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Two-photon Doppler-free spectroscopy of trapped atoms
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We describe the systematics of two-photon Doppler-free excitation of atoms confined in a cylindrical
harmonic trap, at densities far from the regime of quantum degeneracy. The line shape is explained in terms of
momentum transfer between the light beam and the trapped atoms. This formalism extends the semiclassical
analysis of time-of-flight broadening. The results, which are general, were motivated by the development of
two-photon Doppler-free spectroscopy of trapped atomic hydrogen.@S1050-2947~99!04406-6#

PACS number~s!: 32.80.Pj, 39.30.1w, 06.30.Ft
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I. INTRODUCTION

The intimate connection between the internal and exte
~translational! states of a radiating atom was first demo
strated by Einstein, who showed that the essential me
nism for maintaining thermal equilibrium between a therm
radiation field and the kinetic degrees of freedom of
atomic gas is the Doppler shift due to photon recoil@1#. The
connection manifests itself in many other contexts, for
stance in Mossbauer’s analysis of recoil-free gamma r
emission@2#, and Dicke’s proposal for suppressing Dopp
broadening by confining the radiator to a distance short c
pared to its wavelength@3#.

With the advent of techniques for laser cooling and tra
ping atoms, the effect of translational motion on the radiat
process has taken on a new significance. Many of these
nomena were first studied for the case of trapped ions@4#,
and the analysis can often be extended to trapped atoms,
suitable allowance for the effects of the relatively soft co
fining potential of atom traps. Photoexcitation in the case
two-photon absorption, particularly in the Doppler-free co
figuration, involves rather different types of behavior. W
have analyzed this behavior, motivated by the developm
of two-photon spectroscopy of trapped atomic hydrog
@5,6#. The transition observed, 1S→2S, plays a prominent
role in hydrogen spectroscopy@7#, in precision tests of basic
theory @8#, and as a probe for studying Bose-Einstein co
densation in spin-polarized hydrogen@9#. Due to the long
lifetime of the metastable 2S state, the natural linewidth fo
this transition is only 1 Hz. By employing trapped atoms
appears that this resolution may be experimentally feasi
Consequently, a detailed understanding of the radiation
cess is essential.

We present here an analysis of two-photon excitation o
trapped atomic gas that is far from quantum degeneracy.
discussion is confined to the so-called Doppler-free confi
ration in which two photons are absorbed from a stand
wave oscillating at half the transition frequency@10,11#.
Other than this, the discussion is general.

The system is described in Sec. II. In Sec. III the tran
tion amplitude for two-photon absorption is calculated, a
in Sec. IV the physical picture of momentum transfer fro
PRA 591050-2947/99/59~6!/4564~7!/$15.00
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the laser beam to the atom is developed. The results
applied to spectroscopy with a weakly diverging laser be
~the limit of long Rayleight length! in Sec. V, and the pho-
toexcitation line shapes under various conditions are
scribed in Sec. VI. Section VII presents some conclud
discussion.

II. THE SYSTEM

We consider Doppler-free two-photon excitation of atom
confined by a trapping potential, taking into account t
quantum behavior of the translational motion. The trap h
cylindrical symmetry, and is coaxial with a radiation field
the fundamental Gaussian mode.

The system is described by the Hamiltonian

H5Ho1Hcm1V, ~1!

whereHo and Hcm, respectively, describe the internal an
translational states of the atom, andV describes the interac
tion of atom and radiation field. The eigenstates ofHo are
taken to be the ground state,uA&, a set of intermediate state
with opposite parity,uB&, and the final state,uC&. StatesuA&
and uC& are coupled touB& by dipole matrix elementsmab
and mbc , respectively. The electronic transition frequenc
of Ho are in the formvba[(Eb2Ea)/\.

It is convenient to describe the center-of-mass motion
ing Cartesian coordinates with translational sta
unx ,ny ,nz&, where nx , ny , and nz are quantum numbers
For the purpose of discussion we assume that the tra
harmonic and cylindrically symmetric: extension of the a
gument to other geometries is straightforward. The Ham
tonian for the atom’s center of mass motion is

Hcm5 (
j 5x,y,z

S Pj
2

2m
1

1

2
mV j

2Rj
2D 5 (

j 5x,y,z
\V j~nj11/2!,

~2!

whereVx5Vy[V is the radial angular frequency. It is use
ful to introduce the parametera:

a[AmV/\. ~3!
4564 ©1999 The American Physical Society
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The rms momentum iŝpj
2&1/25\aAj 11/2, and the rms size

of the wave functions iŝxj
2&1/25Aj 11/2/a.

In the dipole approximation, the atom-radiation intera
tion is

V~r ,t !52m•E~r ,t !, ~4!

wherem is the dipole operator andE(r ,t) is the real electric
field amplitude which is taken to oscillate at frequencyv.

The radiation field, which is treated classically, is co
posed of two counterpropagating monochromatic beams
single spatial mode. The spatial dependence of Gaus
beams propagating in the6z directions is, in cylindrical
coordinates@12#,

E6~r,z!5E0

w0

w~z!
expS 6 i @kz1h~z!#

2r2F 1

w2~z!
2

6 ik

2R~z!G D , ~5!

where h(z)5tn21(z/z0), w2(z)5w0
2@11z2/z0

2#, R(z)
5z(11z0

2/z2). The beam divergence length isz05pw0
2/l,

wherew0 is the beam waist at the focusz50, andl is the
wavelength.

Assuming a linear polarizationê and dropping the coun
terrotating terms for absorption, Eqs.~4! and ~5! yield

V~r ,t !52
m•e

2
@E1~r,z!1E2~r,z!#e2 ivt. ~6!

III. TRANSITION AMPLITUDE

Standard second-order time-dependent perturba
theory yields the amplitude for the transitionuA, j ,k,l &
→uC, f ,g,h&, through intermediate statesuB,a,b,g&:

Cjkl
f gh~ t !5 (

b,a,b,g

1

~ i\!2E0

t

dt9E
0

t9
dt8

3exp@ i ~vcb1Vabg
f gh !t9#

3exp@ i ~vba1V jkl
abg!t8#

3^h,g, f ,CuV~r ,t9!uB,a,b,g&

3^g,b,a,BuV~r ,t8!uA, j ,k,l &. ~7!

Here V jkl
abg[V j

a1Vk
b1V l

g5V@(a2 j )1(b2k)#1Vz(g
2 l ) is the Bohr frequency associated with the transition
tween translational statesu j ,k,l &→ua,b,g&. Evaluating the
electronic dipole matrix elements we obtain

Cjkl
f gh~ t !5 (

b,a,b,g

mabmbc

~ i\!2 E
0

t

dt9E
0

t9
dt8

3exp@ i ~vcb1Vabg
f gh 2v!t9#

3exp@ i ~vba1V jkl
abg2v!t8#
-

-
a

an

n

-

3
1

4
^h,g, f u@E1~r,z!1E2~r,z!#ua,b,g&

3^g,b,au@E1~r,z!1E2~r,g!#u j ,k,l &. ~8!

Assuming that the radiation fields are far off resonan
from the intermediate stateuB&, contributions toCjkl

f gh(t) are
important only whent8't9 @13#. Consequently, we can sub
stitute Va

f t91V j
at8'V j

f t9 and use the closure relation t
eliminate the intermediate translational states,ua,b,g&. For
Doppler-free excitation, which involves the absorption
two counterpropagating photons, we disregard the prod
of fields from the same beam. The result is

Cjkl
f gh~ t !5(

b

mabmbc

2~ i\!2 E0

t

dt9E
0

t9
dt8

3exp@ i ~vcb1V j
f1Vk

g1Vh
l 2v!t9#

3exp@ i ~vba2v!t8#

3^h,g, f uE1~r,z!E2~r,z!u j ,k,l &, ~9!

which yields the following expression for the transition am
plitude:

Cjkl
f gh~z,t !5(

b

mabmbc

~ i\!2

1

i ~vba2v!

3
exp@ i ~vca1V j

f1Vk
g1Vh

l 22v!t#21

i ~vca1V j
f1Vk

g1Vh
l 22v!

3^hzuF ^ f ue22x2/w2(z)u j &

3
E0

2w0
2

2w2~z!
^gue22y2/w2(z)uk&G u l z&, ~10!

wherevca5(Ec2Ea)/\.

IV. LONG RAYLEIGH LENGTH LIMIT

For clarity it is convenient to consider the case in whi
the extent of the atomic cloud along the axis is much sho
than the laser beam divergence length. The general ca
treated later. We substitutew2(z)'w0

2 and ^hzu l z&5dh,l in
Eq. ~10! to obtain

Cjkl
f gl5(

b

mabmbc

~ i\!2

E01
E02

2i ~vba2v!

3
exp@ i ~vca1V j

f1Vk
g22v!#21

i ~vca1V j
f1Vk

g22v!

3^ f ue22x2/w0
2
u j &^gue22y2/w0

2
uk&. ~11!

Photoexcitation involves simultaneous electronic and
brational transitions, accompanied by a frequency shift d
to the change in vibrational energy, as in a molecular tran
tion involving change in electronic and vibrational levels.
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this case the ‘‘molecule’’ is the very soft atom-trap com
bined system. The line shape is governed by the translati
matrix elements. We now turn to the physical processes
underlie these matrix elements, designated by

I j
f~w0![^ f ue22x2/w0

2
u j &. ~12!

A. Momentum transfer and selection rules
in two limiting cases

If u j & andu f & are momentum eigenstates with momentapj
andpf , respectively, Eq.~12!, becomes

I j
f~w0!}E dxe2 i (pj 2pf )x/\e22x2/w0

2
. ~13!

It is evident thatI j
f(w0) is the spatial Fourier transform o

the beam profile at momentumpj2pf . Consequently, the
photoexcitation process effectively decomposes the la
beam profile into its momenta components. Each compon
contributes to absorption at a frequency shifted from
electronic transition frequencyvca by an amountV j

f . If the
translational energy is not quantized, the translational w
functions form a continuum and the continuum of frequen
shifts produces a single broad line.

Atoms spatially confined, however, absorb in a discr
series of lines. We can extract the selection rules for
transitions in Eq.~12! by simple parity conservation. Th
Gaussian function in the matrix elementI j

f has even parity
which for I j

fÞ0 requires thatu f & and u j & have the same par
ity. This means thatf 1 j must be even. This rule follows
from the symmetry of the system and would be violated
for instance, the laser beam were not centered at the
axis.

In the limiting case where the laser beam waistw0 is
much larger than the physical extent of eitheru j & or u f &, i.e.,
w0@A( f , j )11/2/a, the Gaussian function in Eq.~12! is ap-
proximately constant and equal to unity. In this case,

I j
f~w0!5^ f u j &5d~ j , f !. ~14!

Because there is no change in the vibrational state,
sidebands arise from this transition and transit time broad
ing is absent. The situation is an extreme case of Dicke
rowing, in which motional broadening is suppressed when
atom is confined and cannot experience the spatial ph
change of the electric field.

In the opposite limit where the beam waist is mu
smaller than the spatial extent of the wave functions,
Gaussian factor behaves like a normalizedd function. So, for
an atom initially in stateu j &, the number of possible trans
tions to different final statesu f & is enormous. The transition
frequencies are all separated by an interval of 2V. The result
is a fine comblike structure of lines within a broad envelo
whose shape will be calculated below.

These two limiting cases will be shown to occur natura
in the general solution to Eq.~12! that we now discuss.

V. GENERAL BEHAVIOR

The exact solution to Eq.~12! is presented in Appendix A
However, because that solution is not transparent, part
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larly for large quantum numbers, we shall employ an a
proximate solution. The details of this approximation a
presented in Appendix B. The key idea is that a harmo
trap potential is almost flat at the origin so that near
origin its eigenfunctions behave much like those of a fr
particle. As explained in Appendix B, the translational m
trix elements in Eq.~10! can then be written

^ f ue22x2/w2(z)u j &

'
aw~z!exp@2a2w2~z!/8~A2 j 112A2 f 11!2#

@4p2~2 j 11!~2 f 11!#1/4
.

~15!

The structure of they matrix element is identical and par
ity considerations again dictate that the matrix element v
ishes unlessf 1 j is even. We shall postpone treatment of t
longitudinal matrix elements, leaving them in terms of t
initial and final longitudinal quantum numbersl z and hz ,
respectively. Substituting Eq.~15! into Eq. ~10!, and using
Eq. ~5!, we obtain

Cjkl
f gh~ t !5

E0
2

2~ i\!2 F(
b

mabmbc

i ~vba2v!G
3

exp@ i ~vca1V j
f1Vk

g1V l
h22v!t#21

i ~vca1V j
f1Vk

g1V l
h22v!

3
R2^hzuexp@2~11z2/z0

2!c#u l z&

2p@~2 j 11!~2 f 11!~2k11!~2g11!#1/4
,

~16!

where

c[
R2

8
@~A2 j 112A2 f 11!21~A2k112A2g11!2#

~17!

andR5awo .
The parameterR, the ratio of the radii of the laser beam

and the trap ground-state diameter, characterizes the qua
tive behavior of the spectrum.

In the long Rayleigh length limit wherezo is large com-
pared to the longitudinal extent of the trapped atoms, we
take^hzuexp@2(11z2/z0

2)c#ulz&'exp@2c#d(hz,lz). Even if this
condition is not satisfied,z0 will usually be long compared to
the spatial oscillation of the axial wave functions. Cons
quently, transitions between longitudinal states will not
significant. Alternatively, we can say that in the Doppler-fr
configuration the momentum transfer along the axis of
beam is negligible. Consequently, the longitudinal matrix
ements take the form

I z~ l !5^ l zuexp@2~11z2/z0
2!c#u l z&. ~18!

Assuming that the envelope ofu l z& is constant over the
longitudinal extent of the trap state, (6Al 11/2/az), the re-
sult is
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I z~ l !5FAp

2

erf~z l !

z l
Gexp@2c#, ~19!

where

z l[
Ac~ l 11/2!

azz0
, ~20!

and erf~! is the error function. If the atoms are confined in
distance small compared to the laser divergence lengthz0,
then z l→0. In the opposite limitz l→`. The expression in
brackets in Eq.~19! has the expected limiting behavior

Ap

2

erf~z l !

z l
→1 as z l→0, ~21!

Ap

2

erf~z l !

z l
→1/z l as z l→`. ~22!

Substituting Eq.~19! into Eq. ~16!, we obtain

Cjkl
f gl~ t !5

E0
2

2~ i\!2 F(
b

mabmbc

i ~vba2v!G
3

~aw0!2exp@2c#

2p@~2 j 11!~2 f 11!~2k11!~2g11!#1/4

3
Ap

2

erf~z l !

z l

exp@ i ~vca1V j
f1Vk

g22v!t#21

i ~vca1V j
f1Vk

g22v!
.

~23!

The population of leveluC& evolves as

uC~ t !u25 (
j f kgl

uCjkl
f gl~ t !u2uAjkl u2, ~24!

whereAjkl is the initial population in stateuA, j ,k,l &.
For a time long compared to the inverse of the natural~or

homogeneously broadened! linewidth, the time dependenc
of Eq. ~24! behaves as 2ptd(vca1V j

f1Vk
g22v). In this

case we can define a transition rateWjkl
f gl5duCjkl

f gl(t)u2/dt.
We introduce a phenomenological linewidth due to spon
neous emission, interactions, or other sources of homo
neous broadening. This line shape is determined by a di
bution of vca with full width at half-maximumGc , and can
be described by a normalized line-shape functionga jk

c f g(v),
centered when 2v5vca1V j

f1Vk
g . Integrating thed func-

tion convolved withga jk
c f g(v), we obtain for the transition rate

Wjkl
f gl5U(

b

mabmbc

i ~vba2v!U
2U E0

2

2~ i\!2U2

3S a2w0
2e2c

2p@~2 j 11!~2 f 11!~2k11!~2g11!#1/4D 2

3SAp

2

erf~z l !

z l
D 2

2pga jk
c f g~v!. ~25!
-
e-
ri-

VI. LINE SHAPES

The line shape is given by Eq.~25!. In the following
cases, we will assume that the beam divergence lengt
longer than the sample, the limiting case described by
~21!.

A. Classical result

Birabenet al. @14# analyzed two-photon excitation trea
ing the center-of-mass motion classically. They found that
atom moving transversely through the laser beam with
locity v r contributes to absorption at a detuningd52v
2vca according to

W~v!}
Eo

4

v r
2E

2`

1`

dz
Gc

~z2d!21Gc
2/4

expS 2
z2

4v r
2/w0

2D .

~26!

We recover this result as follows. If in Eq.~25! the quan-
tum numbers contained inc @Eq. ~17!# are large, we can
substitute (A2 j 112A2 f 11)2'n2/(2 j 11), where n5 f
2 j . Expressing the translational energy in terms of veloc
we substitute (2j 11)→mv2/(\V)5a2vx

2/V2. We then
sum Eq.~25! for all transitions starting from statej and fin-
ishing at statej 1n ~keeping they dimension constant!, with
a normalized line shape functiongA j

C( j 1n) ,

W~v!}S E0
2

vx
D 2

(
n

ga j
c( j 1n)expS 2

~nV!2

4vx
2/w0

2D . ~27!

Taking the line shape to be Lorentzian, we substit
gA j

C( j 1n)5GC /@(nV2d)22GC
2 /4# and obtain

W~v!}S E0
2

vx
D 2

(
n

Gc

~nV2d!22Gc
2/4

expS 2
~nV!2

4vx
2/w0

2D ,

~28!

which is essentially the same result as Eq.~26! if one treats
nV as a continuous variable, and we substitute the sum
an integral. As Birabenet al. show@14#, in a sample at tem-
peratureT with a Maxwell-Boltzmann distribution of mo-
mentum, this leads to an exponential line shape@see Fig.
1~a!#, W(dv)}exp@2udvu/Dv#, where dv52v2vca and
Dv5A2kT/m/wo .

B. Trapped atom spectrum

Returning to the case of trapped atoms, for a thermali
sample we must sum over all possible sets of (j ,k,l )
weighted by the initial population distribution, given by th
appropriate statistics. The spectrum can be computed by
culating the one-dimensional spectrum, considering only
x or y motion, and convolving it with itself to generate th
spectrum, i.e.,

W2d~dv!5(
dvx

W1d~dvx!W1d~dv2dvx!. ~29!

The resulting spectra are shown in Fig. 1. From~a! to ~c!
the trap oscillation frequency increases with respect to
time-of-flight linewidth, resulting in fewer sidebands in th
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spectrum. Spectrum~a! shows, in vertical bars, the releva
transitions in the limit ofGc→0, with the semiclassical ex
ponential line shape as an envelope. The semiclassical
shape is the result of this quantized calculation in the li
where the trap frequency tends to zero. Different values
Gc ~intrinsic resolution! are shown in~b!. When the trap
oscillation frequency is large compared to the intrinsic sp
tral resolution, the spectrum clearly resolves the sideba
allowing a much higher resolution than possible with tim
of-flight broadening. The ratioV/Gc sets the contrast of th
fringes which still lie under the exponential line shape.

As discussed in Sec. IV, these sidebands result from
multaneous electronic and vibrational transitions. Altern
tively, one can understand these as Ramsey’s fringes
multipassages configuration. As the atom transverses
field many times without losing coherence, the spectr
contains interference fringes.

It is to be noted that the narrow line shape does not re
from a velocity-selective process, as, for instance, in sa
rated absorption. Therefore, this process typically result
an increased signal strength. For example, the spectrum
Fig. 1~c!, will have a much higher peak and signal-to-noi
ratio than the equivalent one in~b!, with the only change
being a higher trap frequency.

If the trap were not harmonic, i.e., with nonuniform e
ergy level separations, the peaked structure could comple
wash out. Another effect that could easily change this re
is a residual misalignment between the beams, since it wo

FIG. 1. Calculated spectra for various values of laser linewi
gc , trap frequencyV, laser beam waistw0, and temperatureT
5100 mK. ~a! Picket fence spectrum from quantized motion a
semiclassical time-of-flight envelope in dashed line:gc→0, V
52p30.5 kHz, w0520 mm; ~b! gc52p31 kHz, V52p
31 kHz, w0540 mm; ~c! same as~b! but V52p34 kHz.
ne
it
f

-
ds
-

i-
-
a

he

lt
u-
in
in

ly
lt
ld

add some extra momentum component in the radial direc
besides the one provided by the variation of the intensity

VII. CONCLUSION

By explicitly introducing the quantized states of a ha
monic trap, we have developed expressions for the spe
line shape of trapped atoms interacting with a Gaussian l
beam by Doppler-free two-photon absorption, in the regi
of low intensities. When the experimental broadening,
cluding transit-time broadening, is less than the trap le
energy separations, the spectrum displays resolved peaks
are separated by twice the trap oscillation frequency. Th
lie under the envelope of a typical transit-time broaden
line shape. When the quantum features are not resolva
our result recovers the semiclassical result@14#.

We have reinterpreted the phenomenon of transit-ti
broadening in terms of transverse momenta redistribu
from the laser beam to the atom. In this quantized pictu
the atom only accepts momenta that transfer if from o
eigenstate to another. This formalism can be extended
straightforward manner to account for the change in re
nance frequency with trapping field@15#. Such an effect ex-
ists for magnetically trapped spin-polarized hydrogen a
antihydrogen, where it should play a considerable role
precision test of CPT violation@16#. The formalism pre-
sented here can be easily extended to different trap shap
well as different laser beam profiles.
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APPENDIX A: SOLUTION TO EQ. „12…

In this section we present an exact solution to the equa

I j
f~w0![^ f ue22x2/w0

2
u j &. ~A1!

The wave functions for the harmonic oscillatoru f &,u j & can
be written in terms of Hermite polinomialsHn() as

C j~ax!5Nje
2a2x2/2H j~ax!, ~A2!

whereNj[1/(2j j !p1/2)1/2 is the normalization factor. By de
fining j[ax andg2[2/(aw0)2, we can rewrite Eq.~A1! as

I j
f5NjNfE dje2(11g2)j2

H j~j!H f~j!. ~A3!

We can now make use of the generating function for
Hermite polynomials@17#:

g~j,t !5e2t212tj5 (
n50

`

Hn~j!
tn

n!
. ~A4!

Consider then the following relation:

h
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E dj exp@2~11g2!j2#g~j,s!g~j,t !

5A p

11g2
e[ 2t2(g2/11g2)]e[ 2s2(g2/11g2)]e[st(2/11g2)] .

~A5!

But this is also equal to

a5(
n,m

tnsm

n!m! E dje2(11g2)j2
Hn~j!Hm~j![(

n,m

tnsm

n!m!
Cn,m .

If we expand the exponentials ofs and t and equate the
terms with identical powers ins and t for the equations
above, we obtain

Cn,n12k5
n! ~n12k!!Ap

A11g2 S ~21!g2

11g2 D n1k

3 (
j 5n,n22, . . .

~22/g2! j

S n2 j

2 D ! S n12k2 j

2 D ! j !

.

~A6!

Inserting the normalizing factors, we obtain the desir
result:

^nue22x2/w2
un12k&5

Cn,n12k

@22(n1k)n! ~n12k!!p#1/2
, ~A7!

wherek andn are positive integers.

APPENDIX B: APPROXIMATE SOLUTION TO EQ. „12…

The expression in Eq.~A7! above becomes difficult to
handle for largen due to the factorials, and it fails to mak
apparent the underlying physics in Eq.~12!. It is thus useful
to derive a simpler, approximate solution to Eq.~12! as fol-
lows.

In a two-photon experiment one usually focuses the la
beam tightly to obtain an increase in the local intensity. T
beam waist is then likely to be much smaller than the typi
sample radius. For the majority of the atoms in the sam
the change in potential energy as it traverses the laser b
is much smaller than its total energy. In this case, we
treat the trap potential, in the interaction region, as const
The wave function near the origin, where the atom intera
with the laser, becomes a free-particle-like wave functi
Still, we consider the quantized levels with energy spac
given by the trap potential.

In order to judge the validity of this plane-wave approx
mation, we consider a typical experimental situation in c
hydrogen spectroscopy. Consider a sample at 100mK held
in the magnetic trap with a ground-state wave function
tending over 10mm in radius. The wave function for a
atom at the thermal energykT (n'20 000) extends ove
1600mm in radius while a typical laser beam waist
40 mm. Clearly the plane-wave approximation should be
cellent for atoms with energies aroundkT, while it is ex-
d

er
e
l

e,
am
n
t.

ts
.
g

d

-

-

pected to be poor for the lowest levels. In fact, we find th
the approximate solution in Eq.~B6! differs from the exact
values given by Eq.~A7! by 10% for j 510→ f 510, and
only 1.2% for j 520→ f 522 (Ej'kT/1000).

All the energy of level ‘‘l ,’’ El5\V( l 11/2), is con-
tained in the kinetic energy termp2/2m aroundr50. There-
fore, using the free-particle wave-function approximation
can write for the wave function of the ketu l & in the x repre-
sentation

u l &→
a1/2Xl

2
@eiaA2l 11x1~21! le2 iaA2l 11x#, ~B1!

whereXl is the peak amplitude of the wave function arou
the origin, soon to be determined.

Substituting this expression in Eq.~A1!, we obtain

I j
f~w0!5

a1/2Xj

2

a1/2Xf

2

3E dx@eiaA2 j 11x1~21! le2 iaA2 j 11x#

3e22x2/w0
2
@e2 iaA2 f 11x1~21! leiaA2 f 11x#.

~B2!

The equation above reveals the same physics of mom
tum transfer as Eq.~13! when we used the free-particle wav
function. Here we calculate the momentum components
the laser beam profile at wave vectors (6A2l 11
6A2m11)a. The result is

I j
f~w0!5

XjXfaw0

2@2/p#1/2
d~ j 1 f 5even!@e2(aw0)2/8(A2 j 112A2 f 11)2

1~21! fe2(aw0)2/8(A2 j 111A2 f 11)2#. ~B3!

For large quantum numbers, which is usually the case
a gas far from quantum degeneracy, we can neglect te
depending on the sum of the square roots.

In order to determine the coefficientsXj ,Xf we resort to
the power series of the Hermite polynomials in which ca
we can write for the even wave functionsC2n(x) @17#

C2n~0!5~21!n
~2n!!

2nn!
Y @~2n!!p1/2#1/2. ~B4!

To extend this result to odd wave functions, we appro
mate it by employing Stirling’s approximation for the facto
rials and we obtain

Xj'6S 2

j p2D 1/4

. ~B5!

Every timen changes by 2, the Hermite polynomials w
change phase at the origin byp, and this sets the sign o
I j

f}(21)( j 1 f )/2. Since this expression will eventually b
squared, we omit the sign. To extend the result ton50 we
add 1/2 to the quantum numbers in the denominator of
~B5!.
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The final solution to Eq.~12! is then

I j
f~w0!5

aw0e2a2w0
2/8(A2 j 112A2 f 11)2

@4p2~2 j 11!~2 f 11!#1/4
d~ j 1 f 5even!.

~B6!

The same way one regards^pj& rms5\aA2 j 11 as a mea-
sure of momentum content of stateu j & in a harmonic oscil-
.

d-
e,

.

M

.

m

lator, we can also, inspecting the equation above, reg
^pbeam&5A2\/w0 as a measure of the momentum content
the laser intensity profile. We can easily interpret Eq.~B6!
above by rewriting its exponential as exp@22(̂ pj&rms

2^pf& rms)
2/pbeam

2 #. This expression has a clear physical i
terpretation: a transitionj→ f is only induced if the beam
intensity profile carries enough momentum to account for
change of momentum in the transition.
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