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We have applied the hidden-crossing method to comyte-, andD-wave cross sections for Ps formation
in positron-hydrogen collisions in the Ore gap. The hidden-crossing method has provided a physical explana-
tion of why theSwave cross section is so small and why thevave is significant. The one-Sturmian theory
is used to correct the hidden-crossing theory to take into account the fdeta?(/dR?)+ (1/4)R?). We
have considered this correction term in computing Bheand D-wave cross sections. The hidden-crossing
results are compared with accurate results from other methods. This comparison helps assess the accuracy of
the hidden-crossing method in describing three-body collisi®®5050-294{@9)06506-3

PACS numbd(s): 34.85+x, 34.70:+e, 36.10.Dr

I. INTRODUCTION gebraic Hylleraas correlation functions. Hiswave calcula-
tion for Ps formation is probably more accurate than the
Positronium (P9 formation in positron-hydrogen colli- earlier Kohn variational calculationsl4,22. Igarashi and
sions probes the correlated motion of three charged particle3.oshima[23] and Zhou and Lii24—2§ have independently
It is one of the simplest three-body processes that is nowerformed numerically elaborate hyperspherical close-
amenable to experimental investigatidin-4]. Positron col-  coupling calculations for the first few partial waves. Even
lisions are of interest in astrophysics due to the observatiothough the above methods determined accurately the partial
of 511-keV y rays from solar flares, from the galactic centerwave cross sections for Ps formation in positron-hydrogen
[5,6], and very recently from above the galactic cerjtdr collisions in the Ore gap, a number of physical questions
Analysis of the width of the 511-keV line using accurate Ps-fémained unanswered. . _
formation cross sections for positron-hydrogen collisions 1he hidden-crossing method is well adapted to elucidat-
provides information on the ionization state and temperaturi’d underlying physical picturef27]. We have applied the
of the radiating medium. The investigation of Ps formationNidden-crossing method to Ps formation in positron-
provides ideas about chemical reactions in which the actinydrogen collisions in the Ore gap and computedSheP-,
positive particle has a very small md&3. The cross section End D-vaave Cross sections for Ps format|on.. It had been
for antihydrogen formation in antiproton-positronium colli- nown for some time that thsvyave_ cross section was very
sions is related simply to the cross section for Ps formatio small [10,1] and theD-wave is 5|gn|_f|cam[15], but the
. . - g Yeason was not known. Our calculation using the hidden-
in positron-hydrogen collision®]. This is because of charge

. crossing method has provided the reason. We have reported

conjugation and time reversal invariance. Antihydrogen ISour preliminary investigation of the application of this

one of the most fup_damental systems in physics and can B8athod to Ps formation in conference proceedif2f29.
used to perform critical tests @PT. In Ref.[28] only the Swave cross section was reported and
The Ps-formation cross section in positron-hydrogen colin Ref.[29] the P- and D-wave cross sections reported were
lisions in the Ore gap has been accurately determined usingghly preliminary. For the present paper we computed the
number of different method{The Ore gap is the energy eigenvalues for thé® and D waves to a higher degree of
region between the onset of Ps formation and the first exciagccuracy than we did for Ref29]. In fact, in Ref.[29] we
tation level of the target atomBenchmarkS: and P-wave  stated that the accuracy of thB{wave cross section with
cross sections for Ps formation have been computed bjespect to the number of collocation points still needs to be
Humberston and collaboratdrs0—14 using the Kohn varia-  determined. We have since determined the accuracy and it is
tional method. TheD-wave cross sectiofl2,14,19 for Ps  stated in the present paper. A significant difference between
formation Computed USing the Kohn variational method CONRef. [29] and the present paper is that in the present paper we

verges more slowly with respect to the number of linear pagemonstrate how the one-Sturmian theory is used to correct
rameters than th8 andP waves and is believed to be within the hidden-crossing theory to take into account the factor

10% of the exact value. Extensive two-center close—couplinq<(p|d2<p/d R2>+(1/4)/R2). We consider this correction
calculations have been performed, for instance, an 18-stat@rm in computing theP- and D-wave cross sections. Fur-
calculation by McAlindenet al. [16] and Kernogharetal.  thermore, in the present paper we derive the formulas used in
[17], a 33-state calculation by Kernoghanal.[18], and 20,  Ref, [29] to take into account tunneling through the top of
21, and 28-state calculations by Mitroy and collaboratorq)arrier(TOB)_

[19-21. Gien[22] has employed the Harris-Nesbet method |t should be noted that Janev and Solov[@@] have re-
using a wave function that is comprised of ths, s, 2p,  cently reported the application of the hidden-crossing theory
and 3 state of hydrogen and positronium together with al-to positron-hydrogen collisions. Their hidden-crossing

1050-2947/99/5%)/441810)/$15.00 PRA 59 4418 ©1999 The American Physical Society



PRA 59 APPLICATION OF THE HIDDEN-CROSSING METHOD ... 4419

method uses mass and charge transformations. hyperspherical coordinates corresponding to three sets of Ja-
We used the hidden-crossing method formulated in theobi coordinates for the positron-hydrogen system. We used

hyperspherical representatif2i7,31,33. The significance of their « set and made the approximation that the proton is

this formulation is that, unlike the conventional formulation, infinitely massive. In thex set the hyper-radiuR is defined

it does not employ a classical trajectory approximation andys ‘/r21+r22, the tangent of hyperangle asr,/r,, wherer,

thus can be applied to the correlated motion of three chargegndr, are the position vectors of the positron and electron

particles of arbitrary mass and charge. For Ps formation, unyith respect to the proton, respectively. As is usual in the

like charge exchange in ion-atom collisions, the relative mohyperspherical treatment the reduced wave function

tion between the projectile and target nucleus can never bg (R, Q) is written in terms of the standard wave function

treated classically. The hidden-crossing method successfully(r () [ (R,Q) = R¥%(sina)(cosa) (R Q)] so the Schre

describes reactions in ion-atom collisions. Recently, thejinger equation becoméa4]

hidden-crossing method formulated in the hyperspherical

representation has been shown to successfully describe 9  A2+2RC(Q)

electron-impact ionizatiof83,34]. Furthermore, experiments T JR2 * - 2

for positron-impact ionization of He and,H35] can be in-

terpreted by using the hidden-crossing method to extend th@here Q) represents five hyperangles and is the grand

Wannier theory to higher energi¢36]. Despite the success angular momentum operator as given by Zhou and[R#.

of the hidden-crossing method, it is not an exact methodThe scaled potentiaC({)) in Eq. (1) is just the product of

Comparing our hidden-crossing results for Ps formation withthe hyperradiu®k and the Coulomb interaction between the

results from other methods helps to assess the accuracy effiarged particles. The hyperspherical adiabatic basis func-

the method in describing three-body Coulomb systems.  tions ¢(R,2) are defined as eigenfunctions of the operator
The hidden-crossing method formulated in the hyper{A2+i+2RC(Q)] whereR is held fixed, i.e.,

spherical representation is outlined in Sec. IlI, numerical

technigues are presented in Sec. lll, results are given in Sec. [A2+%+ZRC(Q)](p(R;Q)=28L(R)R2(p(R;Q). 2

IV, and the conclusion is provided in Sec. V. The model that

we employed to describe tunneling through the TOB is giverin Eq. (2), ¢,(R)=¢,(R) - 3(1/4R?) are the adiabatic en-

in Appendix A. The extension of the hidden-crossing methocergy eigenvalues.

to include a correction term{{|d?¢/dR?)+ (1/4)R?) is

given in Appendix B. Atomic units are used throughout un- B. Angle-Sturmian bases

less explicitly stated.

E|¥=0, 1)

The adiabatic hyperspherical basis functions are obtained
by holding R fixed and usings’(R) as the eigenvalue. An
alternative basis, the angle-Sturmian basis functions

The hidden-crossing method has its origins in the work ofS,(»,{2), are obtained by holding’ (R)R? fixed and using
Landau[37] on transitions when the motion is quasiclassical.the coefficient of the scaled potenti@(Q), p,(v) as the
Using the hyperspherical representation, Macek and Ovchireigenvalue;
nikov [27] and Macek{31,32 recently derived the hidden- ) )
crossing method without making any classical trajectory ap- LA™+ 2pn(»)C(Q)IS(v;Q) = ("= 14 S(v; Q). (3)
proximations. Their derivation of the hidden-crossing L . ' ; .
method begins with an integral transform, known as theThe quantity»”—1/4 is h_e_ld fixed angby(») is admsted S0
Kontorovich-Lebedeev transforfi38], and an expansion in that the bqundary.c_ondltlons o@(v;g) are .Sat'Sf'eFj' Th_e
angle-Sturmian functions. Approximating the expansion by prthogonality condition of the Sturmian basis functions is
single angle-Sturmian function and evaluating the integral
form of the wave function at large hyper-radius using the _ZJ Sh(v;0)C(Q)S, (v;Q)dQ =6, . (4
stationary phase approximation leads to the hidden-crossing
method. Since this derivation of the hidden-crossing metho

has been presented in detail elsewhgt,31,33 we give ; : . , . .
only a brief review below. Hyperspherical coordinates anobatIC bas.|s accorqlmg to Demkov; cor)strgctlkﬁﬂ. This
adiabatic bases are described in Sec. IlA. The angle(-:OnStrUCtlon con&ders that the adiabatic elgenvah)_;(R)
Sturmian basis functions are defined in Sec. Il B. Thecor_respond to different branches of the same funcii(R),
Kontorovich-Lebedeev transform and the approximation
made to derive the hidden-crossing method are presented

Sec. Il C.

Il. HIDDEN-CROSSING METHOD

q‘he angle-Sturmian basis relates to the hyperspherical adia-

§\urfaces corresponding to different eigenvalues are con-
nected at branch points. Near a branch p&ptthe energy
function e(R) has the forme(R)~VR—R,, i.e., the branch
points are square-root branch points. The appropriate Rie-
mann surface can be constructed by plottingR&)] vs R.
Hyperspherical coordinates were first introduced inThe surface defines a single functiegR) for all R. The
atomic physics by Gronwall in 1939] to study the ana- standard hyperspherical adiabatic eigenfunctions are differ-
lytic structure of the Schitinger equation for ground-state ent branches of this function for real valuesRfThe equa-
helium. However, hyperspherical coordinates with adiabatigion,
bases were first introduced by Macek in 19@8)] to study
doubly excited states of helium. Zhou and [#¥] presented 2e(p)p?=v>-1, (5)

A. Hyperspherical coordinates and basis functions
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may be solved to find the roojs,(v), which are the Stur- Note that Eq(9) is of WKB form and that Eq(10) involves
mian eigenvalues Eq(3). The corresponding Sturmian the Langer correction (1/4R?. From the asymptotic wave
eigenfunctionsS,(v; Q) are, aside from normalization con- function Eq.(9) the Jost functioi42] may be extracted. The
stants, just the adiabatic functioggR;()) evaluated aR S matrix computed by formin@a[(J‘)‘l]iaJ;M is equiva-

=pn(v): lent to the standard hidden-crossing expres$&.
The S-matrix elemerfs,, for Ps formation in the Ore gap
Sn(v:Q)=N(v) @(pn(v);Q2). (6) s obtained by forming
The normalizationN(v) can be determined from the or- 2 .
thogonality condition Eq(4) and is given by Ref[27], Sio= 21 [(37) M1adas- (13)
&=

[~ apa(v) i _ - is gi integrat
N(v)=/— 2:&1) _ (7) The first term @=1) of this sum is given by integrating

inward from a pointR; on the first sheet of the Riemann
surfacgthee™ -H(1s) shee} to the classical turning poirR}
C. Kontorovitch-Lebedeev transform using the negative branch of the wave-vedtor(R), then
outward using the positive branchléf(R), going clockwise
around the branch poifR,, to get to a poinR; on the second
sheef{the p+ Ps(1s) sheel. The second terma=2) corre-
sponds to integrating inward fror®; using the negative
branch ofK;, going counterclockwise around the branch
V(R Q)= J 2vdvRY?Z (KR)®(v,0)), (8)  point to the turning point of the second sh&t, and out-
¢ ward using the positive branch &f, to the pointR;. The
Ps-formation matrix elemerg,, is the coherentsum of the

Any arbitrary function ofR can be expressed in terms of
Bessel function&Z ,(KR) of fixed energyE=K?/2. This is
the Kontorovitch-Lebedeev transforf@8] and it is given by

wherec denotes a contour in the plane that depends upon L .
boundary conditions. This transform is analogous to the Fou(—:OntrIbUtlon corresponding to the tWO. paths. 2
rier transform in the time-dependent representation. For par- s moqulus square of the S-matrix elemsit|* can be
ticles interacting via Coulomb interactions, the Sdinger expressed in the form,
equation is not separable in hyperspherical coordinates. |S,|2= 4P sirPA ,,, (12)
Therefore, the coefficientb(v;Q)) is expanded in angle-
Sturmian bases. The simplest approximation to make is tevhere the probabilityP is given by
truncate the expansion to one-term. A closed-form expres-
sion to the wave function for the one-Sturmian approxima- _
tion is given by Macek and Ovchinnikol27] and Macek P—exp{—z ImL K(R) dR‘ }
[31,32.

The hidden-crossing method emerges by considering thand the phasa ;, by
asymptotic form R— ) of the one-Sturmian wave function
and evaluating the integral using the stationary phase ap- Avoe Ref K(R) dR (14)
proximation. The resulting wave function, aside from an un- 12 c '
important overall multiplicative constant, is given by

(13

The contourc is from R}, aroundR,,, to R}. As is standard

vR=> S 1 procedure in computingS;,|%, we multiply the right-hand
’ faths /—KM(R) side of Eq.(12) by 1-P. The 1-P term comes from the

unitary of the Jost matrix and its justification can be found in
(R , , a number of places, for instance, Nikitin and Uman§48].
X ex |fc Ku(RHAR' | ¢,(R;Q), R—. Finally, the partial-wavéL) cross section in units ofa? for
n Ps formation in the Ore gap is given by
9
w_ 2L+1

In Eq. (9) ¢, denotes a contour that connegig(Ry ;) at 912 T5ET1 BT (15
small R, with ¢,(R;€2) at largeR and the sum over paths

goes over all such contours. The valRg is a relatively

small value ofR corresponding t& ,(Ry) =0, anda repre- lll. NUMERICAL TECHNIQUES

sents an adiabatic label that may differ from the lapel Following the treatment of Zhou and L[i24], we diago-
appropriate at largR. The labela specifies the branch of the nalized the operatof A2+ 1+2RC(Q)] by writing the
functione(R) at smallR. The wave-vectoK ,(R) is defined  ejgenfunctionse(R;Q) in terms of the Euler angles. This

according to diagonalization leads to coupled partial differential equations
) ) in terms of the variablesr and 6, [24,34), where co9%,,
K2(R)=K2— Y ,=K2— V_l; —K2-2¢ (R)— 1_/4 =r,-T,. We solved these equations to compute the eigenval-
® p(v,) R " R2 ues SL(R) using the basis-spline collocation method

5 , (BSCM) [44—47. This method employs polynomials of or-
=K*=2¢,(R). (100 derNon an interval in the range of a coordinate. We used the
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TABLE |. S-wave cross section in units efaﬁ for Ps formation in the Ore gap.

k; (a.u 0.71 0.75 0.80 0.85
Hidden crossing 0.00031 0.00041 0.00045 0.00047
Hidden crossing without

the Langer correction 0.0042 0.0055 0.0062 0.0066
Kohn variational[10-12,14,1% 0.0041 0.0044 0.0049 0.0057
Harris-Nesbef22] 0.00405 0.00426 0.00479 0.00552
21-state CC(1B) [20] 0.00405 0.00427 0.00472 0.00560
Hyperspherica[23] 0.00404 0.00398 0.00462 0.00535
Hyperspherical[24,25 0.00397 0.00427 0.00483 0.00557

BSCM codes developed by Bottcher and co-workédds-46  cross section appears to have converged to within 5% with
and Kegley Jr.et al. [47] and to diagonalize the complex respect to the number of collocation points.
non-Hermitian matrix a routine fromAPACK, CGEEV [48]. We used the same number of collocation points to com-
The order of the matrix that we diagonalized is given by thepute theD-wave eigenvalues as we used to compute the
productn,, ny, andL+1, wheren, (n,) is the number of P-wave eigenvalues. We used fifth-order polynomials for the
collocation points for thex (6) coordinate, and. is the total « and 6,, coordinates, and a mesh spacing of 0.05 a.u. for
orbital angular momentum of the system. the integration.
For theSwave calculation we used fifth-order polynomi-  To test the sensitivity of the cross section on the order of
als for each interval in the range of thecoordinate and the polynomial and distribution of collocation points f6ég,, for
0., coordinate. We optimized the distribution afcolloca- a given set of collocation points, we performed two sets of
tion points atR=3 and 4.4 a.u. A uniform distribution of calculations. In the first calculation we used for thg co-
collocation points was used for thg, coordinate. We used ordinate fifth-order polynomials and a linear distribution of
32 collocation points forx, 30 collocation points fom,,, collocation points. In the second calculation in the computa-
and a mesh spacing of 0.025 a.u. Theave cross section tion of the eigenvalues arourig}, and to the left of ReRy,)
has converged to within 2% with respect to the number ofnve again used for thé,, coordinate fifth-order polynomials
collocation points, and to within 9% with respect to the num-and linear distribution of collocation points. However, in the
ber of integration points. computation of the eigenvalues to the right of RgX, we
To compute theP-wave eigenvalues around the branchused for#;, third-order polynomials and a quadratic distri-
point (R,) and along the real axis to the left of the real partbution of collocation points starting from the origin. The
of the branch poinfRe(R;,)] we used 28 collocation points D-wave cross section computed using the eigenvalues ob-
for both @ and 6,, coordinates. However, along the real axis tained in the two calculations differs by less than 14%, 4%,
to the right of the real part of the branch pojiRe(R,)] we  and 2% atk;=0.75, 0.80, and 0.85 a.u., respectively. The
used 38 collocation points far and 34 collocation points for convergence tests that we give below and the results that we
#,,. We used a mesh spacing of 0.05 a.u. for the integratiorpresent in Sec. IV C corresponds to the first calculation.
For thea coordinate we used fifth-order polynomials and a The D wave has converged to within 0.07% with respect
nonuniform distribution of collocation points. to the number of integration points. The convergence with
To determine accurately the eigenvalues out even to largeespect to the number of collocation points improves consid-
R, which is needed for the investigation of the near-thresholdrably with increasing energy. For instance, the convergence
behavior, we computed the eigenvalues using different ordgs about 11%, 3%, and 2% &t=0.75, 0.80, and 0.85 a.u.,
polynomials and distribution of collocation points féy,. In  respectively.
the first calculation we used for the coordinatg fifth-order
polynomials and a linear distribution of collocation points. In
the second calculation in the computation of the eigenvalues IV. RESULTS
aroundRy, and to the left of ReRR,) we again used for the
coordinated, fifth-order polynomials and linear distribution
of collocation points. However, in the computation of the The phase\;,, Eqg.(14), for Swave scattering is close to
eigenvalues to the right of RR(), we used foré,, third- 7 (A12~3.2 rad). Thus, there is almost complete destruc-
order polynomials and a quadratic distribution of collocationtive interference between the two amplitudgmthsa=1
points starting from the origin. Th®-wave cross section and 2 of Eq.(11)] that correspond to different paths leading
computed using the eigenvalues obtained in the two calculd0 Ps formation. Hence, th&wave cross section is very
tions differs by less than 3%, 0.9%, and 0.06%at0.75,  small and highly sensitive to the accuracy with which the
0.80, and 0.85 a.u., respectively. The convergence tests thapase is determined. We give tBavave cross section for Ps
we give below and the results that we present in Sec. IV gormation within the Ore gap in Table | and compare it with
Corresponds to the second calculation. the Kohn variationa[10—12,14, the Harris—Nesbe[QZ], the
The convergence of tHe-wave cross section with respect 21-state close-coupling CC(18 [20], and the hyperspheri-
to the number of integration points is 0.4%, 0.4%, and 0.1%cal [23—25 calculations. In Table | we also show the cross
at k;=0.75, 0.80, and 0.85 a.u., respectively. TRavave section computed by adding and hocfactor (1/4)R? to the

A. Swave
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TABLE Il. P-wave cross section in units ofag for Ps formation in the Ore gap.

k; (a.u 0.75 0.80 0.85
Hidden crossing 0.381 0.558 0.696
Hidden crossing with

correction term (¢|d?¢/dR?)+ (1/4)R?) 0.327 0.510 0.679
Kohn variational[12—-15 0.3657 0.4819 0.5627
Harris-Nesbef22] 0.366 0.483 0.564
21-state CC(1B) [20] 0.366 0.483 0.563
Hyperspherica[23] 0.376 0.490 0.570

right-hand side of Eq(10) which means neglecting the presently unclear why there is such a discrepancy;at
Langer correction. We refer to this calculation as hidden=0.85 a.u., but we note that the classical turning point of the
crossing without the Langer correction. Even though this facsecond sheeR), is very close to the real part of RR),
tor is ad hog it shows the factor required to obtain a crosswithin 0.05 a.u. FoiP-wave scattering, Ps formation occurs
section in reasonable agreement with the Kohn variationa}ia tunneling for the entire Ore gap and the phase is close to
results. It also shows the extreme sensitivity of iwave 2.3 rad.
cross section to a small change in the phase—a change of Near-threshold Ps formation is of current interfgst,50.
2.7-2.8% in the phase causes the cross section to increase Ay one decreases the energy of the incoming positron, the
a factor 13—14. The calculation of tf®wave cross section classical turning point for the second sheBb moves out
has thus provided an extremely sensitive test of the hiddenp |arger realR The behavior of the second eigenvalue
crossing method. Interestingly, fét=0.71, 0.75, and 0.80 ./(R) at large realR is similar in shape to the potential
a.u., the classical turning point of the second shRé) sat  shown in Fig. 3 of Ref[51] up to x=xs. The eigenvalue
a larger R value than the real part of the branch pointsé(R) decreases with increasifjto a minimum atR=9.9
[Re(Ry,)]. Thus, for these values of the incident wave-Vectorg |, “increases to a maximumRé 15.05 a.u., and then de-
Ps formation for theS wave occurs via tunneling. creases again. The value of the maximum e3{(R) is
—0.2488 a.u. ;=0.7088 a.y. This means that for wave
B. P wave numbers up td;=0.7088 a.u. there occurs in addition to the
We present thé wave hidden-crossing cross section for classical turning point R;) two other classical turning
Ps formation in Table Il, and compare it with the Kohn points, RtZ,TOB,l and RtZ,TOB,Z' Thus, the eigenvalue,(R)
variational [12—-15, the Harris-Nesbe{22], the 21-state curve has a TOB region. The effect of the TOB is most

close coupling CC(18) [20], and the hyperspheric423]  Significant on the cross section near threshold. In considering
cross sections. In Fig. 1 we compare the hidden-crossingnneling through the TOB we apply the analysis of Macek
results with the Kohn variationdl12—15,49 and Harris- and Ovchinniko{51] to Ps formation. We present this ap-
Nesbet[22] results. The hidden-crossing results agree withplication in Appendix A. The cross section that takes into
the Kohn variational resulfsl2—15 to within 5%, 16%, and account tunneling through the TOB region is given by

0 L= I
33% atk;=0.75, 0.80, and 0.85 a.u., respectively. We are U(l|_2):|,],[20(1,_2)(Rt2)’ (16)

il ' ' ' ' ( ’ ' whereo(le)(th) is the cross section computed by integrating

K(R) along a contour that starts froR,, goes around the

3 branch pointR, to R}, and|7]? is the modulus squared of

the transmission coefficient given in Appendix A. Figure 1

shows that thd®>-wave cross section for Ps formation com-

puted using Eq(16) rises fairly rapidly up td;=0.715 a.u.

] In Appendix B we show that the one-Sturmian thefiy]

7 can be used to correct the hidden-crossing method to take

into account the correction tern{|d?¢/dR?) + (1/4)R?).

: | The factor £,(R)+W,(R), where W,(R)=—3(¢|d*¢/

ot e L dR?), gives the close-coupling asymptotic channel potentials
07 072074078 (aoLSa 08 082 084 through terms of order B? [40,52,53. Using the one-

T Sturmian theory it can be shown that for lafgewheree (R)
FIG. 1. P-wave cross section for Ps formation for positron- IS @ Slowly varying function oR the wave vector

hydrogen collisions in the Ore gap. The hidden-crossing results are 2 5

represented by the solid curve whereas the hidden crossing with the KM(R) =K*— Zsﬂ(R) - 2WM(R) 17

correction term (¢|d2e/dR%) + (1/4)/R?) results are represented

by the dashed curve. The Kohn variational res[d2—15,49 and  With the neglect of terms of orderR?. The asymptotic form

Harris-Nesbet resulti22] are represented, respectively, by crossesof the second derivative tern{e,|d?¢,/dR?) for the

and solid dots. p-Pg19) channel is given by53]

0.6 |
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TABLE Ill. D-wave cross section in units afa2 for Ps forma-

1.4
tion in the Ore gap. FT ' ' ' ' '
12 [
ki (a.u 0.75 0.80 0.85 '
Ep 1F
Hidden crossing 0.322 0.816 1.205 g :
Kohn variational[12,14,1§ 0312 082 1083 5  °8F
Harris-Nesbef22] 0321 0860 1158 ¢ 06 [
21-state CC(1B) [20] 0.320 0.859 1.158 o s b
Hyperspherica[23] 0.334 0.866 1.16 T
0.2
2 0 : " 1 " " " 1 " " PR | " . " 1 N . N i " PR | I :
d°e, o 3 as R oo (18) 0.74 0.76 0.78 0.8 0.82 0.84
“2/'dRr? 4R? k (@.u.)

FIG. 2. D-wave cross section for Ps formation for positron-

. . L hydrogen collisions in the Ore gap. The hidden-crossing results are
valid for largeR, we used Eq(17) with Eq. (18) in integrat- represented by the solid curve whereas the hidden crossing with the

ing K5(R) along the real axis to the right of R&(). For  qrection term (¢|d?e/dR?) + (1/4)R?) results are represented

other values oR in the contour off (K(R) dR, i.e., around by the dashed curve. The Kohn variational resili 14,15,49and

Rb and to the left of ReRR;,), we USGCK;L(_R) defineq accord-  Harris-Nesbet result22] are represented, respectively, by crosses
ing to Eqg.(10). There occurs a very slight TOB in the term gnd solid dots.

e2(R)+W,(R) at largeR. This term decreases with increas-

ing R to a minimum of —0.2477 =0.7104 a.y.at R sults to within 0.3%, 5%, and 4% &f=0.75, 0.80, and 0.85
=10.85 a.u,, increases to a maximum -60.2476 a.u. ki a.u., respectively. Fdk=0.80 and 0.85 a.u., the agreement
=0.71055 a.y.at R=13.05 a.u., and then decreases againbetween the Kohn variational and the hidden-crossing results
As before, we approximated the TOB region by an inverteds better for theD wave than the® wave. We note that the
harmonic oscillator. Fpki greater_than 0.7104 a.u. we com- centrifugal barrier is larger for th®-wave than for theP
puted the cross section according to Ef6). This cross wave. This causes the classical turning points to be at larger
section is given in Table Il and Fig. 1. We refer to this crossvalues ofR for the D wave than they are for tHe wave. The
sect|02n as the hldgen_ crossing with the correctionglassical turning point for the second shBétis further from
((¢ld“@/dR?) + (1/4)R?) since we have used E(L7). The  the branch point for th® wave than theP wave. Further-
agreement of this cross section with the Kohn variationaimore, since the phase, , for the D wave is close tar/2, the
results is 11%, 6%, and 21%gt=0.75, 0.80, and 0.85 a.u., cross section is fairly insensitive to slight changes in the
respectively. The correction term enables better agreement ghase. For instance, & =0.85 a.u., the phasa;, equals
be achieved with the Kohn variational resultﬂ(at 0.80 and 1.609 rad. A Change of 1% of this phase Changes the cross
0.85a.u. section by less than 0.15%. We also computedDhwave
cross section by allowing for the correction term to the
C. D wave hidden-crossing method( ¢|d?¢/dR?) + (1/4)R?), in the
. manner explained in Sec. IV B and Appendix B. This cross
The phasels,, Eq. (14), for theD wave is close tor/2 - gq4igp i compared in Fig. 2 with the hidden crossing with-

(A12%1'66_>1'.61 rad fork; :0'7_5_’0'85 a.ul. Thus, unlike . out the correction term, the Kohn variatioa#,49, and the
Swave scattering where there is almost complete destructive, ris_Nesbef22] results. The effect of the correction term
interference between the two amplitudgsthsa=1 and 2 is to lower the cross section.

of Eq. (11)] corresponding to different paths that lead to Ps
formation, for theD wave there is close to constructive in-
terference between the two amplitudes. Thus, the hidden-
crossing method has provided an explanation of why the Using the hidden-crossing method formulated in the hy-
D-wave contribution to the Ps-formation cross section in theperspherical representation we have computedthie-, and

Ore gap is so significant. We did not observe a TOB regiorD-wave cross section for Ps formation in positron-hydrogen
in the second eigenvalue for thg wave. In Table Il we  collisions in the Ore gap. The agreement of the and
compare the hidden-crossing cross section with the Kohb-wave hidden-crossing results with the Kohn variational
variational[12,14,15,20,2B the Harris-Nesbef22], the 21-  [12-15,49 and the Harris-Nesh¢22] results is fair to good.
state close-coupling C@8,8) [17], and the hyperspherical The hidden-crossing method has provided a physical expla-
[20] cross sections. The hidden-crossing results agree withation of why theSwave cross section is very small and the
the Kohn variational results to within 3%, 0.5%, and 11% atD-wave is significant. The explanation is that fSBwave
k;=0.75, 0.80, and 0.85 a.u., respectively. However, Humscattering there occurs almost complete destructive interfer-
berstonet al. [14] explain that theiD-wave cross section is ence between the two amplitudes that correspond to different
less well converged than the® and P-wave cross section, paths leading to Ps formation whereas for thevave the

and that the Harris-Nesbet calculation of Devave is prob- two amplitudes almost completely constructively interfere.
ably more accurate than their Kohn variational calculation. For theP wave there occurs a TOB in the second eigen-
Our hidden-crossing results agree with the Harris-Nesbet resalue at largeR. We investigated the effect of tunneling

with the neglect of terms of order R?. Since Eq.(17) is

V. CONCLUSION
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through the TOB region. We have shown that the onewhereB, is a reflection coefficient. However, to the right of
Sturmian theory can be used to correct the hidden-crossingne TOB region,R} o5 ,<R<R—®, the wave function is
method to take into account the factof¢{d?¢/dR?)  an outgoing wave,
+(1/4)R?). We considered the correction term in computing .
the P- and D-wave cross sections for Ps formation. Y= S(l%)’]’eif R, ,TOB,ZKZ(R,) dr’ (A3)
whereT is the transmission coefficient.
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The solutions of

E—&3(Ry)
a=—— (A7)
APPENDIX A: TUNNELING THROUGH TOB {—[e5(Rp)]Y2

The behavior of the second eigenvakigR) is interest- 4= —4[¢}(Ry)]”, andR is the reflection coefficient to be
ing in that there is a TOB region at large The shape of determined. To determin® and 7 Eq. (A6) needs to be
,(R) as a function oR, at largeR, is similar to that of Fig. expressed in the form of ingoing and outgoing waves. We
3 of Ref.[51] up tox=x5. We apply the analysis of Rg1] use Eq.(19.18.3 of Ref.[54] to write Eq.(A6) in the form,
in our treatment of the TOB region.

. . . t . 1
Without the TOB region, the wave function f&>R; is Y =S Z[V1+e?™E(a,(R—Ry)y)
of the form, [
1
Y= S(lg)eif;ZKz(R’) dr’ (A1) —e™E(@,(R-Rp)y)]+R| — i—)[V1+92”a

where theSmatrix elemens is the amplitude of the out- XE*(@,(R—Ry)y)—€™E(a,(R—Ry) 7)]}-
going radial wave in the absence of the TOB regid¥ote,
in writing Egs. (A1)—(A3) and Eq.(A9) we did not include (A8)

the normalization factor 3/K(R) that multiplies the right- ; .
hand side of these equations. Furthermore, we neglected ﬁurthermore, using Eq3.8) of Ref. [51] gives

Egs.(A6), (A8), and(A9) phase factors that can be incorpo- s% R -
rated into the definition of the transmissi@hand reflection P Zi—{—[eﬁ”r RV1L+e eV, o 2R IR
‘R coefficients]
. . t . .R ’ ’
Now let us consider the TOB regionR;top;<R +[V1+e?™+ Re”a]e'fR‘zyTOszKZ(R )Ry (A9)

<R} 10g2. Which is region IIl of Fig. 3 of Ref[51]. Within
the TOB region reflection and transmission occurs at theMatching the wave function in region Ill, EGA9) with the
boundaries for botlE<e5(Ry) andE>¢5(Ry). To the left ~ outgoing wave in region IV, E(A3) gives

of the TOB regionR,<R< th,TOB,l' i.e., region Il of Fig. 3 a vyt
of Ref.[51], the form of the wave function is a linear com- e RYLFe=0,
bination of an incident and reflected wave, m +Re™="T (A10)

Thus, the modulus square &f and7 are given, respectively,

R , , _. (R ’ ’
g =S erf RV IR + B e R AR (A2) by
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g2ma order term vanishes by the normalization condition E).
|R|%= et However, the second-order terms give rise to a correction to
1+e™” the hidden-crossing theory.
To compute this correction, note that the matrix element
) 1 M (v), to second-order is given by
|7 |“= o (A11)
1+e 1 (928
M(v)=M(v—1)~| 1+ -{ —=| —2C(Q)|S) |.
Since the coefficient of the outgoing wave in region IV is 2\ dv
S12, Which equals${®7; the Ps-formation cross section that (B4)
takes into account the TOB region is given by Substituting Eq(B4) in Eq. (B2) gives
2L+1 2v 1/6%S
o019 =515 =1T 1?03 (Ry), (A12) ?A(v)=(l+ §<52' —2C(Q) s> )[p(v-l— DA(v+1)
where +p(v—=1DA(r—1)]. (B5)
W) ot 2L+1 (02 The one-Sturmian results of RgR7] can be taken over
012(R) =557 1S121%. (A13)  py defining
- 1/4%S
The modulus square of th® matrix in the absence of the per(V)=p(»)| 1+ = ( —5| —2C(Q)|S (B6)
TOB region, |S{9|?, is computed according to Eqél2)— 2\dv

(14) and |7'|? is computed according to EGA11). These
equations are valid for energies both through and above th
TOB. Note, wherE=¢,(Ry), |R|?=|T|?=1/2.

nd replacingp(v) with p.¢(v) in the equations. Below we

erive a general expression fe#°S/9v?|—2C(Q)|S) and
consider approximations to it wher(p) is a slowing vary-
ing function of p.

APPENDIX B: CORRECTION TERM We begin with the one-Sturmian equation, E8), and
TO THE HIDDEN-CROSSING METHOD take the first and second derivative of this equation with

The one-Sturmian theor§27] can be used to correct the rezspecg tov. The first derivative equation is projected onto
hidden-crossing method to take into account the factof S/@» and the second derivative equation is projected onto
({ | d2e/ dR?) + (L/4)R?). The factor W, dSldv. The difference of the resulting two equations gives
=—3(¢,ld%p,/dR?) is the usual diagonal nonadiabatic 35 25
correction to the adiabatic potentia),(R). To show how it —— 5> _2V<W S>

S> =0, (B7)

o <&ZS
obtains from the one-Sturmian theory, a short derivation i’? | \ 9V
presented in this appendix. oS

The one-Sturmian approximation for the wave function is +4V< >
14

S
2C(Q)|S) -2 v 2C(Q)

as> <as
— ) +2( —
v v

1 o -
T(R,Q)= f ——B(»)S(v,0)RY?Z (KR)vdv, (B1)  Where the normalization condition EG}) has been used.
p

cp(v) Using the identities,
where ¢ denotes a contour in the complex plane and the 5 1 dp
coefficientB(v) satisfies the three-term recurrence relation: (SIS)=N?=— 25 70" (B8)
2v
= _B(y)=M(»)B(v+1)+M(y—1)B(v—1), S| | _ 1N (89)
Kp(v) v 2 gv’
(B2)
2 2N]2
where 7S :_a_S¢9_S EaN
<£Z S> <&v v * 2 92 (B10)
M(V)Z_f S(v+1;0)2C(Q)S(v;Q)dQ S IS S
<—2 2C(Q) S> =— <— 2C(Q) —> , (B11)
v v v

= —(S(v+1)|2C|S(»)). (83)

. . . , _in Eqg. (B7) gives
Note that the inner product of Sturmian basis functions is

defined without the complex conjugate. ) %S 25 1 °N2 1 9N?2
In the derivation of the hidden-crossing thedg7], a =~ —N\ 572 2C(2)|S) —{ —-3|S) + 3 — 5+ = —~=0.
further approximation is made, namely, the matrix element (B12)

Eqg. (B3) is evaluated by expandin§(»';Q}), v'=v=*1,
about the point’ = v and taking the lowest-order term only. Because of the relation between the Sturmian and adiabatic
The lowest-order term td1(v) equals unity and the next- functions, Eq.6), we have
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7S S —-Na2N+N2 i B13
2|5 NGz N Gz |e) (BLY
Using this equation together with
NfN_—1<m22+1$N2 814
W2 A\ ) T2 (B149
<52 €D>—<§p ¢ 7, (B19)
in Eqg. (B12) we obtain
Pas P 1 9°N?
—N%gﬁzcunﬁ>=mﬁw<aﬁ¢»+5?;7
1 [dN?\? 1 oN?
aN?\ gy | 6y av -
(B16)

Now, using the normalizatiohl(v) given by Eq.(7) we
obtain

N2 p 1/2 B1
T 2viv e 240 (B17)
apP t2ep
and
J _ 1/2 J _N2 Jd 518
2vidv | de 240 ap % (B19)
P T2ep
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Substituting these equations into E§19) leads to

3°S
912 ¢

2c()|s)~ g (28] )+ 2
TS gz a2 |#) T A
‘o

These equations yield an alternative form of the second de-

rivative term, namely,

A P 2 9°N?
i _a.2N4 T 2625
,1 IN?\2 819
V'3 ap | (B19)

Consider the case whet€p) is a slowly varying function
of p is the sense that’'(p)~0. Then,

41°N* v ! 1 1 B20
v T 4e%p?2 2e +88p2 ' (B20)
) 22&2N2 1 2
N 50—1)7""‘1—2;2?, (821)
,1 INZ\Z2 1 42
v § W %4_8_82[)4. (822)

1 N 1 1% N 1
T 2e 88p2 W 4 m '
(B23)
Replacingp(v) by pe(v) in Eq. (10) gives
C(p) =26 2B v
’ per 2141 %s__m:ﬂ s i
P 2 (?VZ ( )
(B24)
22l 1-{ 2 _ocials B25
~2B= %\ 17\ 50 T (Q) (B25
E V2 v P 1
T a4t 07| #) T a?)
(B26)
Using Eq.(5) in Eq. (B26) gives
K?(p)=2E—2&—2W(p), (B27)
where
W(p)= L% B28
(p)==3 07|¢ (B29)

with the neglect of terms of ordes™ 4. Equation(B27) is
appropriate for large since theres(p) is a slowly varying
function of p.

In Eq. (B26) the correction term to the hidden-crossing
theory is(92¢/ dp?|¢)+ 1/4p?, which includes the Langer
correction 1/42. In the final equation foK?(p) the Langer
correction subtracts out. Then the tegnt W agrees with the
close-coupling asymptotic channel potentials through terms
of order 1R?.

According to this discussion the diagonal nonadiabatic
term should be used only whes(p) is a slowly varying
function of p. For example wher(p)=a+b/p?, then the
relation Eq.(B23) is seen to hold for sufficiently large and
a#0. Alternatively, whene(p) has a branch point &,
thene'(Ry) is infinite andW(Ry) diverges. At this point,
however, the left-hand side of E¢B23) is finite. For this
reasonW(p) should not be employed near avoided crossing,
but should be kept for large regal
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