermine the spectrum of elementary excitations, which
is known that in a weakly interacting Bose-condensed sys'S then exploited to calculate various _thermodynam|c quanti-
tem, the two-body interactions play a crucial role in deter-ti€s [7]. Apart from these, the extension of the present ana-
mining the low-temperature properties of the systems, whic#ytic approach to the inhomogeneous systems is technically
will modify the ground state of the many-particle Systemsdiﬁicult. As will become clear later, in order to remove the
and cause a depletion of the condensate fraction even at ze#évergence and determine the ground-state energy, one needs
temperature. Moreover, a divergence could possibly appedrecisely the elementary excitation spectra and the corre-
when we calculate the ground-state energy in the standagponding wave functions of the system. Unfortunately, seek-
Bogoliubov approximation. This divergence is due to the naing the closed forms of the elementary excitations for an
ive assumption of a constant matrix element of binary interinhomogeneous BEC remains as a great theoretical challenge
action irrespective of the relative momenta of the interactingeven for the much simpler one-component BEC, to say noth-
particles. A well-illustrated example is the ultraviolet diver- ing of the more complicated spinor BEC. On these grounds,
gence occurring in the calculated ground-state energy of thee are therefore concerned mainly with the homogeneous
one-component BEC where the two-body interaction is desystem in this paper.

scribed by the repulsive hard-core collisions with a Consider an assembly of homogeneous dilute Bose gas
momentum-independent coupling constgBit To eliminate  with hyperfine spinf=1. The natural basis set to character-
such a divergence and gain more insight into the groundize such a system is the hyperfine spin stdtes= =1,0).

state properties of the condensates, one has to calculate thk®wever, in view of the special symmetrical forms of the
swave scattering length at least to second order in the cowspin-1 matrix representations one may adopt the basis set
pling constant. By expanding the coupling constant in pow<|x),|y),|z)} whose elements are defined as the eigenstate of
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the ath component of the spin operator with eigenvalue 0, o R

i.e., S,la)=0(a=x,y,z) such that the matrix elements for Hin=5y ek Sy, BBk AakBa kBB Ky
the ath spin component is given by|S,|8)=iz 4, where e

€43y 1S the Levi-Civita tensor. This representation enables us o)

to relate the spin-1 matrix elements to those of the space a};vk4a;vk3aa'k2aa'k1' @
rotation, allowing the order parameter to behave as a vector
under spin space rotation. _

For thef =1 spinor BEC, the bosonic atomic field can be N the ground state, most particles occupy kive0 states. As
described by the three-component field operafor with ~ @ result, the scattering between two nonzero-momentum

componentsy,(r)(a=x,y,z), and thus the particle number States can be ignored and the interacting part of the Hamil-

and spin densities can be written as-yly,, and 5, toniancan be replaced by
= zp};SazpB: —iéaﬁylﬂ;lﬂy, respectively. Note that we have

2V K +ky=kz+ky

used the summation convention over the indices of compo- H. 9 al al a @t S (al,al_.a
nenta,B, ... throughout this paper. Now, without loss of Nt 2\ | “B.0%e, 0% 098,07 od AT kT, —k 03,0
generality, the Hamiltonian density can be constructed in the
presence of a constant magnetic fi@dpointing to thez t+at at a .a. .+2ah.a" a
direction[3]: B,Oaa,O a, k4B, —k B,k a,Oaa,k 5,0
v? 1 ., 1 . . +2aTaTaa)+%aTaToaa
H:_¢T_¢a+ —gnn2+—gSS~S—Q‘S (h=1), 8,080, k8, k83,0 2V | 48.048,042,04a,0
“2m 2 2
oY)
- . +k;0 (aL,kaL,-kaa,oaa,o+ aL,oaIs,oaa,kaa,_k
where Q=Q0z=g,B (g,:gyromagnetic ratlo)Als thAe Lar-
mor frequency in a vectorial notation. Expandim@ndS,, in
terms of the field operators, E{L) can be expressed as +4a;rg’ka;rg’0aa’kaa’0) . (8

H=—¢*V—2¢f G bt 5 Ut
agm Ve 91VpValalpT 5920V pVala Before calculating the-wave scattering lengths to second

: + order, a couple of remarks are in order. First of all, for the
ti€ap, Ly, g, 2 sake of simplicity we shall disregard the magnetic interaction
_ . Hmag for @ moment. Second, thewave scattering lengths
where the two new coupling constants are givengh¥gn  are formally determined from the so-call@@ransition ma-
+0s,92= —0s- According to the recent Spectroscopic ex- gy which can be computed perturbatively by using the dia-
periment by Abrahanet al. [9], it is conceivable in general -3 mmatic techniques. Moreover, it is known that the energy
thatg, is comparable t@, in magnitude and can be either correction due to the two-body interactions can be directly
positive or negative. It is known that the positige implies  g|ated to the matrix elements of tHematrix [11]. Hence,
the ferromagnetic coupling while the negative one impliesyne expects that the desireavave scattering lengths can be
the antiferromagnetic coupling for the spin-exchange interyhtained from the calculations of energy correction. In fact,
action. , , it is not hard to show that, to second order, our results agree

Since the system is homogeneous, the field operator cafjth those obtained by th&-matrix approach. However, as
be expan_ded in terms of creation and annihilation operatorge standard second-order perturbation methods are only re-
characterized by momentuk) quired in our paper, the calculations can be greatly simpli-

fied. With these remarks in mind we are motivated to com-

1 pute the energy correction due k.

— ik-r
Yalr)= W zk: Aa k€ 3 We first introduce a class of two-particle states defined by
whereV denotes the volume of the system. Accordingly, the 1
Hamiltonian in momentum space now reads as 10,0;p) = E(PZ cp’éagoa;dvac), 9
H:HO+Hmag+Hintv (4)

where ¢, are constant parameters apeho) is the Fock
where vacuum. Such states can be normalized by imposing the con-
dition ¢* ¢,,=|¢|?= 1. Quite clearly, the unperturbed energy
vanishes in the presence of the state Bj. It is easy to

_ t
Ho ; €kAakBak: ®) " show that the first-order energy correction dueHtg, is

O t 01 92
Hmag—; ie4p,(),8, kB k. (6) E(Y=(0,0;|Hin 0,0500) = Vel V|<P2|2- (10)
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Next, we consider the second-order correction for the enHere g, will be referred to as the renormalized coupling

ergy. Now, in view of the explicit form of;,; given in Eq.

(8), the only possible intermediate states are those states
two noncondensate particles carrying opposite momenta,

k,—k;a,B)=al a} _,|vao, (11)
with which the unperturbed energy is given by
(k,—k;a,BlHolk,—k;a,B)= €+ e_=2¢. (12
Thus the second-order energy correction duélig is

1 o (0.0Hinlk, —k; 2, 8)[?
El(nzt) 2 2 n .

K70 2¢,—0

13

The factor 1/2 in Eq(13) is inserted in order to avoid the
double counting of the momentum states. Now, we have

(0,0;0|Hindk, —k; @, 8)

g1
:V<O!O;‘P|a};,oaz,oaa,kaﬁ,fﬂk=_kia,,B>
92
+ V<an?<P|aL,oaL,oaa,ka : apB
2 2
_7[gl¢a¢ﬁ+92@ Sapls (14
and hence
E_(z):_i 3 91000+ 92070517
nt V2 Ko 2€,
1
=—g *+(29,0,+3 22 f
[gllsol (29:9,+303) ¢ (2m)3 26
(15

Obviously, the integral in Eq(15 diverges as|k|—.
Choosinge,, in such a way thate?|=0, yields

9:=ERV, (16)

indicating thatg, is proportional to the first-order energy

correction due to the two-particle interactidt;. At this

order, g, is related to the correspondirggwave scattering

lengtha; by

47Ta1
m

g1= 17

Hence, to second ordea; is related tog, by the following
equation:

d*k 1
(2m)3 Zek

4’7Ta1 ~
2 5 R ERIV=01-F [

(18)

constant ofg,. Writing the original couplingy, in terms of
Me renormalized coupling;, we have at the same order,

- - d®k 1
01=01+ glzf 5 (19
(27)° 2¢€¢

which is equivalent to the results demonstrated in the one-
component casf8]. Next, we consider the renormalization
of g,. Unlike g1, g, cannot be isolated directly in the
present formalism. Instead, we shall consider the gym
+g, that is equivalent tcgn asg;=9,+9s,9,=—0s. TO
this end, we may take?=1 such thaig; +g,= Im’v and
hence,

91+ 0= (ER}+E)V

int int

=g:+09,—(97+29:9,+395)

L 2
(2m)3 26 (20

Subtracting Eq(18) from Eq.(20) and using Eq(18) again,
we have at this order,

92=02+(2019,+ 303) f (21)

(2w )3 26

Alternatively, g, and g5 are related to the corresponding
renormalized couplings by

1
=Gn+ 33+ 22 )f(z e (22
T ~2f d*k 1
gs_gs+( gngs_gs) (277)32—5k.

It should be noted that the renormalized coupling constants

g, andg, are consistent with the one-loop renormalization

obtained by using the Feynman diagram techniqes.
These results are actually unaltered in the presence of a con-
stant magnetic field. The point is that the two-body interac-
tion term H;,;, in fact, commutes with the magnetic term
Hmag- AS @ consequence, despite the fact that the magnetic
interaction would, inevitably, introduce a Zeeman energy
shift to each hyperfine spin state, the total Zeeman energy is
conserved in the two-particle scattering processes. Based on
this point, one can easily check that both E4®) and (21)
remain correct.

We now proceed to calculate the ground-state energy with
the foregoing results. In the standard Bogoliubov approxima-
tion the operators,, o and aa o are replaced by the classical
number &,V and ®*\V, respectively, such thaj®|?
=Ny /V=n, represents the density of condensate particles.
Making these replacements in E@6) and (8) yields

Hmag—’ivsaﬁyﬂyq)zq’frg i£4p,00,a0 gk (23)
e
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and

1 1 01
Hin— 5 0:VI®|*+5 0,V 9%%+ 5 > (@, Pgpaf )

k#0

+ DL DA, ap k+2P%Dgak A,
92
+2|(I)|2al,kaa,k)+ > g’o (CI)ZaL,kaE,fk

+fl)*Zaa,kaa,_k+4®z@aa2’kaa,k). (24)

Using Egs.(23) and (24) we obtain the effective Hamil-
tonian,

Het=Hcont Hnons (25)
where
Hcon=f 0|0, 0, @1 D+ S|+ %@ﬂ
(26)
and
Hnon= (aT L sa +lj\/l* a_ .a
non ak~aB9p kT 2 apfa k4B, —k
k#0
+%Maﬁa2’ka2’_k) (27)

part, respectively. Here the matrix elements are given by

Lop= €0upticap, 0+ 01| ®?8,5+ 9 P5P,

+2g,d% Dy, (28)
Mop=01P P 5+ P%5,5.

Note that Hqy is precisely the Hartree-Fock-Bogoliubov
Hamiltonian in the standard Bogoliubov approximat{df]
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SinceH is quadratic ira;k anda,, we can diagonal-
ize this Hamiltonian by using the generalized Bogoliubov
transformation,

aa,k=2 [Ug,)kb(ki)_vg,)—kbt(p]- (32
1
wherei is the mode index anfu$)|2—[v{)|?=1. In terms
of the quasiparticle creation and annihilation operatuffs
andb] ", the Hamiltonian takes the following form:
Hef‘f:Hcon"'E 2 E(ki)(bl(i)bg)_w(oi)k 2)- (33
T k#0 ‘
We now define the ground state, which is annihilated by all

b(", i.e., b{’|Ognp) =0, so that the ground-state energy is
found to be

EGND:V i8 Q

where the last integral indicates the energy shift due to the
quasiparticle excitations. To calculate the ground-state en-
ergy, one needs to know precisely the valueE@F ando (),

for the quasiparticle modes. This can be done by using the

standard Hartree-Fock-Bogoliubov mean-field method, and
we have calculateB{’ andv!), for the quasiparticle modes.

01 o]
apr By PLP gt = |+ [ 0%

d3k o
> EQROIR]

(2 4 (34

A% the following, we devote our attention to the case in which

the ground state is “polar,” since for the “ferromagnetic”
case the excitation spectrum consists of one phononlike
mode and two free-particle modg3)] so that the expression
for the ground-state energy resembles that of the one-
component scalar BE{B]. As a result, we find that the low-
lying excitations can be described by two gapless modes
E{*) and one massive mod&?” :

E(Y = Ver(ect2nog™)),

E= Vet 2nog®) + 07,
(39

whose ground-state structure can be determined by minimiz-

ing the integrand in Eq(26). As a result, two different
ground-state structures are four®j3]:

®=no(1V2,i/2,0)

which is referred to as the “ferromagnetic” state and

for ngg,>—Q, (29

®=/ny(cosh,i sing,0) for nyg,<—9, (30

as the “polar” state. Here the cosine and the sine in(B4)

are given by
1 Q Q
cosf= 1+7—F+\/1-7—7—|,
2 |92/no |92 no

ing 1<\/1+ @ \/1 o ) (3D
sinfg= = —_— ——.
2 192/no |92Ino

for which the corresponding nonvanishing mode functions
are given by[(10]

(%) () 2
it R PN R PR A P
Uy K —B- ’ nggs
(36)
where
1 5 02
g =50* 91 +t492(01+92)| 1——— ||,
Nod>2
9@=lg,|, (37
_ nog(i)
0 (i=+,0, (39

kT - - -
V2ED(EQ + e +nog™)
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Q/ —ip®)
A — 91Q/|g| B(+) — 7 , 91|<I>|4+(291gz+392)|<1>2|2—n [ (+)2+g( )2

V724 (g,0/g,)? Jn<*>2+<gln/g%>2)
39

7 =no(g1—29)) +ny(gs+29,) V1- (Q/n0|92|)(- 9
4

Moreover, with the condensate wave functions described id N€ integral in Eq(42) is then equal to
Egs.(30) and(31), we obtain the following results:

1 va dk a2l 1 1
=N i - popn
, e 02 2% ) (2m)3 = 97 | 2¢, (EQO+ e+ ngg™)
No92

(49

~, Q%[ 1 1

03— — |50~ = —|
ng/\2€  (E+ ec+nolgal)

2

isaﬁyﬂszcbf— @ (41) Note that the first two terms are the same as that of the
one-component cagé],
However, one sees that all the three integrals, 1 d 1 1
2
—n Vj ( ) - —
" 2" 2 (26k (E£>+ek+nog<*>>)
EP® ]2 (i==+,0), 52
J’ (277.)3 ) _ 21Tn 128 (+)5/2 1 (46)
m 15@

are divergent whemk|—. Note also that they are essen- 5

tially of second-order in the coupling constamfs andg,. ~ Wherea™)=mg(*)/4x are the correspondingwave scat-
To eliminate these ultraviolet divergences we substitute Eqgering wavelengths. The last integral can be expressed as
(19) and(21) into Eq. (34). The resulting expression for the

ground-state energy is 1, [~ 0? d3k E{Y— e+ o[l
EnoV 92— — 3 (0) ~
B B ng/ ) (2m)% 2B+ e+ no[Q3))
EGND:V isaﬁ CI) q)6+_|(l)|4 |(I)2| :| 2 V 128
Y _ 5/2 |a |5/2 (1 t2)|:(t2) (47)
m 15{7

1
|‘I’|4 29192“‘ 395)

d*%k 1 [|9g
Vf (2m )32€k[

><|<p2|2}_2 EL(G1.02)[004(01.82) 7. (42 o 192 e 1o T2
i F(t9)= dx
32 Jo 14 x4 \tP+2x3+ x4

wheret=/n,|g,|, and the function of integral is defined as

for 0<t?<1,

Note that the condensate wave functidndetermined by 49
minimizing the sum of terms in the first line of E@2) has  \hich is a monotonically increasing function that cannot be
the same form as that in E(41) except that the renormal- analytically evaluated in general.
ized coupling constants are substituted instead. Furthermore, Finally, using Eq.(41) we get
the last term in Eq(42) can be expanded in powers of the
renormalized coupling constants. Since Ef) is valid only ~ ~
up to second order in the renormalized couplings, it sufﬂce{ 5,0, DLD o+ —|<I>|4 |(I)2| }
to substituteg; =g, g,=9, in the expressions de(k') and Saby

g)k, i.e., in Eqs.(35—(40). On these grounds, we are now

ready to calculat&gyp given by Eq.(42). First, we note that [E]lng N3 0z\ 0?2 v
= + — -
2 2 nggs/ gzl
1 1\Y1 2 gég ’ — (an_tZaS), (49)

and hence, and therefore the ground-state energy is given by
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2 scribed by the hard-core collisions and the spin-exchange
Ecnp= m (a,—tag) + ng interaction, which are characterized by the coupling con-
15ym stantsg, andg,, respectively. Using the second-order per-

turbation methods, the two bare coupling constantandg,

X[a(t)%24+ (524 (1 —t2)F(t?)ad?]|, (50) are expressed in terms of their renormalized apeandgs,,
which are directly related to the physically measurable
~ ~ , swave wavelengths for the corresponding scattering chan-
W(rl?;/ezan: mgy/4m,a;=mg/4m. The terms proportional t0 pgls_ |t is found that the renormalization gf has the same
a'~’>* are caused by the two gapless modes and have thgym as that of the one-component scalar BEC. However, the
same form of the phononlike mode in the one-componentenormalization ofy, is more complicated and has a depen-
BEC. The last term in Eq550) is due to the massive mode, . . ~ i
which depends solely on the scattering lenggtior the spin dence on the renormahzed coupling constant With the
renormalized coupling constants, we are able to show that

ﬁé;gi?egig channel and is suppressed by the increasing Mafe ultraviolet divergence occurring in the calculation of

In conclusion, we have analytically calculated the ground_ground-state energy can be completely removed.
state energy of a homogeneous spinor BEC with hyperfine
spin f=1 based on the Bogoliubov approximation. In this  This work is supported by the National Science Council,
weakly interacting system, the two-body interactions are deTaiwan under Grant No. NSC-88-2112—M-018-004.
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