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Quantum diffraction and threshold law for the Temkin-Poet model
of electron-hydrogen ionization

Naoyuki Miyashita, Daiji Kato,* and Shinichi Watanabe
Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1, Chofu-ga-oka,

Chofu-shi, Tokyo 182-8585, Japan
~Received 8 October 1998!

Relying on an entirelyab initio quantum-mechanical scheme, we investigate the threshold behavior of a
model electron-impact ionization problem in which the target hydrogen atom interacts with the incident
electron only by monopole. The total ionization cross section for a singlet is shown to follow the threshold law
of an exponential form as proposed by Macek and Ihra@Phys. Rev. A55, 2024~1997!#, thus supporting the
argument based on the local instability of the ‘‘ridge’’ motion despite the reported absence of classical ridge
trajectories. Below the classical threshold, quantum diffraction allows the two electrons to have a large prob-
ability amplitude in the region inaccessible to the classical trajectories. The energy distribution for singlet in
final continuum channels is shown to have a hitherto unexpected V-shaped structure at energies between 0 and
1 a.u. above the ionization threshold. The V structure becomes sharper toward the threshold while it ap-
proaches the quadratic form surmised by Bray@Phys. Rev. Lett.78, 4721~1997!# at higher energies.
@S1050-2947~99!02206-4#

PACS number~s!: 34.50.Fa, 31.15.Ja
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It has been a great challenge to devise and implemen
ab initio quantum-mechanical scheme for electron-imp
ionization close to the threshold. We believe that most of t
goal is being achieved@1–3# and that time is ripe for explor
ing further details of the ionization process and expos
quantum-mechanical effects which lie beyond classical
semiclassical treatments. We present a consolidating
ample, and eventually point out as a subject for future stud
a phenomenon that appears to fall beyond the original m
of analysis exploited by Wannier@4# and advanced by Ra
@5#, Peterkop@6#, Fano@7#, Watanabe@8#, Macek and Ihra
@9# and other more recent authors@10#. In so doing, we shall
deal with the model hydrogen atom which interacts with
incident electron only by the monopole term.~The real hy-
drogen atom has been dealt with elsewhere@2,3#.! This
model atom, due to Temkin@11# and Poet@12#, provides a
step in the analysis of electron-electron correlations. T
benchmark calculations in@12# may be used for accessin
the accuracy of a numerical scheme. The model is undo
edly an oversimplified system, yet it poses some key th
retical questions. One intriguing feature of the Temkin-P
model is that the classical trajectories that would lead
ionization are absent below a finite energy (E,Ecl
50.166 . . . a.u.) @13#. Any theory based on classical traje
tories thus do not apply below the delayed onset energy,
is, a truly quantum aspect of the ionization problem becom
exposed below the classical threshold. It is also worthwh
to note that no experimental investigation on this quant
feature is possible since the Temkin-Poet model represen
nonexistent system. This model problem can be investiga
only by a well-founded theoretical scheme as an alterna
to a laboratory experiment.

*Present address: Japan Science and Technology Corporatio
ternational Project ‘‘Cold Trapped Ions,’’ Axis-Choufu Bldg. 3F
1-40-2 Fuda, Choufu-shi, Tokyo 182-0024, Japan.
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Our separate technical paper@3# presents anab initio
quantum-mechanical scheme. Converged ionization c
sections are obtained over a wide energy range without
burden of a large-scale diagonalization or linear algebra
quired of other methods. It divides the configuration spa
into small subregions, solves the Schro¨dinger equation in
each subregion as accurately as possible by an ingen
variational scheme, and then patches up the solutions to
duce the scattering matrix. The paper also highlights ma
achievements of the method such as theab initio reproduc-
tion of the Wannier threshold exponent for fixed angu
degrees of freedom, the observation of the binary encou
peak at moderate energies, and of the uniform energy di
bution near the threshold, etc.

It is worthwhile to give an overview of the Wannie
theory. An inspiring aspect of Wannier’s analysis is to ha
identified the relative importance of the kinetic and Coulom
potential energy as well as the conspicuous role played
the potential ridge. He classified the configuration space
three parts: the first one is the reaction zone where the s
of ionization takes place in the proximity of the nucleus, t
second is the Coulomb zone which is dominated by the
tential energy, and the last is the asymptotic zone where
kinetic energy dominates. The asymptotic zone thus lies
yondR5Ar 1

21r 2
251/E. In the Wannier theory, the threshol

exponent derives from the rate of flux loss from the poten
ridge in the Coulomb zone, but it is believed to be unaffec
by the dynamics in the asymptotic zone. Paradoxically, W
nier’s solutions being restricted to the Coulomb zone, it c
not deduce what happens in the asymptotic zone. It is t
worthwhile to examine the behavior of the two continuu
electrons beyond the Coulomb zone and thus to apprec
the limitation of Wannier’s treatment.

It is clear from the following argument that the behavi
of the wave function should differ between the Coulomb a
asymptotic zones. At low energies, the two electrons m
maintain near the ridge a dynamically unstable configurat
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TABLE I. Comparison of various estimates of the parametersg and s0 in s5s0 exp(2gE21/6). The
numerically determined values using two different fitting procedures are consistent with the semiq
estimates. Fitting 1 is by the singular-value decomposition method and Fitting 2 is by a nonlinear
procedure. See text for the specific functional form. Numbers in parentheses represent approxima
uncertainties in the obtained values.

Analytical WKB Other theory@9# Fitting 1 Fitting 2

g 6.30 6.89 6.87 6.65~0.03! 6.75 ~0.02!
s0 80 ~1! 104 ~1!
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pW 152pW 2 wherepW 1 and pW 2 are their momenta. Once in th
asymptotic zone, the two electrons can proceed to infinity
a pair of free particles, thus maintaining merely the ra
p1 /p2. Consequently, the wave function attains a const
profile with respect toap5tan21(p1 /p2) in the momentum
space pseudoangle or toa5tan21(r 1 /r 2) in the configura-
tion space. This dependence on the hyperspher
pseudoangle is different from the dependence on the sc
pseudoangle in the Coulomb zone. For instance, the solu
depends onb5R1/4(p/42a) in the case of the ionization o
the real hydrogen atom, and onb5R1/3(p/42a) in the case
of the Poet-Temkin model. In short, this explicit dependen
on R is not obeyed asymptotically.

The cusp of the Temkin-Poet model potential at the rid
leads to the exponential threshold law@9# reflecting its steep-
ness. Let us outline this result step by step. The outgo
wave boundary condition on the channel function alonga
represents the instability of the ridge motion, leading to
optical potential of the form (a1 ib)/R4/3 @14#, wherea and
b are both real@15#. The imaginary part of the WKB-type
phase integral

ImE R̃A2C0

R
1

2~a1 ib !

R4/3
dR.

g

2
R̃1/6, ~1!

whereg512b/A2C0.0, represents the decline in amplitud
of the ionizing component astride the ridge, hence the i
ization cross section is expected to scale as exp(2gE21/6).
~Here in the WKB-type integral we have droppedE from the
real part becauseC0 /R@E in the Coulomb zone.! One may
evaluate the coefficientsa andb analytically using the Airy
functions or approximately by the WKB representation@14#.
The value of the parameterg so evaluated is tabulated i
Table I.

Let us present anab initio quantum result that strongl
supports the exponential threshold law for singlet, forgo
far more strenuous calculations required of triplet. Figur
shows the ionization cross sections for singlet in the ene
region between 0 and 2 a.u. excess energy, the lower l
for our numerical implementation being 0.001 a.u. The cr
sections converged at worst to three digits for the match
radius Rm54000–5000 a.u., which is about 4 to 5 tim
greater than 1/Emin . The near-threshold region is present
as a log-log plot in the inset. It is known that another qua
tum conjecture due to Temkin@16# is a power laws}E1.5.
Recentab initio quantum calculations elucidated thatab ini-
tio results do not fit Temkin’s. Instead, they unexpectedly
to E2 as well as to the exponential law; Robicheauxet al.
@17# and Scottet al. @18# attempted to confirm the exponen
s
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tial threshold law, but did not reach an unequivocal conc
sion largely due to a considerable amount of fluctuating
certainty in the cross sections at low energies. In the pre
results, there is no denying that the cross section vanis
toward the threshold at a rate faster than any given po
law because the plot has a nonvanishing curvature at
energy without a hint of achieving a constant slope. T
numerical cross sections are fitted to the analytical exp
sion

s5exp@2gE2l1G~E!#, ~2!

whereG(E)5(n50
N anEn is to represent nonsingular energ

corrections away fromE50. Macek and Ihra@9# argued that
the exponentl be 1/6. This value being crucial to the pro
ceeding fitting, we determine it by first neglecting the slo
variation ofG(E), thus

l.2
y9

y8
E21, ~3!

where,y5 ln s, y85dy/dE, andy95d2y/dE2. As shown in
Fig. 2, there is a marginal scatter in the numerically eva
ated l. By performing the least-squares fitting we getl
50.149(60.008)12.34(60.223)E. Extrapolating toE50
then leads to

FIG. 1. The total ionization cross section of singlet over
extended energy range near and below the classical thresholE
,Ecl50.166 . . . a.u.). The inset is a log-log plot magnifying th
region of the exponential behavior. The diamonds represent
numerically obtained cross sections, thesolid curve represents the
exponential law,s0 exp(2gE21/6) with g56.75 and s05104
which are obtained by a nonlinear fitting to the numerically o
tained cross sections~see text and Table I!, the broken line
Temkin’s power law,}E1.5, and thedottedline }E2 @17,18#.
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l;0.149~60.008!, ~4!

which is about 10% smaller thanl51/6.0.167. From here
on, we presume the value ofl to be either 1/6 or 0.149 a
obtained by fitting. We extractg in two ways. One is a fitting
to the form

El11ln s52gE1El11G~E!, ~5!

where the powers ofE included inG(E), namelyN, is cho-
sen large enough forg anda0 to converge within four sig-
nificant digits. The solution set is stably obtained by mea
of the singular-value decomposition method. The other
nonlinear fitting tos of Eq. ~2! with N53. In both proce-
dures, the fitted value ofg becomes stabilized as the min
mum energyEmin is lowered. We carried out our calculation
down to Emin50.001 a.u. in order to attain a convincin
convergence ofg within two significant digits. In Table I, we
show our least-squares fitting to the numerically evalua
total ionization cross section for singlet. For the pres
value of l51/6, this table reveals the numerically fitte
value ofg to be in good agreement with the one deduced
the Wannier-type arguments. Forl50.149, an independen
fitting yields g58.4(60.1) which is about 20% larger in
magnitude than that forl51/6. The quantitiesl andg are
thus found to strongly support the exponential threshold l
Eq. ~5!.

Now that we have demonstrated the validity of the exp
nential law, we consider situations where semiclass
methods based entirely on classical trajectories@19# are in-
applicable. Since there is no trace of delayed threshold@13#
in the quantum results, one may attribute the disappeara
of the sharp classical threshold to quantum diffraction wh
tend to blur sharp edges in the classical phase space.
point is in contrast with the conclusion of Rost@19# that the
two-electron escape near the threshold is a classical pro
in the case of the collinear hydrogen atom. A strong supp
of the quantum diffraction lies in the global comportment
the wave function. For this purpose, we generated a se
plots using a simple approximate procedure introduced
Poet@12#. The solution is constructed by superposing so
tions that solve the Schro¨dinger equation in each of the ha
spaces,r 1,r 2 and r 1.r 2. The condition for a global solu
tion is that it satisfies the symmetric or antisymmetric bou

FIG. 2. The relation between excess energy andl. By setting
y5 ln s, we getl52(y9/y8)E21. The solid line shows the en-
ergy dependence ofl determined by least-squares fitting,l
50.149(60.008)12.34(60.223)E. The value of l approaches
0.149(60.008) asE→0 which is 10% smaller than the WKB es
timate.
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ary condition with respect tor 15r 2. The production of the
wave function is done only for singlet on account of its pr
dominance near threshold. To stabilize the solution,
modified the Poet method slightly; we restricted the solut
space to a finite box, and then extracted the ionization co
ponent. The accuracy is monitored by the unitarity of theS
matrix and by comparing the energy distribution against
more rigorous procedure. Figures 3~a!–3~f! represent the
ionization components of the wave function generated at r
resentative energies,E50.25 a.u. which is aboveEcl , E
50.167 a.u. which is close toEcl , andE50.05 a.u. which
is belowEcl , respectively, and are pairwise plotted with r
spect to two alternative sets of radial variables. Note in pa
ing that the excitation components are unequivocally
moved by projecting onto the excited target states in
asymptotic region,R@1/E. The pair of solid curves indicate
the classical trajectories that originate fromr 15r 251/E and
become parallel to either ther 1 or r 2 axis in the asymptotic
limit, thus they represent zero-energy escape passing thro
the critical location in the configuration space,r 15r 251/E,
and mark the boundary of the ionizing trajectories@13#. The
top row, ~a!–~c!, represents the wave functions with respe
to r 1 and r 2, meanwhile the lower one,~d!–~f!, are with
respect toEr1 andEr2 so that the pointr 15r 251/E remains
fixed in each panel. What the top panels show is that
region of quantum diffraction in the Coulomb zone,r 1 ,r 2
,1/E, grows as the total energy lowers toward the ionizat
thresholdE50. On the other hand, with respect to the sca
radial variables which maintain the relevant dynamical sc
invariant, the wave function appears to concentrate tow
the ridge as the energy lowers. We also observe that throu
out these panels, the classical trajectories as defined in
@13# mark the asymptotic region quite well.

In Fig. 4, we show the energy distribution of singlet~a!
and triplet~b! at E51.0 a.u. obtained by two separate pr
cedures. One is from the numerical wave functionC evalu-
ated at the asymptotic matching hyperradiusRm . Within the
validity of the stationary-phase approximation~SPA! a con-
strainta5ap obtains, thus a relation between the asympto

FIG. 3. Ionization component of the wave function for singlet
representative energies.~a! and ~d! are atE50.25 a.u. above the
classical ionization thresholdEcl , ~b! and~e! at E50.167 a.u. near
Ecl , and~c! and ~f! at E50.05 a.u. belowEcl . ~a!–~c! are plotted
with respect tor 1 andr 2; ~d!–~f! with respect toEr1 andEr2. The
pair of solid curves mark the ionizing classical trajectories cor
sponding to zero-energy escape originating fromr 15r 251/E. Note
the larger quantum diffraction in the Coulomb zone as the ene
lowers.
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wave functionC and theS matrix reduces to, according t
@20#

uSu25
p~4p!2

K

uCu2

sin 2ap
, ~6!

whereS represents theSmatrix, K5A2E and the other vari-
ables have already been defined. The other procedure
use theS matrix directly obtained by the two-dimension
matching of the numerical wave function to the approxim
asymptotic solutions of direct product form@3#. Let us refer
to the latter direct cross section as the directS-matrix method
~DSM!. The point of producing the two sets of results here
not only to ascertain the consistency of the results but to t
advantage of the stationary-phase approximation~SPA!
which appears to yield an energy distribution closer in sh
to the correct asymptotic limit~note its generally fewer os
cillatory structures and its automatically satisfied symme
with respect toe15e2). Incidentally, the oscillations in the
energy distribution are nothing but an artifact of the fin
matching radius. Figure 4 indicates a good agreement
tween SPA and DSM. Energy distribution at this energy w
previously calculated by Bray@1# and is in good agreemen
with ours.

In Fig. 5, we show energy distribution for singlet atE
52.0 a.u. (.Ecl) and E50.05 a.u. (,Ecl) obtained by
both SPA and DSM. One remarkable feature of the distri
tion at moderate to low energies~below about 1 a.u. but no
necessarily below the classical threshold! is its V shape as in
Fig. 5~b!. Only in the neighborhood ofe15e2, does it flatten
due to the symmetry requirement. This feature becom
sharper toward the threshold. At moderately high energ
however, the distribution has a shape which is somew

FIG. 4. Energy distribution between the electron pair atE
51 a.u.,~a! for the singlet and~b! for the triplet. Thedotted line
represents the SPA distribution calculated using Eq.~6! with the
numerically obtained asymptotic wave function, and thesolid line
shows the DSM result divided by 2 for comparison. This result is
good agreement with Ref.@1#.
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suggestive of the V shape but its overall features may
described as quadratic@1# as in Fig. 5~a!. That the peak
should occur away frome15e2 is readily accountable. First
the ionization amplitude astride the ridge decays expon
tially beyondR51/E. Second, the ionizing trajectories lea
ing the ridge make some finite angle with it. These tw
points suggest a concentration of the distribution tow
greater differences in energy. What would be nontrivial is
unravel the physical origin of the high degree of linear
because the local solution in the Coulomb zone does not
readily to this behavior. No analytical solution is current
available for this problem. It must be recalled that even
the better known ‘‘true’’ hydrogen the correct energy dist
bution is reproduced only numerically@21#.

To summarize, the nontrivial connection between the
namics prevalent in the Coulomb zone and that in
asymptotic zone is made particularly articulate for t
present Temkin-Poet potential that has a cusp atr 15r 2. A
narrow strip of region surrounding this cusp does not cor
spond to a bundle of classical trajectories unlike in the c
of the Wannier ridge of the real hydrogen. Nonetheless,
local semiquantal treatment of the ridge still applies and
conducive to the remarkable exponential law. Our work h
provided pieces of evidence that support this picture.

A nontrivial connection between the Coulomb an
asymptotic zones appears observable even in real syst
Indeed, it is difficult to make a compromise between t
uniform energy distribution in e1H→e1e1p and the uni-
form spatial distribution of the electron pair in the Coulom
zone. A classical theory of Peterkop and Liepinsh@21# elu-
cidated that the spatial distribution is approximately prop
tional to sin 2a, i.e., far from uniform. In classical terms, th
above observation suggests for the ‘‘real’’ ionization that t
trajectories concentrated near the potential ridge tend
spread into the asymptotic zone in such a way that m
trajectories tend to remain near the ridge. What is surpris

FIG. 5. Same as Fig. 4,~a! for E52 a.u. aboveEcl and~b! for
E50.05 a.u. belowEcl . Note how the approximately quadrati
dependence is taken over by the markedly linear V-shaped de
dence.
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is that this tendency follows the sin 2a behavior more closely
than one would naively expect@22,3#. This as well as the
remarkable V-shaped energy distribution of the Temkin-P
@11,12# model may reflect a hitherto unexplained mechani
joining the Coulomb and asymptotic zones.
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