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Quantum diffraction and threshold law for the Temkin-Poet model
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Relying on an entirelyab initio quantum-mechanical scheme, we investigate the threshold behavior of a
model electron-impact ionization problem in which the target hydrogen atom interacts with the incident
electron only by monopole. The total ionization cross section for a singlet is shown to follow the threshold law
of an exponential form as proposed by Macek and [Ifays. Rev. A55, 2024(1997)], thus supporting the
argument based on the local instability of the “ridge” motion despite the reported absence of classical ridge
trajectories. Below the classical threshold, quantum diffraction allows the two electrons to have a large prob-
ability amplitude in the region inaccessible to the classical trajectories. The energy distribution for singlet in
final continuum channels is shown to have a hitherto unexpected V-shaped structure at energies between 0 and
1 a.u. above the ionization threshold. The V structure becomes sharper toward the threshold while it ap-
proaches the quadratic form surmised by BfBiys. Rev. Lett78, 4721(1997)] at higher energies.
[S1050-294{@9)02206-4

PACS numbegp): 34.50.Fa, 31.15.Ja

It has been a great challenge to devise and implement an Our separate technical papg3] presents amb initio
ab initio quantum-mechanical scheme for electron-impaciguantum-mechanical scheme. Converged ionization cross
ionization close to the threshold. We believe that most of thissections are obtained over a wide energy range without the
goal is being achievefdl—3] and that time is ripe for explor- burden of a large-scale diagonalization or linear algebra re-
ing further details of the ionization process and exposingiuired of other methods. It divides the configuration space
quantum-mechanical effects which lie beyond classical ointo small subregions, solves the Satiirger equation in
semiclassical treatments. We present a consolidating exeach subregion as accurately as possible by an ingenuous
ample, and eventually point out as a subject for future studiegariational scheme, and then patches up the solutions to de-
a phenomenon that appears to fall beyond the original modduce the scattering matrix. The paper also highlights major
of analysis exploited by Wanni¢d] and advanced by Rau achievements of the method such as dheinitio reproduc-
[5], Peterkop[6], Fano[7], Watanabd8], Macek and lhra tion of the Wannier threshold exponent for fixed angular
[9] and other more recent authdd]. In so doing, we shall degrees of freedom, the observation of the binary encounter
deal with the model hydrogen atom which interacts with thepeak at moderate energies, and of the uniform energy distri-
incident electron only by the monopole terfiThe real hy- bution near the threshold, etc.
drogen atom has been dealt with elsewhgzeg].) This It is worthwhile to give an overview of the Wannier
model atom, due to Temkifil1] and Poef12], provides a theory. An inspiring aspect of Wannier's analysis is to have
step in the analysis of electron-electron correlations. Thédentified the relative importance of the kinetic and Coulomb
benchmark calculations ifil2] may be used for accessing potential energy as well as the conspicuous role played by
the accuracy of a numerical scheme. The model is undoubthe potential ridge. He classified the configuration space into
edly an oversimplified system, yet it poses some key theothree parts: the first one is the reaction zone where the seed
retical questions. One intriguing feature of the Temkin-Poebf ionization takes place in the proximity of the nucleus, the
model is that the classical trajectories that would lead tsecond is the Coulomb zone which is dominated by the po-
ionization are absent below a finite energE<(E, tential energy, and the last is the asymptotic zone where the
=0.166 ... a.u.)[13]. Any theory based on classical trajec- kinetic energy dominates. The asymptotic zone thus lies be-
tories thus do not apply below the delayed onset energy, thatondR= \/r21+ r22= 1/E. In the Wannier theory, the threshold
is, a truly quantum aspect of the ionization problem becomesxponent derives from the rate of flux loss from the potential
exposed below the classical threshold. It is also worthwhilgidge in the Coulomb zone, but it is believed to be unaffected
to note that no experimental investigation on this quantunby the dynamics in the asymptotic zone. Paradoxically, Wan-
feature is possible since the Temkin-Poet model representsrder’s solutions being restricted to the Coulomb zone, it can-
nonexistent system. This model problem can be investigatedot deduce what happens in the asymptotic zone. It is thus
only by a well-founded theoretical scheme as an alternativevorthwhile to examine the behavior of the two continuum
to a laboratory experiment. electrons beyond the Coulomb zone and thus to appreciate
the limitation of Wannier’s treatment.
It is clear from the following argument that the behavior

*Present address: Japan Science and Technology Corporation, lof the wave function should differ between the Coulomb and
ternational Project “Cold Trapped lons,” Axis-Choufu Bldg. 3F, asymptotic zones. At low energies, the two electrons must
1-40-2 Fuda, Choufu-shi, Tokyo 182-0024, Japan. maintain near the ridge a dynamically unstable configuration
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TABLE |I. Comparison of various estimates of the parametemsnd oy in o= oo exp(—1E ). The
numerically determined values using two different fitting procedures are consistent with the semiquantal
estimates. Fitting 1 is by the singular-value decomposition method and Fitting 2 is by a nonlinear fitting
procedure. See text for the specific functional form. Numbers in parentheses represent approximately the
uncertainties in the obtained values.

Analytical WKB Other theory{9] Fitting 1 Fitting 2
v 6.30 6.89 6.87 6.6%0.03 6.75(0.02
o 80 (1) 104 (1)

p,=—p, wherep; andp, are their momenta. Once in the tial threshold law, but did not reach an unequivocal conclu-
asymptotic zone, the two electrons can proceed to infinity agion largely due to a considerable amount of fluctuating un-
a pair of free particles, thus maintaining merely the ratiocertainty in the cross sections at low energies. In the present
pi/p,. Consequently, the wave function attains a constantesults, there is no denying that the cross sectiqn vanishes
profile with respect tmp=tan‘1(p1/p2) in the momentum toward the threshold at a rate faster. th_an any given power
space pseudoangle or to=tan (r,/r,) in the configura- law becagse the pl_ot has a nor)vanlshlng curvature at any
tion space. This dependence on the hyperspheric&nergy without a h|r!t of achle_vmg a constant §Iope. The
pseudoangle is different from the dependence on the Sca|é}_jjmer|cal cross sections are fitted to the analytical expres-
pseudoangle in the Coulomb zone. For instance, the solutioplOn
depends oB=RY4(7/4— «) in the case of the ionization of

the real hydrogen atom, and @ RY3(7/4— «) in the case

g;tgﬁspr?gg_gsgzg ;g?,?:é}égf;g,n’ this explicit depend(’z‘ncewhereG(E)ziﬁzoanE” is to represent nonsingular energy

The cusp of the Temkin-Poet model potential at the ridgecorrectlons away fror’EzO_. Macek an_d Ihr@9]_argued that
leads to the exponential threshold 19y reflecting its steep- the e_xpor_1e_nt\ be 1/6. Th'$ va_Iue be_mg crumal_to the pro-
ness. Let us outline this result step by step. The outgoingS€eding fitting, we determine it by first neglecting the slow
wave boundary condition on the channel function alang variation ofG(E), thus
represents the instability of the ridge motion, leading to an ,
optical potential of the forma+ib)/R*? [14], wherea and re— L E_1 3)

b are both rea[15]. The imaginary part of the WKB-type y' '

phase integral

o=exg—yE *+G(E)], )

where,y=1In o, y’ =dy/dE, andy”=d?y/dE?. As shown in

R [2C, 2(a+ib) Y= 16 Fig. 2, there is a marginal scatter in the numerically evalu-
Imf =t WdRz SR (1) ated \. By performing the least-squares fitting we get
=0.149(x 0.008)+ 2.34(+ 0.223E. Extrapolating toE=0

. ) then leads to
wherey=12b//2Cy>0, represents the decline in amplitude

of the ionizing component astride the ridge, hence the ion-

2
ization cross section is expected to scale as e V'9). (nas)
(Here in the WKB-type integral we have droppedrom the .
real part becaus€,/R>E in the Coulomb zong¢.One may 0.02 %%
evaluate the coefficients andb analytically using the Airy M,
functions or approximately by the WKB representatid#d]. 07
The value of the parametey so evaluated is tabulated in Gion N .
Table I. 0.01f S0
Let us present amb initio quantum result that strongly T
. . 4 10 |
supports the exponential threshold law for singlet, forgoing :
far more strenuous calculations required of triplet. Figure 1 D¢l Logrtog Plots
0 N 0.001 0.01 0.1

shows the ionization cross sections for singlet in the energy o 04 08 12 16 2
region between 0 and 2 a.u. excess energy, the lower limit : ) : )

for our numerical implementation being 0.001 a.u. The cross Excess energy (a.u.)

sections converged at worst to three digits for the matching FIG. 1. The total ionization cross section of singlet over an

radius R, =4000-5000 a.u., which is abogt 4 to 5 times extended energy range near and below the classical thresBEold (
greater than Hmir_,. The_ near—th_reshold region is presented<Ed:0.1% ... a.u.). The inset is a log-log plot magnifying the
as a log-log plot in the inset. It is known that anotherl(éuan-region of the exponential behavior. The diamonds represent the
tum conjecture due to Temklﬁi6]. is a power lawo<E™”. numerically obtained cross sections, twid curve represents the
Recentab initio quantum calculations elucidated tedd ini-  exponential law, oy exp(—yE~®) with y=6.75 and op=104

tio results do not fit Temkin’s. Instead, they unexpectedly fitwhich are obtained by a nonlinear fitting to the numerically ob-
to E2 as well as to the exponential law; Robicheaebal.  tained cross sectiongésee text and Table),l the broken line

[17] and Scottet al. [18] attempted to confirm the exponen- Temkin's power lawxE®, and thedottedline «<E? [17,18.
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FIG. 2. The relation between excess energy andBy setting Ere

y=Ino, we geth=—(y"/y’")E—1. Thesolid line shows the en-
ergy dependence ol determined by least-squares fitting,
=0.149(=0.008)+2.34(x0.223E. The value of\ approaches
0.149(+0.008) asE— 0 which is 10% smaller than the WKB es-
timate.

FIG. 3. lonization component of the wave function for singlet at
representative energie&@) and (d) are atE=0.25 a.u. above the
classical ionization threshold,;, (b) and(e) atE=0.167 a.u. near
E., and(c) and(f) atE=0.05 a.u. belovE . (a)—(c) are plotted
with respect ta, andr,; (d)—(f) with respect tcer,; andEr,. The
pair of solid curves mark the ionizing classical trajectories corre-
A~0.149+0.008, (4)  sponding to zero-energy escape originating frgma r,= 1/E. Note

L the larger quantum diffraction in the Coulomb zone as the energy
which is about 10% smaller than=1/6=0.167. From here |, ers.
on, we presume the value afto be either 1/6 or 0.149 as
obtained by fitting. We extract in two ways. One is a fitting

to the form ary condition with respect to;=r,. The production of the

wave function is done only for singlet on account of its pre-
EMUno=—yE+EIG(E), (5)  dominance near threshold. To stabilize the solution, we
modified the Poet method slightly; we restricted the solution
where the powers dE included inG(E), namelyN, is cho-  space to a finite box, and then extracted the ionization com-
sen large enough foy anda, to converge within four sig- ponent. The accuracy is monitored by the unitarity of $e
nificant digits. The solution set is stably obtained by meangnatrix and by comparing the energy distribution against our
of the singular-value decomposition method. The other is @nore rigorous procedure. FiguregaB-3(f) represent the
nonlinear fitting too of Eq. (2) with N=3. In both proce- ionization components of the wave function generated at rep-
dures, the fitted value of becomes stabilized as the mini- resentative energie€=0.25 a.u. which is abov&, E
mum energyE i, is lowered. We carried out our calculations =0.167 a.u. which is close &, andE=0.05 a.u. which
down to E,;;=0.001 a.u. in order to attain a convincing is belowE, respectively, and are pairwise plotted with re-
convergence of within two significant digits. In Table |, we spect to two alternative sets of radial variables. Note in pass-
show our least-squares fitting to the numerically evaluatedng that the excitation components are unequivocally re-
total ionization cross section for singlet. For the presentmoved by projecting onto the excited target states in the
value of A\=1/6, this table reveals the numerically fitted asymptotic regionR>1/E. The pair of solid curves indicate
value of y to be in good agreement with the one deduced bythe classical trajectories that originate from=r,=1/E and
the Wannier-type arguments. Foe=0.149, an independent become parallel to either thg or r, axis in the asymptotic
fitting yields y=8.4(=0.1) which is about 20% larger in limit, thus they represent zero-energy escape passing through
magnitude than that fox =1/6. The quantities. andy are the critical location in the configuration spacg=r,=1/E,
thus found to strongly support the exponential threshold lawand mark the boundary of the ionizing trajectori&8]. The
Eq. (5). top row, (8)—(c), represents the wave functions with respect
Now that we have demonstrated the validity of the expo40 r; and rp, meanwhile the lower oned)—(f), are with
nential law, we consider situations where semiclassicafespect tdr; andEr, so that the point,=r,= 1/E remains
methods based entirely on classical trajectofled are in-  fixed in each panel. What the top panels show is that the
applicable. Since there is no trace of delayed thresptdd  region of quantum diffraction in the Coulomb zong,,r,
in the quantum results, one may attribute the disappearanceé1/E, grows as the total energy lowers toward the ionization
of the sharp classical threshold to quantum diffraction whicrhthresholdE=0. On the other hand, with respect to the scaled
tend to blur sharp edges in the classical phase space. Thigdial variables which maintain the relevant dynamical scale
point is in contrast with the conclusion of Rd419] that the invariant, the wave function appears to concentrate toward
two-electron escape near the threshold is a classical procetite ridge as the energy lowers. We also observe that through-
in the case of the collinear hydrogen atom. A strong supporout these panels, the classical trajectories as defined in Ref.
of the quantum diffraction lies in the global comportment of [13] mark the asymptotic region quite well.
the wave function. For this purpose, we generated a set of In Fig. 4, we show the energy distribution of singlel
plots using a simple approximate procedure introduced bynd triplet(b) at E=1.0 a.u. obtained by two separate pro-
Poet[12]. The solution is constructed by superposing solu-cedures. One is from the numerical wave functibrevalu-
tions that solve the Schdinger equation in each of the half ated at the asymptotic matching hyperradiys. Within the
spacesy,<r, andr,;>r,. The condition for a global solu- validity of the stationary-phase approximati@®PA) a con-
tion is that it satisfies the symmetric or antisymmetric bound-strainta = «,, obtains, thus a relation between the asymptotic
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FIG. 4. Energy distribution between the electron pairEat FIG. 5. Same as Fig. 49) for E=2 a.u. aboveE and (b) for
=1 a.u.,(a) for the singlet andb) for the triplet. Thedottedline =~ E=0.05 a.u. belowE;. Note how the approximately quadratic
represents the SPA distribution calculated using @g.with the ~ dependence is taken over by the markedly linear V-shaped depen-
numerically obtained asymptotic wave function, and soéd line dence.

shows the DSM result divided by 2 for comparison. This result is in . .
good agreement with RefL]. suggestive of the V shape but its overall features may be

described as quadratid] as in Fig. %a). That the peak
should occur away frora; = €, is readily accountable. First,
the ionization amplitude astride the ridge decays exponen-
tially beyondR=1/E. Second, the ionizing trajectories leav-

2 2 ing the ridge make some finite angle with it. These two
ﬂ _|\P| (6) points suggest a concentration of the distribution toward
K sin2a,’ greater differences in energy. What would be nontrivial is to

unravel the physical origin of the high degree of linearity

whereSrepresents th& matrix, K= \2E and the other vari- because the local solution in the Coulomb zone does not lead
ables have already been defined. The other procedure is teadily to this behavior. No analytical solution is currently
use theS matrix directly obtained by the two-dimensional available for this problem. It must be recalled that even for
matching of the numerical wave function to the approximatethe better known “true” hydrogen the correct energy distri-
asymptotic solutions of direct product forf8]. Let us refer  bution is reproduced only numericall21].
to the latter direct cross section as the dilgahatrix method To summarize, the nontrivial connection between the dy-
(DSM). The point of producing the two sets of results here isnamics prevalent in the Coulomb zone and that in the
not only to ascertain the consistency of the results but to takasymptotic zone is made particularly articulate for the
advantage of the stationary-phase approximati@PA) present Temkin-Poet potential that has a cusp,atr,. A
which appears to yield an energy distribution closer in shap@arrow strip of region surrounding this cusp does not corre-
to the correct asymptotic limitnote its generally fewer os- spond to a bundle of classical trajectories unlike in the case
cillatory structures and its automatically satisfied symmetryof the Wannier ridge of the real hydrogen. Nonetheless, the
with respect toe; = €;). Incidentally, the oscillations in the local semiquantal treatment of the ridge still applies and is
energy distribution are nothing but an artifact of the finite conducive to the remarkable exponential law. Our work has
matching radius. Figure 4 indicates a good agreement beprovided pieces of evidence that support this picture.
tween SPA and DSM. Energy distribution at this energy was A nontrivial connection between the Coulomb and
previously calculated by Brajl] and is in good agreement asymptotic zones appears observable even in real systems.
with ours. Indeed, it is difficult to make a compromise between the

In Fig. 5, we show energy distribution for singlet Bt  uniform energy distribution in € H—e+e+p and the uni-
=2.0 a.u. ¢Ey) and E=0.05 a.u. KE.) obtained by form spatial distribution of the electron pair in the Coulomb
both SPA and DSM. One remarkable feature of the distribuzone. A classical theory of Peterkop and Liepifgh] elu-
tion at moderate to low energiéselow about 1 a.u. but not cidated that the spatial distribution is approximately propor-
necessarily below the classical threshafdits V shape as in  tional to sin 2y, i.e., far from uniform. In classical terms, the
Fig. 5(b). Only in the neighborhood of; = ¢,, does it flatten  above observation suggests for the “real” ionization that the
due to the symmetry requirement. This feature becomegajectories concentrated near the potential ridge tend to
sharper toward the threshold. At moderately high energiesspread into the asymptotic zone in such a way that more
however, the distribution has a shape which is somewhatajectories tend to remain near the ridge. What is surprising

wave functionW and theS matrix reduces to, according to
[20]

|SI?=
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