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Positronium S-state spectrum: Analytic results atO„ma6
…
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We present an analytic calculation of theO(ma6) recoil and radiative recoil corrections to energy levels of
positroniumnS states and their hyperfine splitting. A complete analytic formula valid toO(ma6) is given for
the spectrum ofSstates. Technical aspects of the calculation are discussed in detail. Theoretical predictions are
given for various energy intervals and compared with experimental results.@S1050-2947~99!09206-9#
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I. INTRODUCTION

Spectroscopy of positronium~Ps! provides a sensitive tes
of bound state theory based on the quantum electrodyna
~QED!. Because of the small mass of electron and positr
the effects of strong and weak interactions are neglig
compared with the accuracy of present experiments. For
reason positronium represents a unique system which ca
principle, be described with very high precision by means
QED only. Tests of the QED predictions are made poss
by the very high experimental accuracy of positronium sp
troscopy@1#.

The gross spectrum of positronium is well described
the Schro¨dinger equation with the Coulomb potential. E
ergy levels are

E~n!52
ma2

4n2
, ~1!

wheren is the principal quantum number. For the purpose
interpreting modern experiments the precision of Eq.~1! is
insufficient. Corrections to the energy levels can in part
described by the quantum mechanics; however, for a c
plete description one has to resort to the quantum field the
~QFT!. Unfortunately, an application of the QFT to th
bound states is difficult and special methods have to be
vised @2–5#.

Various approaches to bound state calculations have b
reviewed, e.g., in@6#. Here we focus on a method close to t
so-called nonrelativistic quantum electrodynamics~NRQED!
@5#, which is an effective field theory based on QED, f
small energies and momenta. Equation~1! implies that the
characteristic velocity of the electron and positron in posit
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nium is of the order of the fine-structure constanta!1. It is
appropriate to apply a nonrelativistic approximation to th
system.

Recently much progress has been achieved in the fra
work of nonrelativistic effective theories, mainly by emplo
ing dimensional regularization. It has been shown@7# that
this regularization procedure permits an exact separatio
effects arising at various characteristic energy scales. U
that method, which we will call dimensionally regularize
NRQED (NRQEDe), the complete energy spectrum of P
has been reproduced to orderma5 @8#. More recently, we
have computedma6 corrections to the hyperfine splittin
~HFS! of the Ps ground state@9#, confirming one of the pre-
viously obtained numerical results@10#. In the present pape
we generalize that result to allS states, confirming@11#, and
compute also their spin-independent shift atO(ma6) ~ob-
tained numerically in@11#!.

It is convenient to describe the energy of annSstate of Ps
by dividing it up into the spin-averaged part and a part d
pendent on the total Ps spin~hyperfine splitting!:

E~J,n!5Eaver~n!1s1•s2EHFS~n!, ~2!

whereJ is the total spin value of the Ps ands6 are the spins
of the electron and positron, respectively. One finds

J51 ~ triplet state!: s1•s251
1

4
,

J50 ~singlet state!: s1•s252
3

4
. ~3!

Both the spin-averaged energy and the hyperfine split
can be represented by series in powers and logarithms o
fine-structure constant. In the lowest orderEaver(n)5E(n) is
given by Eq.~1!, andEHFS(n)5O(ma4).

To orderma5 the results forEaverandEHFS were found in
@12–14#. Those corrections have several sources: elec
and positron charge radii and anomalous magnetic mome
4316 ©1999 The American Physical Society
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vacuum polarization, two-photon exchange, two-photon
nihilation, and one-loop correction to the single-photon a
nihilation.

Current accuracy of high precision experiments require
complete calculation of theO(ma6) correctionsDEaver and
DEHFS.

The most precisely measured property of positronium
the ground state HFS, i.e., the energy difference between
two lowest states with total spin 1 and 0. Two best expe
mental values are

Dn[E~1 3S1!2E~1 1S0!5203 387.5~1.6! MHz, ~4!

found in @15,16# and

Dn5203 389.10~0.74! MHz, ~5!

obtained in@17#. Another quantity of the experimental inte
est is the energy difference of 23S1 and 13S1 states@18#:

E~2 3S1!2E~1 1S1!51 233 607 216.4~3.2! MHz. ~6!

The absolute accuracy of this measurement is clearly
impressive than that of the hyperfine splitting. Howev
sincema6518.658 MHz, a complete calculation of the e
ergy levels at this order is warranted.

At order ma6 both DEaver andDEhfs can be written as

DE5DErad1DEannih1DErad rec1DErec. ~7!

The logarithmic contributions at this order,O(ma6 ln a),
present in the annihilationDEannih and recoilDErec correc-
tions, were found first@19,20#. DErad arises from the radia
tive corrections to the Breit potential atO(a,a2) @21,22#.
The three-, two-, and one-photon annihilation contributio
giving DEannih were found in@23#, @24#, and@25,26#, respec-
tively. The nonannihilation radiative recoil contribution
DErad recwere calculated in@27,28#, while pure recoil correc-
tions DErec were obtained in@10,5,29# for the HFS and in
@11# for Eaver.

In this paper we present an analytic calculation of
recoil and radiative recoil corrections,DErad andDErad rec, to
energy levels of arbitrarynS positronium states. The rest o
this paper is organized as follows: in Sec. II we discuss
method in general terms. Section III is devoted to the cal
lation of the HFS. Many technical details of this calculati
are discussed there. In Sec. IV we present a calculation o
average energyEaver. It is very similar to HFS, except tha
some additional operators contribute. Also theO(ma6) ra-
diative recoil corrections are discussed. Our results are s
marized in Sec. VI, where also an overview of the theoret
and experimental situation is given and a complete anal
formula for thenS energy levels to orderma6 is presented.

II. FRAMEWORK OF THE CALCULATION

Before going into detail, let us describe the general fram
work of our calculation of theO(ma6) corrections to energy
levels.

First, we calculate an on-shell scattering amplitude
nonrelativistic (v!1) particles to the needed order~the fact
thatv;a in Ps serves as a counting rule for contributions
various operators!. In addition to the leading, single Cou
-
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lomb exchange, this includes the relativeO(v2) Breit correc-
tions and also higher-orderO(v4,av3) terms. This nonrela-
tivistic amplitude is gauge invariant, and taken with a min
sign provides the potential for nonrelativistic particles.

Next, we use the ordinary quantum-mechanical pertur
tion theory to find the corrections due to that potential;
unperturbed states we use the solutions of the Schro¨dinger
equation with the Coulomb potential. We get theO(ma6)
correction to energy levels as the sum of the first-order c
rection due toO(v4,av3) perturbation and of the second
order correction due to the Breit Hamiltonian. Previous
this scheme was used for the calculation of theO(ma6 ln a)
corrections to the levels ofS states@30# and of theO(ma6)
corrections to the levels ofP states@31,32#.

In the present calculation the result of the nonrelativis
calculation is divergent. This is because also the sh
distance~‘‘hard’’ ! corrections contribute. They arise from
virtual momenta regions of the order of electron mass a
cannot be obtained from the nonrelativistic expansion.

Our calculation is performed in the spirit of NRQED. W
apply dimensional regularization, which offers technical a
vantages over more common techniques, based on the i
duction of an intermediate cutoff to separate the relativis
and nonrelativistic momentum regions. Dimensional regu
ization makes the matching of the low-scale effective the
and the complete QED extremely simple. We find that in
sum of the short- and long-distance contributions the sin
larities in the parameter1 e disappear and one arrives at
finite result.

The spinor algebra in dimensional regularization requi
some comments. In order to obtain the energy shift due to
operatorOi , one has to calculate the trace of the for
Tr@C†OiC#, whereC is an appropriate wave function. Th
spinor parts of the relevant wave functions are

CP5
11g0

2A2
g5 , CO5

11g0

2A2
g•j,

for parapositronium and orthopositronium states, resp
tively. In the latter case,j is the polarization vector~we
average over its directions!. The traces are calculated in
standard way in theD-dimensional space. One encounte
only even numbers ofg5 matrices, and we treat them a
anticommuting.

Since the matrix elements involve the positronium wa
function, it is easiest to calculate for the ground staten
51). However, once the corrections to the ground state h
been found, there is a convenient way of finding them
excited states, with an arbitrary value of the principal qua
tum numbern. Only the nonrelativistic contributions have
nontrivial dependence onn. Their computation in dimen-
sional regularization would be difficult. However, this task
simplified using other regularizations. Finally, we elimina
the cutoff dependence by requiring that forn51 the result
matches the formula we found forn51. The freedom of

1Throughout the paper, we use the following notations:D54
22e andd5322e.
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choosing the regularization scheme simplifies considera
this part of the calculation.

III. HFS OF THE POSITRONIUM GROUND STATE

In this section we present a calculation of the recoil c
rections to the Ps ground state,D recEHFS. It is given as a sum
of soft ~nonrelativistic! @Eq. ~11!# and hard@Eq. ~70!# scales:

D recEHFS5DnonrelEHFS1DhardEHFS

5ma6S 2
1

6
ln a1

331

432
2

ln 2

4
2

17z~3!

8p2
1

5

12p2D .

~8!

Those two groups of contributions are computed, resp
tively, in Secs. III A and III B. Further, in Sec. III C, we find
a generalization of this result for radially excited states~ar-
bitrary n!:

D recEHFS~n!5
ma6

n3 F2
1

6 S ln
a

n
1C~n!1gED1

7

12n
2

1

2n2

1
295

432
2

ln 2

4
2

17z~3!

8p2
1

5

12p2G , ~9!

whereC(n) is the logarithmic derivative of theG function
andgE.0.577 216 is the Euler constant. Then dependence
of this result and its numerical value atn51 are in agree-
ment with @10#.

A. Soft scale contributions

We divide up the nonrelativistic contributions to HFS in
six parts: tree-level Coulomb and magnetic photon
changes, retardation, one-loop operators, and a second
tion of Breit Hamiltonian which includes intermediateS- and
D-wave states:

DnonrelEHFS5DCEHFS1DMEHFS1D retEHFS

1D1-loopEHFS1DSEHFS1DDEHFS. ~10!

These partial results, given in Eqs.~21!, ~26!, ~33!, ~35!,
~51!, and~67!, add up to@9#

DnonrelEHFS5
pa3

3m2
c2~0!S 1

e
24 ln~ma!1

331

18 D . ~11!

In the remainder of this section we discuss in detail h
these contributions are calculated.

According to standard procedure@33# we identify the on-
shell scattering amplitude, taken with the minus sign, w
the matrix element of an interaction operator in the mom
tum representation. The soft scale contributions are ca
lated using the time-independent ‘‘old-fashioned’’ perturb
tion theory and the Coulomb gauge. Since this techniqu
not very common, let us recall its basic ingredients. E
change of a Coulomb or magnetic photon is described,
spectively, by 24pa/q2 or 24paa i ^ a j (d i j
ly

-

c-

-
ra-

-
u-
-
is
-
e-

2qiqj /q
2)/2uqu. In the latter case, the denominator 2uqu arises

from the magnetic photon’s phase-space element.
An intermediate state introduces the factor (E2Eint

1 i0)21, whereEint is the energy of the intermediate sta
andE is the total energy of the process.

Dirac spinors are

u~p!5A 2vp

vp1m
L1~p!w, ~12!

wherew denotes the four-spinor of a particle at rest; proje
tors on the positive and negative electron energy states
given by

L6~p!5
1

2 S 16
a•p1bm

vp
D , vp5Ap21m2.

In an expression for the potential, the projectorL2 contrib-
utes an additional minus sign.

We begin with the contributions of the tree-level effecti
operators, describing an exchange of the Coulomb or m
netic quanta. The tree-level operators, relevant for
O(ma6) calculation of the HFS, arise asO(v2) corrections
to the Breit potential.

1. Tree-level Coulomb photon exchange

For the HFS we need the spin-dependent part of
O(v4) correction to the Coulomb exchange@see Eq.~A2!#:

VC~p8,p!52
pa

16m4

@s•p,s•p8#@s8•p,s8•p8#

q2
. ~13!

To calculate the spin part of the matrix element, we take
trace withd-dimensionals matrices and find@the factor 1/d
in Eq. ~14! arises from the average over directions of t
o-Ps polarization vector#

1

2d
Tr~s i@s•p,s•p8#s i@s8•p8,s8•p# !

54
d24

d
@p82

•p22~p8•p!2#, ~14!

1

2
Tr~@s•p,s•p8#@s8•p8,s8•p# !54@p82

•p22~p8•p!2#,

~15!

respectively, for orthopositronium and parapositronium. U
ing

p82
•p22~p8•p!25~p8•p! q22~p8•q!~q•p!, ~16!

and noting that the average value ofp8•p in an S state van-
ishes, we obtain the contribution ofVC(p,p8) to the ground
state HFS:

DCEHFS5^VC~p8,p!&uS50
S5152

pa

dm4 K ~p8•q!~q•p!

q2 L .

~17!
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In Eq. ~17! the matrix element is to be calculated over t
ground-state wave function ind dimensions:

^ f ~p,p8!&[E ddp

~2p!d

ddp8

~2p!d
f~p!f~p8! f ~p,p8!.

Let us briefly explain how the integral in Eq.~17! is calcu-
lated. Although the integrand does not look complicated,
difficulty is that the exact form of the wave functionc(r ) in
d dimensions is not known. Fortunately, it turns out to
unnecessary.

There are two alternative ways to calculate this integ
One is to transform it to the coordinate space. A diverge
arises atr 50 and in the final result is proportional to th
d-dimensionalc(0); theremaining, finite part can be easil
calculated ind53.2

In the alternative approach we use the fact that the w
function in Eq.~17! satisfies thed-dimensional Schro¨dinger
equation, which in the momentum space reads3

f~p!5
4pam

p22mE
E ddk

~2p!d

f~k!

~p2k!2
. ~18!

Using this equation we rewrite the integral in Eq.~17! as

K ~p8•q!~q•p!

q2 L
p,p8

5K ~4pam!2~p8•q!~q•p!

~p22mE!~p2k!2q2~p822mE!~p82k8!2L
k,k8

,

~19!

where the integration overp, p8, as well ask, k8, in the last
expression is understood. The integral overp andp8 receives
a divergent contribution only from the region wherep andp8
simultaneously become infinite. Therefore, a single subt
tion is sufficient to make this integral finite. It is convenie
to subtract from Eq.~19! the following expression:

K ~4pam!2~p8•q!~q•p!

~p22mE!2q2~p822mE!2L
k,k8

. ~20!

After the subtraction is done, two nice features emerge
Eq. ~20! the integration overk,k8 factorizes and leads to
c2(0) times a two-loop integral, which can be easily calc
lated for arbitraryd. On the other hand, the difference b
tween the last integral in Eq.~19! and the integral in Eq.~20!
is finite and can be calculated ford53 using the explicit
form of the wave function,

2In general, also the derivative of the wave function at the orig
dc(r )/dr at r 50, can appear in the divergent part of the integr
However, the Schro¨dinger equation relates it toc(0).

3This equation corresponds to a summation of an infinite num
of ladder diagrams in the Coulomb gauge. For consistency
essential to use here dimensional regularization in the same wa
in the other loop integrations.
e

l.
e

e

c-

n

-

f~p!5Apam

2

2m2a2

~p22mE!2
, E52

ma2

4
.

We note that the counterterm~20! is constructed in such a
way that the above-mentioned difference vanishes for
ground state. This can be easily seen by integrating overk,k8
in Eq. ~20! and using the fact that thep,p8-dependent terms
in the denominator of Eq.~20! coincide~up to a normaliza-
tion factor! with the three-dimensional ground-state wa
functions in the momentum representation.

Both methods described above lead to the same result
d5322e we obtain4

DCEHFS5
pa3

24m2
c2~0!S 1

e
24 ln~ma!2

1

3D , ~21!

wherec(0) is the value of thed-dimensional ground-state
wave function at the origin.

2. Tree-level exchange of a magnetic photon

We now consider the correction caused by the tree-le
exchange of a magnetic photon, Fig. 1~b!. We neglect the
energy dependence in the photon propagator; it will be
stored in the following section, where we discuss retardat
effects. The relevant potential is obtained from Eq.~A4!:

VM~p8,p!5
pa

16m4

@s8•q,s8 i #

q2 H Fs
p81p

2
,s i G~p822p2!

1@s•q,s i #~p21p82!J 1~s↔s8!. ~22!

,
.

er
is
as4We neglect factorsG2(11e) and (4pm2)2e which do not con-
tribute to the final, finite result.

FIG. 1. Nonrelativistic corrections to HFS and spin-averag
energy levels:~a!,~b! Coulomb and magnetic photon exchange;~c!–
~e! retardation effects;~f! mixed Coulomb-magnetic exchange;~g!
relativistic correction to the dispersion law;~h!,~i! double Coulomb
and magnetic exchange.
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Contribution of this interaction to the ground-state HFS i

DMEHFS5^VM~p8,p!&uS50
S51

522
d21

d

pa

m4 K p21p821
~p22p82!2

2q2 L . ~23!

In d53 this matrix element is linearly divergent. To demo
strate how we treat linear divergences let us consider thp2

term on the right-hand side~RHS! of the above equation:

^p2&5c~0!E ddp

~2p!d
p2f~p!

5mc~0!E ddp

~2p!d S Ef~p!1E ddk

~2p!d

4pa

~p2k!2
f~k!D .

~24!

Shifting the integration variablep→p1k we find that thep
integral in the last term is scaleless. In dimensional regu
ization such integrals vanish. The first term in Eq.~24! is
finite in three dimensions. We obtain

^p2&5mEc2~0!. ~25!

Applying a similar procedure to the last term in Eq.~23!, we
find the contribution ofVM(p8,p) to the ground-state HFS:

DMEHFS5
pa

m4 Fm2a2c2~0!24
d21

d K ~p8•q!~q•p!

q2 L G
5

pa3

3m2
c2~0!S 1

e
24 ln~ma!1

5

3D . ~26!

3. Retardation effects

Let us now consider the retardation effects, which me
that the magnetic photon emitted by the electron propag
for a finite amount of time before being absorbed by
positron. During this time, the electron and positron can
teract by several Coulomb exchanges@Figs. 1~c! –1~e!#. To
calculate the influence of these effects on the HFS, it is s
ficient to take the spin-dependent parts of the curr
j(p’ , p)5u1(p’) au(p) in the leading nonrelativistic approxi
mation:

j~p8,p!→
@s•q,s#

4m
. ~27!

The scattering operator describing the retardation effect
nonlocal both in space and time:

2Aret52aE ddk

~2p!d
exp~2 ik•rp!

3
@s8•k,s i8#

4m

4p

2k

d i j 2
kikj

k2

k1H2E

@s•k,s j #

4m
exp~ ik•re!

1H.c. ~28!
r-

n
es
e
-

f-
t

is

Here we assume that the magnetic photon with the mom
tum k is emitted by the electron at a pointre and absorbed by
the positron at a pointrp . Between those moments, the ev
lution of the system ‘‘positronium1 photon’’ is governed by
the propagator 4p(d i j 2kikj /k2)/(2k)(k1H2E)21, H be-
ing the Hamiltonian of the nonrelativistic positronium slow
moving due to recoil. In the region of interest,k@E and one
can expand the amplitude~28! over the powers of (H
2E)/k;a. The zeroth term of this expansion is the spi
dependent part of the Breit potential,

2Aret
(0)~q!52

pa

4m2

@s8•q,s8 i #@s•q,s i #

q2
. ~29!

We need the second-order term,

Vret5aE ddk

~2p!d

4p

2k4

@s8•k,s8 i #

4m
@H,exp~2 ik•rp!#

3@H,exp~ ik•re!#
@s•k,s i #

4m
1H.c. ~30!

Only the kinetic part of the Hamiltonian,

Hkin5
pe

2

2m
1

pp
2

2m
, ~31!

has to be retained in the commutators. We find

Vret52aE ddk

~2p!d

4p

2k4

@s8•k,s8 i #

8m2
~k212k•pp!

3exp„ik•~re2rp!…~k212k•pe!
@s•k,s i #

8m2
1H.c.

~32!

Transforming back to the relative coordinater5re2rp and
the relative momentump5pe52pp , we get for the ground-
state HFS,

D retEHFS5
pa

m4 S m2a2

3
c2~0!24

d21

d K ~p8•q!~q•p!

q2 L D
5

pa3

3m2
c2~0!S 1

e
24 ln~ma!2

1

3D . ~33!

4. One-loop operators

Now we turn to the operators generated by one-loop d
grams. For the HFS the only contribution comes from t
graph in Fig. 1~f!, which describes the mixed Coulomb
magnetic exchange with a transition of one of the particles
a negative energy state. In other words, this corresponds
creation of an additional electron-positron pair by the elec
or magnetic field of the electron or positron.

Using Feynman rules for the time-independent pertur
tion theory, given at the beginning of this section, we der
the corresponding potential:



te

n
th
of
w

nd

ra-
an-

PRA 59 4321POSITRONIUMS-STATE SPECTRUM: ANALYTIC . . .
V1-loop~q!5
2p2a2

m3 E ddk

~2p!d

@s•~q2k!,s i #

~q2k!2

@s8•k,s8 i #

k2
.

~34!

It induces the following correction to the ground-sta
HFS (d-dimensional integration overk is implicitly assumed
below!,

D1-loopEHFS522
d21

d

a2

m3 K 4p~p82k!

~p82k!2

4p~k2p!

~k2p!2 L
522

d21

d

a2

m3 K p821p2

2

4p

~p82k!2

4p

~k2p!2

2
4pp8 i

~p82k!2

4ppi

~k2p!2L
5

pa

m4 H m2a2

3
c2~0!28

d21

d K p82
•p2

q2 L J
52

4pa3

3m2
c2~0!S 1

e
24 ln~ma!2

1

3D . ~35!

5. Breit Hamiltonian

To complete the calculation of the soft scale contributio
to the HFS we have to consider the second iteration of
Breit Hamiltonian. It is obtained by including the effects
tree-level Coulomb and magnetic photon exchanges, as
as a correction to the kinetic energy. Using Eqs.~A2! and
~A4! we find

U~p8,p!52
p4

4m3
~2p!dd~p82p!1

pa

m2

1
4pa

m2

~p8•q!~q•p!2~p8p!q2

q4

2
pa

4m2

@s•q,s i #@s8•q,s8 i #

q2
. ~36!

In the position representation this Hamiltonian becomes

U~r,p!52
p4

4m3
1

d21

4m H p2

m
,C~r !J 1

dpa

m2
d~r!

2
1

16m2
†@s•“,s i #@s8•“,s8 i #,C~r !‡, ~37!

where

C~r ![2
aG~d/221!

pd/221r d22
~38!

is thed-dimensional Coulomb potential.
s
e

ell

6. Second iteration of the Breit Hamiltonian:S wave

We consider first the contribution of the intermediateS
states. TheS-wave part of the Breit Hamiltonian~37! reads

US~r,p!52
p4

4m3
1

d21

4m H p2

m
,C~r !J 1

dpa

m2
d~r!

2
pa

4dm2
@s i ,s j #@s i8 ,s j8#d~r!. ~39!

It is convenient to divide up the calculation of theUS con-
tribution to the HFS into two parts and consider the first a
the last two terms in Eq.~39! separately. We begin with the
latter, which we denote byDS1EHFS:

DS1EHFS58
~d21!~3d22!

d2

3S pa

m2 D 2K d~r8!(
m

8
um~r8!^m~r!u

E2Em
d~r!L

58
~d21!~3d22!

d2 S pa

m2 D 2

3c2~0!(
m

8
um~0!u2

E2Em
. ~40!

In three dimensions the last sum is ill-defined due to ult
violet divergences in the zeroth and first terms of its exp
sion in a. We denote these singular terms byG0(0,0) and
G1(0,0), respectively, and obtain

DS1EHFS58
~d21!~3d22!

d2 S pa

m2 D 2

c2~0!

3F2
3m2a

8p
1G0~0,0!1G1~0,0!G . ~41!

G0(0,0) andG1(0,0) are calculated ind dimensions,

G0~0,0!52E ddp

~2p!d

m

p22mE
5

m2a

8p
,

~42!

G1~0,0!52E ddp8

~2p!dE ddp

~2p!d

m

p822mE

4pa

q2

m

p22mE

52
m2a

16p S 1

e
24 ln~ma!12D ,

and one finds

DS1EHFS52
7pa3

9m2
c2~0!S 1

e
24 ln~ma!1

115

21 D . ~43!

The contribution of the first two terms in Eq.~39! is cal-
culated in the following way. We first write them as
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2
p4

4m3
1

d21

4m H p2

m
,C~r !J 52

1

4m
@H22d$H,C~r !%

1~2d21!C2~r !#, ~44!

where H5p2/m1C(r ) is the leading-order Hamiltonian
Correction to the HFS induced by Eq.~44! reads

DS2EHFS5
d21

d

pa

m3
^@d$H,C~r !%

2~2d21!C2~r !#G~r,r8!d~r8!1H.c.&.

~45!

We introduced here the reduced Green function

G~r,r8!5(
m

8
um~r!&^m~r8!u

E2Em
, ~46!

which satisfies the equation (H2E)G(r,r8)5c(r )c(r 8)
2d(r2r8). Using obvious short-hand notations one can
write Eq. ~45! as follows:

DS2EHFS52
2pa

3m3 K S 6aE
1

r
G13

a

r
c~r !c~r 8!

15
a2

r 2
~G2G0!1

3

2

~d21!~2d21!

d
C2~r !G0D

3d~r8!1H.c.L , ~47!

We dropped massless tadpoles and separated the contrib
of G0, which is the only one we have to calculate keepi
dÞ3. We find

^C2G0d~r8!1H.c.&5
8pa

m
c2~0!G1~0,0!,

K a

r
Gd~r8!1H.c.L 52a]a^d~r!&523c2~0!,

K a

r L 522E,

~48!

K 1

r 2
~G2G0!d~r8!1H.c.L 524mc2~0!.

To obtain the last line we used the following equation:

G~r ,0!2G0~r ,0!5
m2a

4p
e2gr S ln~2gr !1gE2

5

2
1gr D ,

~49!

whereg5ma/2. From Eq.~47! we now find

DS2EHFS5
5pa3

3m2
c2~0!S 1

e
24 ln~ma!1

88

15D . ~50!
-

tion

The sum ofDS1EHFS and DS2EHFS gives the final result
for the correction to the ground-state HFS induced by
second iteration of theS-wave Breit Hamiltonian:

DSEHFS5
8pa3

9m2
c2~0!S 1

e
24 ln~ma!1

149

24 D . ~51!

7. Second iteration of the Breit Hamiltonian:D wave

Because of the last term in Eq.~36!, the Breit Hamiltonian
has nonvanishing matrix elements withuDLu52. In our case
this causes virtual transitions from the tripletS state intoD
states~transitions from the singlet state are forbidden by t
total angular momentum conservation!. Again, power count-
ing shows that only the zeroth- and the first-order terms
the Green-function expansion ina diverge in three dimen-
sions. We first compute the remaining, higher-order term
which are finite ford53.

The sum of those higher-order~ho! terms can be written
as

DD
hoEHFS5^UDG0CGCG0UD&, ~52!

where

UD5
a

4m2

3~s•n!~s8•n!2s•s8

r 3
~53!

is theuDLu52 part of the Breit Hamiltonian in three dimen
sions,G and G0 are defined in the preceding section, a
C52a/r is the Coulomb potential.

The correction to the ground-state wave function,

d0c~r !5G0UDc~r !, ~54!

which appears in Eq.~52!, satisfies an inhomogeneou
Schrödinger equation:

S E2
p2

mD d0c~r !5UDc~r !. ~55!

Solving this equation ford0c(r ) we obtain

DD
hoEHFS58dS1S a2

24D
2K 1

mr2
GD~r ,r 1!

1

mr1
2L , ~56!

whereGD(r ,r 1) is theD-wave part of the Green functionG,
and the factor 8dS1 arises from

^@s•s823~s•n!~s8•n!#2&5^314s•s81~s•s8!2&

58dS1 . ~57!

To calculate the matrix element in Eq.~56! we note that

1

mr2
5

1

6
~HD2H !, ~58!

whereHD(H) is the radial Hamiltonian forD(S) states. Us-
ing equations of motion for both the Green function and
wave function in Eq.~56!, one finds
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DD
hoEHFS58S a2

24D
2K 2

1

6mr2L 52
pa3c2~0!

108m2
, ~59!

in agreement with@19#.
To complete the calculation of theD-wave contribution

we have to consider the zeroth- and first-order terms in tha
expansion of the Green function,

DD0EHFS5^UDG0UD&, ~60!

DD1EHFS5^UDG1UD&. ~61!

The perturbationUD(p8,p) is extracted from the Brei
Hamiltonian, Eq.~36!, and reads

UD~p8,p!5
pa

4m2 S @s i ,s j #@s i8 ,s j8#

d

2
@s•q,s i #@s8•q,s i8#

q2 D . ~62!

The average is taken over thed-dimensional wave function
Calculating the trace using the triplet wave function we o
tain

K S @s i ,s j #@s i8 ,s j8#

d
2

@s•q8,s i #@s8•q8,s8 i #

q82 D
3S @sk ,s l #@sk8 ,s l8#

d
2

@s•q,sk#@s8•q,s8k#

q2 D L
5

4~d22!2

d
^Bi j ~q8!Bi j ~q!&,

Bi j ~q![4pS qiqj

q2
2

d i j

d D . ~63!

Therefore,

DD0EHFS52
a~d22!2

4m4d
^Bi j ~p82k!g~k!Bi j ~k2p!&,

~64!

DD1EHFS52
a~d22!2

4m4d
K Bi j ~p82k8!g~k8!

3
4p

~k82k!2
g~k!Bi j ~k2p!L , ~65!

where

g~k!5
2g

k21g2
, ~66!

and d-dimensional integrations overk in Eq. ~64! and over
k,k8 in Eq. ~65! are understood. Some details of the integ
tions in Eqs.~64! and~65! are given in Appendix B. Adding
-

-

the higher-order effects found in Eq.~59! we obtain the com-
pleteD-wave contributions to HFS,

DDEHFS5DD0EHFS1DD1EHFS1DD
hoEHFS

5
5pa3

72m2
c2~0!S 1

e
24 ln~ma!2

19

5 D . ~67!

B. Hard scale contribution

Another contribution to the HFS arises from virtual m
menta scales of the order of the electron mass. It can
calculated by considering the on-shelle1e2 scattering am-
plitude with an exchange of three photons in thet channel
~see Fig. 2! exactly at the threshold, i.e., for zero relativ
velocity of the incoming electron and positron, in dime
sional regularization. The use of the dimensional regulari
tion brings in essential simplifications, since almost a
other regularization would bring in powerlike divergenc
and hence require additional subtractions. This so-ca
hard scale contribution gives rise to four-fermion operat
in the low-scale Lagrangian or, equivalently, to thed(r )
terms in the effective quantum-mechanical Hamiltonian.

Technically, this calculation is similar to the derivation
the matching coefficient of the vector quark-antiquark c
rent in QCD and its NRQCD counterpart, described, e.g.
@34,35#. Here we outline the main steps of this calculation

An arbitrary Feynman integral which contributes to t
hard scale part of the calculation can be written as

I ~a1 , . . . ,a9!

5E dDk1

~2p!D

dDk2

~2p!D

1

S1
a1S2

a2S3
a3S4

a4S5
a5S6

a6S7
a7S8

a8S9
a9

,

~68!

where

S15k1
2 , S25k2

2 , S35~k12k2!2, S45k1
212pk1 ,

~69!

S55k2
212pk2 , S65k1

222pk1 , S75k2
222pk2 ,

S85~k12k2!212p~k12k2!,

FIG. 2. Feynman diagrams representing pure recoil correct
to positronium HFS and spin-averaged energy levels. Wiggly li
denote photons in Feynman gauge.
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S95~k12k2!222p~k12k2!,

and a1 , . . . ,a9 are integers. In practice we encounter d
grams with only at most six different propagators, so tha
least three exponentsai are zero. Applying the integration b
parts technique@36# to an integralI ($ai%), one obtains a se
of relations among integrals with various values of indic
$ai%. Using these relations one can express anyI ($ai%) in
terms of a few master integrals. This is most easily do
using symbolic manipulation programs.

The result for the hard scale recoil corrections~Fig. 2! to
the HFS reads@9#

DhardEHFS5
pa3

3m2
c2~0!S 2

1

e
14 lnm

2
51z~3!

p2
1

10

p2
26 ln 2D . ~70!

C. HFS for excited S states

The result for the HFS of the ground state can be use
obtain the HFS for an arbitrary excited state. The nontriv
dependence on the principal quantum numbern arises only
from the soft scale contributions. Therefore, one has to
peat the quantum-mechanical calculation of the nonrelati
tic part using any convenient regularization~we use a cutoff
at 1/m!r 0!1/ma) and compare the result with the know
formula for n51, Eq. ~8!. One finds

D recEHFS~n!5
ma6

n3 F @div#2
1

6 S ln
a

n
1C~n!1gED

1
7

12n
2

1

2n2G . ~71!

The quantity@div# in the above equation stands for the u
known andn-independent constant, easily determined by
quiring that forn51, Eq.~8! is reproduced. We then obtai
the final result for the recoil corrections to the HFS splitti
for an arbitrarynS state, Eq.~9!.

IV. SPIN-AVERAGED ENERGY LEVELS

To obtainO(ma6) corrections to the triplet and single
energy levels separately, we have to calculateEaver(n) @cf.
Eq. ~2!#. An appropriate formula for this calculation is

Eaver5
3 Etriplet1Esinglet

4
→

d Ed--plet1Esinglet

d11
.

It is known @37,38,30# that the recoil correctionsEaver do not
contain ln(a) at the orderma6. In dimensional regularization
this means that the hard scale and soft scale contribution
separately finite.5

5Because of powerlike singularities, this is not necessarily
case in other regularization schemes.
-
t

s

e

to
l

-
s-

-

re

Conceptually, determination ofEaver is very similar to the
calculation of the HFS discussed above in detail. The o
difference is that several new operators appear, which c
tribute toEaver but not to the HFS.

A. The ground-state average energy shift

We begin with the correction toEaver induced by the rela-
tivistic corrections to the dispersion law,vp5Ap21m2 @Fig.
1~g!#. Expandingvp in upu/m, we obtain

vp5m1
p2

2m
2

p4

8m3
1

p6

16m5
1•••. ~72!

The last term induces a correction of the appropriate ord

DdispEaver5
1

8m5
^p6~2p!dd (d)~p2p8!&52

3

64

pa3

m2
c2~0!.

~73!

The O(v4) spin-independent part of the tree-level Co
lomb exchange amplitude@cf. Eq. ~A1! and Fig. 1~a!; we
neglect terms odd inp, whose average vanishes in anS
state#,

V̄C~p8,p!52
pa

16m4 S 7~p21p82!1
5~p22p82!2

q2 D ,

~74!

gives rise to the following correction:

DCEaver5
5pa3

32m2
c2~0!S 1

e
24 ln~ma!1

7

5D . ~75!

Virtual transitions to negative energy states induced
the Coulomb exchanges, Fig. 1~h!, generate an effective
spin-independent operator

VC2~r!52
1

4m3
@p,C~r !#2. ~76!

This operator describes the energy shift due to a creatio
an additionale1e2 pair by the Coulomb field of either elec
tron or positron. The resulting energy shift is

DC2Eaver52
pa3

4m2
c2~0!S 1

e
24 ln~ma! D . ~77!

The spin-independent part of the tree-level magnetic
change, Fig. 1~b!, induces the following shift in the energ
levels:

DMEaver5
2pa

m4 K ~p821p2!S p•p8

q2
2

~p•q!~q•p8!

q4 D L
5

pa3

2m2
c2~0!S 1

e
24 ln~ma!1

1

2D . ~78!

To account for the retardation in the magnetic phot
propagation, Figs. 1~c!–1~e!, we use the approach describe

e
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in the HFS case. Our starting point is similar to Eq.~28!,
except that now the full expression for the currents must
used, rather than just their spin-dependent part. We obta

D retEaver5
pa3

8m2
c2~0!S 1

e
24 ln~ma!28D . ~79!

The next contribution comes from the exchange of t
magnetic photons with creation of an additionale1e2 pair in
the intermediate state, Fig. 1~i!. We find

DMM2Eaver52
pa3

2m2
c2~0!S 1

e
24 ln~ma!23D . ~80!

We proceed further with the correction toEaver, induced
by the second iteration of theS-wave Breit Hamiltonian. The
calculation closely follows the HFS case. We arrive at
following result:

DS
(2)Eaver52

pa3

12m2
uc~0!u2S 1

e
24 ln~ma!1

433

24 D .

~81!

The iteration of theD-wave part of the Breit Hamiltonian
only influences the energy levels of the triplet state beca
of the total angular momentum (L1S) conservation. For this
reason, to obtain the required correction toEaver it is suffi-
cient to multiply Eq.~67! by the factord/(d11). We find

DD
(2)Eaver5

5pa3

96m2
c2~0!S 1

e
24 ln~ma!2

119

30 D . ~82!

It is easy to see that in three dimensions the sp
dependent operators do not contribute toEaver. However,
since we work with divergent integrals and use dimensio
regularization, this is no longer valid fordÞ3. In this case
an ‘‘anomalous’’ situation arises: spin-dependent opera
provide contributions of the form (d23)/e to Eaver, which
are finite ase→0. Part of these contributions has alrea
been accounted for in the corrections induced by the B
Hamiltonian. The remaining contributions give

DanomEaver52
15

64

pa3

m2
c2~0!. ~83!

The hard scale contribution, Fig. 2, is calculated in t
same way as for the HFS. One finds

DhardEaver52
pa3

3m2
c2~0!S 13

8
1

9z~3!

p2
1

33

2p2D . ~84!

The sum of all contributions presented above provides
O(ma6) pure recoil correction to the ground-state energy

D recEaver52
ma6

8 S 901

576
1

11

2p2
1

3z~3!

p2 D
52

ma6

8
~2.486 88 . . . !, ~85!
e

e

se

-

l

rs

it

e

e

in very good agreement with the numerical result of Eq.~20!
in @11#, 2ma6/8@2.484(5)#.

B. Energy levels for arbitrary n

To generalize the result Eq.~85! for arbitraryn, we pro-
ceed according to the program outlined in Sec. III C. W
repeat the calculation of the soft scale contributions toEaver
for arbitrary n using a different regularization schem
Namely, we setd53 and cut off the divergent integrals ove
r from below at somer 0!1/(ma). The transition to three
dimensions simplifies the calculation. We find

D recEaver~n!52
ma6

8n3 S @div#1
69

64n3
2

8

3n2
1

2

nD .

~86!

The n-independent term in the above equation
regularization-dependent. It cannot be determined by con
ering the soft scale contributions alone. Nevertheless,
matching Eq.~86! to the shift for the ground state Eq.~85!,
the ‘‘value’’ of the divergent constant@div# is completely
determined. We obtain

D recEaver~n!52
ma6

8n3 S 83

72
1

11

2p2
1

3z~3!

p2

1
69

64n3
2

8

3n2
1

2

nD . ~87!

This is our main result for the recoil corrections to the ene
levels of positronium. It agrees with the partially numeric
result derived in@11#.

V. RADIATIVE RECOIL CORRECTIONS

So far in this paper we have been considering pure re
effects. Another class of theO(ma6) corrections to positro-
nium energy levels and their HFS are the so-called radia
recoil corrections, where one of the three exchanged pho
is created and absorbed by the same particle~see Fig. 3!.

Our technique is very convenient for the calculation
these corrections. The key point is that atO(ma6) the radia-
tive recoil corrections do not receive any contribution fro
the nonrelativistic scales. Thus it is sufficient to calculate
diagrams shown in Fig. 3~supplemented by the electri

FIG. 3. Examples of radiative recoil corrections to positroniu
HFS and spin-averaged energy levels.
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charge, electron wave function, and mass renormalizat!
exactly at the threshold. For the same reason, then depen-
dence of the radiative recoil corrections comes only from
1/n3 behavior of thenS-wave function at the origin. Som
details of this calculation are described in Sec. III B in t
context of the HFS. We obtain

D rad recEHFS5
ma6

n3 F z~3!

2p2
2

79

48
1

41

36p2
1

4

3
ln 2G , ~88!

D rad recEaver5
ma6

n3 F9z~3!

8p2
1

97

144
2

1025

432p2G , ~89!

respectively, for corrections to the HFS and to the aver
energy, in full agreement with the analytic results of R
@28#. For completeness, we give here separately the co
butions of electron vacuum polarization effects to radiat
recoil corrections@39,28,40# @they are included in Eqs.~88!
and ~89!#:

D rad rec
vac polEHFS5

ma6

n3

5

9p2 ,

D rad rec
vac polEaver5

ma6

n3 S 1

36
2

5

27p2D . ~90!

VI. SUMMARY AND CONCLUSIONS

The main results of the present paper are the ana
formulas~9! and~87! for the pure recoilO(ma6) corrections
to the HFS and spin-averaged energy levels of positron
nS states. These recoil effects provide the last pieces nee
to present complete analytical formulas for the total corr
tions to Eaver and EHFS. We use the parametrization intro
duced in Eq.~2!,

E~J,n!5Eaver~n!1S 1

4
2dJ0DEHFS~n!, ~91!

and find

Eaver~n!52
ma2

4n2
1

ma4

16n3 S 11

4n
21D1

ma5

8pn3

3F26 lna2
16

3
ln k0~n,0!

1
14

3 S ln
4

n
1C~n!1gED

2
37

45
23 ln 21

7

3nG1
ma6

32n3 F2 ln
a

n
2C~n!

2gE1
141

4

z~3!

p2
1S 137

6
2

68

p2D ln 2

1
1421

27p2
2

2435

432
2

7

n
1

17

12n2
2

69

16n3G ~92!
n

e

e
.
ri-
e

ic

m
ed
-

and

EHFS~n!5
7

12

ma4

n3
2

ma5

pn3 S 8

9
1

1

2
ln 2D

1
ma6

n3 F2
5

24S ln
a

n
1C~n!1gED

1
1367

648p2
2

4297

3456
1S 221

144
1

1

2p2D ln 2

2
53

32p2
z~3!1

5

8n
2

85

96n2G . ~93!

We have also recalculated the radiative recoil correctio
Eqs.~88! and~89!, confirming the recent result of Ref.@28#.
Let us make a technical remark. In dimensional regulari
tion, used in this paper, the calculation of the radiative rec
corrections is particularly simple. Since there are no lo
scale contributions to the radiative recoil corrections, it s
fices to calculate corresponding Feynman graphs exactl
the threshold. No matching or subtractions are required.

Formulas~92! and~93!, together withP-state energy lev-
els given in Appendix C, can be used to compute quanti
which can be directly confronted with experimental data. W
use the following values for the Rydberg@41# and fine-
structure@42# constants:

R`5
ma2

2
53 289 841 960.394~27! MHz,

a51/137.035 999 59~51!. ~94!

In addition to the full correctionsO(ma6) we include the
leading logarithmic termsO(ma7 ln2 a) found in @43# for
HFS, and in@44# for the spin-averaged energy levels:

DLLE~J,n!52S 499

15
17~124dJ0! Dma7 ln2a

32pn3
d l0 .

~95!

For the most precisely measured quantity, the Ps grou
state HFS, we find

Dn5203 392.01~46! MHz. ~96!

The O(ma6) recoil corrections to this observable have be
the subject of some debate. In the literature three differ
results have been reported@5,10,29#.6 Our result for this cor-

rection, Eq. ~8!, evaluates numerically toma6(2 1
6 ln a

10.376 32). This is in excellent agreement with Ref.@10#,

6After our HFS calculation was completed, we were inform
about an independent numerical calculation of the recoil correct
@45#. Although that study is still in progress, its preliminary resu
seem to agree with Ref.@10# and the present paper.
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where for the nonlogarithmic part of the correction a num
0.3767~17! was obtained. The framework of our calculatio
is similar to Ref.@10#. However, in that study a differen
regularization method was used. The agreement of the re
gives us confidence in their correctness.

Comparing Eq.~96! with the experimental results, Eq
~4! and~5!, we observe a significant deviation of the order
three to four experimental errors. It is not very likely that t
uncalculated higher-order effects alone can account for
discrepancy. The size of theO(ma6) corrections gives no
indication of bad behavior of the perturbative expansion.
the other hand, the leading logarithmic termO(ma7 ln2 a) is
sizable. A calculation of the subleading terms at this or
remains an important theoretical challenge.

For another experimentally interesting quantity, the e
ergy interval of the 1S-2S transition, we get

E~2 3S1!2E~1 3S1!51233 607 222.18~58! MHz.
~97!

in fair agreement with the experimental result, Eq.~6!.
Other quantities, for which high precision measureme

have been made or are being planned, have recently
reviewed in@28#. In Table I we update the theory prediction
for those observables. Our predictions are in good agreem
with @28#. We have been able to decrease the error bars
including the analytical results~92! and~93! and the value of
the leading quadratic logarithms~95!.

Finally we would like to comment on our error estimate
The errors due to uncertainties in the fine-structure cons
and the electron mass are well below the 0.1 MHz level. T
dominant theoretical error source is the uncalculated rem
der of the perturbation expansion. Although formallyma7

;0.1 MHz, the leadingO(ma7 ln2 a) terms contribute
20.92 MHz to the HFS@43#. It remains very important to
calculate the remaining, nonleading terms inO(ma7). For
the present analysis we assume that the leading logarit
O(ma7 ln2 a) dominate the higher-order contributions a
take half their size as the theoretical error estimate.

TABLE I. Theoretical predictions for experimentally releva
positronium transitions.

Transition Theory~MHz!

2 3S121 3S1 1233 607 222.18~58!

1 3S121 1S0 203 392.01~46!

2 3S122 3P0 18498.25~8!

2 3S122 3P1 13012.41~8!

2 3S122 3P2 8626.71~8!

2 3S122 1P1 11185.37~8!

2 3S122 1S0 25424.67~6!
r
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The spectrum of thenSandnP positronium energy levels
is now known analytically, including effectsO(ma6). Our
calculation for thenS levels was made possible by new th
oretical tools which have their roots in the recent pertur
tive calculations in high-energy physics. We hope that th
methods will find further applications.

The agreement between theoretical predictions and
perimental results in Ps spectroscopy is impressive wit
few exceptions. One can only hope to find something n
and unexpected by trying to put these exceptions in line w
the overall picture. We look forward to future improve
measurements of positronium energy levels and their c
frontation with QED.
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APPENDIX A: TREE-LEVEL ELECTRON-POSITRON
POTENTIAL

We present here formulas for the potential arising from
single Coulomb or magnetic photon exchange between
electron and a positron, valid toO(v4). The virtual annihi-
lation is not taken into account here. We also drop tho
terms which annihilate theS state wave function. These for
mulas, valid ind dimensions, are useful in the derivations
HFS and spin-averaged energy levels.

For a single Coulomb exchange between two particles
opposite charges, Fig. 1~a!, the minus on-shell scattering am
plitude is

2AC~p8,p!52
4pa

q2
r~p8,p!r~2p8,2p!, ~A1!

where p and p8 are spatial momenta of the incoming an
outgoing electron;q5p82p; and the charge density i
r(p8,p)5u1(p8)u(p). In momentum representation a sing
Coulomb photon exchange gives rise to the potential
UC~p,p8!52
4pa

q2 H 12
q2

4m2
1

5~p22p82!216q2~p21p82!1q41@s•p8,s•p#@s8•p8,s8•p#

64m4 J . ~A2!
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In the leading nonrelativistic approximation Eq.~A2! gives
the Coulomb potential.

Next we consider a magnetic photon exchange, Fig. 1~b!.
We neglect retardation effects. The scattering amplitude

2AM~p8,p!5
4pa

q2
j i~p8,p! j j~2p8,2p!S d i j 2

qiqj

q2 D ,

~A3!

where j(p8,p)5u1(p8)au(p) is the matrix element of the
current. The resulting potential is

UM~p,p8!5
pa

m2q2 S 4

q2
@~p•p8!22p2p82#

2
1

4
@s•q,s i #@s8•q,s8 i # D 2

pa

2m4q2

3H ~p21p82!S 4

q2
@~p•p8!22p2

•p82#

2
1

4
@s•q,s i #@s8•q,s8 i # D

1
p22p82

16
~@s•q,s i #@s8•P,s8 i #

1@s•P,s i #@s8•q,s8 i # !J . ~A4!

These formulas are valid in the center-of-mass frame.
usep andp8 to denote incoming and outgoing electron m
menta, andq[p82p, P[p81p. The primeds matrices act
on the positron spinor.

APPENDIX B: USEFUL INTEGRALS

In this appendix we present various integrals which w
useful in the calculations presented in this paper. The follo
ing formulas have been used throughout the paper, espec
for the tree level diagrams:

^p2&52
m2a2

4
c2~0!, ~B1!

K p4

q2L 5
m2a2

16
c2~0!,

K p2
•p82

q2 L 5
m2a2

4
c2~0!S 1

e
24 ln~ma!1

1

4D ,

K ~q•p!~q•p8!

q2 L 52
m2a2

8
c2~0!S 1

e
24 ln~ma!21D .

In the remainder of this appendix we describe some
tails of theD-wave contribution to the second iteration of th
Breit Hamiltonian. First, we rewrite Eq.~64! in the following
way:
e

e
-
lly

-

^Bi j ~p82k!g~k!Bi j ~k2p!&

5K Bi j ~p82k!g~k!4p
kikj22kipj1pipj

~k2p!2 L
5K Bi j ~q!pipj22Bi j ~p82k!g~k!

4p~ki2pi !

~k2p!2
pj

2Bi j ~p82k!g~k!
4p

~k2p!2
pipj L . ~B2!

Here and below we use the Schro¨dinger equation in the form

f~p!5g~p!
4p

~p2k!2
f~k!. ~B3!

Similarly, by rearranging terms in Eq.~65! we get

K Bi j ~p82k8!g~k8!
4p

~k82k!2
g~k!Bi j ~k2p!L

5K Bi j ~p82k!g~k!
4p

~k2p!2
pipj22Bi j ~p82k8!g~k8!

3
4p

~k82k!2
kig~k!

4p

~k2p!2
pj

1Bi j ~p82k8!g~k8!
4p

~k82k!2
g~k!

4p

~k2p!2
pipj L .

~B4!

Using the symmetry with respect top↔p8, we rewrite the
first term in Eq.~B2!,

^Bi j ~q!pipj&54pK q2

2
1

~p8•q!~q•p!

q2
2

p2

3 L
54pK 2

2

3
g21

~p8•q!~q•p!

q2 L . ~B5!

In the same way, the second term in Eq.~B2! is transformed
to

K 22Bi j ~p82k!g~k!
4p~ki2pi !

~k2p!2
pj L

5K 8p

d
g~k!

4p~k2p!p

~k2p!2
12pi8

4p

~p82k!2
~2kj2pj8!

3g~k!
4p~ki2pi !

~k2p!2
pj L . ~B6!

Considering the divergent part of this expression we find

K 8p

d
g~k!

4p~k2p!p

~k2p!2 L 5
16p2a

d
c2~0!@G0~0,0!1G1~0,0!#.

~B7!
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The sum of Eqs.~64! and ~65! reads

DD0EHFS1DD1EHFS

52
a~d22!2

4m4d
K 16p2a

d
@G0~0,0!1G1~0,0!#

2
8pg2

3
1

4p~p8•q!~q•p!

q2
12pi8

4p

~p82k!2

3~2kj2pj8!g~k!
4p~ki2pi !

~k2p!2
pj22Bi j ~p82k8!g~k8!

3
4p

~k82k!2
kig~k!

4p

~k2p!2
pj1Bi j ~p82k8!g~k8!

3
4p

~k82k!2
g~k!

4p

~k2p!2
pipj L . ~B8!

Only two terms here contain the logarithmic divergence:

2
4p2a2~d22!2

m4d2
^G1~0,0!&

5
pa3

36m2
c2~0!S 1

e
24 ln~ma!2

2

3D , ~B9!

2
a~d22!2

4m4d
K 4p~p8•q!~q•p!

q2 L
5

pa3

24m2
c2~0!S 1

e
24 ln~ma!2

13

3 D . ~B10!

All other terms are finite and we compute them in thr
dimensions. Here we list some useful integrals@x[k/g and
a(x)[arctan(x)]:

E d3p

~2p!3

pi

~k2p!2
f~p!5

gc~0!ki

k3 S a~x!2
x

x211
D ,

~B11!

E d3p

~2p!3

pipj

~k2p!2
f~p!

5
gc~0!

k F1

2 S kikj

k2
2

d i j

3 D S x213

x~x211!
1

x223

x2 a~x! D
1

d i j

3 S a~x!2
x

x211
D G ,
E d3p

~2p!3

d3k8

~2p!3

g~k8!Bi j ~k82p!

~k2k8!2
f~p!

5
gc~0!

k S kikj

k2
2

d i j

3 D Fa~x!

2 S 11
3

x2D 2
3

2xG .

Using these above formulas in Eq.~B8! we find the final
result forDD0EHFS1DD1EHFS.

APPENDIX C: P-STATE ENERGY LEVELS

In this appendix we present formulas for the energy lev
of P states, to orderO(ma6). Correcting some minor mis
prints in Refs.@31,32# one finds

E~n3P2!52
ma2

4n2
2

ma4

4n3 S 13

30
2

11

16nD
2

ma5

8pn3 S 4

45
1

16

3
ln k0~n,1! D

1
ma6

n3 S 2
69

512n3
1

559

4800n2
2

169

4800n

1
20677

432 000
2

3

80
ln 21

9z~3!

160p2
1

13

128p2D ,

~C1!

E~n3P1!52
ma2

4n2
2

ma4

4n3 S 5

6
2

11

16nD
2

ma5

8pn3 S 5

9
1

16

3
ln k0~n,1! D

1
ma6

n3 S 2
69

512n3
1

77

320n2
2

25

192n

1
1

48
ln 22

z~3!

32p2
2

179

3456p2
1

493

17 280D ,

E~n3P0!52
ma2

4n2
2

ma4

4n3 S 4

3
2

11

16nD
2

ma5

8pn3 S 25

18
1

16

3
ln k0~n,1! D

1
ma6

n3 S 2
69

512n3
1

119

240n2
2

1

3n

2
923

4320
1

1

8
ln 22

3

16p2
z~3!2

203

576p2D ,
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E~n0P1!52
ma2

4n2
2

ma4

4n3 S 2

3
2

11

16nD
2

ma5

8pn3 S 7

18
1

16

3
ln k0~n,1! D

1
ma6

n3 S 163

4320
1

23

120n2
2

69

512n3
2

1

12nD .
-
,

-
,

v.

. D

e,

n

A

For the numerical evaluations we use the following values
Bethe logarithms ln@k0(n,l)/R̀ # @46#:

ln@k0~1,0!/R`#52.984 128 555 765 498,

ln@k0~2,0!/R`#52.811 769 893 120 563, ~C2!

ln@k0~2,1!/R`#520.030 016 708 630 213.
t.

ett.
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