
PHYSICAL REVIEW A JUNE 1999VOLUME 59, NUMBER 6
Application of the hidden-crossing method to positronium formation
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We have applied the hidden-crossing method to computeS-, P-, andD-wave cross sections for Ps formation
in positron-hydrogen collisions in the Ore gap. The hidden-crossing method has provided a physical explana-
tion of why theS-wave cross section is so small and why theD wave is significant. The one-Sturmian theory
is used to correct the hidden-crossing theory to take into account the factor (^wud2w/dR2&1(1/4)/R2). We
have considered this correction term in computing theP- and D-wave cross sections. The hidden-crossing
results are compared with accurate results from other methods. This comparison helps assess the accuracy of
the hidden-crossing method in describing three-body collisions.@S1050-2947~99!06506-3#

PACS number~s!: 34.85.1x, 34.70.1e, 36.10.Dr
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I. INTRODUCTION

Positronium ~Ps! formation in positron-hydrogen colli
sions probes the correlated motion of three charged partic
It is one of the simplest three-body processes that is n
amenable to experimental investigation@1–4#. Positron col-
lisions are of interest in astrophysics due to the observa
of 511-keVg rays from solar flares, from the galactic cent
@5,6#, and very recently from above the galactic center@7#.
Analysis of the width of the 511-keV line using accurate P
formation cross sections for positron-hydrogen collisio
provides information on the ionization state and tempera
of the radiating medium. The investigation of Ps formati
provides ideas about chemical reactions in which the ac
positive particle has a very small mass@8#. The cross section
for antihydrogen formation in antiproton-positronium col
sions is related simply to the cross section for Ps forma
in positron-hydrogen collisions@9#. This is because of charg
conjugation and time reversal invariance. Antihydrogen
one of the most fundamental systems in physics and ca
used to perform critical tests ofCPT.

The Ps-formation cross section in positron-hydrogen c
lisions in the Ore gap has been accurately determined usi
number of different methods.~The Ore gap is the energ
region between the onset of Ps formation and the first e
tation level of the target atom.! BenchmarkS- and P-wave
cross sections for Ps formation have been computed
Humberston and collaborators@10–14# using the Kohn varia-
tional method. TheD-wave cross section@12,14,15# for Ps
formation computed using the Kohn variational method c
verges more slowly with respect to the number of linear
rameters than theSandP waves and is believed to be withi
10% of the exact value. Extensive two-center close-coup
calculations have been performed, for instance, an 18-s
calculation by McAlindenet al. @16# and Kernoghanet al.
@17#, a 33-state calculation by Kernoghanet al. @18#, and 20,
21, and 28-state calculations by Mitroy and collaborat
@19–21#. Gien @22# has employed the Harris-Nesbet meth
using a wave function that is comprised of the 1s, 2s, 2p,
and 3p̄ state of hydrogen and positronium together with
PRA 591050-2947/99/59~6!/4418~10!/$15.00
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gebraic Hylleraas correlation functions. HisD-wave calcula-
tion for Ps formation is probably more accurate than
earlier Kohn variational calculations@14,22#. Igarashi and
Toshima@23# and Zhou and Lin@24–26# have independently
performed numerically elaborate hyperspherical clo
coupling calculations for the first few partial waves. Ev
though the above methods determined accurately the pa
wave cross sections for Ps formation in positron-hydrog
collisions in the Ore gap, a number of physical questio
remained unanswered.

The hidden-crossing method is well adapted to elucid
ing underlying physical pictures@27#. We have applied the
hidden-crossing method to Ps formation in positro
hydrogen collisions in the Ore gap and computed theS-, P-,
and D-wave cross sections for Ps formation. It had be
known for some time that theS-wave cross section was ver
small @10,11# and theD-wave is significant@15#, but the
reason was not known. Our calculation using the hidd
crossing method has provided the reason. We have repo
our preliminary investigation of the application of th
method to Ps formation in conference proceedings@28,29#.
In Ref. @28# only theS-wave cross section was reported a
in Ref. @29# the P- andD-wave cross sections reported we
only preliminary. For the present paper we computed
eigenvalues for theP and D waves to a higher degree o
accuracy than we did for Ref.@29#. In fact, in Ref.@29# we
stated that the accuracy of the (D-wave! cross section with
respect to the number of collocation points still needs to
determined. We have since determined the accuracy and
stated in the present paper. A significant difference betw
Ref. @29# and the present paper is that in the present pape
demonstrate how the one-Sturmian theory is used to cor
the hidden-crossing theory to take into account the fac
(^wud2w/dR2&1(1/4)/R2). We consider this correction
term in computing theP- and D-wave cross sections. Fur
thermore, in the present paper we derive the formulas use
Ref. @29# to take into account tunneling through the top
barrier ~TOB!.

It should be noted that Janev and Solov’ev@30# have re-
cently reported the application of the hidden-crossing the
to positron-hydrogen collisions. Their hidden-crossi
4418 ©1999 The American Physical Society
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PRA 59 4419APPLICATION OF THE HIDDEN-CROSSING METHOD . . .
method uses mass and charge transformations.
We used the hidden-crossing method formulated in

hyperspherical representation@27,31,32#. The significance of
this formulation is that, unlike the conventional formulatio
it does not employ a classical trajectory approximation a
thus can be applied to the correlated motion of three char
particles of arbitrary mass and charge. For Ps formation,
like charge exchange in ion-atom collisions, the relative m
tion between the projectile and target nucleus can neve
treated classically. The hidden-crossing method success
describes reactions in ion-atom collisions. Recently,
hidden-crossing method formulated in the hyperspher
representation has been shown to successfully desc
electron-impact ionization@33,34#. Furthermore, experiment
for positron-impact ionization of He and H2 @35# can be in-
terpreted by using the hidden-crossing method to extend
Wannier theory to higher energies@36#. Despite the succes
of the hidden-crossing method, it is not an exact meth
Comparing our hidden-crossing results for Ps formation w
results from other methods helps to assess the accurac
the method in describing three-body Coulomb systems.

The hidden-crossing method formulated in the hyp
spherical representation is outlined in Sec. II, numeri
techniques are presented in Sec. III, results are given in
IV, and the conclusion is provided in Sec. V. The model th
we employed to describe tunneling through the TOB is giv
in Appendix A. The extension of the hidden-crossing meth
to include a correction term (^wud2w/dR2&1(1/4)/R2) is
given in Appendix B. Atomic units are used throughout u
less explicitly stated.

II. HIDDEN-CROSSING METHOD

The hidden-crossing method has its origins in the work
Landau@37# on transitions when the motion is quasiclassic
Using the hyperspherical representation, Macek and Ovc
nikov @27# and Macek@31,32# recently derived the hidden
crossing method without making any classical trajectory
proximations. Their derivation of the hidden-crossi
method begins with an integral transform, known as
Kontorovich-Lebedeev transform@38#, and an expansion in
angle-Sturmian functions. Approximating the expansion b
single angle-Sturmian function and evaluating the integ
form of the wave function at large hyper-radius using t
stationary phase approximation leads to the hidden-cros
method. Since this derivation of the hidden-crossing met
has been presented in detail elsewhere@27,31,32# we give
only a brief review below. Hyperspherical coordinates a
adiabatic bases are described in Sec. II A. The an
Sturmian basis functions are defined in Sec. II B. T
Kontorovich-Lebedeev transform and the approximatio
made to derive the hidden-crossing method are presente
Sec. II C.

A. Hyperspherical coordinates and basis functions

Hyperspherical coordinates were first introduced
atomic physics by Gronwall in 1932@39# to study the ana-
lytic structure of the Schro¨dinger equation for ground-stat
helium. However, hyperspherical coordinates with adiab
bases were first introduced by Macek in 1968@40# to study
doubly excited states of helium. Zhou and Lin@24# presented
e

d
ed
n-
-

be
lly
e
al
be

he

.
h
of

-
l
c.
t
n
d

-

f
l.
n-

-

e

a
l

ng
d

d
e-
e
s
in

ic

hyperspherical coordinates corresponding to three sets o
cobi coordinates for the positron-hydrogen system. We u
their a set and made the approximation that the proton
infinitely massive. In thea set the hyper-radiusR is defined
asAr 1

21r 2
2, the tangent of hyperanglea as r 2 /r 1, wherer1

and r2 are the position vectors of the positron and electr
with respect to the proton, respectively. As is usual in
hyperspherical treatment the reduced wave funct
C(R,V) is written in terms of the standard wave functio
c(R,V) @C(R,V)5R5/2(sina)(cosa)c(R,V)# so the Schro¨-
dinger equation becomes@24#

F2
]2

]R2 1
L212RC~V!

R2 22EGC50, ~1!

where V represents five hyperangles andL2 is the grand
angular momentum operator as given by Zhou and Lin@24#.
The scaled potentialC(V) in Eq. ~1! is just the product of
the hyperradiusR and the Coulomb interaction between th
charged particles. The hyperspherical adiabatic basis fu
tions w(R,V) are defined as eigenfunctions of the opera
@L21 1

4 12RC(V)# whereR is held fixed, i.e.,

@L21 1
4 12RC~V!#w~R;V!52«m8 ~R!R2w~R;V!. ~2!

In Eq. ~2!, «m(R)5«m8 (R)2 1
2 (1/4R2) are the adiabatic en

ergy eigenvalues.

B. Angle-Sturmian bases

The adiabatic hyperspherical basis functions are obtai
by holding R fixed and using«8(R) as the eigenvalue. An
alternative basis, the angle-Sturmian basis functio
Sn(n,V), are obtained by holding«8(R)R2 fixed and using
the coefficient of the scaled potentialC(V), rn(n) as the
eigenvalue;

@L212rn~n!C~V!#Sn~n;V!5~n221/4!Sn~n;V!. ~3!

The quantityn221/4 is held fixed andrn(n) is adjusted so
that the boundary conditions onS(n;V) are satisfied. The
orthogonality condition of the Sturmian basis functions is

22E Sn~n;V!C~V!Sn8~n;V!dV5dn,n8 . ~4!

The angle-Sturmian basis relates to the hyperspherical a
batic basis according to Demkov’s construction@41#. This
construction considers that the adiabatic eigenvalues«m(R)
correspond to different branches of the same function«(R),
which is single valued on a multisheeted Riemann surfa
Surfaces corresponding to different eigenvalues are c
nected at branch points. Near a branch pointRb the energy
function «(R) has the form«(R)'AR2Rb, i.e., the branch
points are square-root branch points. The appropriate R
mann surface can be constructed by plotting Re@«(R)# vs R.
The surface defines a single function«(R) for all R. The
standard hyperspherical adiabatic eigenfunctions are dif
ent branches of this function for real values ofR. The equa-
tion,

2«~r!r25n22 1
4 , ~5!
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may be solved to find the rootsrn(n), which are the Stur-
mian eigenvalues Eq.~3!. The corresponding Sturmia
eigenfunctionsSn(n;V) are, aside from normalization con
stants, just the adiabatic functionsw(R;V) evaluated atR
5rn(n):

Sn~n;V!5N~n!w„rn~n!;V…. ~6!

The normalizationN(n) can be determined from the o
thogonality condition Eq.~4! and is given by Ref.@27#,

N~n!5A2
]rn~n!

2n]n
. ~7!

C. Kontorovitch-Lebedeev transform

Any arbitrary function ofR can be expressed in terms
Bessel functionsZn(KR) of fixed energyE5K2/2. This is
the Kontorovitch-Lebedeev transform@38# and it is given by

C~R;V!5E
c
2ndnR1/2Zn~KR!F~n,V!, ~8!

wherec denotes a contour in then plane that depends upo
boundary conditions. This transform is analogous to the F
rier transform in the time-dependent representation. For
ticles interacting via Coulomb interactions, the Schro¨dinger
equation is not separable in hyperspherical coordina
Therefore, the coefficientF(n;V) is expanded in angle
Sturmian bases. The simplest approximation to make i
truncate the expansion to one-term. A closed-form exp
sion to the wave function for the one-Sturmian approxim
tion is given by Macek and Ovchinnikov@27# and Macek
@31,32#.

The hidden-crossing method emerges by considering
asymptotic form (R→`) of the one-Sturmian wave functio
and evaluating the integral using the stationary phase
proximation. The resulting wave function, aside from an u
important overall multiplicative constant, is given by

C~R,V!' (
paths

(
m

1

AKm~R!

3expS i E
cnm

R

Km~R8!dR8Dwm~R;V!, R→`.

~9!

In Eq. ~9! cnm denotes a contour that connectswa(R0 ;V) at
small R0 with wm(R;V) at largeR and the sum over path
goes over all such contours. The valueR0 is a relatively
small value ofR corresponding toKa(R0)50, anda repre-
sents an adiabatic label that may differ from the labelm
appropriate at largeR. The labela specifies the branch of th
function«(R) at smallR. The wave-vectorKm(R) is defined
according to

Km
2 ~R!5K22

nm
2

r~nm!2 5K22
nm

2

R2 5K222«m~R!2
1/4

R2

5K222«m8 ~R!. ~10!
u-
r-

s.
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s-
-
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Note that Eq.~9! is of WKB form and that Eq.~10! involves
the Langer correction (1/4)/R2. From the asymptotic wave
function Eq.~9! the Jost function@42# may be extracted. The
S matrix computed by forming(a@(J2)21# iaJam

1 is equiva-
lent to the standard hidden-crossing expression@37#.

The S-matrix elementS12 for Ps formation in the Ore gap
is obtained by forming

S125 (
a51

2

@~J2!21#1,a Ja,2
1 . ~11!

The first term (a51) of this sum is given by integrating
inward from a pointRi on the first sheet of the Rieman
surface@thee1-H(1s) sheet# to the classical turning pointR1

t

using the negative branch of the wave-vectorK1(R), then
outward using the positive branch ofK1(R), going clockwise
around the branch pointRb to get to a pointRf on the second
sheet@the p1Ps(1s) sheet#. The second term (a52) corre-
sponds to integrating inward fromRi using the negative
branch of K1, going counterclockwise around the bran
point to the turning point of the second sheetR2

t , and out-
ward using the positive branch ofK2 to the pointRf . The
Ps-formation matrix elementS12 is thecoherentsum of the
contribution corresponding to the two paths.

The modulus square of the S-matrix elementuS12u2 can be
expressed in the form,

uS12u254P sin2D12, ~12!

where the probabilityP is given by

P5expF22UImE
c

K~R! dRU G , ~13!

and the phaseD12 by

D125UReE
c

K~R! dRU. ~14!

The contourc is from R1
t , aroundRb , to R2

t . As is standard
procedure in computinguS12u2, we multiply the right-hand
side of Eq.~12! by 12P. The 12P term comes from the
unitary of the Jost matrix and its justification can be found
a number of places, for instance, Nikitin and Umanskii@43#.
Finally, the partial-wave~L! cross section in units ofpao

2 for
Ps formation in the Ore gap is given by

s12
(L)5

2L11

2E11
uS12u2. ~15!

III. NUMERICAL TECHNIQUES

Following the treatment of Zhou and Lin@24#, we diago-
nalized the operator@L21 1

4 12RC(V)# by writing the
eigenfunctionsw(R;V) in terms of the Euler angles. Thi
diagonalization leads to coupled partial differential equatio
in terms of the variablesa and u12 @24,34#, where cosu12

5 r̂1• r̂2. We solved these equations to compute the eigen
ues «m8 (R) using the basis-spline collocation metho
~BSCM! @44–47#. This method employs polynomials of or
derN on an interval in the range of a coordinate. We used
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TABLE I. S-wave cross section in units ofpao
2 for Ps formation in the Ore gap.

ki ~a.u! 0.71 0.75 0.80 0.85

Hidden crossing 0.00031 0.00041 0.00045 0.0004
Hidden crossing without

the Langer correction 0.0042 0.0055 0.0062 0.006
Kohn variational@10–12,14,15# 0.0041 0.0044 0.0049 0.0057
Harris-Nesbet@22# 0.00405 0.00426 0.00479 0.00552

21-state CC(13̄,8̄) @20# 0.00405 0.00427 0.00472 0.00560

Hyperspherical@23# 0.00404 0.00398 0.00462 0.00535
Hyperspherical@24,25# 0.00397 0.00427 0.00483 0.00557
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BSCM codes developed by Bottcher and co-workers@44–46#
and Kegley Jr.et al. @47# and to diagonalize the comple
non-Hermitian matrix a routine fromLAPACK, CGEEV @48#.
The order of the matrix that we diagonalized is given by
productna , nu , andL11, wherena (nu) is the number of
collocation points for thea (u) coordinate, andL is the total
orbital angular momentum of the system.

For theS-wave calculation we used fifth-order polynom
als for each interval in the range of thea coordinate and the
u12 coordinate. We optimized the distribution ofa colloca-
tion points atR53 and 4.4 a.u. A uniform distribution o
collocation points was used for theu12 coordinate. We used
32 collocation points fora, 30 collocation points foru12,
and a mesh spacing of 0.025 a.u. TheS-wave cross section
has converged to within 2% with respect to the number
collocation points, and to within 9% with respect to the nu
ber of integration points.

To compute theP-wave eigenvalues around the bran
point (Rb) and along the real axis to the left of the real p
of the branch point@Re(Rb)# we used 28 collocation point
for botha andu12 coordinates. However, along the real ax
to the right of the real part of the branch point@Re(Rb)# we
used 38 collocation points fora and 34 collocation points fo
u12. We used a mesh spacing of 0.05 a.u. for the integrat
For thea coordinate we used fifth-order polynomials and
nonuniform distribution of collocation points.

To determine accurately the eigenvalues out even to la
R, which is needed for the investigation of the near-thresh
behavior, we computed the eigenvalues using different o
polynomials and distribution of collocation points foru12. In
the first calculation we used for the coordinateu12 fifth-order
polynomials and a linear distribution of collocation points.
the second calculation in the computation of the eigenva
aroundRb and to the left of Re(Rb) we again used for the
coordinateu12 fifth-order polynomials and linear distributio
of collocation points. However, in the computation of t
eigenvalues to the right of Re(Rb), we used foru12 third-
order polynomials and a quadratic distribution of collocati
points starting from the origin. TheP-wave cross section
computed using the eigenvalues obtained in the two calc
tions differs by less than 3%, 0.9%, and 0.06% atki50.75,
0.80, and 0.85 a.u., respectively. The convergence tests
we give below and the results that we present in Sec. IV
corresponds to the second calculation.

The convergence of theP-wave cross section with respe
to the number of integration points is 0.4%, 0.4%, and 0.
at ki50.75, 0.80, and 0.85 a.u., respectively. TheP-wave
e

f
-

t

n.

e
ld
er

es

a-

hat
B

cross section appears to have converged to within 5% w
respect to the number of collocation points.

We used the same number of collocation points to co
pute theD-wave eigenvalues as we used to compute
P-wave eigenvalues. We used fifth-order polynomials for
a and u12 coordinates, and a mesh spacing of 0.05 a.u.
the integration.

To test the sensitivity of the cross section on the order
polynomial and distribution of collocation points foru12, for
a given set of collocation points, we performed two sets
calculations. In the first calculation we used for theu12 co-
ordinate fifth-order polynomials and a linear distribution
collocation points. In the second calculation in the compu
tion of the eigenvalues aroundRb and to the left of Re(Rb)
we again used for theu12 coordinate fifth-order polynomials
and linear distribution of collocation points. However, in th
computation of the eigenvalues to the right of Re(Rb), we
used foru12 third-order polynomials and a quadratic distr
bution of collocation points starting from the origin. Th
D-wave cross section computed using the eigenvalues
tained in the two calculations differs by less than 14%, 4
and 2% atki50.75, 0.80, and 0.85 a.u., respectively. T
convergence tests that we give below and the results tha
present in Sec. IV C corresponds to the first calculation.

The D wave has converged to within 0.07% with respe
to the number of integration points. The convergence w
respect to the number of collocation points improves cons
erably with increasing energy. For instance, the converge
is about 11%, 3%, and 2% atki50.75, 0.80, and 0.85 a.u
respectively.

IV. RESULTS

A. S wave

The phaseD12, Eq. ~14!, for S-wave scattering is close to
p (D12;3.2 rad). Thus, there is almost complete destr
tive interference between the two amplitudes@paths a51
and 2 of Eq.~11!# that correspond to different paths leadin
to Ps formation. Hence, theS-wave cross section is ver
small and highly sensitive to the accuracy with which t
phase is determined. We give theS-wave cross section for P
formation within the Ore gap in Table I and compare it wi
the Kohn variational@10–12,14#, the Harris-Nesbet@22#, the
21-state close-coupling CC(13̄,8̄) @20#, and the hyperspheri
cal @23–25# calculations. In Table I we also show the cro
section computed by adding anad hocfactor (1/4)/R2 to the
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TABLE II. P-wave cross section in units ofpao
2 for Ps formation in the Ore gap.

ki ~a.u! 0.75 0.80 0.85

Hidden crossing 0.381 0.558 0.696
Hidden crossing with

correction term (̂wud2w/dR2&1(1/4)/R2) 0.327 0.510 0.679
Kohn variational@12–15# 0.3657 0.4819 0.5627
Harris-Nesbet@22# 0.366 0.483 0.564

21-state CC(13̄,8̄) @20# 0.366 0.483 0.563

Hyperspherical@23# 0.376 0.490 0.570
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right-hand side of Eq.~10! which means neglecting th
Langer correction. We refer to this calculation as hidd
crossing without the Langer correction. Even though this f
tor is ad hoc, it shows the factor required to obtain a cro
section in reasonable agreement with the Kohn variatio
results. It also shows the extreme sensitivity of theS-wave
cross section to a small change in the phase—a chang
2.7–2.8% in the phase causes the cross section to increa
a factor 13–14. The calculation of theS-wave cross section
has thus provided an extremely sensitive test of the hidd
crossing method. Interestingly, forki50.71, 0.75, and 0.80
a.u., the classical turning point of the second sheet (R2

t ) is at
a larger R value than the real part of the branch po
@Re(Rb)#. Thus, for these values of the incident wave-vec
Ps formation for theS wave occurs via tunneling.

B. P wave

We present theP wave hidden-crossing cross section f
Ps formation in Table II, and compare it with the Koh
variational @12–15#, the Harris-Nesbet@22#, the 21-state
close coupling CC(13̄,8̄) @20#, and the hyperspherical@23#
cross sections. In Fig. 1 we compare the hidden-cros
results with the Kohn variational@12–15,49# and Harris-
Nesbet@22# results. The hidden-crossing results agree w
the Kohn variational results@12–15# to within 5%, 16%, and
33% atki50.75, 0.80, and 0.85 a.u., respectively. We a

FIG. 1. P-wave cross section for Ps formation for positro
hydrogen collisions in the Ore gap. The hidden-crossing results
represented by the solid curve whereas the hidden crossing wit
correction term (̂wud2w/dR2&1(1/4)/R2) results are represente
by the dashed curve. The Kohn variational results@12–15,49# and
Harris-Nesbet results@22# are represented, respectively, by cross
and solid dots.
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e

presently unclear why there is such a discrepancy aki
50.85 a.u., but we note that the classical turning point of
second sheetR2

t is very close to the real part of Re(Rb),
within 0.05 a.u. ForP-wave scattering, Ps formation occu
via tunneling for the entire Ore gap and the phase is clos
2.3 rad.

Near-threshold Ps formation is of current interest@14,50#.
As one decreases the energy of the incoming positron,
classical turning point for the second sheet (R2

t ) moves out
to larger realR. The behavior of the second eigenvalu
«28(R) at large realR is similar in shape to the potentia
shown in Fig. 3 of Ref.@51# up to x5x3. The eigenvalue
«28(R) decreases with increasingR to a minimum atR59.9
a.u., increases to a maximum atR515.05 a.u., and then de
creases again. The value of the maximum of«28(R) is
20.2488 a.u. (ki50.7088 a.u.!. This means that for wave
numbers up toki50.7088 a.u. there occurs in addition to th
classical turning point (R2

t ) two other classical turning
points, R2,TOB,1

t and R2,TOB,2
t . Thus, the eigenvalue«28(R)

curve has a TOB region. The effect of the TOB is mo
significant on the cross section near threshold. In conside
tunneling through the TOB we apply the analysis of Mac
and Ovchinnikov@51# to Ps formation. We present this ap
plication in Appendix A. The cross section that takes in
account tunneling through the TOB region is given by

s12
(L)5uTu2s12

(L)~R2
t !, ~16!

wheres12
(L)(R2

t ) is the cross section computed by integrati
K(R) along a contour that starts fromR1

t , goes around the
branch pointRb to R2

t , and uTu2 is the modulus squared o
the transmission coefficient given in Appendix A. Figure
shows that theP-wave cross section for Ps formation com
puted using Eq.~16! rises fairly rapidly up toki50.715 a.u.

In Appendix B we show that the one-Sturmian theory@27#
can be used to correct the hidden-crossing method to
into account the correction term (^wud2w/dR2&1(1/4)/R2).
The factor «m(R)1Wm(R), where Wm(R)52 1

2 ^wud2w/
dR2&, gives the close-coupling asymptotic channel potent
through terms of order 1/R2 @40,52,53#. Using the one-
Sturmian theory it can be shown that for largeR, where«(R)
is a slowly varying function ofR the wave vector

Km
2 ~R!5K222«m~R!22Wm~R! ~17!

with the neglect of terms of order 1/R4. The asymptotic form
of the second derivative term̂w2ud2w2 /dR2& for the
p-Ps~1s! channel is given by@53#

re
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K w2Ud2w2

dR2 L ;2
3

4R2 as R→` ~18!

with the neglect of terms of order 1/R4. Since Eq.~17! is
valid for largeR, we used Eq.~17! with Eq. ~18! in integrat-
ing K2(R) along the real axis to the right of Re(Rb). For
other values ofR in the contour of*cK(R) dR, i.e., around
Rb and to the left of Re(Rb), we usedKm(R) defined accord-
ing to Eq.~10!. There occurs a very slight TOB in the ter
«2(R)1W2(R) at largeR. This term decreases with increa
ing R to a minimum of 20.2477 (ki50.7104 a.u.! at R
510.85 a.u., increases to a maximum of20.2476 a.u. (ki
50.71055 a.u.! at R513.05 a.u., and then decreases aga
As before, we approximated the TOB region by an inver
harmonic oscillator. Forki greater than 0.7104 a.u. we com
puted the cross section according to Eq.~16!. This cross
section is given in Table II and Fig. 1. We refer to this cro
section as the hidden crossing with the correct
(^wud2w/dR2&1(1/4)/R2) since we have used Eq.~17!. The
agreement of this cross section with the Kohn variatio
results is 11%, 6%, and 21% atki50.75, 0.80, and 0.85 a.u
respectively. The correction term enables better agreeme
be achieved with the Kohn variational results atki50.80 and
0.85 a.u.

C. D wave

The phaseD12, Eq. ~14!, for the D wave is close top/2
(D12'1.66→1.61 rad forki50.75→0.85 a.u.!. Thus, unlike
S-wave scattering where there is almost complete destruc
interference between the two amplitudes@pathsa51 and 2
of Eq. ~11!# corresponding to different paths that lead to
formation, for theD wave there is close to constructive in
terference between the two amplitudes. Thus, the hidd
crossing method has provided an explanation of why
D-wave contribution to the Ps-formation cross section in
Ore gap is so significant. We did not observe a TOB reg
in the second eigenvalue for theD wave. In Table III we
compare the hidden-crossing cross section with the K
variational@12,14,15,20,23#, the Harris-Nesbet@22#, the 21-
state close-coupling CC(13,8) @17#, and the hyperspherica
@20# cross sections. The hidden-crossing results agree
the Kohn variational results to within 3%, 0.5%, and 11%
ki50.75, 0.80, and 0.85 a.u., respectively. However, Hu
berstonet al. @14# explain that theirD-wave cross section is
less well converged than theirS- andP-wave cross section
and that the Harris-Nesbet calculation of theD wave is prob-
ably more accurate than their Kohn variational calculati
Our hidden-crossing results agree with the Harris-Nesbe

TABLE III. D-wave cross section in units ofpao
2 for Ps forma-

tion in the Ore gap.

ki ~a.u! 0.75 0.80 0.85

Hidden crossing 0.322 0.816 1.205
Kohn variational@12,14,15# 0.312 0.820 1.083
Harris-Nesbet@22# 0.321 0.860 1.158

21-state CC(13̄,8̄) @20# 0.320 0.859 1.158

Hyperspherical@23# 0.334 0.866 1.16
.
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sults to within 0.3%, 5%, and 4% atki50.75, 0.80, and 0.85
a.u., respectively. Forki50.80 and 0.85 a.u., the agreeme
between the Kohn variational and the hidden-crossing res
is better for theD wave than theP wave. We note that the
centrifugal barrier is larger for theD-wave than for theP
wave. This causes the classical turning points to be at la
values ofR for theD wave than they are for theP wave. The
classical turning point for the second sheetR2

t is further from
the branch point for theD wave than theP wave. Further-
more, since the phaseD12 for theD wave is close top/2, the
cross section is fairly insensitive to slight changes in
phase. For instance, atki50.85 a.u., the phaseD12 equals
1.609 rad. A change of 1% of this phase changes the c
section by less than 0.15%. We also computed theD-wave
cross section by allowing for the correction term to t
hidden-crossing method, (^wud2w/dR2&1(1/4)/R2), in the
manner explained in Sec. IV B and Appendix B. This cro
section is compared in Fig. 2 with the hidden crossing wi
out the correction term, the Kohn variational@14,49#, and the
Harris-Nesbet@22# results. The effect of the correction term
is to lower the cross section.

V. CONCLUSION

Using the hidden-crossing method formulated in the h
perspherical representation we have computed theS-, P-, and
D-wave cross section for Ps formation in positron-hydrog
collisions in the Ore gap. The agreement of theP- and
D-wave hidden-crossing results with the Kohn variation
@12–15,49# and the Harris-Nesbet@22# results is fair to good.
The hidden-crossing method has provided a physical ex
nation of why theS-wave cross section is very small and th
D-wave is significant. The explanation is that forS-wave
scattering there occurs almost complete destructive inter
ence between the two amplitudes that correspond to diffe
paths leading to Ps formation whereas for theD wave the
two amplitudes almost completely constructively interfere

For theP wave there occurs a TOB in the second eige
value at largeR. We investigated the effect of tunnelin

FIG. 2. D-wave cross section for Ps formation for positro
hydrogen collisions in the Ore gap. The hidden-crossing results
represented by the solid curve whereas the hidden crossing with
correction term (̂wud2w/dR2&1(1/4)/R2) results are represente
by the dashed curve. The Kohn variational results@12,14,15,49# and
Harris-Nesbet results@22# are represented, respectively, by cross
and solid dots.
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through the TOB region. We have shown that the o
Sturmian theory can be used to correct the hidden-cros
method to take into account the factor (^wud2w/dR2&
1(1/4)/R2). We considered the correction term in computi
the P- andD-wave cross sections for Ps formation.
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APPENDIX A: TUNNELING THROUGH TOB

The behavior of the second eigenvalue«28(R) is interest-
ing in that there is a TOB region at largeR. The shape of
«28(R) as a function ofR, at largeR, is similar to that of Fig.
3 of Ref.@51# up tox5x3. We apply the analysis of Ref.@51#
in our treatment of the TOB region.

Without the TOB region, the wave function forR.R2
t is

of the form,

c5S12
(0)ei *

R2
t

R
K2(R8) dR8, ~A1!

where theS-matrix elementS12
(0) is the amplitude of the out

going radial wave in the absence of the TOB region.@Note,
in writing Eqs.~A1!–~A3! and Eq.~A9! we did not include
the normalization factor 1/AK(R) that multiplies the right-
hand side of these equations. Furthermore, we neglecte
Eqs.~A6!, ~A8!, and~A9! phase factors that can be incorp
rated into the definition of the transmissionT and reflection
R coefficients.#

Now let us consider the TOB region,R2,TOB,1
t <R

<R2,TOB,2
t , which is region III of Fig. 3 of Ref.@51#. Within

the TOB region reflection and transmission occurs at
boundaries for bothE,«28(RT) andE.«28(RT). To the left
of the TOB region,R2

t ,R<R2,TOB,1
t , i.e., region II of Fig. 3

of Ref. @51#, the form of the wave function is a linear com
bination of an incident and reflected wave,

c II 5S12
(0)@ei *

R2
t

R
K2(R8) dR81Bre

2 i *
R2

t
R

K2(R8) dR8#, ~A2!
-
ng

-

r.

n
.

-
T
s
o.
.
-

e
l
-
-
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e

whereBr is a reflection coefficient. However, to the right o
the TOB region,R2,TOB,2

t <R,R→`, the wave function is
an outgoing wave,

c IV5S12
(0)Tei *

R2,TOB,2
t

R
K2(R8) dR8, ~A3!

whereT is the transmission coefficient.
In the TOB region, following the analysis of Ref.@51# we

approximate«28(R) by an inverted harmonic oscillator,

«28~R!5«28~RT!1 1
2 @«28~RT!#9~R2RT!2, ~A4!

whereRT is the TOB position,«28(RT) is the eigenvalue a
this position, and@«28(RT)#9,0.

The solutions of

F2
d2

dR2 12«m8 ~R!2K2Gc50 ~A5!

in the TOB region, region III, are parabolic functions. Th
wave functions in regions II, III, and IV need to be matche
We follow the treatment of Ref.@51# in recognizing that to
match the solutions in regions II and III, the solution in r
gion III is written in the form,

c III 5S12
(0)@E* „a,2~R2RT!g…1RE„a,2~R2RT!g…#,

~A6!

where

a52
E2«28~RT!

$2@«28~RT!#9%1/2
, ~A7!

g4524@«28(RT)#9, andR is the reflection coefficient to be
determined. To determineR and T Eq. ~A6! needs to be
expressed in the form of ingoing and outgoing waves. W
use Eq.~19.18.3! of Ref. @54# to write Eq.~A6! in the form,

c III 5S12
(0)H 1

i
@A11e2paE„a,~R2RT!g…

2epaE„a,~R2RT!g…#1RS 2
1

i D @A11e2pa

3E* „a,~R2RT!g…2epaE„a,~R2RT!g…#J .

~A8!

Furthermore, using Eq.~3.8! of Ref. @51# gives

c III 5
S12

(0)

i
$2@epa1RA11e2pa#e2 i *

R2,TOB,2
t

R
K2(R8) dR8

1@A11e2pa1Repa#ei *
R2,TOB,2

t
R

K2(R8) dR8%. ~A9!

Matching the wave function in region III, Eq.~A9! with the
outgoing wave in region IV, Eq.~A3! gives

epa1RA11e2pa50,

A11e2pa1Repa5T. ~A10!

Thus, the modulus square ofR andT are given, respectively
by
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uRu25
e2pa

11e2pa
,

uT u25
1

11e2pa
. ~A11!

Since the coefficient of the outgoing wave in region IV
S12, which equalsS12

(0)T, the Ps-formation cross section th
takes into account the TOB region is given by

s12
(L)5

2L11

2E11
uS12u25uT u2s12

(L)~R2
t !, ~A12!

where

s12
(L)~R2

t !5
2L11

2E11
uS12

(0)u2. ~A13!

The modulus square of theS matrix in the absence of th
TOB region, uS12

(0)u2, is computed according to Eqs.~12!–
~14! and uT u2 is computed according to Eq.~A11!. These
equations are valid for energies both through and above
TOB. Note, whenE5«28(RT), uRu25uT u251/2.

APPENDIX B: CORRECTION TERM
TO THE HIDDEN-CROSSING METHOD

The one-Sturmian theory@27# can be used to correct th
hidden-crossing method to take into account the fac
(^wud2w/dR2&1(1/4)/R2). The factor Wm,m
52 1

2 ^wmud2wm /dR2& is the usual diagonal nonadiabat
correction to the adiabatic potential«m(R). To show how it
obtains from the one-Sturmian theory, a short derivation
presented in this appendix.

The one-Sturmian approximation for the wave function

C~R,V!5E
c

1

r~n!
B~n!S~n,v!R1/2Zn~KR!ndn, ~B1!

where c denotes a contour in the complex plane and
coefficientB(n) satisfies the three-term recurrence relatio

2n

Kr~n!
B~n!5M ~n!B~n11!1M ~n21!B~n21!,

~B2!

where

M ~n!52E S~n11;V!2C~V!S~n;V!dV

[2^S~n11!u2CuS~n!&. ~B3!

Note that the inner product of Sturmian basis functions
defined without the complex conjugate.

In the derivation of the hidden-crossing theory@27#, a
further approximation is made, namely, the matrix elem
Eq. ~B3! is evaluated by expandingS(n8;V), n85n61,
about the pointn85n and taking the lowest-order term only
The lowest-order term toM (n) equals unity and the next
he

r

is

e
:

s

t

order term vanishes by the normalization condition Eq.~4!.
However, the second-order terms give rise to a correctio
the hidden-crossing theory.

To compute this correction, note that the matrix elem
M (n), to second-order is given by

M ~n!'M ~n21!'S 11
1

2 K ]2S

]n2U 22C~V!USL D .

~B4!

Substituting Eq.~B4! in Eq. ~B2! gives

2n

K
A~n!5S 11

1

2 K ]2S

]n2U 22C~V!USL D @r~n11!A~n11!

1r~n21!A~n21!#. ~B5!

The one-Sturmian results of Ref.@27# can be taken over
by defining

reff~n!5r~n!S 11
1

2 K ]2S

]n2U 22C~V!USL D ~B6!

and replacingr(n) with reff(n) in the equations. Below we
derive a general expression for^]2S/]n2u22C(V)uS& and
consider approximations to it when«(r) is a slowing vary-
ing function ofr.

We begin with the one-Sturmian equation, Eq.~3!, and
take the first and second derivative of this equation w
respect ton. The first derivative equation is projected on
]2S/]n2 and the second derivative equation is projected o
]S/]n. The difference of the resulting two equations give

]r

]n F K ]2S

]n2U 2C~V!USL 22K ]S

]nU 2C~V!U]S

]n L G22n K ]2S

]n2 USL
14n K ]S

]n U]S

]n L 12K ]S

]n USL 50, ~B7!

where the normalization condition Eq.~4! has been used.
Using the identities,

^SuS&5N252
1

2n

]r

]n
, ~B8!

K ]S

]n USL 5
1

2

]N2

]n
, ~B9!

K ]2S

]n2 USL 52 K ]S

]n U]S

]n L 1
1

2

]2N2

]n2 , ~B10!

K ]2S

]n2U 2C~V!USL 52 K ]S

]nU2C~V!U]S

]n L , ~B11!

in Eq. ~B7! gives

2N2K ]2S

]n2U 2C~V!USL 2 K ]2S

]n2 USL 1
1

3

]2N2

]n2 1
1

6n

]N2

]n
50.

~B12!

Because of the relation between the Sturmian and adiab
functions, Eq.~6!, we have
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K ]2S

]n2 USL 5N
]2N

]n2 1N2K ]2w

]n2 Uw L . ~B13!

Using this equation together with

N
]2N

]n2 5
21

4N2 S ]N2

]n D 2

1
1

2

]2N2

]n2 , ~B14!

K ]2w

]n2 Uw L 5 K ]2w

]r2 Uw L S ]r

]n D 2

, ~B15!

in Eq. ~B12! we obtain

2N2K ]2S

]n2U2C~V!USL 54n2N6K ]2w

]r2 Uw L 1
1

6

]2N2

]n2

2
1

4N2 S ]N2

]n D 2

2
1

6n

]N2

]n
.

~B16!

Now, using the normalizationN(n) given by Eq.~7! we
obtain

N252
]r

2n]n
52

1/2

F]«

]r
r212«rG ~B17!

and

2
]

2n]n
52

1/2

F]«

]r
r212«rG

]

]r
5N2

]

]r
. ~B18!

These equations yield an alternative form of the second
rivative term, namely,

K ]2S

]n2U22C~V!USL 54n2N4K ]2w

]r2 Uw L 1n2N2
2

3

]2N2

]r2

2n2
1

3 S ]N2

]r D 2

. ~B19!

Consider the case where«(r) is a slowly varying function
of r is the sense that«8(r)'0. Then,

4n2N4'
n2

4«2r2 5
1

2« S 11
1

8«r2D , ~B20!

n2N2
2

3

]2N2

]r2 '
1

12

n2

«2r4 , ~B21!

n2
1

3 S ]N2

]r D 2

'
1

48

n2

«2r4 . ~B22!
e-

Substituting these equations into Eq.~B19! leads to

K ]2S

]n2U22C~V!USL '
n2

4«2r2 S K ]2w

]r2 Uw L 1
1

4r2D
'

1

2« S 11
1

8«r2D S K ]2w

]r2 Uw L 1
1

4r2D .

~B23!

Replacingr(n) by reff(n) in Eq. ~10! gives

K2~r!'2E2
n2

reff
2

'2E2
n2

r2S 11
1

2 K ]2S

]n2 U22C~V!USL D 2 ,

~B24!

'2E2
n2

r2 S 12 K ]2S

]n2U22C~V!USL D ~B25!

'2E2
n2

r2 1
n4

4«2r4 S K ]2w

]r2 Uw L 1
1

4r2D .

~B26!

Using Eq.~5! in Eq. ~B26! gives

K2~r!52E22«22W~r!, ~B27!

where

W~r!52
1

2 K ]2w

]r2 Uw L ~B28!

with the neglect of terms of orderr24. Equation~B27! is
appropriate for larger since there«(r) is a slowly varying
function of r.

In Eq. ~B26! the correction term to the hidden-crossin
theory is ^]2w/]r2uw&11/4r2, which includes the Lange
correction 1/4r2. In the final equation forK2(r) the Langer
correction subtracts out. Then the term«1W agrees with the
close-coupling asymptotic channel potentials through te
of order 1/R2.

According to this discussion the diagonal nonadiaba
term should be used only when«(r) is a slowly varying
function of r. For example when«(r)5a1b/r2, then the
relation Eq.~B23! is seen to hold for sufficiently larger and
aÞ0. Alternatively, when«(r) has a branch point atRb ,
then «8(Rb) is infinite andW(Rb) diverges. At this point,
however, the left-hand side of Eq.~B23! is finite. For this
reason,W(r) should not be employed near avoided crossi
but should be kept for large realr.



G.

en

n,

er
ra

. I

E

s,

J.

.

ug

n-

n-
ns
r

d
er-

ys.

y,

-

i,

i-
e
A.
r,

ut.

R.

ar,

J.
S.

ia,

PRA 59 4427APPLICATION OF THE HIDDEN-CROSSING METHOD . . .
@1# W. Sperber, D. Becker, K. G. Lynn, W. Raith, A. Schwab,
Sinapius, G. Spicher, and M. Weber, Phys. Rev. Lett.68, 3690
~1992!.

@2# M. Weber, A. Holmann, W. Raith, W. Sperber, F. Jacobs
and K. G. Lynn, Hyperfine Interact.89, 221 ~1994!.

@3# S. Zhou, H. Li, W. E. Kauppila, C. K. Kwan, and T. S. Stei
Phys. Rev. A55, 361 ~1996!.

@4# V. Kara, K. Paludan, J. Moxom, and G. Laricchia~unpub-
lished!.

@5# H. S. W. Massey, Can. J. Phys.60, 461 ~1982!.
@6# M. Leventhal and B. L. Brown, inProceedings of the Third

International Workshop on Positron (Electron)-Gas Scatt
ing, edited by W. E. Kauppila, T. S. Stein, and J. Wadeh
~World Scientific, Sinapore, 1986!, p. 140.

@7# E. Stokstad, Science276, 897 ~1997!.
@8# H. S. W. Massey, Phys. Today29 ~3!, 42 ~1976!.
@9# J. W. Humberston, M. Charlton, F. M. Jacobsen, and B

Deutch, J. Phys. B20, L25 ~1987!.
@10# J. W. Humberston, Can. J. Phys.60, 591 ~1982!.
@11# J. W. Humberston, J. Phys. B17, 2353~1984!.
@12# J. W. Humberston, Adv. At. Mol. Phys.22, 1 ~1986!.
@13# C. J. Brown and J. W. Humberston, J. Phys. B17, L423

~1984!.
@14# J. W. Humberston, P. Van Reeth, M. S. T. Watts, and W.

Meyerhof, J. Phys. B30, 2477~1997!.
@15# C. J. Brown and J. W. Humberston, J. Phys. B18, L401

~1985!.
@16# M. T. McAlinden, A. A. Kernoghan, and H. R. J. Walter

Hyperfine Interact.89, 161 ~1994!.
@17# A. A. Kernoghan, M. T. McAlinden, and H. R. J. Walters,

Phys. B28, 1079~1995!.
@18# A. A. Kernoghan, D. J. R. Robinson, M. T. McAlinden, and H

R. J. Walters, J. Phys. B29, 2089~1996!.
@19# J. Mitroy, L. Berge, and A. Stelbovics, Phys. Rev. Lett.73,

2966 ~1994!.
@20# J. Mitroy, Aust. J. Phys.48, 646 ~1995!.
@21# J. Mitroy, J. Phys. B29, L263 ~1996!.
@22# T. T. Gien, Phys. Rev. A56, 1332~1997!.
@23# A. Igarashi and N. Toshima, Phys. Rev. A50, 232 ~1994!.
@24# Y. Zhou and C. D. Lin, J. Phys. B27, 5065~1994!.
@25# Y. Zhou and C. D. Lin, J. Phys. B28, 4907~1995!.
@26# Y. Zhou and C. D. Lin, Can. J. Phys.74, 353 ~1996!.
@27# J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A54, 544

~1996!.
@28# S. J. Ward, J. H. Macek, and S. Yu. Ovchinnikov, inApplica-

tion of Accelerators in Research and Industry: Proceedings of
the Fourteenth International Conference, edited by J. L. D
gan and I. L. Morgan, AIP Conf. Proc. No. 392~AIP, Wood-
bury, NY 1997!, p. 469.

@29# S. J. Ward, J. H. Macek, and S. Yu. Ovchinnikov, Nucl. I
strum. Methods Phys. Res. B143, 175 ~1998!.

@30# R. K. Janev and E. A. Solov’ev, inPhotonic, Electronic, and
Atomic Collisions, Invited Papers of the XX International Co
ference on the Physics of Electronic and Atomic Collisio
Vienna, Austria, 1997, edited by F. Aumayr and H. Winte
~World Scientific, Singapore, 1998!, p. 393.
,

-

.

.

-

,

@31# J. H. Macek~unpublished!.
@32# J. H. Macek, inApplication of Accelerators in Research an

Industry; Proceedings of the Fourteenth International Conf
ence,~Ref. @28#, p. 11.

@33# J. H. Macek, S. Yu. Ovchinnikov, and S. V. Pasovets, Ph
Rev. Lett.74, 4631~1995!.

@34# S. V. Passovets, J. H. Macek, and S. Yu. Ovchinnikov, inThe
Physics of Electronic and Atomic Collisions: XIX International
Conference No. edited by L. J. Dube´, J. B. A. Mitchell, J. W.
McKonkey, and C. E. Brion, AIP Conf. Proc. No. 360~AIP,
Woodbury, NY, 1995!, p. 347.

@35# P. Ashley, J. Moxom, and G. Laricchia, Phys. Rev. Lett.77,
1250 ~1996!.

@36# W. Ihra, J. H. Macek, F. Mota-Furtado, and P. F. O’Mahon
Phys. Rev. Lett.78, 4027~1997!.

@37# L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non
Relativistic Theory~Pergamon Press, Oxford, 1981!, Chap. 7,
p. 164ff.

@38# A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Triocom
Higher Transcendental Functions~McGraw-Hill, New York,
1953!, Vol. II, p. 75.

@39# T. H. Gronwall, Ann. Math.33, 279 ~1932!.
@40# J. Macek, J. Phys. B1, 831 ~1968!.
@41# Yu. Demkov, inThe Physics of Electronic and Atomic Coll

sions, Leningrad, 1967, Proceedings of Invited Papers of th
XI International Conference, edited by I. P. Flaks and E.
Solov’ev ~Joint Institute for Laboratory Astrophysics, Boulde
CO, 1968!, p. 186.

@42# U. Fano and A. R. P. Rau,Atomic Collisions and Spectra
~Academic Press, Orlando, FL, 1986!, p. 153ff.

@43# E. E. Nikitin and S. Yu. Umanskii,Theory of Slow Atomic
Collisions ~Springer-Verlag, Berlin, 1984!.

@44# C. Bottcher, Adv. At. Mol. Phys.25, 303 ~1989!.
@45# A. S. Umar, J. Wu, M. R. Strayer, and C. Bottcher, J. Comp

Phys.93, 426 ~1991!.
@46# J. Wells, V. E. Oberacker, A. S. Umar, C. Bottcher, M.

Strayer, J. S. Wu, and G. Plunier, Phys. Rev. A45, 6296
~1992!.

@47# D. R. Kegley, Jr., V. E. Oberacker, M. R. Strayer, A. S. Um
and J. C. Wells, J. Comput. Phys.128, 197 ~1996!.

@48# E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
Ostrouchov, and D. Sorensen,LAPACK User’s Guide, 2nd ed.
~Society for Industrial and Applied Mathematics, Philadelph
1995!, p. 179.

@49# J. W. Humberston and P. Van Reeth~private communication!.
@50# G. Laricchia, Nucl. Instrum. Methods Phys. Res. B99, 363

~1995!.
@51# J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A50, 468

~1994!.
@52# Z. Zhen and J. Macek, Phys. Rev. A34, 838 ~1986!.
@53# M. Cavagnero, Z. Zhen, and J. Macek, Phys. Rev. A41, 1225

~1990!.
@54# Handbook of Mathematical Functions, edited by Milton

Abramowitz and Irene A. Stegun~Dover, New York, 1972!.


