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I. INTRODUCTION nium is of the order of the fine-structure constar€1. It is
appropriate to apply a nonrelativistic approximation to this
Spectroscopy of positroniulfP9 provides a sensitive test system.
of bound state theory based on the quantum electrodynamics Recently much progress has been achieved in the frame-
(QED). Because of the small mass of electron and positronywork of nonrelativistic effective theories, mainly by employ-
the effects of strong and weak interactions are negligibleng dimensional regularization. It has been showh that
compared with the accuracy of present experiments. For thithis regularization procedure permits an exact separation of
reason positronium represents a unigue system which can, &ffects arising at various characteristic energy scales. Using
principle, be described with very high precision by means otthat method, which we will call dimensionally regularized
QED only. Tests of the QED predictions are made possibl&NRQED (NRQEDR), the complete energy spectrum of Ps
by the very high experimental accuracy of positronium spechas been reproduced to ordex® [8]. More recently, we
troscopy([1]. have computedna® corrections to the hyperfine splitting
The gross spectrum of positronium is well described by(HFS) of the Ps ground staf®], confirming one of the pre-
the Schrdinger equation with the Coulomb potential. En- viously obtained numerical resulf0]. In the present paper
ergy levels are we generalize that result to d@lstates, confirmingi11], and
compute also their spin-independent shiftG¢ma®) (ob-
tained numerically irf11]).
ma? It is convenient to describe the energy ofre@state of Ps
E(n)=- an2’ (1) by dividing it up into the spin-averaged part and a part de-
pendent on the total Ps spihyperfine splitting:

wheren is the principal quantum number. For the purpose of E(J,n)=Eque(n) +s; - S_Exeg(n), 2

interpreting modern experiments the precision of Hg.is

insufficient. Corrections to the energy levels can in part bevhereJ is the total spin value of the Ps asd are the spins

described by the quantum mechanics; however, for a consf the electron and positron, respectively. One finds

plete description one has to resort to the quantum field theory

(QFT). Unfortunately, an application of the QFT to the ) 1

bound states is difficult and special methods have to be de- J=1 (uipletstatg: s,-s-=+,

vised[2-5].

Various approaches to bound state calculations have been

reviewed, e.g., irﬁ6.]..H¢re we focus on a method close to the J=0 (singletstatg s,-s =—-.

so-called nonrelativistic quantum electrodynanm{iRQED) 4

[5], which is an effective field theory based on QED, for

small energies and momenta. Equatidh implies that the Both the spin-averaged energy and the hyperfine splitting

characteristic velocity of the electron and positron in positro-can be represented by series in powers and logarithms of the
fine-structure constant. In the lowest ord@gg(n) =E(n) is
given by Eq.(1), andEqeg(n) = O(ma?).

()
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vacuum polarization, two-photon exchange, two-photon antomb exchange, this includes the relat®év?) Breit correc-
nihilation, and one-loop correction to the single-photon an+ions and also higher-ord@(v*,av®) terms. This nonrela-

nihilation. tivistic amplitude is gauge invariant, and taken with a minus
Current accuracy of high precision experiments requires aign provides the potential for nonrelativistic particles.

complete calculation of th®©(ma®) correctionsAE, e, and Next, we use the ordinary quantum-mechanical perturba-

AEygs. tion theory to find the corrections due to that potential; as

The most precisely measured property of positronium isunperturbed states we use the solutions of the Siihger
the ground state HFS, i.e., the energy difference between theguation with the Coulomb potential. We get tB¢ma®)
two lowest states with total spin 1 and 0. Two best experi-correction to energy levels as the sum of the first-order cor-
mental values are rection due toO(v* av®) perturbation and of the second-
B 3 N order correction due to the Breit Hamiltonian. Previously,
Av=E(1°S,)~E(1°%)=203 387.51.6) MHz, (4  thjs scheme was used for the calculation of @ena’lin (éz)
. corrections to the levels @& stateg30] and of theO(ma°)
found in[15,16 and corrections to the levels d? stateg31,37.
Av=203 389.100.74 MHz, (5) In the present calculation the result of the nonrelativistic
calculation is divergent. This is because also the short-
obtained in[17]. Another quantity of the experimental inter- distance(*hard”) corrections contribute. They arise from

est is the energy difference of*3, and 13S, stateg18]: virtual momenta regions of the order of electron mass and
cannot be obtained from the nonrelativistic expansion.
E(23S,)—E(11S,)=12336072164.2 MHz. (6) Our calculation is performed in the spirit of NRQED. We

) . apply dimensional regularization, which offers technical ad-
The absolute accuracy of this measurement is clearly lesgantages over more common techniques, based on the intro-
impressive than that of the hyperfine splitting. However,qyction of an intermediate cutoff to separate the relativistic
sincema”=18.658 MHz, a complete calculation of the en- and nonrelativistic momentum regions. Dimensional regular-
ergy levels at this order is warranted. _ ization makes the matching of the low-scale effective theory
At orderma® both AE e and AE s can be written as and the complete QED extremely simple. We find that in the
_ sum of the short- and long-distance contributions the singu-
AE=ABragt ABannin ABrad rect ABrec: (M \arities in the parametére disappear and one arrives at a
finite result.
The spinor algebra in dimensional regularization requires
some comments. In order to obtain the energy shift due to an

tive corrections to the Breit potential &(«,a?) [21,22. opera}tor(’)i, one has to calculate the trace of the form
The three-, two-, and one-photon annihilation contributions! 'L Oi¥ ], whereW is an appropriate wave function. The

giving AE .y, were found in[23), [24], and[25,26], respec-  SPINOr parts of the relevant wave functions are
tively. The nonannihilation radiative recoil contributions
AE,,q ecWere calculated ifi27,28, while pure recoil correc- 1+, 1+,
tions AE,.. were obtained i{10,5,29 for the HFS and in \ppz—o%, \1;0:_07. 3
[11] for E, . 242 242

In this paper we present an analytic calculation of the
recoil and radiative recoil correctiomE, ,qandAE, 4 ree 10
energy levels of arbitrarpS positronium states. The rest of
this paper is organized as follows: in Sec. Il we discuss ou
method in general terms. Section Il is devoted to the calcug,, 42 way in thd-dimensional space. One encounters
lation of the HFS. Many technical details of this calculation only even numbers ofys matrices, and We treat them as
are discussed there. In Sec. IV we present a calculation of thz?nticommuting. ° '

average energiaye,. It is very similar to HES, except that i 00 the matrix elements involve the positronium wave

it ; 6
some additional operators contribute. Also éma®) ra- function, it is easiest to calculate for the ground state (

diative recoil corrections are discussed. Our results are sum- 1). However, once the corrections to the ground state have

The logarithmic contributions at this orde®(ma®In a),
present in the annihilatioAE ., and recoilAE, correc-
tions, were found firsf19,20. AE,,q arises from the radia-

for parapositronium and orthopositronium states, respec-
tively. In the latter caseg is the polarization vectofwe
verage over its directionsThe traces are calculated in a

tum numbem. Only the nonrelativistic contributions have a
nontrivial dependence on. Their computation in dimen-
Il. FRAMEWORK OF THE CALCULATION sional regularization would be difficult. However, this task is
simplified using other regularizations. Finally, we eliminate
the cutoff dependence by requiring that for 1 the result
matches the formula we found far=1. The freedom of

Before going into detail, let us describe the general frame
work of our calculation of th€(ma®) corrections to energy
levels.

First, we calculate an on-shell scattering amplitude for
nonrelativistic ¢ <1) particles to the needed ordghe fact
thatv ~ « in Ps serves as a counting rule for contributions of Throughout the paper, we use the following notatioBss 4
various operatojs In addition to the leading, single Cou- —2e andd=3-2e.
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choosing the regularization scheme simplifies considerably_qiqj /q2)/2|q|, In the latter case, the denominatdgpRarises

this part of the calculation. from the magnetic photon’s phase-space element.
An intermediate state introduces the factde—(E;,
lll. HFS OF THE POSITRONIUM GROUND STATE +i0)~%, whereE;y is the energy of the intermediate state

) ) ) ) andE is the total energy of the process.
In this section we present a calculation of the recoil cor-  pjrac spinors are

rections to the Ps ground stafe.Ers. Itis given as a sum

of soft (nonrelativisti¢ [Eq. (11)] and hard Eq. (70)] scales: 20,
u(p) =\ oA (W, (12
AreErrs™ AnonreErrsT AnardEHrs P

1 331 In2 174(3) 5 wherew denotes the four-spinor of a particle at rest; projec-
=mab| — Eln at T T a2 5 tors on the positive and negative electron energy states are
4 4 8 127 given by
I +(p=z|1lxt— =\p°+m-.
Those two groups of contributions are computed, respec- =P 2 wp o @pTNPm

tively, in Secs. Il A and Il B. Further, in Sec. Il C, we find
a generalization of this result for radially excited statass  In an expression for the potential, the projector contrib-

bitrary n): utes an additional minus sign.
We begin with the contributions of the tree-level effective
mefl 1/ a 1 operators, describing an exchange of the Coulomb or mag-
AreErrs(N) = —5-| — 5( Inﬁ+\1’(n)+ Ye| T+ on oo netic quanta. The tree-level operators, relevant for the
n 2n O(me?®) calculation of the HFS, arise @(v?) corrections

295 In2  174(3) N 5 to the Breit potential.

, 9

1. Tree-level Coulomb photon exchange

For the HFS we need the spin-dependent part of the

where W (n) is the logarithmic derivative of th& function O(v™) correction to the Coulomb exchanfsee Eq(A2)T
and yg=0.577 216 is the Euler constant. Thedependence ©%) feee Eq(A2)]
of this result and its numerical value at=1 are in agree- ma [o-popllo po pl
ment with[10]. Ve(p',p)=— p,o-p po-p _

16n,]4 q2

(13

A. Soft scale contributions . .
To calculate the spin part of the matrix element, we take the

We divide up the nonrelativistic contributions to HFS into trace withd-dimensionalo matrices and f|n(ﬂthe factor 1d

six parts: tree-level Coulomb and magnetic photon exin Eq. (14) arises from the average over directions of the
changes, retardation, one-loop operators, and a second itei@-ps polarization vector

tion of Breit Hamiltonian which includes intermedig®eand
D-wave states:

AnonreFHrs™ AcEnrst AMErrst AreEhrs

+AyiooErest AsErrst ApEpps.  (10) :4d_T4[p'2- p—(p'-p)?], (14

1
>q"aile-p,o-p'lolo’-p' 0" -p])

These partial results, given in Eq1), (26), (33), (35),
(51), and(67), add up tq 9] 1 T , ,
sT([o-po-p'lle’-p' 0" -pl)=4[p"*-p*~(p'-p)?],
mad ) 1 331 (15
AnonreEHFSZF’J’ (0) 2_4 In(ma) + 18" (11
m respectively, for orthopositronium and parapositronium. Us-

. . . . . . in
In the remainder of this section we discuss in detail how 9

these contributions are calculated.
According to standard procedufr@3] we identify the on-

shell scattering amplitude, taken with the minus sign, with, 4 noting that the average valuesf p in an S state van-

the matrix element of an interaction operator in the momenishes, we obtain the contribution ®(p,p’) to the ground

tum representation. The soft scale contributions are calcu§tate HES:
lated using the time-independent “old-fashioned” perturba- ’

p'2-p*—(p'-p)2=(p’-p) —(p’-a)(q-p), (16

tion theory and the Coulomb gauge. Since this technique is ,
not very common, let us recall its basic ingredients. Ex- A E,.—(Vc(p',p))|SL= - ma [(P-9(a-p) _
change of a Coulomb or magnetic photon is described, re- - dm* o

spectively, by —4malq? of —4maa;®aq;(s X
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In Eq. (17) the matrix element is to be calculated over the e
ground-state wave function ith dimensions:

dip d%’ et
)

<f(p,p’)>5f 2] (Zw)d¢(p)¢(p’)f(p,p’)-

Let us briefly explain how the integral in E¢L7) is calcu-
lated. Although the integrand does not look complicated, the r‘g“r Fl‘f
difficulty is that the exact form of the wave functiaf(r) in
d dimensions is not known. Fortunately, it turns out to be ;
unnecessary.
There are two alternative ways to calculate this integral. () (e) )
One is to transform it to the coordinate space. A divergence
arises atr=0 and in the final result is proportional to the — ! 3
d-dimensionalis(0); theremaining, finite part can be easily 3
calculated ind=3.2 s
In the alternative approach we use the fact that the wave
function in Eq.(17) satisfies thed-dimensional Schidinger

equation, which in the momentum space réads (e) (b) 6]
d FIG. 1. Nonrelativistic corrections to HFS and spin-averaged
d(p)= 477amf dk k) ) (18) energy levels(a),(b) Coulomb and magnetic photon exchan@g:-
p’—mEJ (2m)9 (p—k)? (e) retardation effects(f) mixed Coulomb-magnetic exchange)
relativistic correction to the dispersion lan),(i) double Coulomb
Using this equation we rewrite the integral in Ef7) as and magnetic exchange.
(p'-9)(a-p) (0)= [ram 2m’e® __ ma’
L P 2 (PP-mE)?* 4
200 . ) We note that the counterterf0) is constructed in such a
:< (4mam)(p’-9)(q-P) > ) way that the above-mentioned difference vanishes for the
(p*=mE)(p—k)**(p'>~mE)(p’ —k’)? K ground state. This can be easily seen by integrating kér

in Eqg. (20) and using the fact that the p’-dependent terms
in the denominator of E20) coincide(up to a normaliza-
tion factop with the three-dimensional ground-state wave
functions in the momentum representation.

(19

where the integration ovey, p’, as well as, k', in the last

expression is understood. The integral opendp’ receives .
a divergent contribution only from the region wherandp’ Both methods described above lead to the same result. For

simultaneously become infinite. Therefore, a single subtracg:?’_z'f we obtairt

tion is sufficient to make this integral finite. It is convenient o 1 1

to subtract from Eq(19) the following expression: AcEHFs=—2¢2(0)(——4 In(ma) — §), (21
24m €

< (4mam)X(p’-A)(q-p) >
k,k’

(200  where¢(0) is the value of thed-dimensional ground-state
(P>~ mE)2¢?(p'>—mE)? wave function at the origin.

After the subtraction is done, two nice features emerge. In 2. Tree-level exchange of a magnetic photon

Eqg. (20 the integration ovek,k’ factorizes and leads to  We now consider the correction caused by the tree-level
*(0) times a two-loop integral, which can be easily calcu-exchange of a magnetic photon, Fighl We neglect the
lated for arbitraryd. On the other hand, the difference be- energy dependence in the photon propagator; it will be re-
tween the last integral in Eq19) and the integral in E20)  stored in the following section, where we discuss retardation
is finite and can be calculated far=3 using the explicit effects. The relevant potential is obtained from E&¢):

form of the wave function,

o5 e

1 6rn4 q2

2In general, also the derivative of the wave function at the origin,
dy(r)/dr atr=0, can appear in the divergent part of the integral. o o
However, the Schitinger equation relates it t¢(0). tlo-q,0'](p"+p7)
3This equation corresponds to a summation of an infinite number
of ladder diagrams in the Coulomb gauge. For consistency it is
essential to use here dimensional regularization in the same way as'we neglect factord'?(1+¢€) and (4rr?)2€ which do not con-
in the other loop integrations. tribute to the final, finite result.

+(o—0'). (22
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Contribution of this interaction to the ground-state HFS is Here we assume that the magnetic photon with the momen-
, o1 tumk is emitted by the electron at a pointand absorbed by
AnEnes=(Vm(p',p)I=0 the positron at a point, . Between those moments, the evo-
5 22 lution of the system “positronium- photon” is governed by
_ 471 E< P2 (p"—p") > (23 the propagator #(3; —kik; /k?)/(2K)(k+H—E) "%, H be-
d 4 207 ' ing the Hamiltonian of the nonrelativistic positronium slowly
moving due to recoil. In the region of interekt>E and one
In d=3 this matrix element is linearly divergent. To demon- can expand the amplitudé28) over the powers of K
strate how we treat linear divergences let us considepthe — E)/k~a. The zeroth term of this expansion is the spin-
term on the right-hand sidéRHS) of the above equation: dependent part of the Breit potential,

ddp ’ ri i
2 — O J 2 _ (0) _ T [0- ’q,O' ][o-qio-]
(p%)=(0) (2 P é(p) AQ(q) = p= 7 (29)
d d
:mz/;(O)f dp Ed’(pr dk A4ma #(k)|. ~ We need the second-order term,
(2m)¢ (2m)® (p—k)?
d% 47 [o'ko''] :
29 Vret:af (2md 2kt 4m [H,exp(—ik-rp)]
Shifting the integration variablp— p+k we find that thep _
integral in the last term is scaleless. In dimensional regular- . [o-k,o']
ization such integrals vanish. The first term in E84) is X[H,explik-re) =, —+H.c. (30)
finite in three dimensions. We obtain
(P)=mEy2(0). (25) Only the kinetic part of the Hamiltonian,
2 2
Applying a similar procedure to the last term in Eg3), we . _Pe P (31)
find the contribution oy, (p’,p) to the ground-state HFS: KN 2m " 2m’
d-1 " . has to be retained in the commutators. We find
AMEHFS:W_ZZ m2a2¢2(0)_4 5 <(p Q)Z(q p)>
m q _
d% 4 [a"-k,a"](k2+2k )
8 1 5 ret™ af v “Pp
= %1/12(0)(;—4 In(ma)+ | 26) (2m)?2k*  8m?
' Xexplik- ( ))(K2+ 2k )[U'k’ai]+H
explik- (re—r ‘pe)——— t+H.c.
3. Retardation effects P Pe 8m?
Let us now consider the retardation effects, which mean (32

that the magnetic photon emitted by the electron propagates

for a finite amount of time before being absorbed by theTransforming back to the relative coordinater.—r, and
positron. During this time, the electron and positron can inthe relative momenturp=p.= —p,, we get for the ground-
teract by several Coulomb exchand€&sgs. 1c) —1(e)]. To  state HFS,

calculate the influence of these effects on the HFS, it is suf-

ficient to take the spin-dependent parts of the current m2a? d—1/(p"-a9)(qg-p)
j(p’,p)=u"(p) au(p) in the leading nonrelativistic approxi- AreErrs=— 3 J2(0)—4 3 >
mation: m q
3
L [eq0] B !
ipp— =g 27 =3 V(O g 4 In(ma) = 3. (33
The scattering operator describing the retardation effects is 4. One-loop operators

nonlocal both in space and time: )
Now we turn to the operators generated by one-loop dia-

d% grams. For the HFS the only contribution comes from the
ret——af dexp(—ik-rp) graph in Fig. 1If), which describes the mixed Coulomb-
™ magnetic exchange with a transition of one of the particles to
a negative energy state. In other words, this corresponds to a
o ﬁ creation of an additional electron-positron pair by the electric
[0 Ko{ldm ' K [oko] or magnetic field of the electron or positron.
X am 2K k+H—E 2m exp(ik-re) Using Feynman rules for the time-independent perturba-

tion theory, given at the beginning of this section, we derive
+H.c. (28)  the corresponding potential:
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27202 d [o-(q—K), .] [0 ko' ] 6. Second iteration of the Breit HamiltonianS wave
Viio0d @) = me f 2md k)2 K2 We consider first the contribution of the intermedi&e
a- (34) states. The&Swave part of the Breit Hamiltonia(87) reads
It induces the following correction to the ground-state Ug(r p)=—p—4+ d—-1 p2 C(r) n dmr 5(r)
HFS (d-dimensional integration ovéeis implicitly assumed St Am3  4m
below),
T , ,
d—1 a2 | dm(p' —K) 4m(k—p) —m[ff“tﬂ][ﬂi ,0;]a(r). (39
AteodEres™ "2 g 105 (p'—k?  (k—p)?
It is convenient to divide up the calculation of thk; con-
d—1 o2/ p'2+p® 47 A tribution to the HFS into two parts and consider the first and
porp
=-2 d 3 2 "2 (K—p)2 the last two terms in Eq.39) separately. We begin with the
m (P'=k)* (k=p) latter, which we denote b g Ees:
4 ri 4 i
__47P _ ™ 2> (d—1)(3d—2)
(p'=k)? (k=p) AsiBrrs=8—— 7
m?a? pP=-p 2 ,
= y?(0)—8 <—>] ma , Im(r){m(n)|
4 2 R ! -
m [ d q X — a(r )% E E. 8(r)
471'01 1 1
= W (0)(——4In(ma)——). (35 (d=1)(3d—2) [ 7 2
3m? 3 ZST "2
m
5. Breit Hamiltonian , Im(0)|?
X ?(0 . 40
To complete the calculation of the soft scale contributions v )§ E-E., (40

to the HFS we have to consider the second iteration of the

Breit Hamiltonian. It is obtained by including the effects of In three dimensions the last sum is ill-defined due to ultra-
tree-level Coulomb and magnetic photon exchanges, as weliolet divergences in the zeroth and first terms of its expan-
as a correction to the kinetic energy. Using E¢S2) and  sion in «. We denote these singular terms 6y(0,0) and

(A4) we find G1(0,0), respectively, and obtain
2
: p* LT (d—1)(3d-2)
Up'.p=-——=2msp -p+— A51EHFS—8—2 — | ¥*(0)
4m m d
’. N —(n 2 3m2
m2 q4 T
ma [o-q0' ][0’ -q0''] Gy(0,0) andG,(0,0) are calculated id dimensions,
- 36
4m? o (39 d 2
dp m m-a
Go(0,0)=—f i3 =g
In the position representation this Hamiltonian becomes (2m)" p°~mE ©°7
(42)
p*  d—1(p? dra f d’p’ f 47a  m
S g e G4(0,0= —
u(r,p) - 3+ 7 [m,C(r) + — 8(r) 1(0,0 2mi) 2mipP_mE @ pmE
_ ' m?a (1
_16m2[[0"V10'|][0','V,O'”],C(r)], (37) :__16 ——4In(ma)+2],
and one finds
where
1 115
al'(d/2—-1) AgEnrs=— (O) ——4In(ma)+ —=|. (43
CO=~—Gr1az (38)

The contribution of the first two terms in E¢R9) is cal-
is the d-dimensional Coulomb potential. culated in the following way. We first write them as
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4m3  4m

p4 d_l(pz ]

1
(D) == 2 [H2=d{H,C(1))

+(2d—1)C?(r)], (44)

where H=p?/m+C(r) is the leading-order Hamiltonian.

Correction to the HFS induced by E@4) reads

d—1 7o
AszEHFs:T ﬁ([d{H ,C(r)}

—(2d—1)C%(r)]G(r,r")8(r" )+ H.c.).
(45

We introduced here the reduced Green function

oy, MO

> TE-E, (46)

which satisfies the equationH-E)G(r,r')=¢(r)(r")

—8(r—r"). Using obvious short-hand notations one can re-

write Eq. (45) as follows:

2T 1 @ ,
AsEnps= — 3 GCYEFG+3?¢(")¢U )

2 3(d—1)(2d—1)
+5?—2(G—G0)+§#C2(r)60
><5(r’)+H.c.>, (47)
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The sum ofAg Eprs and Ag,Ers gives the final result
for the correction to the ground-state HFS induced by the
second iteration of th&wave Breit Hamiltonian:

8ma’

9m?

1 149
AsEprs= 42(0) Z —4In(ma)+ - (52)

24 )"

7. Second iteration of the Breit HamiltonianD wave

Because of the last term in E@6), the Breit Hamiltonian
has nonvanishing matrix elements wjthL|=2. In our case
this causes virtual transitions from the triplestate intoD
states(transitions from the singlet state are forbidden by the
total angular momentum conservatioAgain, power count-
ing shows that only the zeroth- and the first-order terms in
the Green-function expansion ua diverge in three dimen-
sions. We first compute the remaining, higher-order terms,
which are finite ford= 3.

The sum of those higher-ordéno) terms can be written

ARErs=(UpGoCGCGUp), (52)
where

a 3(o-n)(o'-n)—o-0
UD:4m2 rd ®3

is the|AL|=2 part of the Breit Hamiltonian in three dimen-
sions, G and G, are defined in the preceding section, and
C=—alr is the Coulomb potential.

The correction to the ground-state wave function,

Soip(r)=GoUpy(r), (54)

We dropped massless tadpoles and separated the contribution
of Gg, which is the only one we have to calculate keepingwhich appears in Eq(52), satisfies an inhomogeneous

d#3. We find

87a
(C2Gyd(r')+H.c) = ?(0)G4(0,0),

<$G5(r’)+H.c.> =—ad {5(r)y=—3¢4%0),

(48)
<—12(G—Go) S(r')+ H.c.> =—4my?(0).
"

To obtain the last line we used the following equation:

2

m-a 5
G(r,0)—Gy(r,0)= He_” IN(2yr)+ yg— 5 +r

2 L
(49)
where y=ma/2. From Eq.(47) we now find
5ma® , (1 88
ASZEHFSZW‘/’ (0) E_4|n(m01)+1—5 . (50

Schralinger equation:

p2
(E_E) Soip(r)=Upy(r). (59

Solving this equation fob,(r) we obtain
a2

24

oo 2/ 1 1
ApEnrs=86s1 WGD(rvrl)_z (56

mry

whereGp(r,r) is theD-wave part of the Green functidg,
and the factor 8, arises from

([o-0"=3(a-n) (0" -N)]?)=(3+40 0" + (0 0")?)
=801 - (57)
To calculate the matrix element in E(h6) we note that

1 1
WZE(HD—H), (58)

whereHp(H) is the radial Hamiltonian fob(S) states. Us-
ing equations of motion for both the Green function and the
wave function in Eq(56), one finds
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ABOEHFSZ 8( , (59 e

az)z 1\ ma 2 (0)
24 6mr? 108m?

VVWWWWW
VWAV
VWV
VWVVWWVWVY

in agreement with19].

To complete the calculation of thB-wave contribution "
we have to consider the zeroth- and first-order terms irathe
expansion of the Green function,

AAAAAAAANA

AAAAAAAAAANA

ApoEnrs=(UpGoUp), (60)

Ap1Ers=(UpGiUp). (61)

The perturbationUp(p’,p) is extracted from the Breit FIG. 2. Feynman diagrams representing pure recoil corrections
Hamiltonian, Eq.(36), and reads to positronium HFS and spin-averaged energy levels. Wiggly lines
denote photons in Feynman gauge.
) wa [[oj,0]lof ,0]] _ _ _
Up(p'.p)=— d the higher-order effects found in EG9) we obtain the com-
4m -
plete D-wave contributions to HFS,

o-0,0][0 0,0/
- Lo-a '][2 4.9 ]> ) (62) ApEnrs= ApoErrst Ap1EnrsT AR Enrs
q
5mra’ )
The average is taken over tkedimensional wave function. = $(0)| - —4In(ma)—=].  (67)
Calculating the trace using the triplet wave function we ob-

tain
B. Hard scale contribution
[oi,oilloi oj] [o-q,0' ][0, 0] Another contribution to the HFS arises from virtual mo-
d q2 menta scales of the order of the electron mass. It can be
calculated by considering the on-shelfe™ scattering am-
)> plitude with an exchange of three photons in thehannel

(see Fig. 2 exactly at the threshold, i.e., for zero relative
velocity of the incoming electron and positron, in dimen-
A(d—2)? s_ional r_egulgrization. 'I_'he use c_)f_ the_z dimen_sional regulariza-
= ————(By;j(q")Bj;(1)), tion brings in essential simplifications, since almost any
d other regularization would bring in powerlike divergences
and hence require additional subtractions. This so-called
B qid; G hard scale contribution gives rise to four-fermion operators
Bij(q)=4m "2 d /- (63) in the low-scale Lagrangian or, equivalently, to tiAér)
q terms in the effective quantum-mechanical Hamiltonian.

[O'k,0'|:|[0'{(,0'|,] [O_.q,o,k][a_r_q,o_rk]
X d - q2

Therefore, Technically, this calculation is similar to the derivation of
the matching coefficient of the vector quark-antiquark cur-
a(d—2)2 rent in QCD and its NRQCD counterpart, described, e.g., in
ApoEnrs= — —4<Bij(p’ —k)g(k)Bjj(k—p)), [34,35. Here we outline the main steps of this calculation.
4m°d An arbitrary Feynman integral which contributes to the
(64) hard scale part of the calculation can be written as
a(d—2)? S I(a, ... a)
ADlEHFSZ_W Bij(p'—k")g(k") 5 5
m :J d”k; d"k, 1
4 (2m)P (2m)P SR gisglegRrGReghe
x—"g(kB,(k-p)), (69 P2 TS R
(k" =k) (68)
where where
o 2 66 Si=ki, S=kj, Ss=(ki—kp)? S;=Ki+2pki,
g(k)= szyz, (66) (69
and d-dimensional integrations ovésin Eq. (64) and over Ss=k5+2pk,, Se=ki—2pk;, S;=k3—2pk,,

k,k" in Eq. (65) are understood. Some details of the integra-
tions in Eqgs.(64) and(65) are given in Appendix B. Adding Sg=(k;—ky)%+2p(k;—k»),



4324 CZARNECKI, MELNIKOV, AND YELKHOVSKY PRA 59

So=(k;—ky)%2—2p(k;—k»), Conceptually, determination &, iS very similar to the
calculation of the HFS discussed above in detail. The only
anda,, ...,a are integers. In practice we encounter dia-difference is that several new operators appear, which con-

grams with only at most six different propagators, so that atribute toE, . but not to the HFS.

least three exponents are zero. Applying the integration by

parts techniqu¢36] to an integrall ({a;}), one obtains a set A. The ground-state average energy shift

of relations among integrals with various values of indices We begin with the correction 1B, induced by the rela-

{ai}. Using these relatlo_ns one can express B Mi}). N " tivistic corrections to the dispersion law, = \p?+m? [Fig.
terms of a few master integrals. This is most easily donel(g)] Expandinge, in |pl/m, we obtain P
. p b

using symbolic manipulation programs.
The result for the hard scale recoil correctidfgy. 2) to

the HFS read$9] wp=m+ 2p_m - % + 1;n5 (72)
m
3
AharcEHFS:% ¢2(0)( - %4_4 Inm The last term induces a correction of the appropriate order:
3
51£(3) 10 AdispEaver:i5<p6(277)d5(d)(p_ p))=- > T y2(0).
2T = 62, (70 8m 64 m
wu ™ (73

_ The O(v*) spin-independent part of the tree-level Cou-
C. HFS for excited S states lomb exchange amplitudicf. Eq. (A1) and Fig. 1a); we
The result for the HFS of the ground state can be used taeglect terms odd irp, whose average vanishes in &
obtain the HFS for an arbitrary excited state. The nontrivialstatd,
dependence on the principal quantum nummerises only

from the soft scale contributions. Therefore, one hastore- — = = 7« 2. o, B(PP—P'?)?
peat the quantum-mechanical calculation of the nonrelativis- ~ Yc(P":P) =~ 16m? (P +p o)+ ¢ ,
tic part using any convenient regularizatiome use a cutoff (74)
at 1m<ry<<1l/ma) and compare the result with the known
formula forn=1, Eq.(8). One finds gives rise to the following correction:
ma®| 1/ « 57a’® ) 1 7
AreEnrg(n) = el [div]— | In-+W(n)+ye ACEaver:%'ﬁ (0)] z—4In(ma)+z ). (79
7 1 Virtual transitions to negative energy states induced by

12n 2n2

: (7D the Coulomb exchanges, Fig(hl, generate an effective
spin-independent operator

The quantity[ div] in the above equation stands for the un- 1
known andn-independent constant, easily determined by re- Ve (r)=——[p,C(r)]% (76)
quiring that forn=1, Eq.(8) is reproduced. We then obtain 4md

the final result for the recoil corrections to the HFS splitting _ . _
for an arbitrarynS state, Eq(9). This operator describes the energy shift due to a creation of

an additionake™ e~ pair by the Coulomb field of either elec-

IV. SPIN-AVERAGED ENERGY LEVELS tron or positron. The resulting energy shift is

To obtainO(ma®) corrections to the triplet and singlet mad

— _ 2
energy levels separately, we have to calculjg.(n) [cf. Ac-Eaver= Am? ¥(0)

Eqg. (2)]. An appropriate formula for this calculation is

%—4 In(ma)). (77

The spin-independent part of the tree-level magnetic ex-

E _ 3Euilet™ Esinglet  d Eg_plet™ Esinglet change, Fig. (), induces the following shift in the energy
aver— 4 - d+1 . levels:
It is known[37,38,3Q that the recoil correction&,, do not ALE _27ma (024 ) p-p’  (p-a)(a-p")
contain Ing) at the ordema®. In dimensional regularization MEaver=— 5| (PP 2 q*

this means that the hard scale and soft scale contributions are
separately finité.

. (79

ma’ 5 1 1
ﬁlﬂ (0) Z—4In(ma)+§

SBecause of powerlike singularities, this is not necessarily the To account for the retardation in the magnetic photon
case in other regularization schemes. propagation, Figs.(t)—1(e), we use the approach described
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in the HFS case. Our starting point is similar to E28),

except that now the full expression for the currents must be

used, rather than just their spin-dependent part. We obtain
1

!

_ng 2 (
AretEaver_W‘ﬂ (0) ;—4In(ma)—8 . (79)

The next contribution comes from the exchange of two
magnetic photons with creation of an additioedke ™ pair in
the intermediate state, Fig(il We find

3
T 1 - . . —
Apm—Eave= — — ¢2(0)(_ —4In(ma)— 3) . (80 FIG. 3. E_xamples of radiative recoil corrections to positronium
m € HFS and spin-averaged energy levels.

We proceed further with the correction By, induced in very good agreement with the numerical result of &)
by the second iteration of tH@wave Breit Hamiltonian. The in [11], — ma®/8[2.484(5).
calculation closely follows the HFS case. We arrive at the
following result: B. Energy levels for arbitrary n

7TC!3

12m?

, 3 To generalize the result E¢B5) for arbitraryn, we pro-
A(S )Eaver= - ) .

|¢//(O)|2(E—4 In(ma)+% ceed according to the program outlined in Sec. Il C. We

€ repeat the calculation of the soft scale contribution& tq.,

for arbitrary n using a different regularization scheme.

Namely, we setl=3 and cut off the divergent integrals over
from below at some y<<1/(ma). The transition to three
imensions simplifies the calculation. We find

(81)

The iteration of theD-wave part of the Breit Hamiltonian
only influences the energy levels of the triplet state becaus
of the total angular momentunh. - S) conservation. For this

reason, to obtain the required correctionBg,, it is suffi- ma® 69 g8 2
cient to multiply Eq.(67) by the factord/(d+1). We find A nN=—- —/| [divl4+ — — — + — .
recEavel( ) 8n3 [ ] 64n3 3n2 n
2. 5ma® (1 119 (86)
Ap Eaver_mw (0) E_4|n(ma')_% . (82

The n-independent term in the above equation is
: . . . ._regularization-dependent. It cannot be determined by consid-

It is easy to see that in threg dimensions the Sp'n'ering the soft scale contributions alone. Nevertheless, by
dependent operators do not contributeBg,,,. However, atching Eq.(86) to the shift for the ground state E¢B5)
since we work with divergent integrals and use dimension he “value” of the divergent constarftdiv] is completeI’y
regularization, this is no longer valid fat# 3. In this case determined. We obtain
an “anomalous” situation arises: spin-dependent operators
provide contributions of the formd(—3)/e to E e, Which ma®(83 11  3£(3)
are finite ase—0. Part of these contributions has already AreEavelN)=— F(

n

been accounted for in the corrections induced by the Breit 2 272 g2
Hamiltonian. The remaining contributions give 69 g o
. 87)
15 ma® 64n° 3n? n)
AsnonEave= — 55—~ 2(0)- (83
64 m2

This is our main result for the recoil corrections to the energy
The hard scale contribution, Fig. 2, is calculated in thelevels of positronium. It agrees with the partially numerical

same way as for the HFS. One finds result derived iff11].
ma® 13 9¢(3) 33 V. RADIATIVE RECOIL CORRECTIONS
AnarEaver — > %(0) ) "t = (84)
3m ™ 2m So far in this paper we have been considering pure recoil

effects. Another class of th®(ma®) corrections to positro-
fRium energy levels and their HFS are the so-called radiative
recoil corrections, where one of the three exchanged photons
) is created and absorbed by the same par{ste Fig. 3.

The sum of all contributions presented above provides th
O(ma®) pure recoil correction to the ground-state energy:

Our technique is very convenient for the calculation of
these corrections. The key point is thatdma?®) the radia-
6 tive recoil corrections do not receive any contribution from
__ m_“(z 4868 . . .) 85) the nonrelativistic scales. Thus it is sufficient to calculate the
8 ' B diagrams shown in Fig. 3supplemented by the electric

~ ma®[901 11 3{(3)
AreEave= ~ 57| 575 o2t T
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charge, electron wave function, and mass renormalizatiorand
exactly at the threshold. For the same reasonntldepen-

dence of the radiative recoil corrections comes only from the 7 ma* mae®(8 1
1/n® behavior of thenS-wave function at the origin. Some EHFS(n)_l_z R nd 9" Elnz
details of this calculation are described in Sec. Ill B in the
context of the HFS. We obtain ma®l 5 (I a . )
—| = 57| In=+¥(n)+ye
A ma®(3) 79 41 4 - n® | 240N
= — — — —_— —_ n s
RIS 18 | 2n2 48 3672 3 L1867 4207 (221 1)
64872 3456 | 144 52"
A ~ma®|9¢(3) 97 1025
rad regaver_? W‘{'m_@ ) (89) 53 €(3)+ 5 (93)
3272 8n  gen?|

respectively, for corrections to the HFS and to the average
energy, in full agreement with the analytic results of Ref.
[28]. For completeness, we give here separately the contriyve have also recalculated the radiative recoil corrections,
butions of electron vacuum polarization effects to radiativeegs. (88) and(89), confirming the recent result of R28].
recoil correctiong39,28,4Q [they are included in Eq$88)  |et us make a technical remark. In dimensional regulariza-

and(89)]: tion, used in this paper, the calculation of the radiative recoil
corrections is particularly simple. Since there are no low-
Avac p%E :m_a6 S) scale contributions to the radiative recoil corrections, it suf-
rad rec=HFS™ " 3 972’ fices to calculate corresponding Feynman graphs exactly at
the threshold. No matching or subtractions are required.
ma® [ 1 5 Fo_rmulas(QZ) and_(93), together withP-state energy Iev?.
\r/;g%%Eaver:_(__ _2) (90) elslgwen in Ap_pendlx C, can be used to compute quantities
n \36 27w which can be directly confronted with experimental data. We
use the following values for the Rydbefdl] and fine-
VI. SUMMARY AND CONCLUSIONS structure{42] constants:

The main results of the present paper6 are the analytic
formulas(9) and(87) for the pure recoiD(ma®) corrections Ma
to the HFS and spin-averaged energy levels of positronium R“:T:?’ 289841 960.39€7) MHz,
nS states. These recoil effects provide the last pieces needed
to present complete analytical formulas for the total correc- a=1/137.035999 5%1). (94)
tions to E, . and Ers. We use the parametrization intro-
duced in Eq(2),

N

In addition to the full correction®(mea®) we include the

1 leading logarithmic term$(ma’ In?a) found in [43] for
E(J.n)=Eave(M+| 7 530) Enrs(n), 1) HFs, and in44] for the spin-averaged energy levels:
and find ALE(LN) 499+7(1 46,0) ma’ In’a
n)=—|- - ——— .
] LL 15 20) |53 %0

(99

EavelN)=—— E_l +

ma? N ma? ( 11 ) Mo
4n?  16n°

8mn3 . .
T For the most precisely measured quantity, the Ps ground-

16 state HFS, we find

X|=6Ina— Eln ko(n,0)

Av=203392.0146) MHz. (96)
4 . . :

+ = In=+¥(n)+ e The O(ma®) recoil corrections to this observable have been
31 the subject of some debate. In the literature three different
37 7 ma® results have been reportgs,10,29.6 Our result for this cor-

- 4—5—3 In2+ an - —Inﬁ—\If(n) rection, Eq. (8), evaluates numerically tana®(— Ina

3n +0.376 32). This is in excellent agreement with Rf0],
N 141 ¢(3) N 137 68 n2
Gl a i - b

SAfter our HFS calculation was completed, we were informed
bout an independent numerical calculation of the recoil corrections
1421 2435 7 17 a
— j_ —_ ﬁ (92 [45]. Although that study is still in progress, its preliminary results
27w2 432 n 12n? 16n® seem to agree with Ref10] and the present paper.

+
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TABLE I. Theoretical predictions for experimentally relevant ~ The spectrum of thaSandnP positronium energy levels

positronium transitions. is now known analytically, including effect®(ma?®). Our
calculation for thenS levels was made possible by new the-
Transition Theory(MHz) oretical tools which have their roots in the recent perturba-
235,-135, 1233 607 222.168) tive calculations in high-energy physics. We hope that these
13s,-11s, 203392.0146) methods will find further apphcatlons_. o
235,-23p, 18498.2%8) The agreement between theoretical predictions and ex-

perimental results in Ps spectroscopy is impressive with a

3¢ _o3
3321753? 122;:?’;2; few exceptions. One can only hope to find something new
) 351_2 1P2 11185’3 o and unexpected by trying to put these exceptions in line with
e ! -318) the overall picture. We look forward to future improved
235,-215, 25424.616)

measurements of positronium energy levels and their con-
frontation with QED.

where for the nonlogarithmic part of the correction a number
0.376717) was obtained. The framework of our calculation
is similar to Ref.[10]. However, in that study a different ACKNOWLEDGMENTS

regularization method was used. The agreement of the results \y/q gre grateful to A. Burichenko for informing us about

gives us confidence in their correctness. his results prior to publication. We thank S. Karshenboim, K.
Comparing Eq.(96) with the experimental results, EGS. pachycki, and E. Remiddi for reading the manuscript and for
(4) and(5), we observe a significant deviation of the order thelpful comments. K.M. would like to thank the High En-
three to four experimental errors. It is not very likely that the ooy Theory Group at Brookhaven National Laboratory for
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For another experimentally interesting quantity, the enq>_17135.

ergy interval of the $-2S transition, we get

E(2 351) ~E(1 381) =1233607 222.1&68) MHz. APPENDIX A: TREE-LEVEL ELECTRON-POSITRON
(97) POTENTIAL

We present here formulas for the potential arising from a

L . . single Coulomb or magnetic photon exchange between an
in fair agreement with the experimental result, ). electron and a positron, valid ©(v?). The virtual annihi-
Other quantities, for which high precision measurementz p k v

have been made or are being planned, have recently be ehtion is not tak_en_ into account here. We_also drop those
reviewed in[28]. In Table | we update the theory predictions erms Wh"?h _annlhnate FhS state wave fE”‘C“O”- T_hes_e for-
for those observables. Our predictions are in good agreeme ulas, valld.md dimensions, are useful in the derivations of
with [28]. We have been able to decrease the error bars b S and spin-averaged energy levels.
including the analytical resuli®2) and(93) and the value of
the leading quadratic logarithni95).

Finally we would like to comment on our error estimates.
The errors due to uncertainties in the fine-structure constant
and the electron mass are well below the 0.1 MHz level. The
dominant theoretical' error source is the uncalculated re;main- —A(p'.p)=— 47"20‘ p(p.p)p(—p'—p), (A1)
der of the perturbation expansion. Although formathyy
~0.1 MHz, the leadingO(ma’In?a) terms contribute
—0.92 MHz to the HFS43]. It remains very important to
calculate the remaining, nonleading termsQfma’). For ~ wherep and p’ are spatial momenta of the incoming and
the present analysis we assume that the leading logarithnmitgoing electron;q=p’ —p; and the charge density is
O(ma’In?a) dominate the higher-order contributions and p(p’,p)=u*(p’)u(p). In momentum representation a single

For a single Coulomb exchange between two particles of
opposite charges, Fig(d), the minus on-shell scattering am-
plitude is

take half their size as the theoretical error estimate. Coulomb photon exchange gives rise to the potential
4ra ¢ | 5(p*—p'?)*+6qt(p*+p'Y)+q'+[o-p'o-pllo’-p' 0’ -p]
Uc(pp)=——F1-—+ " . (A2)
q am 64m
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In the leading nonrelativistic approximation E@\2) gives (Bij(p' —K)g(K)B;j;(k—p))
the Coulomb potential.

Next we consider a magnetic photon exchange, Fig). 1 , kikj— 2kip; + pip;
We neglect retardation effects. The scattering amplitude is ={ Bij(p"—kg(k)4m (k—p)?
_ _ _ 99 4m(ki—pj)
AM(p p)_ q2 ](p p)JJ( p, p)( q2 ), :<Bij(q)pipj_ZBij(p,_k)g(k);lej
(A3) (k=p)
o, , . . A
wherej(p ,p)=u+(_p )au(p) is t'he matrix element of the —B;;(p' —k)g(k) ———pip; |- (B2)
current. The resulting potential is (k—p)
Un(op) Ta ( 4 ’ 2 ) Here and below we use the ScHimger equation in the form
m(p,p’)= —[(p-p)*=pPp’
m2q2 CI2
L #(p)= g(p)( 2 5> P(K). (B3)
. . ryes
- Z[O’ q,o"][o" -q,O’”]) - ﬁ
2mq Similarly, by rearranging terms in E¢65) we get
4
2 12 2_ 12
[( +p") 7 —[(p-p)?—p*p'%] <Bij(p’—k’)g(k’)(k, k)zg(k) ij (k= p)>
_1[0_ O_i][o_!_ O,Ii] o , , ,
4L 9 G =\ By =gt — 3 p)zp ;= 2Byj(p' —K)g(k')
2 12
pT—p ) .
+ ([o-q,0'][e"-P,c""] 4
16 X—

+[o- P,a'i][o"-q,a’i])]. (A4)

By (P —K)g K )T g(k)
These formulas are valid in the center-of-mass frame. We (B4)
usep andp’ to denote incoming and outgoing electron mo-

menta, andj=p’ —p, P=p’ +p. The primedo matrices act Using the symmetry with respect {@—p’, we rewrite the
on the positron spinor. first term in Eq.(B2),

APPENDIX B: USEFUL INTEGRALS

@ (p-a)(gp p
3

<Bij(Q)pipj>:47T<§+ — 3
In this appendix we present various integrals which were q

useful in the calculations presented in this paper. The follow-

ing formulas have been used throughout the paper, especially _4W< Sy (P q)(q p)> . (B5)
for the tree level diagrams: 3

2a? In the same way, the second term in Eg2) is transformed

(p?)=— $%(0), (BL)
p*\  m?a? <—ZB~ "—k)g(k Amk B >
8w 4m(k—p)p

- . . _[8m / '

<pqE > m '/f(O)(_—4|n(ma) 2] <d oo (k=p) e (p'_k)Z(ZKI i
(ki—pi)
) (a- b’ 2,2 Xg(k)ﬁpj>. o
<“4p)(_2qp)>=_—m8“ ¢2(0)(3—4In<ma>—1)- P
q €

Considering the divergent part of this expression we find

In the remainder of this appendix we describe some de- K 2
tails of theD-wave contribution to the second iteration of the | 87 K 4n(k—pp\ _167°a , 0 G(0.0)+ G (0.0

> Of theD-wave c : . . g(k) . Y2(0)[ G¢(0,0+G4(0,0)].
Breit Hamiltonian. First, we rewrite E464) in the following d (k—p) d

way: (B7)
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The sum of Eqs(64) and (65) reads

ApoEnrst ApiEnrs
Gl 16772&[6 (0,0+G4(0,0)]
4m*d d o n
8my? 4m(p’ -a)(q: 4
Ty 4T -a)(d p)+2p{ ™
3 o? (p'—k)?
) 4m(ki—p;) AT
X(ij—pj)g(k)ij—ZBij(p —k")g(k")

47 47
X2 1900 2P Bup kg

4 4
X(k,_k)zg(k)(k_p)zpipj : (B8)

Only two terms here contain the logarithmic divergence:

47%a?(d—2)2
T<Gl(0 0)

’7Ta3

2
aveel (0)(——4 In(me) — ) (B9)

_a(d=2)% [4m(p'-9)(q-p)
4m*d o

a3

. 20(1_4| _13)
= ‘ﬂ(); n(Mme) 3/

oA (B10)

All other terms are finite and we compute them in three

dimensions. Here we list some useful integfadsk/y and
a(x)=arctank)]:

°p p _w/f<0>ki( X
f(zw)3(k—p)2¢(p)_ a(x)

k3 x2+1)’
(B11)

3

p

f(Z )3(k )2¢( P
Cyp(0)| 1 kiky &\ x*+3 x*-3
" |2le 3 (x<x2+1>+ o
+ﬁ a(x)— X )
3 x2+1) ]
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9(k")Bij(k'—p) ()
k—kyz P

_v¥(0) dij | [ a(x) 3 3
K (7‘?) T(”;)‘&-

Using these above formulas in E(B8) we find the final
result forApoEnrst Ap1Enes-

f d®p d%k’
(2m)® (2m)°

APPENDIX C: P-STATE ENERGY LEVELS

In this appendix we present formulas for the energy levels

of P states, to orde®(ma®). Correcting some minor mis-
prints in Refs[31,32 one finds

5 ma® ma* (13 11
E(n®Py)=— —— —— —

+ma6( 69 .\ 559 169
nd 5113 4802 480

20677 3
* 232000 80"

9/(3) 13
+——+—],
16072  128x2

(Cy

5

69 . 77 25
51n% 32?19

£(3) 179 493
345672 17280°

ma° [ 25 6| " !
817_”3 18 3 n 0(” )
. ma® 69 . 119 1
n3 51n% 24?2 3n
923

+1| 5 3 3 20
T2320" 8" 62t '
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For the numerical evaluations we use the following values of
Bethe logarithms lrky(n,1)/R..] [46]:

In[Ko(1,0//R..]=2.984 128 555 765 498,
In[Ko(2,0//R,.]=2.811 769893120563, (C2)

In[ko(2,1)/R..]=—0.030016 708 630 213.
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