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Exact solution of the one- and three-dimensional quantum kinetic equations
with velocity-dependent collision rates: Comparative analysis

T. Privalov* and A. Shalagin
Institute of Automation and Electrometry, Universitetskii prospekt 1, 630090 Novosibirsk, Russia

~Received 25 August 1998!

The interaction of a plane monochromatic traveling wave with two-level particles suffering collisions with
buffer-gas particles is considered. Collision rates are assumed to be velocity dependent. The collision integral
is obtained on the basis of the strong-collision model, generalized to the case of velocity-dependent collision
rates~the so-called ‘‘kangaroo’’ model!. We obtained the exact analytical solution of the problem for arbitrary
intensity of radiation, arbitrary ratio of homogeneous and Doppler widths of the absorption line, and arbitrary
mass ratio between absorbing- and buffer-gas particles. The obtained analytical solutions of the quantum
kinetic equations allowed us to analyze the spectral shape of the strong-field absorption line as well as the
probe-field absorption line~the nonlinear part of the work done by the probe field! and the frequency depen-
dence of the light-induced drift~LID ! velocity. A comprehensive comparative analysis for the three- and
one-dimensional versions of the model is given. On the basis of this analysis, we reach the conclusion that the
one-dimensional quantum kinetic equation has quite a wide range of application. We also reveal the conditions
for the strongest manifestation of the velocity dependence of the collision rates, which affects most strongly the
anomalous LID.@S1050-2947~99!02904-2#

PACS number~s!: 42.50.Ct, 42.62.Fi, 42.50.Vk
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I. INTRODUCTION

As is well known, the resonant interaction of laser rad
tion ~plane monochromatic traveling wave! with a gas mix-
ture gives rise to a nonequilibrium velocity distribution
the absorbing-gas particles because of the Doppler ef
Collisions with buffer-gas particles distort this no
equilibrium structure~see@1,2#!. The radiation with a speci
fied direction of propagation~say along thez axis! only cre-
ates a nonequilibrium distribution along this particu
direction, i.e., the direction of the wave vectork5kez . The
velocity distributions for the other degrees of freedom
not affected by the radiation itself, but are nonequilibriu
due to collisions: The collisions transfer the nonequilibriu
distribution to degrees of freedom which are orthogona
the wave vectork. The distribution functions of the
absorbing-gas particles are governed by the quantum kin
equation~Boltzmann equation!, which is a three-dimensiona
integro-differential equation in the general case. Theref
we need the solution of the Boltzmann equations for
analysis of the interaction of laser radiation with a gas.

Let us briefly review the most popular models which a
used now for the solution of the Boltzmann equations, v
the models of strong and weak collisions, the Keilson-Sto
model for the collision kernel, and the model of Lorentz g
~three- and one-dimensional variants!. The kinetic equation
may be only analytically solved for arbitrary intensity
resonant radiation in the framework of the strong-collisi
model @3# ~see also@1,2,4#!. The model of weak collisions
may only be used analytically in the limit of small intensi
of the resonant radiation with the help of an iteration meth

*Author to whom correspondence should be addressed. Electr
address: privalov@iae.nsk.su
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The kinetic equation in the framework of the Keilson-Stor
kernel may only be solved numerically. All these three mo
els assume the absence of any collisional transfer of the n
equilibrium distribution to the degrees of freedom orthogo
to k ~i.e., v'). They are also based on velocity-independe
collision rates.

It is obvious now that the investigations of nonequili
rium systems inspire new efforts in the modeling of collisi
integrals, especially in the case when nonequilibrium con
tions are created by laser radiation. It is now worthwhile
consider the influence of subtle factors on the collision in
gral ~the behavior of the collision integral kernel!. It is clear
that the modern problems of nonlinear spectroscopy and
kinetics definitely demand at least an account of the velo
dependence of the collision rates~see@5–8#!. It is precisely
this velocity dependence that causes the so-called anoma
light-induced drift ~LID ! ~see @9–12#, and references
therein!. The Lorentz gas model may be used for a quali
tive investigation of the role of this velocity dependence, b
only in the limit of heavy buffer gas. The Lorentz gas mod
allows an analytical solution of the kinetic equation, but t
conditions for its applicability are seldom realized.

Therefore we evidently need to develop a new model
collision integral with velocity-dependent collision rates a
dramatically broader range of application, relative to all t
above mentioned models. As far as we need to model
collision integral, we must answer an old but important qu
tion. This fundamental question is about validity of the on
dimensional collision integral as a substitution for the thre
dimensional one. This question was formulated earlier@1,2#,
but the validity of the one-dimensional formulation wa
based only on the qualitative arguments of weak collisio
transfer of nonequilibrium distribution on the velocitiesv'

orthogonal to the wave vectork.
The one-dimensional kinetic equation is evidently mu

simpler to solve~both numerically and analytically! than the
ic
4331 ©1999 The American Physical Society
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4332 PRA 59T. PRIVALOV AND A. SHALAGIN
three-dimensional one. The interpretation of the solutions
the one-dimensional kinetic equation is clearer as well.
addition, the three-dimensional collisional kernel has sin
larity A(v,v8)}uv2v8u21 for v5v8, and the one-
dimensional kernelA(vz ,vz8) is finite whenvz5vz8 .

So it is important to know if one can use the on
dimensional collision integral with a reasonable accura
The aim of our paper is to make a comprehensive quan
tive comparison of solutions of three- and one-dimensio
kinetic equations with velocity-dependent collision rates a
to define the area of applicability of the one-dimensio
collision integral.

Our paper is organized as follows. We develop a mo
for the collision integral with velocity-dependent collisio
rates for the analysis of the kinetic equations in the m
general conditions~Sec. II!. The velocity-dependent collision
rates act as parameters of our model. The kinetic equat
are solved analytically~Sec. III! for arbitrary radiation inten-
sity, arbitrary ratio of homogeneous to Doppler widths, a
arbitrary mass ratio in the three- and one-dimensional v
ants of the model~see Secs. III A and III B, respectively!.
These exact analytical solutions were used for a quantita
comparison of the absorption line shape~Sec. IV!, the probe-
field absorption line~Sec. V!, and the frequency dependen
of the LID velocity ~Sec. VI! for three- and one-dimensiona
variants of the model. Our findings are summarized in S
VII.

II. FORMULATION OF THE MODEL

The distribution functionsre(v) and rg(v) of two-level
particles in the excited,e, and ground,g, states describe th
evolution of the absorbing gas in a resonant monochrom
radiation field. They obey the following equations:

S ]

]t
1v“1GeD re~v!5Se~v!1NP~v!,

S ]

]t
1v“ D rg~v!5Sg~v!1Gere~v!2NP~v!, ~1!

where N5^re(v)1rg(v)& is the total concentration of ab
sorbing particles;P(v) denotes the absorption rate~absorp-
tion probability per unit time! of a particle with velocityv;Ge
is the excited state decay rate; andSi(v) is the integral of
collisions between absorbing- and buffer-gas particles o
( i 5g,e). The concentration of the buffer gas is supposed
be much larger than the concentration of the absorbing
so we can neglect collisions between the absorbing-gas
ticles. We denote by angle brackets,^ &, the integration over
velocity v.

Neglecting the effects of phase memory in the collisio
we have the following well-known expression forP(v):

P~v!5
2uGu2G~v !

G2~v !1~V2kv!2

1

N
@rg~v!2re~v!#, G5

Edeg

2\
,

~2!

whereV5v2veg is the detuning of the laser frequencyv
from the resonant frequencyveg of the transitione→g; E
and k denote the amplitude of the electric field and wa
f
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vector of the radiation, respectively;deg is the dipole matrix
element. The velocity-dependent homogeneous linewi
G(v), in expression~2! is the sum of the spontaneous,Ge/2,
and collision,g(v), widths:

Ge~v !5
Ge

2
1g~v !. ~3!

The collisional shift of the resonant frequencyveg may be
included inV.

The general formula for the elastic collision integral rea

Si~v!52n i~v !r i~v!1E r i~v8!Ai~vuv8!dv8, i 5e,g.

~4!

HereAi(vuv8) is the collision integral kernel.
The collision integral~4! must satisfy particle conserva

tion, ^Si(v)&50; therefore we have the known relation b
tween the elastic collision frequencyn i(v) and the kernel
Ai(vuv8):

n i~v !5E Ai~v8uv!dv8. ~5!

One can say that the model of the collision integral is no
ing more than the model of its kernel,Ai(vuv8).

The starting point of our model is the assumption of fa
torization of the kernel

Ai~vuv8!5 f i
~1!~v! f i

~2!~v8!. ~6!

According to Eqs.~5! and ~6! we have

f i
~2!~v!5

n i~v !

^ f i
~1!~v!&

. ~7!

The kernelsAi(v8uv) must satisfy the following condition
@1,2#:

Ai~v8uv!W~v!5Ai~vuv8!W~v8!.

This condition together with assumption~6! results in the
following relation betweenf i

(1)(v) and f i
(2)(v):

f i
~1!~v!5

^ f i
~1!~v!& f i

~2!~v!W~v!

^ f i
~2!~v!W~v!&

. ~8!

Taking into account formulas~7! and~8!, we obtained the
final expression for the collision integral kernel~6!:

Ai~vuv8!5
n i~v !W~v!n i~v8!

^n i~v !W~v!&
. ~9!

The kernel~9! leads to the final expression for the collisio
integral ~4! itself ~the so-called ‘‘kangaroo’’ model@13#!,

Si~v!52n i~v !r i~v!1
n i~v !W~v!

^n i~v !W~v!&
^r i~v!n i~v !&,

i 5e,g. ~10!
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PRA 59 4333EXACT SOLUTION OF THE ONE- AND THREE- . . .
The essence of our model~10! is as follows. After each
collision the velocity distribution of absorbing particles b
comes isotropic, but it differs from the equilibrium Maxwe
distributionW(v) due to the velocity dependence of the co
lision rates,n i(v). In other words, after each collision eve
direction of velocity has equal probability, but the absolu
value of the velocity may be arbitrary, due to the arbitra
velocity dependence of the collision rates. These collisi
do not change electronic states of atoms, and are elast
this sense. Our model~10! coincides with the well-known
strong-collision model in the limit of velocity-independe
collision rates.

Under the assumption of weak transfer of the nonequi
rium velocity distribution to the orthogonal~to k… projec-
tions,v' , due to collisions, we may postulate~see also@1,2#!
that

r i~v!5W~v'!r i~vz!, ~11!

where thez axis is along the wave vectork. Let us substitute
the expression~11! in Eq. ~1! and then integrate Eq.~1! over
v' . In view of the collision integral~10!, we have the for-
mula for the one-dimensional collision integral

Si~vz!52n i~vz!r i~vz!

1
n i~vz!W~vz!

^n i~vz!W~vz!&
^r i~vz!n i~vz!&, i 5e,g

~12!

where the angle brackets, denote integration overvz now;
n i(vz) stand for the one-dimensional collision rates of t
statese,g with the following definition:

n i~vz!5E Ai~vz8uvz!dvz85E n i~v !W~v'!dv' . ~13!

The one-dimensional kernel is related to the thr
dimensional one by the well-known formula@1,2#

Ai~vzuvz8!5E Ai~vuv8!W~v'8 !dv'dv'8 .

Therefore the one-dimensional kernel has the evident fo

Ai~vzuvz8!5
n i~vz!W~vz!n i~vz8!

^n i~vz!W~vz!&
, i 5e,g. ~14!

It is worth mentioning that the model~12! with kernel ~14!
may be obtained directly from the assumption of the fact
ization of the one-dimensional kernel,Ai(vzuvz8)
5 f i

(1)(vz) f i
(2)(vz8), similar to expression~10!. One needs

also to use the conservation of particles and the stab
condition for the one-dimensional Maxwell distributio
W(vz).

Let us make one important remark at the end of this s
tion. The statement that the collisions do not transfer
nonequilibrium distribution to the orthogonal velocitiesv'

results in the fact that the integral

E Ai~v8uv!dv'8
s
in

-

-

:

-

ty

c-
e

does not depend onv' . This is true only in the case o
velocity-independent collision rates. The reverse is not t
in general. But it is more or less evident that the transfer
the nonequilibrium distribution to the orthogonal projectio
of velocity and the velocity dependence of the collision ra
are strongly related to each other.

III. EXACT SOLUTION OF THE KINETIC EQUATIONS

A. Three-dimensional collision integral

We are going to solve the three-dimensional kinetic eq
tions ~1! with the account of expressions~2! and ~10!. The
distribution functions of absorbing particles,re(v) and
rg(v), depend on the absorption probabilityP(v) in the fol-
lowing way:

re~v!5NH P~v!t1e~v !1W~v!t2e~v !
^P~v!t2e~v !&

^W~v!t2e~v !&J ,

~15!

rg~v!5NW~v!2NH P~v!t1g~v !

1W~v!t2g~v !
^P~v!t2e~v !&

^W~v!t2e~v !&J
1

NW~v!

^W~v!t2e~v !&
@^P~v!t2e~v !&^t2g~v !W~v!&

2^P~v!t2g~v !&^t2e~v !W~v!&#,

where

t1e~v !5
1

Ge1ne~v !
, t2e~v !5

1

Ge
2t1e~v !,

t1g~v !5
1

Ge1ng~v !

ne~v !

ng~v !
, t2g~v !5

1

Ge
2t1g~v !.

~16!

The velocity distribution of excited particles,re(v), con-
sists of two qualitatively different terms. The first term
proportional to the absorption rateP(v). This is the velocity-
selective distribution created by laser radiation and not
fected by collisions. The second term in the expression
re(v) is velocity isotropic. But it deviates from the equilib
rium distribution in general. This deviation is only based
the velocity dependence of the collision rates.

The two terms in curly brackets of the expression
rg(v) have the same meaning as the corresponding term
the expression forre(v). The third term inrg(v) is the equi-
librium Maxwellian distribution. This distribution exists onl
due to the infinite lifetime of the ground stateg; it is nonzero
only if ng(v)Þne(v).

The factors~16! are velocity dependent and have a cle
physical meaning. The value oft1e(v) stands for the time
interval between excitation and the first collision with
change in velocity. The sum oft2e(v) andt1e(v) is the total
lifetime 1/Ge of the excited state. Thereforet2e(v) is the
time complementingt1e(v) up to the total lifetime. The



n
f

e

e
n

he

ty
p-

e-
he

etic
re-

ine
the
ity
ffer-
tion

er-
to

i-

ort

4334 PRA 59T. PRIVALOV AND A. SHALAGIN
meaning of other quantities,t1g(v) andt2g(v), is the same
as for the factorst1e(v) andt2e(v).

In the limit of weak radiation intensity one hasrg(v)
@re(v) and rg(v)→NW(v), so that rg(v)2re(v)
5NW(v). Therefore the absorption rateP(v) is defined be-
forehand. Consequently in the limit of weak radiation inte
sity expressions~15! are the final solution of the problem. O
course in the general case~for high radiation intensity, for
example! one needs to find the absorption rateP(v) with the
help of expressions~16! and ~2!. The solution of the corre-
sponding integral equation is the following:

P~v!5
f ~v!W~v!

B~V!
@^t2e~v !W~v!&1t1~v !^ f ~v!W~v!t2e~v !&

2^ f ~v!W~v!t1~v !t2e~v !&#. ~17!

The velocity-independent functionB(V) in Eq. ~17! de-
pends on the detuningV as follows:

B~V!5^t2e~v !W~v!&@11^t2~v ! f ~v!W~v!&#

1Št2e~v ! f ~v!W~v!@^t1~v !W~v!&2t1~v !

1^t2~v !t1~v ! f ~v!W~v!&2t1~v !

3^t2~v ! f ~v!W~v!‹#, ~18!

where

f ~v!5
1

t1~v !

G2~v !k~v !

G2~v !@11k~v !#1~V2kv!2
,

wherek(v) is the so-called saturation parameter

k~v !5
2uGu2

G~v !
t1~v !5k0

Ge
2t1~v !

G~v !
, k05

4uGu2

Ge
2

.

We introduced in Eqs.~17! and ~18! the following time
scales:

t1~v !5t1e~v !1t1g~v !5
1

Ge1ne~v !F11
ne~v !

ng~v !G ,
t2~v !5t2e~v !1t2g~v !5

2

Ge
2t1~v !. ~19!

These times,t1(v) andt2(v), keep their traditional meaning
~see@2–4#, for example!, with the velocity dependence as th
only difference. For example, the factort1(v) is the effec-
tive time interval for an atom being in interaction with th
radiation field from the instant of excitation to a collisio
with velocity change, regardless of the atomic state.

After integration of expression~17! over velocitiesv of
absorbing particles we have the following formula for t
absorption probability per unit time for one atom:

P[^P~v!&5
1

B~V!
@^ f ~v!W~v!&^t2e~v !W~v!&

1Šf ~v!W~v!t2e~v !$^ f ~v!W~v!t1~v !&2t1~v !

3^ f ~v!W~v!&%‹#. ~20!
-

Consider the important case of equal collision rates

ng~v !5ne~v !. ~21!

It follows from the condition~21!, with the account of Eq.
~16!, that

t1e5t1g5t1/2, t2e5t2g5t2/2.

The expression for the absorption rateP(v) is

P~v!5
f ~v!W~v!

B̃~V!
@^t2~v !W~v!&1t1~v !^ f ~v!W~v!t2~v !&

2^ f ~v!W~v!t1~v !t2~v !&#, ~22!

and

P[^P~v!&5
1

B̃~V!
@^ f ~v!W~v!&^t2~v !W~v!&

1Šf ~v!W~v!t2~v !$^ f ~v!W~v!t1~v !&

2t1~v !^ f ~v!W~v!&%‹#. ~23!

The expression forB(V) is now considerably simplified:

B̃~V!52B~V!5^W~v!t2~v !&2^ f ~v!W~v!t2
2~v !&.

~24!

The velocity dependence of the collision rates,ng(v) and
ne(v), introduces a significant complication to the veloci
distribution ~15! and to the final expressions for the absor
tion rate~17!, ~20!, ~22!, and~23! relative to the results of the
model with velocity-independent collision rates. All our r
sults coincide naturally with the previous results for t
strong-collision model~see@3,4#! if we neglect the velocity
dependence of the collision rates in our formulas.

B. One-dimensional collision integral

One may use the same approach in solving the kin
equations with the one-dimensional collision integral. The
fore we may use formulas~20!, ~17!, and~15!, with the evi-
dent permutation f (v)→ f (vz),W(v)→W(vz),n j (v)
→n j (vz).

IV. ABSORPTION LINE SHAPE

We are now ready for a comparison of the absorption l
shape in the three- and one-dimensional variants of
model. Our aim is to extract the influence of the veloc
dependence of the collision rates on this shape under di
ent conditions. The exact solutions of the preceding sec
are a nice groundwork for this comparison.

The integration over velocities is supposed to be p
formed numerically in all expressions. Therefore we need
specify the velocity dependence of the collision rates.

The parameters of our model,n j (v), describe the colli-
sions with loss of the directed velocity. Therefore it is obv
ous to identify these parameters,n j (v), with the transport
collision rates.

The transport collision rates are related to the transp
cross section of collisions as follows~see@2#!:
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n j~v !5
8mNb

ApM v̄b
5 E0

`

du u5s tr j~u!expS 2
v21u2

v̄b
2 D

3Fq cosh~q!2sinh~q!

q3 G , ~25!

herem stands for the reduced mass;q52vu/ v̄b
2 . We restrict

ourselves to the case of power potentials of the follow
form: U(r )}r 2n. The transport collision cross section~see
@2#! for the classical trajectories reads

s tr j~u!5s tr j~ v̄b!@u/ v̄b#24/n , ~26!

whereu is the relative velocity of the colliding particles an

v̄b is the most probable velocity of buffer particles. Th
buffer-gas particles are supposed to be in equilibrium w
the same temperature as the absorbing particles.

Expressions~25! and ~26! give the following expression
for the three-dimensional collision rates~see also@2#!:

n j
~3!~v !5n j~0!F„2/n21/2,5/2;2~u/ v̄b!2

…, ~27!

where

n j~0!5m/mNbv̄bs tr j~ v̄b!
4

3Ap
G~322/n!,

F(a,g;y) is the confluent hypergeometric function.
The expression for the one-dimensional collision rate

evident from Eqs.~13! and ~27!:

n j
~1!~vz!5

n j~0!

~11b!a

G~g!

G~a!(k50

`
~21!k

k!

G~a1k!

G~g1k! S b

11b D k

32F1S a1k,g211k,g1k;
b

11b D S vz

v D 2k

,

~28!

the quantityn j (0) was defined above, andF(•••) is the
hypergeometric function.

We used the notationm andMb for the masses of absorb
ing and buffer particles;Nb is the concentration of the buffe
particles;G(x) is theG function; a52/n21/2, g55/2, and
b5Mb /m.

The collision rates for different states,ng(v) andne(v),
are not equal in general. This difference is not so import
for the analysis of the absorption line shape, therefore we
neglect it. Consider now the case of state-independent
rametern andng(0)5ne(0). This case corresponds to Eq
~23! and ~24!. The role of the velocity dependence of th
collision rates is larger for larger values of the ra
n j (v)/Ge . The obvious limiting case is the infinite value o
this ratio:z5ng(0)/Ge@1.

The velocity dependence of the collision rates is the m
important factor in the caseb→` andn→`, as one can see
from Eqs.~28! and~27!. The absorption line shape is show
in Fig. 1~a! for the three- and one-dimensional variants of t
model ~curves 1 and 2, respectively!. We added reference
calculations with velocity-independent collision rates, eq
g

h

s

t
an
a-

st

l

to n (3)(0). Thefollowing parameters were used:m57 a.u.,
T5300 K,z54.0,k051.0,G/kv̄50.2. Calculations withb
→`,n56 and b519,n→`, are shown in Figs. 1~b! and
1~c!, respectively. All other parameters are the same as
Fig. 1~a!. The influence of the velocity dependence of t
collision rates is small now, and the difference between
one- and three-dimensional models is even much sma
The calculations for a realistic mixture~the atomic vapors of
Li in Xe buffer gas withb519 andn56) are plotted in Fig.
1~d!. The result is that the influence of the velocity depe
dence of the collision rates is very small. The curves for o
and three-dimensional models are hardly distinguishable

This result may be formulated in the following way. Fo
realistic parameters of interaction potential and mass r
the influence of the velocity dependence of the collision ra
on the spectral shape is noticeable, but very small. Under
same conditions, the one- and three-dimensional mo
hardly differ from one another. This is a clear indication th
the collisional transfer of the nonequilibrium distribution o
v' is weak and the one-dimensional kinetic equation is va
@see Fig. 1~d!#.

Let us focus now on the shape of the nonlinear resona
in the absorption profile of the probe field. This phenomen
is known to be sensitive to the velocity dependence of
collision rates.

V. NONLINEAR PART OF WORK DONE
BY A PROBE FIELD

The influence of the velocity dependence of the collisi
rates on the absorption line of a probe field~namely, the
nonlinear part of the work done by the probe field! is now
easy to detect in an experiment. Therefore it is importan
known exactly the discrepancy between the calculations
the probe-field absorption in the one- and three-dimensio
models. We are going to analyze this question in the fram

FIG. 1. Absorption rate~in arbitrary units! vs dimensionless

detuning, x5V/(kv̄). ~a! b→`,n→`; ~b! b→`,n56; ~c! b
519,n→`; ~d! b519,n56; Curves 1 and 2 correspond to th
one- and three-dimensional approach, curve 3 to the model
velocity-independent collision rates. The values of all other para
eters are defined in the text.
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4336 PRA 59T. PRIVALOV AND A. SHALAGIN
work of the ‘‘kangaroo’’ model and calculate the nonline
part of the work done by the probe field.

We consider the case where the probe field~with wave
vector km) and the strong field~with wave vectork) are
resonant with one and the same transitiong→e of two-level
particles:Vm5vm2veg and V5v2veg are the detunings
of the probe- and strong-field frequenciesvm andv from the
resonant frequencyveg , respectively. Thekm andk are as-
sumed to be antiparallel (km52k). The first nonlinear terms
in the expression for the work done by the probe field are
solutions of this problem in the limit of large Doppler broa
ening. This is the case when the nonlinear part of the pro
field absorption line is caused only by active level populat
change under the interaction with the strong laser field. T
corresponding expression for the absorption line of the pr
field is the following~see also@1,2#!:

Pm~Vm!}uGmu2K @rg~v!2re~v!#
G~v !

G2~v !1~Vm2kv!2L .

~29!

Using Eqs.~29! and ~15! one gets the following expres
sion for the probe-field absorption line:

Pm~Vm!}uGmu2^W~v! f ~v,Vm!&

22uG0u2uGmu2H ^W~v! f ~v,Vm! f ~v,V!t1~v !&

1 K W~v! f ~v,Vm!F ^t2~v ! f ~v,V!W~v!&

2
^t2e~v ! f ~v,V!W~v!&

^t2e~v !W~v!&

3@t1(v)2^t1(v)W(v)&G L J . ~30!

In first order approximation

f ~v,V!5
G~v !

G2~v !1~V2kv!2
.

Consider expression~30! for P(Vm) as a function ofVm .
The first term in the curly brackets of expression~30! de-
scribes the nonlinear resonance, the second term stand
the homogeneous saturation band.

It is not possible to analytically evaluate the integrals
expression~30! in the three-dimensional model. The simple
expression for the probe-field absorption line in this thr
dimensional case is the following:
e

e-
n
e
e

for

t
-

Pm
~3!~xm!5

ApuGmu2

kv̄
H e2xm

2F12
2ApuG0u2

kv̄

3E
uxu

`

e2t2
t

2S t2
~3!~ t !2t2e

~3!~ t !

3
t1

~3!~ t !2^t1
~3!~ t !W~v!&

^t2e
~3!~ t !W~v!&

D dtG
2

2uG0u2

kv̄
E

uxmu

`

e2t2
t

2

y~ t !t1
~3!~ t !

y2~ t !1~x1xm!2
dtJ .

~31!

The superscript ‘‘~3!’’ denotes the three-dimensional tim
factors~17! and ~19!; xm5Vm /(kv̄);t5v/ v̄; all other nota-
tions are defined above.

The one-dimensional version of Eq.~30! may be obtained
by the trivial permutation f (v,V)→ f (vz ,V),W(v)
→W(vz),n j (v)→n j (vz) ~see also Secs. IV and III B!. It is
remarkable that in the one-dimensional case it is possibl
evaluate the integrals analytically. We have the followi
rather simple expression in the one-dimensional model@com-
pare with Eq.~30!# without integrals:

Pm
~1!~xm!5

ApuGmu2

kv̄
e2xm

2 H 12
2ApuG0u2

kv̄

3Fe2x2S t2
~1!~x!2t2e

~1!~x!

3
t1

~1!~xm!2^t1
~1!~vz!W~vz!&

^t2e
~1!~vz!W~vz!&

D
2

1

Ap

y~x!t1
~1!~x!

y2~x!1~x1xm!2G J . ~32!

A comparison between Eqs.~32! and ~31! clearly reveals
the advantage of the one-dimensional version of the mo
Expressions~32! and ~31! do coincide in the case o
velocity-independent collision rates.

We again need to use the velocity-dependent collis
rates~27! and ~28! for the numerical comparison of expre
sions ~32! and ~31! and the analysis of the behavior of th
nonlinear resonance.

The results of the calculations are plotted in Fig. 2 in t
limiting case of the strongest velocity dependence of the c
lision ratesb→` andn→`; solid lines correspond to three
dimensional and dotted lines correspond to one-dimensio
models.

The homogeneous saturation band appears to be
weakly sensitive to the model of the collision integral~one or
three dimensional!. The nonlinear resonance may be cons
ered to be quite sensitive to the type of model. The deviat
may be up to 50% of the absolute value. The more reali
parameters,n56 and b519, are used for the calculation
presented in Fig. 3. This case reveals a small discrepa
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between the three- and one-dimensional models~less than
10% of the absolute value!. This discrepancy tends to de
crease with decreasing parameterb.

So we see that the nonlinear resonance in the probe-
absorption line is much more sensitive to the velocity dep
dence of the collision rates than the absorption line shap
only one laser field. Consequently, the nonlinear resonanc
much more sensitive to the type of model~three- or one-
dimensional collision integral!. Nevertheless, one can use t
one-dimensional collision integral with good accuracy ev
in such problems.

VI. LIGHT-INDUCED DRIFT

The aim of this section is to evaluate the light-induc
drift velocity for the three- and one-dimensional versions

FIG. 2. The nonlinear part of the probe-field absorption rate~in

arbitrary units! vs dimensionless detuning,xm5Vm /(kv̄), of the
probe field. b→`,n→`,z51.0,k051.0; ~a! x50; ~b! x51.5.

x5V/(kv̄) is the dimensionless detuning of the strong field. T
amplitude of the homogeneous saturation band is increased
factor of 10. The values of all other parameters are defined in
text.

FIG. 3. The same as in Fig. 2, butb519, n56. All other pa-
rameters are the same. Arbitrary units are used, the notation i
same as in Fig. 2.
ld
-
of
is

n

f

our model. Let us briefly recall the essence of the LID effe
@14,15,2# ~see also reviews@16,17#!. LID arises when atoms
or molecules, mixed with some buffer gas, are excited
radiation. The bases of the phenomena are the veloc
selective interaction of the laser radiation with the absorb
particles~due to the Doppler effect! and the change of trans
port collision properties of the absorbing particles becaus
the excitation~state-dependent friction by the buffer gas!.

The LID velocity is given by the expression

u5
1

N
^v$rg~v!1re~v!%&. ~33!

The distribution functions~15! and expression~33! give
the following formula for the drift velocity:

u5E ng~v !2ne~v !

ng~v !@Ge1ne~v !#
vP~v!dv, ~34!

the absorption rate,P(v), Eq.~17!, was discussed in Sec. IV
The one-dimensional variant of Eq.~34! is quite obvious:

u5E ng~vz!2ne~vz!

ng~vz!@Ge1ne~vz!#
vzP~vz!dvz . ~35!

Expressions~34! and ~35! coincide in the case of velocity
independent collision rates, as one may expect. These for
las show that the difference of the collision rates of differe
states is absolutely essential for the existence of LID. The
fore we consider now the values of the parametersn j (0) and
n in the transport collision rates as state dependent with
evident notation:ne(0) andng(0),ne andng . Now it is also
convenient to introduce the parameterD5ne(0)/ng(0).

A. Traditional LID effect

Let us consider the frequency dependence of the LID
locity ~34! and ~35! in the case of normal LID, when the
values of the transport collision rates of two different sta
are significantly different. The relative difference of th
transport collision rates in Eqs.~34! and ~35! is very weak,
with small influence on the frequency dependence of co
sponding integrals. Therefore the frequency dependenc
the drift velocity is described by a dispersionlike curve~the
first frequency derivative of the absorption line shape!. It is
obvious to expect the maximum difference between
three- and one-dimensional models in the case of the st
gest velocity dependence of the collision rates, whenng ,ne
→`. We simulated the frequency dependence of LID velo
ity ~34! and ~35! for parametersng5ne→`,b519,D
51.2,z54.0,k051.0. The results are shown in Fig. 4~a! ~in
arbitrary units!. The deviation of the ‘‘three-dimensional’
formula ~34! from that of the ‘‘one-dimensional’’ formula
~35! ~curves 1 and 2, respectively! is much smaller than the
difference of these results from the result obtained in
model with velocity-independent collision rates. The infl

a
e

he



th
v
s

he

el
. I

b
o

s

de

io
n
ID

ro
pe
is

e

al
d

ol-

g to
-
in

ted
4

us
ity

ec-

ne-
ip-
ly
the
ion
he

ent
e-
ar-
ary
for
us

ra-
ak

to
tic
nal
ns

oc-
n
s is
ne-

om-
he
l-
r-
the

r F.
.
un-

of

ee
ity
fin
of

ee
u

h

4338 PRA 59T. PRIVALOV AND A. SHALAGIN
ence of the velocity dependence of the collision rates on
LID velocity is small, as one can expect under the abo
mentioned conditions. The difference between the curve
and 2 decreases with the decrease of the parametersng and
ne . This difference is hardly noticeable on the plot for t
valuesb,19 andng,e,10.

B. The anomalous LID

The so-called anomalous LID~see@9–12#, and references
therein! is an exceptional effect, because it is complet
caused by the velocity dependence of the collision rates
deed, the transport collision rates may have close values
different velocity dependence. The difference in transp
collision rate,Dn, in Eqs.~34! and~35! may change sign a
a function of velocity near the most probable velocityv̄.
Therefore particles with positive and negative values ofDn
make comparable contributions to Eq.~34! or Eq. ~35!. This
is the cause of the dramatic deviation of the frequency
pendence of LID velocity,u(x), from the dispersionlike
curve: The dispersionlike curve has only one zero forx50
@see Fig. 4~a!#, wheras the anomalous LID velocityu(x) has
additional zeros as a function of the detuningx.

The anomalous LID velocity is caused by the factorDn.
Therefore account of the velocity dependence of the collis
rates in this factor only for the calculation of expressio
~34! and ~35! must correctly describe the anomalous L
with good accuracy. It is remarkable that expressions~34!
and ~35! coincide due to the definition~13!. Taking the ve-
locity dependence in all factors into account may only p
duce small corrections to this approximate shape of the s
tral dependence of LID velocity. The importance of th
correction increases with increasing velocity dependenc

FIG. 4. ~a! The frequency dependence of the drift velocity
‘‘normal’’ LID ~in arbitrary units! vs dimensionless detuning,x

5V/(kv̄). Curves 1 and 2 correspond to the one- and thr
dimensional approaches; curve 3 is the model with veloc
independent collision rates. The values of all parameters are de
in the text.~b! The frequency dependence of the drift velocity
anomalous LID~in arbitrary units! vs dimensionless detuning,x

5V/(kv̄). Curves 1 and 2 correspond to the one- and thr
dimensional approach, curve 3 to the calculation taking into acco
velocity dependence of the collision rates only in the factorDn,
curve 4 to the model with velocity-independent collision rates. T
values of all parameters are defined in the text.
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the collision rates and the role of collisions. Our numeric
calculations@see Fig. 4~b!# prove this conclusion. We use
the following values of parameters:b519,z54.0,k0

5150,ne56,ng57. Curve 3 in Fig. 4~b! corresponds to the
calculation with account of velocity dependence of the c
lision rates only in the factorDn in Eq. ~34! or Eq. ~35!.
Curves 2 and 1 correspond to the calculations accordin
Eqs.~34! and~35! with complete account of velocity depen
dence of the collision rates. The results of the calculation
the frame of velocity-independent collision rates are plot
as curve 4. The comparison of curves 1, 2, 3 with curve
~see Fig. 4! clearly reveals the manifestation of anomalo
LID. We may also conclude that the account of veloc
dependence of the collision rates only in the factorDn de-
scribes the anomalous LID with good accuracy. The corr
tion caused by the type of model~three or one dimensional!
is small ~less than 10% forb,6).

So, there is a range of parameters where the o
dimensional collision integral is valid even for the descr
tion of anomalous LID. Moreover, it is possible to correct
describe the anomalous LID without taking into account
velocity dependence of the collision rates in the absorpt
rate P(v), but taking this dependence into account in t
difference of the collision ratesDn only ~see also@17#!.

VII. CONCLUSION

The model of collision integral~10! is a generalization of
the strong-collision model in the case of velocity-depend
collision rates. The analytical solution of the thre
dimensional quantum kinetic equation is possible for an
bitrary system of levels of absorbing particles and arbitr
parameters in the problem. We have found this solution
two-level particles. The exact analytical solution enables
to analyze the absorption probability of monochromatic
diation, the nonlinear part of the work done by the we
probe field, and the light-induced drift velocity.

One of the advantages of the model is that it allows us
analyze in detail the validity of the one-dimensional kine
equation. The comparison of the three- and one-dimensio
versions of the present model, with the help of calculatio
of the absorption rate, probe-field absorption, and LID vel
ity revealed a remarkable ‘‘hierarchy.’’ The derivatio
caused by the velocity dependence of the collision rate
much larger than the difference between the three- and o
dimensional solutions.

Our approach is not supposed to be universal and c
pletely general. However, the ‘‘kangaroo’’ model opens t
possibility of quantitatively justifying the idea of small co
lisional transfer of the nonequilibrium distribution on the o
thogonal degrees of freedom and proves the validity of
one-dimensional kinetic equation.
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