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Exact solution of the one- and three-dimensional quantum kinetic equations
with velocity-dependent collision rates: Comparative analysis
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The interaction of a plane monochromatic traveling wave with two-level particles suffering collisions with
buffer-gas particles is considered. Collision rates are assumed to be velocity dependent. The collision integral
is obtained on the basis of the strong-collision model, generalized to the case of velocity-dependent collision
rates(the so-called “kangaroo” modglWe obtained the exact analytical solution of the problem for arbitrary
intensity of radiation, arbitrary ratio of homogeneous and Doppler widths of the absorption line, and arbitrary
mass ratio between absorbing- and buffer-gas particles. The obtained analytical solutions of the quantum
kinetic equations allowed us to analyze the spectral shape of the strong-field absorption line as well as the
probe-field absorption linéhe nonlinear part of the work done by the probe fieldd the frequency depen-
dence of the light-induced driftLID) velocity. A comprehensive comparative analysis for the three- and
one-dimensional versions of the model is given. On the basis of this analysis, we reach the conclusion that the
one-dimensional quantum kinetic equation has quite a wide range of application. We also reveal the conditions
for the strongest manifestation of the velocity dependence of the collision rates, which affects most strongly the
anomalous LID[S1050-294{@9)02904-2

PACS numbes): 42.50.Ct, 42.62.Fi, 42.50.Vk

I. INTRODUCTION The kinetic equation in the framework of the Keilson-Storer
kernel may only be solved numerically. All these three mod-
As is well known, the resonant interaction of laser radia-els assume the absence of any collisional transfer of the non-
tion (plane monochromatic traveling waverith a gas mix-  equilibrium distribution to the degrees of freedom orthogonal
ture gives rise to a nonequilibrium velocity distribution of to k (i.e.,v,). They are also based on velocity-independent
the absorbing-gas particles because of the Doppler effecgollision rates. _ o N
Collisions with buffer-gas particles distort this non- _ Itis obvious now that the investigations of nonequilib-
equilibrium structuresee[1,2]). The radiation with a speci- UM systems inspire new efforts in the modeling of collision

fied direction of propagatiotsay along the axis) only cre- integrals, especially in the case yvhen nonequilibrium cpndi-
ates a nonequilibrium distribution along this particulart'ons are created by laser radiation. It is now worthwhile to

direction, i.e., the direction of the wave vectorke,. The consider the influence of subtle factors on the collision inte-

velocity distributions for the other degrees of freedom aretghri iﬁ;gigi\r’fr gbtlr:nzocl)llisr']%':ﬂ'i?]fgrrzl Ei;?':g:g‘ Cli?]r d gas
not affected by the radiation itself, but are nonequilibrium P P by 9

. . .o kineti finitel man I n nt of the veloci
due to collisions: The collisions transfer the nonequilibrium etics definitely demand at least an account of the velocity

S i dependence of the collision ratésee[5-8]). It is precisely
distribution to degrees of freedom which are orthogonal Qhis velocity dependence that causes the so-called anomalous

the wave vectork. The distribution functions of the light-induced drift (LID) (see [9-17, and references
absorbing-gas particles are governed by the quantum kinetigereir. The Lorentz gas model may be used for a qualita-
equation(Boltzmann equation which is a three-dimensional tjye investigation of the role of this velocity dependence, but
integro-differential equation in the general case. Thereforgynly in the limit of heavy buffer gas. The Lorentz gas model
we need the solution of the Boltzmann equations for thesllows an analytical solution of the kinetic equation, but the
analysis of the interaction of laser radiation with a gas. conditions for its applicability are seldom realized.

Let us briefly review the most popular models which are  Therefore we evidently need to develop a new model for
used now for the solution of the Boltzmann equations, viz.collision integral with velocity-dependent collision rates and
the models of strong and weak collisions, the Keilson-Storetdramatically broader range of application, relative to all the
model for the collision kernel, and the model of Lorentz gasabove mentioned models. As far as we need to model the
(three- and one-dimensional variant$he kinetic equation collision integral, we must answer an old but important ques-
may be only analytically solved for arbitrary intensity of tion. This fundamental question is about validity of the one-
resonant radiation in the framework of the strong-collisiondimensional collision integral as a substitution for the three-
model[3] (see alsd1,2,4]). The model of weak collisions dimensional one. This question was formulated eaflie?],
may only be used analytically in the limit of small intensity but the validity of the one-dimensional formulation was
of the resonant radiation with the help of an iteration methodbased only on the qualitative arguments of weak collisional

transfer of nonequilibrium distribution on the velocities
orthogonal to the wave vectdr
* Author to whom correspondence should be addressed. Electronic The one-dimensional kinetic equation is evidently much
address: privalov@iae.nsk.su simpler to solvgboth numerically and analyticaliythan the
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three-dimensional one. The interpretation of the solutions ofiector of the radiation, respectivelgtyq is the dipole matrix
the one-dimensional kinetic equation is clearer as well. Irelement. The velocity-dependent homogeneous linewidth,
addition, the three-dimensional collisional kernel has singui’(v), in expression(2) is the sum of the spontaneous,/2,
larity A(v,v')x|v—v'|"! for v=v’, and the one- and collision,y(v), widths:

dimensional kerneA(v,,v,) is finite whenv,=wv, .

So it is important to know if one can use the one-
dimensional collision integral with a reasonable accuracy.
The aim of our paper is to make a comprehensive quantita-
tive comparison of solutions of three- and one-dimensionallhe collisional shift of the resonant frequenayy may be
kinetic equations with velocity-dependent collision rates andncluded in{).
to define the area of applicability of the one-dimensional The general formula for the elastic collision integral reads
collision integral.

Our paper is organized as follows. We develop a model , N
for the F2:0FI)Iision in?egral with velocity—dependentpcollision Sﬁ(V)__Vi(U)Pi(V)JFj pi(VHA(VV)dv', i=e,g.
rates for the analysis of the kinetic equations in the most (4)
general conditionSec. ). The velocity-dependent collision " L
rates act as parameters of our model. The kinetic equatiofder€Ai(v|v') is the collision integral kernel.
are solved analyticallySec. Ill) for arbitrary radiation inten- _1he collision integrai(4) must satisfy particle conserva-
sity, arbitrary ratio of homogeneous to Doppler widths, andtion: (Si(v))=0; therefore we have the known relation be-
arbitrary mass ratio in the three- and one-dimensional variiW“"en,the elastic collision frequenay(v) and the kernel
ants of the mode(see Secs. Il A and Il B, respectively Ai(vIv'):

These exact analytical solutions were used for a quantitative
comparison of the absorption line shg@ec. IV), the probe- ,,i(v):j AV [V)dv'. (5)
field absorption lind€Sec. V), and the frequency dependence

of the LID velocity (Sec. V) for three- and one-dimensional One can say that the model of the collision integral is noth-

://?Irlants of the model. Our findings are summarized in Secl.ng more than the model of its kerngk(v[v").

The starting point of our model is the assumption of fac-
torization of the kernel

e

Fe(v)= - +7(v). 3

Il. FORMULATION OF THE MODEL

ry — £(1) (2) ¢y,
The distribution functiong(v) and py(v) of two-level AV =HEWHT(V). (6)

particles in the excitedg, and groundg, states describe the
evolution of the absorbing gas in a resonant monochromatic
radiation field. They obey the following equations:

According to Egs(5) and(6) we have

2 Vi(v)
2= —5 . 7
VAT - (fiP )
pn | Pe(V) = Se(V) + NP(v),
The kernelsA;(v’|v) must satisfy the following condition
d [1,2]:
(§+vV pg(V) =Sy(V) +'epe(V) =NP(V), (2)

AV [V)W(V) = A (V]V )W(V').

where N=(pe(Vv) +p4(Vv)) is the total concentration of ab-
sorbing particlesP(v) denotes the absorption ratabsorp-
tion probability per unit timgof a particle with velocity; ',
is the excited state decay rate; a8dv) is the integral of
collisions between absorbing- and buffer-gas particles only (1 (v) =
(i=g,e). The concentration of the buffer gas is supposed to '
be much larger than the concentration of the absorbing gas,
so we can neglect collisions between the absorbing-gas par- Taking into account formula&) and(8), we obtained the
ticles. We denote by angle brackets), the integration over final expression for the collision integral kerrn(@):
velocity v.

Neglecting the effects of phase memory in the collisions,

This condition together with assumptid) results in the
following relation betweerf(Y)(v) and f®)(v):

(FR) TP (V)W(V)
(FP(VW(V))

®

_ n@)WWn(")

we have the following well-known expression fB(v): Ai(vlv)= (vi(v)W(V)) ©
2|G|?T'(v) 1 Edgg The kernel(9) leads to the final expression for the collision
P(v)= T2(0) + (02— kv)? NPV —peW)], G=—2=, integral (4) itself (the so-called “kangaroo” modgl13]),

)

where() = w— w4 is the detuning of the laser frequenay
from the resonant frequenay,q of the transitione—g; E
and k denote the amplitude of the electric field and wave i=e,Q. (10

(V)W
s<v)=—vi<v>pi<v>+%(m(v)w(v»,
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The essence of our mod€l0) is as follows. After each does not depend om, . This is true only in the case of
collision the velocity distribution of absorbing particles be- velocity-independent collision rates. The reverse is not true
comes isotropic, but it differs from the equilibrium Maxwell in general. But it is more or less evident that the transfer of
distributionW(v) due to the velocity dependence of the col- the nonequilibrium distribution to the orthogonal projections
lision rates,y;(v). In other words, after each collision every of velocity and the velocity dependence of the collision rates
direction of velocity has equal probability, but the absoluteare strongly related to each other.
value of the velocity may be arbitrary, due to the arbitrary
velocity dependence of_ the collision rates. These colllsu_)ng lll. EXACT SOLUTION OF THE KINETIC EQUATIONS
do not change electronic states of atoms, and are elastic in
this sense. Our mod€lL0) coincides with the well-known A. Three-dimensional collision integral
strong-collision model in the limit of velocity-independent
collision rates.

Under the assumption of weak transfer of the nonequilib
rium velocity distribution to the orthogondto k) projec-
tions,v, , due to collisions, we may postulafeee als¢1,2])

We are going to solve the three-dimensional kinetic equa-
tions (1) with the account of expressiort®) and (10). The
distribution functions of absorbing particleg(v) and
pg(V), depend on the absorption probabilfyv) in the fol-
lowing way:

that
P(V) 72¢(v)
piV)=W(V,)pi(Va), D pev)= N( PV 72e(0) +W(V) Tze“’)ﬁ)’
2e
where thez axis is along the wave vectér Let us substitute (15
the expressioifll) in Eq. (1) and then integrate E41) over
v, . In view of the collision integral10), we have the for- pg(V)=NW(V)—N[ P(V) 714(v)
mula for the one-dimensional collision integral
(P(V) T2¢(v))
S(v)= =1V )pi(v2) WO T240) T a0y
Vi(UZ)W(vZ) | :e,g NW(V)

(o) Wiw,)y PP, PV 72e(0) (0 WOV)

T W) 70e(0)

12
—(P(V) 72g(v) ){ T2e(v)W(V)) ],
where the angle brackets, denote integration avenow;
vi(v,) stand for the one-dimensional collision rates of theynere

statese,g with the following definition:

1 1
vi(vz)=f Ai(v;|vz)dv;=f vi(v)W(v,)dv, . (13 ne(v)=—re+ D)’ TZe(U):F_e_Tle(U)u
The one-dimensional kernel is related to the three- 1 ve(v)
H H e
dimensional one by the well-known formula,2] T1g(v) = Tog(v) = F_e_ T14(0).

Pet Vg(v) Vg(U) ’
(16)
Aol = [ AW dv,dv,
The velocity distribution of excited particlegg(Vv), con-
Therefore the one-dimensional kernel has the evident formsists of two qualitatively different terms. The first term is
proportional to the absorption ra®v). This is the velocity-
vi(v )W) vi(vy) (14) selective distribution created by laser radiation and not af-
(vi(v)W(vy)) 1= fected by collisions. The second term in the expression for
pe(V) is velocity isotropic. But it deviates from the equilib-
It is worth mentioning that the model2) with kernel(14)  rium distribution in general. This deviation is only based on
may be obtained directly from the assumption of the factorthe velocity dependence of the collision rates.
ization of the one-dimensional kernel,A;(v,|vy) The two terms in curly brackets of the expression for
=B, fP(v)), similar to expressior(10). One needs py(V) have the same meaning as the corresponding terms in
also to use the conservation of particles and the stabilitghe expression fope(v). The third term inpy(v) is the equi-
condition for the one-dimensional Maxwell distribution librium Maxwellian distribution. This distribution exists only
W(v,). due to the infinite lifetime of the ground staggit is nonzero
Let us make one important remark at the end of this seconly if vy(v) # ve(v).
tion. The statement that the collisions do not transfer the The factors(16) are velocity dependent and have a clear
nonequilibrium distribution to the orthogonal velocitigs physical meaning. The value of.(v) stands for the time
results in the fact that the integral interval between excitation and the first collision with a
change in velocity. The sum a%.(v) andr.(v) is the total
f AV VAV lifetime 11" of the excited state. Thereforg(v) is the
! L time complementingrc(v) up to the total lifetime. The

Ai(vz|v£):
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meaning of other quantities;4(v) and 7,4(v), is the same Consider the important case of equal collision rates
as for the factorsio(v) and,¢(v).
In the limit of weak radiation intensity one hag(v) vg(v)=ve(v). (21)

>pa(v) and pu(V)—=>NW(V), so that pgy(Vv)—pe(V) - :
=NW(V). Therefgore the absorption raR(v) isgdefined be- I(tlg))”?fg? from the condition(21), with the account of Eq.
forehand. Consequently in the limit of weak radiation inten-""""

sity expressiongl5) are the final solution of the problem. Of T1e=T1g=T112, Tpe=Tog=Tl2.

course in the general casfor high radiation intensity, for

example one needs to find the absorption r&év) with the  The expression for the absorption r&év) is

help of expressiongl6) and (2). The solution of the corre-

sponding integral equation is the following: P(v)= (B)(Q (a0 W(W)) 70 ) E V)W) 7a(0))
f(v)W(v
P( )_W[(TZ(E(U)W(V)>+Tl(v)<f(V)W(V)72e(U)> _<f YW(V) Tl(v)Tz(U)>] (22)
—(F(VW(V) 71(v) T26(v))]. (17 and
The velocity-independent functioB(£2) in Eq. (17) de- 1
pends on the detuning as follows: P=(P(v))= -ﬁ[(f(V)W(V))(Tz(U)W(V))

B(Q) =(72e(v)W(V))[ 1+ (72(v) F(V)W(V))]
+{72e(0) F(V)W(V)[( T1(0)W(V)) — 71(V)
+(7m(v) T1(v) F(VIW(V)) — 74 (v)

HE VW) o (0){{F(VIW(V) 74(v))
= 1 (0)(F(VW(V))}]. (23

The expression foB({)) is now considerably simplified:

X(72(v) F(VI)W(V))], (18) - ,
B(Q)=2B(Q2)=(W(V) 72(v)) = (F(V)W(V) 75(v)).
where (24)
1 I'?(v)k(v) The velocity dependence of the collision rateg(v) and
f(v)= ' ve(v), introduces a significant complication to the velocity

2 2
(V) T2 ()[ 1+ k(v)]+ (2 —kv) distribution (15) and to the final expressions for the absorp-

tion rate(17), (20), (22), and(23) relative to the results of the

where is the so-called saturation parameter , Lo o
«(v) P model with velocity-independent collision rates. All our re-

2|G|? T27,(v) 4G sults coincide naturally with the previous results for the
k(v)= —— 7 (v)=k ! K= . strong-collision mode(see[3,4]) if we neglect the velocity
( ) T 1( ) 0 r ' 0 2 .. .
(v) (v) Iy dependence of the collision rates in our formulas.

We introduced in Eqgs(17) and (18) the following time

B. One-dimensional collision integral
scales:

One may use the same approach in solving the kinetic
{ ve(v) equations with the one-dimensional collision integral. There-

T1(v) = T1e(v) + T1g(v) = T.+v (U)L ()|’ fore we may use formula&0), (17), and(15), with the evi-
e g dent  permutation  f(v)— f(v,),W(V)—W(v,),;(v)
2 — (v,
7'2(0):Tze(U)"'ng(U):F__Tl(U)- (19

e

IV. ABSORPTION LINE SHAPE

These timesr,(v) and7,(v), keep their traditional meaning
(se€[2-4], for examplg, with the velocity dependence as the
only difference. For example, the factef(v) is the effec-
tive time interval for an atom being in interaction with the
radiation field from the instant of excitation to a collision
with velocity change, regardless of the atomic state.

After integration of expressiofil7) over velocitiesv of
absorbing particles we have the following formula for thefor
absorption probability per unit time for one atom:

We are now ready for a comparison of the absorption line
shape in the three- and one-dimensional variants of the
model. Our aim is to extract the influence of the velocity
dependence of the collision rates on this shape under differ-
ent conditions. The exact solutions of the preceding section
are a nice groundwork for this comparison.

The integration over velocities is supposed to be per-
med numerically in all expressions. Therefore we need to
specify the velocity dependence of the collision rates.

The parameters of our modet;(v), describe the colli-

P=(P(v))= - gy FVIWW))(T2e(0)W(V)) sions with loss of the directed velocity. Therefore it is obvi-
B(®) ous to identify these parameteng(v), with the transport
H(HVWV) 726(0) {(F VWV 71(0)) = 71(0) collision rates.

The transport collision rates are related to the transport
X(F(V)W(V))})]. (20 cross section of collisions as followsee[2]):
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() 8uNp f“’d 50 () v2+u? 1. 1.0
vi(v)= U oy (u)exp —
P JaMug Jo " v - -
Hq) —sinh( - g
cos —sinh(q)
il a ] (25
3
q (I N N ) AR EEEE RN R
30 15 0 15 30 30 15 0 15 30
hereu stands for the reduced masgs=2v ulgﬁ. We restrict
ourselves to the case of power potentials of the following PPN AR R LA AR oI
form: U(r)er~". The transport collision cross secti¢see ’ ' (@)
[2]) for the classical trajectories reads = _
. £ E o -
oy j(U)= oy j(vp)[ulvp] ™", (26)
whereu is the relative velocity of the colliding particles and C3 RS EEEEE N,
— . . . -3.0 -15 0 1.5 3.0 -3.0 -15 0 1.5 3.0
vy, is the most probable velocity of buffer particles. The
buffer-gas particles are supposed to be in equilibrium with X M

the same temperature as the absorbing particles. ) ) _ _ _ _
Expressiong25) and (26) give the following expression FIQ. 1. Absorp_tlon rate(in arbitrary unit3 vs dimensionless
for the three-dimensional collision ratésee alsd2]): detuning,x=Q/(kv). (& B—»,n—x; (b) B—=,n=6; (c) B
=19n—»; (d) B=19n=6; Curves 1 and 2 correspond to the
v}g)(v)zVJ-(O)CD(Z/n—1/2,5/2;—(u/v_b)2), 27) one- _anq three-dimensiqn_al approach, curve 3 to the model with
velocity-independent collision rates. The values of all other param-

where eters are defined in the text.

4 to »®)(0). Thefollowing parameters were useth=7 a.u.,
VJ(O):M/mNbvatrj(vwﬁF@—2/n)y T=300 K,(=4.04,=1.0'/kv=0.2. Calculations with3
—owo,nN=6 and B=19n—ox, are shown in Figs. (b) and

®(a,v:y) is the confluent hypergeometric function. 1(c), respectively. All other parameters are the same as in

The expression for the one-dimensional collision rate is19- 1@. The influence of the velocity dependence of the
evident from Egs(13) and (27): collision rates is small now, and the difference between the

one- and three-dimensional models is even much smaller.
k The calculations for a realistic mixtutéhe atomic vapors of

Li in Xe buffer gas withB=19 andn=6) are plotted in Fig.

1(d). The result is that the influence of the velocity depen-
2K dence of the collision rates is very small. The curves for one-
and three-dimensional models are hardly distinguishable.

This result may be formulated in the following way. For

(28)  realistic parameters of interaction potential and mass ratio

the influence of the velocity dependence of the collision rates

the quantity»;(0) was defined above, anéd(---) is the on the spectral shape is noticeable, but very small. Under the
hypergeometric function. same conditions, the one- and three-dimensional models

We used the notatiom and M, for the masses of absorb- hardly differ from one another. This is a clear indication that
ing and buffer particled\y, is the concentration of the buffer the collisional transfer of the nonequilibrium distribution on
particles;I"(x) is theI" function; a=2/h—1/2, y=5/2, and v, is weak and the one-dimensional kinetic equation is valid
B=M,/m. [see Fig. 1d)].

The collision rates for different statesy(v) andve(v), Let us focus now on the shape of the nonlinear resonance
are not equal in general. This difference is not so importantn the absorption profile of the probe field. This phenomenon
for the analysis of the absorption line shape, therefore we cais known to be sensitive to the velocity dependence of the
neglect it. Consider now the case of state-independent paollision rates.
rametern and v4(0)=v,(0). This case corresponds to Egs.
(23) and (24). The role of the velocity dependence of the
collision rates is larger for larger values of the ratio
vi(v)/T'¢. The obvious limiting case is the infinite value of
this ratio: {=v4(0)/T'¢>1. The influence of the velocity dependence of the collision

The velocity dependence of the collision rates is the mostates on the absorption line of a probe fi¢ltamely, the
important factor in the cas@— e andn—o, as one can see nonlinear part of the work done by the probe fijeisl now
from Egs.(28) and(27). The absorption line shape is shown easy to detect in an experiment. Therefore it is important to
in Fig. 1(a) for the three- and one-dimensional variants of theknown exactly the discrepancy between the calculations of
model (curves 1 and 2, respectivelyWe added reference the probe-field absorption in the one- and three-dimensional
calculations with velocity-independent collision rates, equaimodels. We are going to analyze this question in the frame-

vi(0) F()’)i(—l)kf(a+k)/ B
(1+B) T kI T(y+k|1+8

1
VJ( )(Uz):

Uz

B
X,Fq a+k,'y—1+k,'y+k;m)(

v

V. NONLINEAR PART OF WORK DONE
BY A PROBE FIELD
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work of the “kangaroo” model and calculate the nonlinear
g ; @0 VTGP el 2VmGy
part of the work done by the probe field. P, (X)=—=—{€ "l —=—
We consider the case where the probe figlith wave kv

vectork,) and the strong fieldwith wave vectork) are
resonant with one and the same transitipr e of two-level
particles:(), = w,— weq and ) = w— w4 are the detunings

of the probe- and strong-field frequencies andw from the
resonant frequency.q, respectively. Thé, andk are as-
sumed to be antiparallek(,= — k). The first nonlinear terms

in the expression for the work done by the probe field are the
solutions of this problem in the limit of large Doppler broad-
ening. This is the case when the nonlinear part of the probe-
field absorption line is caused only by active level population
change under the interaction with the strong laser field. The
corresponding expression for the absorption line of the probe

[ 2 t
x jl o 5( A(t) - r2(1)

J

y(O) 72 (1)
2 y2(t) + (X+X,,)?

(1) — (72 (HW(V))
(T (HW(V))

oo
f e7
d

2|Gy|?
kv

t2t

B

(31)

field is the following(see alsd1,2]):

, I'(v)
P.(Q,)x|G,| <[pg(v)—;oe(V)]Fz(v)jL(Q _kv)2>'
) (29

Using Egs.(29) and (15) one gets the following expres-
sion for the probe-field absorption line:

PL(Q,) %G, [ W(V)(v,Q,))

—2|Go|2|eﬂ|2{<w<v>f<v,nﬂ>f<v,n>rl<v>>

< W) F(V,€,)| (ma(0) (v, Q)W(V)
{m2e0) F(LQ)W(V)
(T2(0)W(V))

X[71(v) = (T1(v)W(V)) (30

i

In first order approximation

I'(v)
[2(v)+(Q—kv)?

f(v,Q)=

Consider expressiof80) for P({2,) as a function of}, .
The first term in the curly brackets of expressi(80) de-

The superscript (3)” denotes the three-dimensional time
factors(17) and(19); x,=Q /(kv) t=v/v; all other nota-
tions are defined above

The one-dimensional version of E@0) may be obtained
by the trivial permutation f(v,Q)—f(v,,Q),W(V)
—W(v,),vj(v)—v;(v,) (see also Secs. IV and ll)BIt is
remarkable that in the one-dimensional case it is possible to
evaluate the integrals analytically. We have the following
rather simple expression in the one-dimensional mpoi#h-
pare with Eq.(30)] without integrals:

2 2
S P
v

(&) -
Pu(%)= kv

X

_y2
e (TE”(X)—T‘ZB(X)

7 (x,) = (1 (v ) W(v,))
<T2e (UZ)W(UZ)>

1 Yo7t
VY20 + (x+x,,)?

A comparison between Eq&32) and(31) clearly reveals
the advantage of the one-dimensional version of the model.
Expressions(32) and (31) do coincide in the case of
velocity-independent collision rates.

We again need to use the velocity-dependent collision
rates(27) and (28) for the numerical comparison of expres-
sions(32) and (31) and the analysis of the behavior of the
nonlinear resonance.

The results of the calculations are plotted in Fig. 2 in the
limiting case of the strongest velocity dependence of the col-
lision ratesB— o andn—<; solid lines correspond to three-
dimensional and dotted lines correspond to one-dimensional
models.

The homogeneous saturation band appears to be only

|

(32

scribes the nonlinear resonance, the second term stands fweakly sensitive to the model of the collision integm@he or

the homogeneous saturation band.
It is not possible to analytically evaluate the integrals in
expressior(30) in the three-dimensional model. The simplest

three dimensional The nonlinear resonance may be consid-
ered to be quite sensitive to the type of model. The deviation
may be up to 50% of the absolute value. The more realistic

expression for the probe-field absorption line in this threeparametersn=6 and 8=19, are used for the calculations

dimensional case is the following:

presented in Fig. 3. This case reveals a small discrepancy
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L L L B L B S L L our model. Let us briefly recall the essence of the LID effect
[14,15,7 (see also reviewgl6,17]). LID arises when atoms
or molecules, mixed with some buffer gas, are excited by
radiation. The bases of the phenomena are the velocity-
selective interaction of the laser radiation with the absorbing
particles(due to the Doppler effegand the change of trans-

A
Z
I

-y
T T T T T hp T T 17T T T T T T T 1T

< } ] port collision properties of the absorbing particles because of
o o ] the excitation(state-dependent friction by the buffer gas
- The LID velocity is given by the expression
] 1
Ll LSS u= N(V{pg(v)+pe(v)}>- (33
-0.3 01 0 041 0.3 -2.0 -1.5 -1.0
X, X, The distribution functiong15) and expressioni33) give

the following formula for the drift velocity:
FIG. 2. The nonlinear part of the probe-field absorption tate
arbitrary unit$ vs dimensionless detuningw:()#/(kv_), of the
probe field. B—o,n—%,/=1.0x,=1.0; (@ x=0; (b) x=1.5. vg(v) —ve(v)
x=Q/(kv) is the dimensionless detuning of the strong field. The _J' vg(v)[Tet ve(v)]
amplitude of the homogeneous saturation band is increased by a
factor of 10. The values of all other parameters are defined in the
text. the absorption ratd?(v), Eq.(17), was discussed in Sec. IV.
The one-dimensional variant of E(B4) is quite obvious:

vP(v)dyv, (39

between the three- and one-dimensional modkelss than
10% of the absolute valyieThis discrepancy tends to de-
crease with decreasing parameger U f vg(v2) = ve(v7)
So we see that the nonlinear resonance in the probe-field vg(v)[Tet ve(vy)]
absorption line is much more sensitive to the velocity depen-
dence of the collision rates than the absorption line shape of
only one laser field. Consequently, the nonlinear resonance Bxpressiong34) and (35) coincide in the case of velocity-
much more sensitive to the type of modghree- or one- independent collision rates, as one may expect. These formu-
dimensional collision integralNevertheless, one can use the las show that the difference of the collision rates of different
one-dimensional collision integral with good accuracy everstates is absolutely essential for the existence of LID. There-
in such problems. fore we consider now the values of the parametg(6) and
n in the transport collision rates as state dependent with the
evident notationy¢(0) andw4(0),n, andngy. Now it is also
convenient to introduce the parametes v¢(0)/v4(0).
The aim of this section is to evaluate the light-induced
drift velocity for the three- and one-dimensional versions of A. Traditional LID effect

v,P(v,)dv,. (35

VI. LIGHT-INDUCED DRIFT

Let us consider the frequency dependence of the LID ve-
locity (34) and (35) in the case of normal LID, when the
values of the transport collision rates of two different states
are significantly different. The relative difference of the
transport collision rates in Eq$34) and (35) is very weak,
with small influence on the frequency dependence of corre-
sponding integrals. Therefore the frequency dependence of
the drift velocity is described by a dispersionlike cuiitiee
first frequency derivative of the absorption line shapeis
obvious to expect the maximum difference between the
three- and one-dimensional models in the case of the stron-
gest velocity dependence of the collision rates, whgm,

—oo, We simulated the frequency dependence of LID veloc-
o bbb ity (34) and (35 for parametersn,=n,—w,B=19A
08 o1 00T 03 e e e a2 =1.2{=4.0k,=1.0. The results are shown in Figla# (in
X x arbitrary unit3. The deviation of the “three-dimensional”
g ! formula (34) from that of the “one-dimensional” formula

FIG. 3. The same as in Fig. 2, bgt=19, n=6. All other pa- (35 (curves 1 and 2, respectivglis much smaller than the
rameters are the same. Arbitrary units are used, the notation is ttdifference of these results from the result obtained in the
same as in Fig. 2. model with velocity-independent collision rates. The influ-
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JETTTITTTTT LAY the collision rates and the role of collisions. Our numerical
calculations[see Fig. 4b)] prove this conclusion. We used
the following values of parametersB=19=4.0xkq
=150n.=6,ny=7. Curve 3 in Fig. 4b) corresponds to the
calculation with account of velocity dependence of the col-
lision rates only in the factoAvr in Eq. (34) or Eq. (35).
Curves 2 and 1 correspond to the calculations according to
Egs.(34) and(35) with complete account of velocity depen-
dence of the collision rates. The results of the calculation in
the frame of velocity-independent collision rates are plotted
as curve 4. The comparison of curves 1, 2, 3 with curve 4
(see Fig. 4 clearly reveals the manifestation of anomalous
LID. We may also conclude that the account of velocity
dependence of the collision rates only in the fackor de-

X X scribes the anomalous LID with good accuracy. The correc-

FIG. 4. () The frequency dependence of the drift velocity of tion caused by the type of modghree or one dimensional
“normal” LID (in arbitrary unit3 vs dimensionless detuning, IS small(less than 10% fo3<6).
=Q/(kv). Curves 1 and 2 correspond to the one- and three- SO, there is a range of parameters where the one-
dimensional approaches; curve 3 is the model with velocity-dimensional collision integral is valid even for the descrip-
independent collision rates. The values of all parameters are defindtbn of anomalous LID. Moreover, it is possible to correctly
in the text.(b) The frequency dependence of the drift velocity of describe the anomalous LID without taking into account the
anomalous LID(in arbitrary unit$3 vs dimensionless detuning,  velocity dependence of the collision rates in the absorption
=Q/(kv). Curves 1 and 2 correspond to the one- and threerate P(Vv), but taking this dependence into account in the
dimensional approach, curve 3 to the calculation taking into accourdifference of the collision rateA v only (see alsd17]).
velocity dependence of the collision rates only in the facior,
curve 4 to the model with velocity-independent collision rates. The VII. CONCLUSION
values of all parameters are defined in the text.

u(x)

The model of collision integrall0) is a generalization of
ence of the velocity dependence of the collision rates on thehe strong-collision model in the case of velocity-dependent
LID velocity is small, as one can expect under the abovecollision rates. The analytical solution of the three-
mentioned conditions. The difference between the curves dlimensional quantum kinetic equation is possible for an ar-
and 2 decreases with the decrease of the paramejeasd  bitrary system of levels of absorbing particles and arbitrary
ne. This difference is hardly noticeable on the plot for the parameters in the problem. We have found this solution for

values<19 andng <10. two-level particles. The exact analytical solution enables us
to analyze the absorption probability of monochromatic ra-
B. The anomalous LID diation, the nonlinear part of the work done by the weak

i probe field, and the light-induced drift velocity.
The so-called anomalous LIBee[9-12], and references One of the advantages of the model is that it allows us to

Ehaeur;:ér; 'bs ?ﬁei);clggxoréﬂ gﬁgghczegf ;JhseecglI'izi:r?Tanlee:;[e=¥]qnalyze in detail the validity of the one-dimensional kinetic
y y dep " ,_eqguation. The comparison of the three- and one-dimensional

3ﬁfeec:,e:;evtéﬁ)nc?tpor(;ecolllsdlon rate_ls_hmaé/.#ave cIo;e \t/alues b%rsions of the present model, with the help of calculations
- y gepencence. 1he ditierence in _ranspor%f the absorption rate, probe-field absorption, and LID veloc-

collision rate. Av, in Eqs.(34) and(35) may change sign as . 1oyealed a remarkable “hierarchy.” The derivation

a function of velocity near the most probable velocity  caused by the velocity dependence of the collision rates is

Therefore particles with positive and negative value\ef 1y ch Jarger than the difference between the three- and one-

make comparable contributions to Hg4) or Eq.(35). This  dimensional solutions.

is the cause of the dramatic deviation of the frequency de- oy approach is not supposed to be universal and com-

pendence of LID velocity,u(x), from the dispersionlike pletely general. However, the “kangaroo” model opens the

curve: The dispersionlike curve has only one zeroXer0  possibility of quantitatively justifying the idea of small col-

[see Fig. 48)], wheras the anomalous LID velocityx) has |isional transfer of the nonequilibrium distribution on the or-

additional zeros as a function of the detuning thogonal degrees of freedom and proves the validity of the
The anomalous LID VE|OCity is caused by the factor. one-dimensional kinetic equation_

Therefore account of the velocity dependence of the collision

rates in this factor only for the calculation of expressions

(34) and (35) must correctly describe the anomalous LID ACKNOWLEDGMENTS
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