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Two-photon Doppler-free spectroscopy of trapped atoms
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We describe the systematics of two-photon Doppler-free excitation of atoms confined in a cylindrical
harmonic trap, at densities far from the regime of quantum degeneracy. The line shape is explained in terms of
momentum transfer between the light beam and the trapped atoms. This formalism extends the semiclassical
analysis of time-of-flight broadening. The results, which are general, were motivated by the development of
two-photon Doppler-free spectroscopy of trapped atomic hydrd@i050-294{09)04406-9

PACS numbg(s): 32.80.Pj, 39.36+w, 06.30.Ft

I. INTRODUCTION the laser beam to the atom is developed. The results are
applied to spectroscopy with a weakly diverging laser beam
The intimate connection between the internal and externdtthe limit of long Rayleight lengthin Sec. V, and the pho-

(translational states of a radiating atom was first demon-toexcitation line shapes under various conditions are de-
strated by Einstein, who showed that the essential mech&cribed in Sec. VI. Section VII presents some concluding
nism for maintaining thermal equilibrium between a thermaldiscussion.
radiation field and the kinetic degrees of freedom of an
atomic gas is the Doppler shift due to photon re¢jl The Il. THE SYSTEM
connection manifests itself in many other contexts, for in- i L
stance in Mossbauer's analysis of recoil-free gamma ray- Ve consider Doppler-free two-photon excitation of atoms
emission[2], and Dicke’s proposal for suppressing Dopp|erconf|ned by a trapping potential, taking into account the

broadening by confining the radiator to a distance short com3ua@ntum behavior of the translational motion. The trap has
pared to its wavelengtf8]. cylindrical symmetry, and is coaxial with a radiation field in

With the advent of techniques for laser cooling and trap-N€ fundamental Gaussian mode. o
The system is described by the Hamiltonian

ping atoms, the effect of translational motion on the radiation
process has taken on a new significance. Many of these phe-
nomena were first studied for the case of trapped [dis

and the analysis can often be extended to trapped atoms, Wi;[/vhhereH and H respectivelv. describe the internal and
suitable allowance for the effects of the relatively soft con- 0 cm: P Y,

fining potential of atom traps. Photoexcitation in the case ofranslat|onal states of the atom, avidiescribes the interac-

two-photon absorption, particularly in the Doppler-free con-i'okn Oft atg;mthand radlgtu:anleld. Thte ?l_gfnstatg_sl—tqf atret
figuration, involves rather different types of behavior. We aken to be the ground staié), a set of intermediate states

have analyzed this behavior, motivated by the developmeﬁ‘f’it(;l (():pposite parity(]jB),Bang thde_ fir:al statéc).l StatesA)

of two-photon spectroscopy of trapped atomic hydrogerf'Jln |C) are coupie t4B) by Ipole matrlx.c'aement;uab .
[5,6]. The transition observed,S-2S, plays a prominent and up., rfespectlvely. The electronic transition frequencies
role in hydrogen spectroscopy], in precision tests of basic of H? are in th_e form‘”baz(.Eb_ Ea)/h. .
theory [8], and as a probe for studying Bose-Einstein con-, Itis convenient to de§cr|be the _center-of-ma_ss motion us-
densation in spin-polarized hydrogé@]. Due to the long ing Cartesian coordinates with translational states
lifetime of the metastable R state, the natural linewidth for InX,n)r,],nz), where ”fx 'd,”y' andn, are quantunh1 nurr]nbers. _
this transition is only 1 Hz. By employing trapped atoms, it For the purpé)sel_od _|sc”ussmn we .a.ssume that tf ehtrap IS
appears that this resolution may be experimentally feasibld!@'monic and cylindrically symmetric: extension of the ar-

Consequently, a detailed understanding of the radiation progur_nent to other ge:ometrles IS stra|ghtfo_rwa_rd. The Hamil-
cess is essential. tonian for the atom’s center of mass motion is

We present here an analysis of two-photon excitation of a
trapped atomic gas that is far from quantum degeneracy. The |, _ S
discussion is confined to the so-called Doppler-free configu- " j=XV.2

H=Ho+HentV, 1

2

Py 1
J 2R2 | —
2m+§mQjRj>—_§ 7 Q(n;+1/2),

1=XY,2
ration in which two photons are absorbed from a standing 2
wave oscillating at half the transition frequeng$0,11].
Other than this, the discussion is general. where(),=Q,=Q is the radial angular frequency. It is use-

The system is described in Sec. Il. In Sec. Il the transi-ful to introduce the parameter:
tion amplitude for two-photon absorption is calculated, and
in Sec. IV the physical picture of momentum transfer from a=\mQ/h. 3
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The rms momentum ip?) 2= a\/j + 1/2, and the rms size 1
of the wave functions i§x?)?=/j +1/2/a. x7(h.g.f[E.(p.2) +E (p.2)][e,B,7)
In the dipole approximation, the atom-radiation interac- _
tion is X(v,B,al[E+(p2)+E_(p,V]li.k1). (8
V(rt)=—p-E(r,1), 4) Assuming that the radiation fields are far off resonance

from the intermediate sta{®), contributions toCJf,%h(t) are

wherep is the dipole operator ari(r,t) is the real electric MPortant only v;/hert’jt” [13]. Consequently, we can sub-

field amplitude which is taken to oscillate at frequengy ~ Stitute Q"+ Q7t’~Q;t" and use the closure relation to
The radiation field, which is treated classically, is com-€liminate the intermediate translational states;, y). For

posed of two counterpropagating monochromatic beams in RoPpler-free excitation, which involves the absorption of

single spatial mode. The spatial dependence of GaussidW© counterpropagating photons, we disregard the products

beams propagating in the:z directions is, in cylindrical Of fields from the same beam. The result is

coordinateg12],

t trr
C]-f,%h(t)zzb: Mf dt | dt

E.(p,2)=Eq—2 p( i[kz+ 7(2)] 208" e

+ ,Z)= —eX + y4 V4

=P Ow(z) K X exi(wept QO+ QI+ 0} — w)t"]
J o1 =ik x exi (wpa— @)t']

: ©)

20 .
w¥(z) 2R(2) <(hg.fIE (p.2E_(p2li.kl), (9
where 7(z)=tn"Y(z/zy), w?(z)=w3[1+2%z3], R(z)  which yields the following expression for the transition am-
=2(1+23/7%). The beam divergence length zg=ww3/x,  Plitude:
wherew,, is the beam waist at the focus=0, andA\ is the
wavelength. fgh O MabMbe 1

. . o , Cilzh=2 = > -
Assuming a linear polarizatioa and dropping the coun- (i7)? H(wpa—w)
terrotating terms for absorption, Eqg) and(5) yield

exfli(weat Q[+ QP+ 0} —20)t] -1
X

- € . H f g I
Vi =-E5E p+E_(pale . (@) (@ca™ )+ Qiet 0y =20)
X (hyl| (fle=2 W j)
Ill. TRANSITION AMPLITUDE
Standard second-order time-dependent perturbation ngg b o
theory yields the amplitude for the transitio,j,k,|) S (gle™¥ Ak |1,), (10
—|C,f,g,h), through intermediate staté8,a, 8, y): 2w(2)
wherew.,=(E.—Ey)/%.
t "
o= 3 —— [ v av
b,a.B,y (Iﬁ)2 0 0 IV. LONG RAYLEIGH LENGTH LIMIT
Xexdi(wmﬂigﬁ“y)t”] For clarity it is convenient to consider the case in which
. the extent of the atomic cloud along the axis is much shorter
X exfi(wpat Q] than the laser beam divergence length. The general case is
p treated later. We substitutg?(z)~wj and (h,|l )= &, in
X{(y,B,a,B|V(r,t")|A,j,kI). (7) EE
C-fg|=2 MabMbc 0,-=0_
Here Qif7=0f+0Qf+Q=0[(a—])+(B—K)]+Q,(y M7F (i5)? 2i(wpa— o)
—1) is the Bohr frequency associated with the transition be-
tween translational staté,k,l)—|a,B,v). Evaluating the exp[i(wca+ﬂjf+QE—2w)]—1
A ; . «
electronic dipole matrix elements we obtain i(wca+ij+QE—2w)
t " —2x2IW2| ; —2y2/w2
cliht= 3 “"T‘b“b°f olt"ft dt’ X (fle 2o )(gle 2 olk). (1D
b,a,B,y (Iﬁ)2 0 0

Photoexcitation involves simultaneous electronic and vi-
Xexdi(wep+ Qg%hy—w)t”] brational transitions, accompanied by a frequency shift due
to the change in vibrational energy, as in a molecular transi-

X exfi(wpat Q7= o)t'] tion involving change in electronic and vibrational levels. In
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this case the “molecule” is the very soft atom-trap com- larly for large quantum numbers, we shall employ an ap-
bined system. The line shape is governed by the translationgroximate solution. The details of this approximation are
matrix elements. We now turn to the physical processes thairesented in Appendix B. The key idea is that a harmonic

underlie these matrix elements, designated by trap potential is almost flat at the origin so that near the
- origin its eigenfunctions behave much like those of a free
I{(W0)5<f|e’2" ol . (120  particle. As explained in Appendix B, the translational ma-

trix elements in Eq(10) can then be written

A. Momentum transfer and selection rules 2
. Lo f|e72x Iw (z)|->
in two limiting cases ( J

If |j) and|f) are momentum eigenstates with momemta aw(z)ex — a®W2(2)/8(\2j + 1— 2f+ 1)?]
andps, respectively, Eq(12), becomes A~ Yy m .
[479(2)+1)(2f+1)]

II(WO)MJ dxe (P —PXIhg= 261w (13 (15

It ident that ! is th tial Fourier t ‘ f The structure of thg matrix element is identical and par-
is evident thatj (wo) is the spatial Fourier transform of ., njderations again dictate that the matrix element van-

thhe beam profile at momefr;tunp}j—lpf .dConsequentIyr,] thle ishes unles$+ j is even. We shall postpone treatment of the
photoexcitation process eflectively decomposes the 1asqp iy dinal matrix elements, leaving them in terms of the

beam profile into its momenta components. Each componenftiiol and final longitudinal quantum numbets and h,,

contributes to absorption at a frequency shifted from therespectively. Substituting Eq15) into Eq. (10), and using
electronic transition frequenay., by an amounf! . If the Eq. (5), we obtain

translational energy is not quantized, the translational wave

functions form a continuum and the continuum of frequency £2
shifts produces a single broad line. clan(t)= —° [2 _Habibe
Atoms spatially confined, however, absorb in a discrete 2(i%)?| % 1(wpa—w)
series of lines. We can extract the selection rules for the
transitions in Eq.(12) by simple parity conservation. The exfli(weat Q|+ QP+ Q- 20)t]-1
Gaussian ffunction in the matrix elemelrjthas even parity x i(weat Q}+QE+QP—20’)
which for I;#0 requires thatf) and|j) have the same par-
ity. This means thaf+j must be even. This rule follows R2(h,|exd — (1+22/23) y/]|1 )

from the symmetry of the system and would be violated if, ) ;

for instancB(/a, the Ii{';\ser bea% were not centered at the trap 27(2]+1)(2f+1)(2k+1)(2g+1)]H

axis. (16
In the limiting case where the laser beam waisgf is

much larger than the physical extent of eithgror |f), i.e., where

wo>(f,j) + 1/2/a, the Gaussian function in E@¢L2) is ap-

proximately constant and equal to unity. In this case, 2

= %[(sz +1—2f+1)%+ (\2k+1—+2g+1)?]
ij(WO):<f|j>:5(jaf)- (14 (17)

Because there is no change in the vibrational state, ng _

. . . o o andR=aw, .

sidebands arise from this transition and transit time broaden- . -

D Lo T : The parameteR, the ratio of the radii of the laser beam

ing is absent. The situation is an extreme case of Dicke nar- ' : .
and the trap ground-state diameter, characterizes the qualita-

rowing, in which motional broadening is suppressed when all o behavior of the spectrum.

atom is confined and cannot experience the spatial phase In the long Rayleigh length limit where, is large com-

Ch?r?gteh:fégf):slﬁgtr:?n:iltels\}here the beam waist is muchpared to the longitudinal extent of the trapped atoms, we can

smaller than the spatial extent of the wave functions, théake{hz|e>.<p{—(1+z_2/z.(2))¢//]|lz)§exp[—z//]ﬁ(hz,lz). Even if this
Gaussian factor behaves like a normaliz=sfuinction. So, for condltlon IS not _sat!sf|ecto will usgally be long cqmpared to
an atom initially in statdj), the number of possible transi- the spatial os_c'lllat|on of the aX|a! wave funct|onsl. Conse-
tions to different final statelf) is enormous. The transition quently, transitions between longitudinal states will not be

frequencies are all separated by an interval @f The result significant. Alternatively, we can say that in the Doppler-free

is a fine comblike structure of lines within a broad enveIopeconf'guratIorl the momentum transfer along the axis of the

whose shape will be calculated below. beam is negligible. Consequently, the longitudinal matrix el-

These two limiting cases will be shown to occur naturallyements take the form
in the general solution to E¢12) that we now discuss.

() =(1exd — (1+22/z5) |l (18
V. GENERAL BEHAVIOR Assuming that the envelope of,) is constant over the
The exact solution to Eq12) is presented in Appendix A. longitudinal extent of the trap stater(yl +1/2/a,), the re-
However, because that solution is not transparent, particusult is
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T erf(§|
(D=| =" g}dw] (19
where
=yl (20
aZZO

and erf) is the error function. If the atoms are confined in a,

distance small compared to the laser divergence lergth
then {,—0. In the opposite limitf;—«. The expression in
brackets in Eq(19) has the expected limiting behavior

V erf()
7 Z —1 as §|*>O, (21)
f
ﬁer(g')—&/g as ¢{|—o. (22)

2
Substituting Eq(19) into Eg. (16), we obtain

MabMbe
w)

cidl(t)= s >
KA 2(14)2| % 1(wpa—

% (aWo)zeXF[ =]
27[(2j+1)(2f+1)(2k+1)(2g+1)]*4

ﬁ erf(¢)) exdi(weat Q[+ 08— 20)t]-1

2 g i(weat Q) +0f—20)
(23)
The population of leve|C) evolves as
CI*= 2 ICIMDI A (24

whereA, is the initial population in statéA, j,k,1).
For a time long compared to the inverse of the nat(wal

homogeneously broadenelinewidth, the time dependence

of Eq. (24) behaves as ﬂté(wcaJerJng 2w). In this
case we can define a transition réﬂ;‘ =d|Cig(1)|/dt.

We introduce a phenomenological I|neW|dth due to sponta-
neous emission, interactions, or other sources of homoge-
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VI. LINE SHAPES

The line shape is given by Ed25). In the following
cases, we will assume that the beam divergence length is
longer than the sample, the limiting case described by Eq.
(21).

A. Classical result

Birabenet al. [14] analyzed two-photon excitation treat-
ing the center-of-mass motion classically. They found that an
atom moving transversely through the laser beam with ve-
locity v, contributes to absorption at a detunidy 2w

— w4 according to
Eq [+~ r 2
W(w)oc—;’f d¢ o —exp - i 5.
vid-= T ({=0)+TCl4 4uriwg
(26)

We recover this result as follows. If in ER5) the quan-
tum numbers contained igr [Eq. (17)] are large, we can
substitute (/2j +1— 2f+1)?~n?%/(2j+1), where n=f
—j. Expressing the translational energy in terms of velocity,
we substitute (P+1)—mv?/(2Q)=a?v2/Q% We then
sum Eq.(25) for all transitions starting from stajeand fin-
ishing at statg + n (keeping they dimension constantwith
a normalized line shape functigf! ",

(nQ)?

4v2wg

W(w)“( )Egc(””) p(— ) (27)

Taking the line shape to be Lorentzian, we substitute
g M =T¢/[(nQ— 8)2-T2/4] and obtain

exp —
~T2/4 p(

which is essentially the same result as E2f) if one treats

n() as a continuous variable, and we substitute the sum for

an integral. As Birabemt al. show[14], in a sample at tem-

peratureT with a Maxwell-Boltzmann distribution of mo-

mentum, this leads to an exponential line shapee Fig.
1(@)], W(dw)xexd —|duw|/Aw], where So=2w— w., and

Aw=+2kT/m/w,.

E_3>22 I

(n0)2
Ux) “n (nQ-6)?

4viiwi)’
(28)

W(a))oc(

neous broadening. This line shape is determined by a distri-

bution of w., with full width at half-maximumI’;, and can
be described by a normahzed line-shape funckygf'ﬁ‘(w)
centered when @= wca+Q +Q}. Integrating the5 func-

B. Trapped atom spectrum

Returning to the case of trapped atoms, for a thermalized
sample we must sum over all possible sets ¢fk()

tion convolved w|thgg‘;3(w) we obtain for the transition rate Weighted by the initial population distribution, given by the

Eg
2(i#)?|

2 2
MabMbe ‘ ‘
b 1(wpa— (‘))|

fol _
W]kl

X( a’wie
27[(2j+1)(2f+1)(2k+1)(2g+1)]Y

X(ﬁerf@l))
2§

95Id(w). (25)

appropriate statistics. The spectrum can be computed by cal-
culating the one-dimensional spectrum, considering only the
X or y motion, and convolving it with itself to generate the
spectrum, i.e.,

w2d<dw>=d2w Wig(dw,)Wig(do—dwy).  (29)

The resulting spectra are shown in Fig. 1. Fr@nto (c)
the trap oscillation frequency increases with respect to the
time-of-flight linewidth, resulting in fewer sidebands in the
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7z 07 /] (a) add some extra momentum component in the radial direction
€ 08 /’ ‘\ besides the one provided by the variation of the intensity.
& 0.6 4 \\
3. 0.4 ,,'/ R VII. CONCLUSION
g 02 11/ H ‘ ’ ‘ ‘ ‘ ‘ ‘ ‘ ’ ‘ Ik By explicitly introducing the quantized states of a har-
» 00 y T ' T ' y y J monic trap, we have developed expressions for the spectral
-20 -10 0 10 20 . . . . .

. line shape of trapped atoms interacting with a Gaussian laser

Detuning [kHz] beam by Doppler-free two-photon absorption, in the regime
w 07 (b) of low intensities. When the experimental broadening, ex-
€ 081 cluding transit-time broadening, is less than the trap level
g 06 energy separations, the spectrum displays resolved peaks that
S, 0.4 are separated by twice the trap oscillation frequency. These
S 02 lie under the envelope of a typical transit-time broadened
& 0.0 ) : , : i : y , line shape. When the quantum features are not resolvable,

-20 -10 0 10 20 our result recovers the semiclassical re§lif].

Detuning [kHz] We have reinterpreted the phenomenon of transit-time
= 107 broadening in terms of transverse momenta redistribution
= g © from the laser beam to the atom. In this quantized picture,
> 06 the atom only accepts momenta that transfer if from one
g 04 ] eigenstate to another. This formalism can be extended in a
—_ straightforward manner to account for the change in reso-
5 02 nance frequency with trapping fie[d5]. Such an effect ex-

0 00 y T - y T y 1 ists for magnetically trapped spin-polarized hydrogen and
-20.0 -10.0 0.0 10.0 20.0

. antihydrogen, where it should play a considerable role in
Detuning [kHz] precision test of CPT violatioi16]. The formalism pre-
FIG. 1. Calculated spectra for various values of laser Iinewidthsemed here can be easily extended to different trap shapes as

ve. trap frequency(), laser beam waistvy, and temperaturd well as different laser beam profiles.
=100 uK. (a) Picket fence spectrum from quantized motion and

semiclassical time-of-flight envelope in dashed linge—0, Q ACKNOWLEDGMENTS
=27X0.5 kHz, wg=20um; (b) vy.=2wX1kHz, Q=27

%1 kHz, Wo=40 um: (¢) same agb) but Q= 27x 4 kHz. We gratefully acknowledge helpful discussions with T. J.

Greytak, D. G. Fried, T. C. Killian, and M. J. Yoo. This
. _ research was, in part, supported by the National Science
spectrum. Spectrurte) shows, in vertical bars, the relevant Foundation, the U.S. Air Force Office of Scientific Research,

transitions in the limit ofl’.— 0, with the semiclassical ex- the U.S. Office of Naval Research, CNRBrazil), and
ponential line shape as an envelope. The semiclassical liIPRONEX (Brazil).

shape is the result of this quantized calculation in the limit

Where tlhe.trap frquency tends to zero. Different values of APPENDIX A: SOLUTION TO EQ. (12)

I'; (intrinsic resolution are shown in(b). When the trap

oscillation frequency is large compared to the intrinsic spec- In this section we present an exact solution to the equation
tral resolution, the spectrum clearly resolves the sidebands

allowing a much higher resolution than possible with time- IJ-f(wO)E<f|e’2X2’Wc2>|j). (A1)
of-flight broadening. The rati6)/T" . sets the contrast of the
fringes which still lie under the exponential line shape. The wave functions for the harmonic oscillatfy,|j) can

As discussed in Sec. IV, these sidebands result from sibe written in terms of Hermite polinomials,() as
multaneous electronic and vibrational transitions. Alterna- )5
tively, one can understand these as Ramsey’s fringes in a WVi(ax)=N;e"“ X ’2Hj(ax), (A2)
multipassages configuration. As the atom transverses the

field many times without losing coherence, the spectrumwhereN;=1/(2/j! 7212

is the normalization factor. By de-

contains interference fringes. fining é= ax and y?=2/(aw,)?, we can rewrite Eq(Al) as
It is to be noted that the narrow line shape does not result
from a velocity-selective process, as, for instance, in satu- IT=N.N J' dée- (A&
. ; . ) i=N; e Hi(&)H¢(&). A3
rated absorption. Therefore, this process typically results in i=NiN¢ | dé i(OH(E) (A3)

an increased signal strength. For example, the spectrum in i )
Fig. 1(c), will have a much higher peak and signal-to-noise We can now make use of the generating function for the
ratio than the equivalent one ifb), with the only change Hermite polynomialg17]:
being a higher trap frequency. o "
If the trap were not harmonic, i.e., with nonuniform en- ot -
ergy level separations, the peaked structure could completely gl&n=e ngo Ha(&) n!’ (A4)
wash out. Another effect that could easily change this result
is a residual misalignment between the beams, since it woul@onsider then the following relation:
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pected to be poor for the lowest levels. In fact, we find that
j dé exd — (1+v*) €219(£,9)9(£.1) the approximate solution in E¢B6) differs from the exact
values given by Eq(A7) by 10% forj=10—f=10, and

- 0 o o 0 o o ) only 1.2% forj=20—f=22 (Ej~kT/1000).

= Sel T Ol =Sl glst@ite vl All the energy of level ‘1" E,=AQ(l+1/2), is con-
1+y tained in the kinetic energy terpf/2m aroundp=0. There-

(A5)  fore, using the free-particle wave-function approximation we
can write for the wave function of the két in the x repre-

But this is also equal to sentation
tnsm B o o tnSm al/ZX o o
a:nmn!m!fdge (I+y9)¢ Hn(f)Hm(é)E%an,m- ||>_> 5 I[em\é +1x+(_1)|efla\s‘2 +1x], (Bl)

If we expand the exponentials sfandt and equate the whereX; is the peak amplitude of the wave function around
terms with identical powers irs andt for the equations the origin, soon to be determined.

above, we obtain Substituting this expression in EGA1), we obtain
! (n+2k)! e [ ((—1)52| " . a2 a2,
Chnt2k= > > j(WO)_ 2 2
V1+y 1+vy
—2/~2)i V2] 1 —iaV2[+ 1
% E . ( 2/’y) . . XJ dx[e' \2]+1x+(_1)le i 2]+1X]
j=n,n—2,... n—j | n+2k—] i
2 | 2 ) Xe72lewg[e7iav‘7f+_lx+(_1)Ieiav“7f+_lx:|_
(A6) (B2)
Inserting the normalizing factors, we obtain the desired The equation above reveals the same physics of momen-
result: tum transfer as Eq13) when we used the free-particle wave
function. Here we calculate the momentum components of
Chon+2k the laser beam profile at wave vectorst(21+1

(n|e‘2x2""’2|n+2k>=

[220+Kn1 (n+ 2k)! 7 ]2’ (A7) *+y2m+1)a. The result is

XijC!WO
2[2/m]*?

wherek andn are positive integers. |I(Wo)= 5] +f:even[e_(aWO)z,g(\sz]+1_\5—f+—1)z

APPENDIX B: APPROXIMATE SOLUTION TO EQ. (12

+ ( _ 1) e—(aWO)Z/B(V“ZJ +1+ \s‘m)z]. (83)

The expression in Eq(A7) above becomes difficult to
handle for largen due to the factorials, and it fails to make For large quantum numbers, which is usually the case for
apparent the underlying physics in E@2). Itis thus useful a gas far from quantum degeneracy, we can neglect terms
to derive a simpler, approximate solution to Efj2) as fol-  depending on the sum of the square roots.
lows. In order to determine the coefficien¥§,X; we resort to

In a two-photon experiment one usually focuses the lasethe power series of the Hermite polynomials in which case

beam tightly to obtain an increase in the local intensity. Theye can write for the even wave functiols,, (x) [17]
beam waist is then likely to be much smaller than the typical
sample radius. For the majority of the atoms in the sample, (2n
the change in potential energy as it traverses the laser beam Won(0)=(—1)"
is much smaller than its total energy. In this case, we can
treat the trap potential, in the interaction region, as constant. . . .
. - : To extend this result to odd wave functions, we approxi-
The wave function near the origin, where the atom interacts ; . Sn S
. : . .~ Tate it by employing Stirling’s approximation for the facto-
with the laser, becomes a free-particle-like wave function.

Still, we consider the quantized levels with energy spacingrIaIS and we obtain

)'! / [(2n)!#¥2)Y2 (B4)

2"n

given by the trap potential. o |\ L4
In order to judge the validity of this plane-wave approxi- X+ | — | . (B5)
mation, we consider a typical experimental situation in cold . ja?

hydrogen spectroscopy. Consider a sample at AR0held

in the magnetic trap with a ground-state wave function ex- Every timen changes by 2, the Hermite polynomials will
tending over 1Qum in radius. The wave function for an change phase at the origin by, and this sets the sign of
atom at the thermal energyT (n~20000) extends over |/e(—1)4*”2 Since this expression will eventually be
1600 um in radius while a typical laser beam waist is squared, we omit the sign. To extend the resulbhto0 we

40 um. Clearly the plane-wave approximation should be ex-add 1/2 to the quantum numbers in the denominator of Eq.
cellent for atoms with energies aroukd, while it is ex-  (B5).
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The final solution to Eq(12) is then

awge~ @PWRIB(V2TF 1 V2T 1)

[47%(2)+1)(2f+1)]¥4

o(j+f=even.
(B6)

|](wo)=

The same way one regardis;)ms=% a+/2j+1 as a mea-
sure of momentum content of stdie in a harmonic oscil-
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lator, we can also, inspecting the equation above, regard
(Ppeam = J2hIwg as a measure of the momentum content of
the laser intensity profile. We can easily interpret E8E)
above by rewriting its exponential as €éx®2((Pj)ms
—{(Ps)rme*/ Piean]- This expression has a clear physical in-
terpretation: a transition—f is only induced if the beam
intensity profile carries enough momentum to account for the
change of momentum in the transition.
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