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Bound-state calculations of Coulomb three-body systems

Alexei M. Frolov
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~Received 17 September 1998; revised manuscript received 8 January 1999!

Various geometrical and energetical properties in the symmetric muonic molecular ionsppm,ddm,ttm,
molecular ionsppe,dde,tte, and exotic systemmme (m1m1e2) are determined with high accuracy by using
the two-stage strategy proposed by Frolov@Phys. Rev. A57, 2436~1998!#. The significant difference between
bound-state spectra in muonic molecular ionsppm,ddm,ttm and molecular ionsppe,dde,tte ions is ex-
plained by using the general theory of bound-state spectra in Coulomb three-body systems, which is closely
related with the general theory of compact operators. In particular, the principal classification of the bound-
state spectra in such systems can be made in the same manner as for compact operators. For instance, the
discrete spectrum of a Coulomb three-body system may have the Hilbert-Schmidt, nuclear or finite-
dimensional structure. Moreover, this structure can be changed by varying some of the physical parameters
~e.g., masses or charges! of the system. The developed theory is applied to the case of symmetric Coulomb
three-body systems with unit charges.@S1050-2947~99!02706-7#

PACS number~s!: 36.10.Dr
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I. INTRODUCTION

The two-stage strategy proposed previously@1# was found
to be a very effective and quite simple approach for the c
struction of extremely accurate wave functions for vario
three-body systems. In the present study we consider
strategy for the symmetric muonic molecular io
ppm,ddm,ttm, ‘‘adiabatic’’ molecular ionsppe,dde,tte,
and the exotic systemmme (m1m1e2). Our main goal is to
perform highly accurate calculations for a number of pro
erties of such systems. It should be mentioned that som
the properties of the muonic molecular ions andppe have
been computed previously~see, e.g.,@1–6#!. The properties
of the dde ion can be found in@1, 6# and energies for al
adiabatic molecular ions in@7# ~see, also,@8# and @9#!. In
general, all muonic properties found in various calculatio
for ppm,ddm,ttm agree quite well, but for the internuclea
distances and other internuclear properties, e.g.,^d11& and
nuclear cuspn11 such an agreement is not so good. Unfo
tunately, these properties determine the appropriate fu
probabilities and other important characteristics which are
interest for thermonuclear applications. In the case of a
batic systems such asppe,dde,tte the situation with nuclear
properties is even worse. Presently, we attempt to com
such properties more accurately than in a number of prev
studies~see, e.g.,@2#, and references therein!. The basic idea
of this study is to apply the two-stage strategy in order
chose the optimal values for the nonlinear parameters.
nally, the convergence rate of the variational expansion u
in computations increases significantly. The two-stage st
egy is discussed in detail in Sec. II. The results of hig
precision calculations for both muonic molecular and m
lecular ions can be found in Sec. III.

Note that all highly accurate calculations for molecu
ions have been performed by using the universal variatio
expansion in the relative coordinatesr 32,r 31, and r 21. In
particular, no assumption was made that the internuc
variabler 21 is slow in the adiabatic systems. This means t
from the computational point of view no difference can
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found between muonic and molecular ions. However,
should be mentioned that there is a principle difference
tween the bound-state spectra in muonic and molecular i
Indeed, the total number of bound states in such syst
increases rapidly when the two masses of positively char
particles ~i.e., m1 and m2) grow to infinity. For instance,
there are only two bound states in theppm ion, six bound
states in thettm ion, and many dozens of bound states in a
of the the molecular ions, e.g., in thette ion. This problem is
discussed in Sec. IV. Here, we consider the general struc
of the bound-state spectra in Coulomb three-body syst
~and furthermore, in quantum systems!. It is shown that the
principal classification of bound-state spectra in such s
tems can be made as for compact operators. In particular
discrete spectrum of a quantum system may have the Hilb
Schmidt, nuclear or finite-dimensional structure. This pro
lem is of interest not only from a theoretical point of view
but also in order to develop new, advanced procedures
performing highly accurate calculations in such systems.
instance, the structure of the bound-state spectra in theppm
and tte ions and in the He atom differ significantly from
each other, but in actual calculations this fact is simply
nored and essentially the same numerical methods are
to determine the bound states in all these systems. The
generation of highly accurate numerical methods should t
into account the principal structure of the bound-state spe
in the considered system. Conclusive remarks can be fo
in the Conclusion.

II. THE TWO-STAGE STRATEGY
FOR HIGH-PRECISION,

BOUND-STATE CALCULATIONS

In 1968, Delves and Kalotas published a paper@10# on
variational calculations of the muonic molecular ionppm
@the groundS(L50) state#. This work contained a few bril-
liant ideas which have been transformed latterly into a qu
4270 ©1999 The American Physical Society
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PRA 59 4271BOUND-STATE CALCULATIONS OF COULOMB THREE- . . .
simple, but very effective procedure to perform highly acc
rate, three-body calculations of various systems. In part
lar, in @10# it was shown that the following variational ex
pansion:

C5
1

2
~11k P̂21!(

i 51

N

Ci exp~2a i r 322b i r 312g i•r 21!

~1!

can be used successfully in ground-state (L50) calculations
for various Coulomb three-body systems. HereCi are linear
~or variational! parameters anda i ,b i , andg i are nonlinear
parameters. The operatorP21 is the permutation of the two
identical~1 and 2! particles in the symmetric systems, whe
k511 ~or 21!, otherwisek50. In the present study only
the casek511 is discussed.

It should be mentioned that the variational expansion
~1! has been used extensively in nuclear physics calculat
previously @10#. The main advantage of@10# follows from
the observation made in this work: the variational energyEN
depends significantly upon the number of basis functionN
~whenN is quite large!, rather than the concrete values of t
nonlinear parametersa i ,b i , andg i . In other words, at large
N the dependenceEN can be expressed in the quite simp
form which contains~with good accuracy! only the param-
eterN. In @10# it was represented in the form:

EN5E`1
A

Ng
, ~2!

whereE`(,0),A(.0) andg(.0) are the three constant
Obviously, E` is the asymptotic~i.e., exact! value of the
energy, which formally corresponds to the infinite ba
function limit, i.e.,N5`. The numerical value ofg is criti-
cally important, since ifg is not large enough~e.g.,g<3),
then the procedure will not work successfully. In@10# it was
found thatg58 for the groundS(L50) state of theppm
ion. This indicates the very fast convergence of Eq.~1! in the
considered case.

It follows from Eq.~2! that the variational calculations fo
the ground state of theppm ion and other similar system
can be made, in principle, with arbitrarily high accurac
sinceEN→E` , whenN→`. However, in reality, a numbe
of various restrictions can be found and performance of s
calculations is quite difficult. The first restriction follow
from the fact that the parameterg depends significantly on
the particle masses@11#. For instance, for theppm,ddm, and
ttm ionsg decreases consequently from'8 –8.5 to'5.5–6.
The accuracy of the energy determination decreases c
spondingly. This phenomena is called adiabatic diverge
of Eq. ~2!. The detail analysis of adiabatic divergence can
found in @7# or @11# ~see, also, the Appendix!.

The second restriction follows from the fact that in actu
calculations the maximal number of basis functionsNmax can
not be increased to infinity. Furthermore, such a num
Nmax is determined almost uniformly if all neccessary qua
tum numbers and permutation symmetry are given for
considered system. For instance, for the groundS(L50)
state in theppm,ddm, and ttm ions the appropriateNmax
values equal'800. For larger dimensions the overlap mat
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Ŝ becomes extremely ill-conditioned, since the correspo
ing condition numberA(Ŝ)5 ln(lmax/lmin) exceeds 65–70
@12#. Here,lmax and lmin designate the maximal and min
mal eigenvalues of the overlap (Ŝ) matrix. As a result, the
solution of the eigenvalue problem (Ĥ2E•Ŝ)CW 50 compli-
cates significantly@12#. Briefly, this means that the approac
based on Eq.~2! is quite restricted in real applications.

In order to avoid the second restriction in high precisio
variational, three-body calculations we propose to use
two-stage procedure@1#. In this approach the trial wave func
tion C is represented by the sum of the very well optimize
short-term functionC1 and roughly optimized~or even non-
optimized!, long-term functionC2. If the total number of
terms equalsN, then we may write: C(N)5C1(N0)
1C2(N2N0), whereN0!N ~and alsoN0@1). Let us con-
sider in detail the exponential variational expansion Eq.~1!.
Since in this case each of the basis functions contains t
nonlinear parameters, the shortC1(N0) function includes
three N0 nonlinear parameters, while the secondC2(N
2N0) function contains three (N2N0) such parameters
Correspondingly, the first stage of the procedure is to o
mize quite well only the threeN0 nonlinear parameters
which is significantly smaller than the total number of the
parameters (3N) in the trial wave functionC. In the second
stage the total number of nonlinear parameters grows ex
sively, but they can be chosen by approximate optimizat
or even without optimization, e.g., in a regular@10# or qua-
sirandom manner~see, e.g.,@2#, and references therein!. The
detail discussion of the regular choice of the nonlinear
rameters can be found in@10#, while the quasirandom choic
is described, e.g., in@2#.

Now, for the two-stage procedure one easily finds fro
Eq. ~2!:

EN5E`1~EN0
2E`!S N0

N D g

, ~3!

whereN0 is the number of basis functions in the short-te
function C1 and N is the total number of basis function
used. In actual calculations for the groundS(L50) state in
the symmetrical systemsN'700–800, while N0'200.
Sinceg'728, the factor (N0 /N)g is really small. Since the
short-term functionC1 is assumed to be well optimized, th
absolute value of the first factor (EN0

2E`) is also very

small. Thus, the deviationEN from E` is represented in the
factorized form of the two small terms, and in general, t
differenceuEN2E`u is significantly smaller than in the cas
of Eq. ~2! @if all nonlinear parameters in Eq.~1! are chosen
without any optimization#. It should be pointed out that th
N0 value has to be large enough, i.e.,N0@1, or in other
words,EN0

'E` . The computational advantage of the pr
posed two-stage strategy and Eq.~3! is obvious. Indeed, if in
actual calculationsN does not exceed theNmax value, then
even in these casesEN can be approached~very closely! to
the exactE` value, by using a more careful optimization o
the short-term energyEN0

obtained withN0 basis functions.

Note also, that if~1! the N0 value has been chosen, and~2!
optimization of the short-term functionC1 has been per-
formed, then the results of the second stage~energy! calcu-
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TABLE I. The total energies~E! in muon atomic units (mm51,\51,e51) for the ground and first
excited states (* ) of symmetric muonic molecular ions.N designates the number of basis functions use

N E(ppm) E(ddm) E(ttm)

200 20.494 386 820 231 708 20.531 111 135 140 824 20.546 374 218 843 03
400 20.494 386 820 247 662 20.531 111 135 374 284 20.546 374 225 424 60
500 20.494 386 820 248 520 20.531 111 135 400 115 20.546 374 225 582 94
600 20.494 386 820 248 739 20.531 111 135 401 532 20.546 374 225 606 61
700 20.494 386 820 248 818 20.531 111 135 402 154 20.546 374 225 612 58
750 20.494 386 820 248 837 20.531 111 135 402 251 20.546 374 225 613 09
800 20.494 386 820 248 853 20.531 111 135 402 300 20.546 374 225 613 37
900 20.494 386 820 248 875 20.531 111 135 402 340 20.546 374 225 613 60

1000 20.494 386 820 248 885 20.531 111 135 402 353 20.546 374 225 613 73
1200 20.494 386 820 248 895 20.531 111 135 402 366 20.546 374 225 613 80

N E„(ddm)* … E„(ttm)* …
600 20.479 706 380 367 595 20.496 762 894 221 51
700 20.479 706 380 368 626 20.496 762 894 244 93
800 20.479 706 380 368 825 20.496 762 894 248 02
900 20.479 706 380 368 861 20.496 762 894 248 88

1000 20.479 706 380 368 878 20.496 762 894 249 32
1200 20.479 706 380 368 890 20.496 762 894 249 78
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lations can be represented by Eq.~2!. In this case one easily
finds that in Eq.~2! A5(EN0

2E`)N0
g .

III. RESULTS

In the present study we consider the ground states in s
metric muonic molecular ionsppm,ddm,ttm, molecular
ions ppe,dde,tte, and exotic systemmme ~or m1m1e2).
All constants, conversion factors and particle masses use
calculations have been taken from@13#. In particular, the
particle masses are

mp51836.152 701me , md53670.483 014me,

mt55496.921 58me , mm5206.768 262me,

Also, in the present study we assume that the masses o
positive and negative muons exactly equal each other.

A. Muonic molecular ions

As is mentioned above, for the muonic molecular io
ppm,ddm, and ttm the first stage produces a very compa
and highly accurate wave functionC1. The appropriate en
ergy contains approximately 8–10 correct decimal figures~in
muon atomic units!. The second stage of the procedure giv
as a rule 2–3 additional correct decimal figures to the to
energy, and generates extremely accurate wave funct
which can be used to compute various properties of th
systems. The nonlinear parameters for the second stag
the procedure were chosen quasirandomly from three
intervals~this step is discussed in detail in our work@2#!. The
variational energies obtained are presented in Table I, w
the numerical values for some of the properties~i.e., expec-
tation values! are presented in Table II. In both Tables I a
II only muon atomic units are used:mm51,e51, and\51.
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The results forN5200(5N0) ~Table I! correspond to the
highly accurate short-term wave functionC1. As follows
from Table I the accuracy achieved for the total energieE
by using the proposed two-stage approach is significa
higher than known from the previous works. But, in pri
ciple, such an accuracy can be increased drastically by
forming better optimization for the short-termC1 function.
For the excited states in the muonic molecular ionsddm and
ttm we report in Table I only the total energies. The corr
sponding binding energies are235.844 246 814 755 4 eV
(N51200) and283.770 726 685 475 eV (N51200) for the
ddm and ttm ions, respectively. These figures are sign
cantly more accurate than the values known for those st
from previous calculations. But the bound-state proper
for the excited states have not been computed, since the
3N0 nonlinear parameters were optimized for the grou
states only.

The numerical values for some of the properties~i.e., ex-
pectation values! in muon atomic units can be found in Tab
II. In this table only stable figures from calculations with th
higher N are presented for most of the properties. For
two-particle cusps only the best results are given in Table
The physical meaning for all of the expectation values
Table II is quite clear from the notations used~for more
detail, see also@1#!. So, here we wish to make only a fe
following remarks. In all the formulas given below and al
in Table II the notations 1 and 2 mean positively charg
heavy nuclei, while the notation 3 designates the muon.
notationsd31,d21, and d321 stand for the two- and three
particle Dirac delta functions, respectively. The two-bo
cusp ratios are determined in a traditional manner:

n i j 5
^d~r i j !~]/]r i j !&

^d~r i j !&
, ~4!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(21) and (31). The exact value ofn i j equals
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TABLE II. The expectation valueŝXi j & in muon atomic units (mm51,\51,e51) of some properties for
the ground states in some muonic molecular ions. The notations 1 and 2 designate the two identical p
while 3 stands for the muon (m2).

^Xi j & ppm ddm ttm

^r 21
22& 0.148 722 055 49 0.177 667 878 85 0.191 091 359 2

^r 31
22& 0.995 871 453 79 1.145 319 646 2 1.209 447 757

^r 21
21& 0.351 831 516 25 0.394 750 585 09 0.414 278 473 3

^r 31
21& 0.670 302 578 37 0.728 486 427 95 0.753 513 462 2

^r 21& 3.299 486 184 4 2.834 451 765 8 2.652 824 758
^r 31& 2.385 666 585 6 2.119 931 647 6 2.017 373 311

^r 21
2 & 12.390 408 464 8.876 754 641 9 7.662 138 315

^r 31
2 & 7.769 503 814 4 5.946 223 219 7 5.312 898 697

^r 21
3 & 52.273 664 421 7 30.436 930 50 23.924 390 7

^r 31
3 & 31.549 086 335 20.296 958 1 16.858 099 2

^r 21
4 & 245.523 499 7 113.481 402 80.308 859 2

^r 31
4 & 151.443 715 7 80.396 436 9 61.627 018 7

^(r 31•r 32)
21& 0.375 475 599 99 0.448 344 486 61 0.481 643 492 2

^(r 31•r 21)
21& 0.254 910 661 39 0.305 175 663 44 0.328 224 381 8

t31 0.544 146 849 14 0.534 079 203 14 0.529 392 114 3
t21 0.151 678 044 55 0.181 105 291 67 0.194 852 825 7
^ f & 0.059 992 935 708 0.062 315 924 485 0.063 409 263 60

^r31•r32& 1.574 299 582 4 1.507 845 898 8 1.481 829 540
^r31•r21& 6.195 204 232 1 4.438 377 320 9 3.831 069 157

^2
1
2 ¹1

2& 0.286 758 809 20 0.379 017 603 93 0.442 086 315 6

^2
1
2 ¹3

2& 0.429 803 280 37 0.488 408 956 46 0.513 115 821 7

^“1•“2& 20.143 714 338 02 20.269 626 251 40 20.371 056 809 6
^“1•“3& 20.178 973 055 68 20.176 797 915 38 20.163 793 708 5

^d31& 0.131 500 88 0.158 739 00 0.170 362 2
^d21& 0.393 70131024 0.243 84131025 0.216 7331026

^d321& 0.555 16731024 0.426 73131025 0.223 6831026

n31 20.898 790 296 20.946 674 495 20.963 756 03
n31

a 20.898 787 928 788 20.946 671 431 05 20.963 748 333 50
n21 4.440 147 68 8.879 636 62 13.128 088

n21
a 4.440 122 200 669 27 8.875 837 564 471 09 13.292 469 373 273

h 1.044310212 2.783310212 9.447310212

« 2253.150 192 338 374 2325.070 689 006 490 2362.906 554 751 70

aThe exact two-particle cusp value@Eq. ~5!#.
f

ed
n i j 5qiqj

mimj

mj1mj
, ~5!

whereqi andqj are the charges andmi andmj the masses o
the particles.

The expectation values of the two interparticlecosine
functions are determined traditionally:

t i j 5^cos~r ik`r jk!&5 K r ik•r jk

r ikr jk
L , ~6!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk), and

( i , j ,k)5(1,2,3)] as follows:
^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~7!

The value^ f & can be calculated directly or by applyingt i j .
Their coincidence indicates that theset21,t32,t31, and ^ f &
have been computed correctly. The equalities

t211t321t315114^ f & ~8!

hold for an arbitrary three-body system. For the consider
symmetric systems we havet325t31.

The virial factorh is determined as follows:

h5U11
^V&
2^T&

U, ~9!
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4274 PRA 59ALEXEI M. FROLOV
where^T& and ^V& are the expectation values of the kine
and potential energy, respectively. The deviation of the f
tor h from zero indicates, in principle, the quality of th
wave function used. The appropriate binding energies« are
given in eV ~the conversion factors are 1 m.a.
5 206.768 262 a.u. and 1 a.u.5 27.211 396 1 eV!. Note
however, that even exact coincidence of the factorh with 0
does not indicate the high quality of the wave function.
deed, by using the so-called scaling transformation (rW i5a

•rW i) one can make the factorh very close to zero, in prin-
ciple, for an arbitrary wave function. Analogously, an exc
lent coincidence between computed and expected cusp
ues can be found in some cases~or easily made! for wave
functions whicha priori have a very poor quality. In par
ticular, for any of the considered muonic molecular ion o
can easily construct a few term trial function Eq.~1! which
reproduces quite well the bound-state energy and also
exact values for both then21 and n31 cusps. But for other
properties the quality of such a function will be very poor.
general, the wave function has a high quality if~and only if!
it reproduces very accurately a large number of the bou
state properties.

The numerical values for the properties in Table II ag
quite well with the values known from previous calculatio
~see, e.g.,@2#!. Note only that some expectation values
Table II can be expressed as the linear combinations of o
properties. For instance, for the three relative vect
rW32,rW31, andrW21 we have

rW322rW311rW2150W . ~10!

Therefore, the three following equalities@( i , j ,k)5(1,2,3)#

rW ik•rW jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~11!

hold in any case. For the appropriate expectation values
finds ~see Table II!

^rW ik•rW jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~12!

Analogously, sincepW 11pW 21pW 350, then we write

pW i•pW j5
1

2
~pk

22pi
22pj

2! ~13!

and

^pW i•pW j&5
1

2
~^pk

2&2^pj
2&2^pi

2&!, ~14!

respectively,@( i , j ,k)5(1,2,3)#. Moreover, if the threepW i

are determined by the relationspW i5(2ı)¹W i in Cartesian co-
ordinates, then one finds

^¹W i•¹W j&5 K 2
1

2
¹k

2L 2 K 2
1

2
¹ i

2L 2 K 2
1

2
¹ j

2L , ~15!
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where (i , j ,k)5(1,2,3). The expectation values form bo
sides of this equality can be found in Table II. Note, ho
ever, that the last three equalities are obeyed only in Ca
sian coordinates and only ifpW i5(2ı)¹W i . In the present
study such a choice is used, and therefore,^¹W i•¹W j& can be
expressed througĥ2 1

2 ¹ i
2& and vice versa. Moreover, in th

symmetric systems we havêp1
2&5^p2

2& and ^rW31•rW21&
5^rW32•rW21&, respectively. This simplifies some of the equ
tions presented above. For the symmetric systems one e
finds that ^¹W 1•¹W 2& is always negative, since

^¹W 1•¹W 2&52^2 1
2 ¹3

2&,0.

B. Molecular ions

The procedure described above can not be applied dire
to the adiabatic molecular ionsppe,dde,tte, and the exotic
systemmme (m1m1e2). For these systems the parameterg
in Eq. ~2! is really small (g'1.25–1.80). This is the adia
batic divergence of Eq.~1! mentioned above~for more detail
see Appendix!. The source of the problem is quite clear: th
relative motion of the two heavy particles~i.e., nuclei or
quasinuclei! differs significantly from the electron motion
For the vibrationally ground states in such systems the nu
are localized. The appropriate wave function@.d(r 212R),
whereR is the nuclear-nuclear distance# cannot be easily and
accurately constructed from the exponential basis functi
Eq. ~1!. In order to avoid this problem in@7# it was proposed
to use the so-called universal variational three-body exp
sion. This expansion has the following form:

C5
1

2
~11k P̂21!(

i 51

N

Ci

3exp~2a i r 322b i r 312g i r 21!

3exp~ ıd i r 321ıei r 311ı f i r 21!, ~16!

where all other notations are exactly the same as in Eq.~1!.
Here ı is the imaginary unit andd i ,ei and f i are the three
additional nonlinear parameters. This variational expans
can be successfully applied to computation of the bou
states in an arbitrary Coulomb three-body system, includ
the pure adiabatic`H2

1 ion. Note also, that the two nonlin
ear parametersd i andei in each of the basis function can b
chosen equal to zero identically. In other words, the o
internuclear coordinater 21 requires the complex nonlinea
parameters~for more detail see@1#!. The energy convergenc
is represented well by the formula Eq.~2! whenN>50–75
@in Eq. ~16!#. If N>75, then for the`H2

1 ion the parameter
g in Eq. ~2! >6. For the adiabatic molecular ion
tte,dde,ppe this parameterg is larger than 6.5–7~when
N>75). This means that the two-stage strategy descri
above can be applied also for adiabatic systems, ifN0>75.
In the results of numerous calculations we have found t
for adiabatic systems the value ofN0 can be equal to 100@in
Eq. ~16!#. In other words, the first stage is the high-qual
optimization of the nonlinear parameters in the trial functi
Eq. ~16! with N05100 basis functions. The maximal numb
of basis functions used in our present calculations is 5
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TABLE III. The total energies~E! in atomic units (me51,\51,e51) for the ground states of symmetri
molecular ions.N designates the number of basis functions used.

N E(tte) E(dde) E(ppe) E(mme)

100 20.599 503 668 24 20.598 788 191 453 20.597 139 054 948 8 20.585 113 695 960
200 20.599 506 834 89 20.598 788 745 520 20.597 139 058 261 3 20.585 125 852 260
300 20.599 506 901 69 20.598 788 779 015 20.597 139 062 110 4 20.585 126 081 539
400 20.599 506 909 38 20.598 788 783 185 20.597 139 063 047 9 20.585 126 096 363
450 20.599 506 909 66 20.598 788 783 703 20.597 139 063 094 3 20.585 126 097 079
500 20.599 506 909 80 20.598 788 783 890 20.597 139 063 107 6 20.585 126 097 176
ta

n

,

,
hi

ntly
m-

ns

at
The choice of the nonlinear parameters for the second s
of the procedure follows in detail@7#.

The results of high precision calculations for energies a
other properties in adiabatic molecular ionsppe,dde,tte,
and exotic systemmme can be found in Tables III and IV
respectively. In both of these tables only atomic units (me
51,\51, ande51) are used. As it follows from Table III
the two-stage approach produces variational energies w
are lower than those known previously~ @1,3–9#!. But note
ge

d

ch

again, that the final accuracy can be increased significa
by performing better optimization for the nonlinear para
eters in the short-term wave functionC1 (N05100). The
properties from Tables III and IV forppe and dde ions
agree very well with the results of the previous calculatio
@1#, @3#, and@6#. Analogous properties for thette andmme
(m1m1e2) ions were never reported. Note, however, th
for the nuclear two-body cuspn21 and delta function̂ d21&
even an approximate agreement is not observed~see Table
while 3

5 5
0 9

4 24
8 61
7 535
0 584
3 913

2 2
8 3
3 04
7 43

9

TABLE IV. The expectation valueŝXi j & in atomic units (me51,\51,e51) of some properties for the
ground states in some molecular ions. The notations 1 and 2 designate the two identical particles,
stands for the electron (e2).

^Xi j & tte dde ppe mme

^r 21
22& 0.246 808 952 0.245 928 351 0.243 923 499 0.230 000 890

^r 31
22& 1.435 633 97 1.432 640 79 1.425 744 87 1.374 907 93

^r 21
21& 0.494 949 538 6 0.493 653 239 5 0.490 707 798 5 0.470 427 32

^r 31
21& 0.846 981 677 2 0.845 615 399 5 0.842 492 962 3 0.820 339 76

^r 21& 2.035 386 064 2.044 070 089 2.063 913 868 2.205 215 237
^r 31& 1.677 707 696 1.682 346 570 1.692 966 209 1.769 302 444

^r 21
2 & 4.173 214 590 4.215 643 294 4.313 285 946 5.036 585 56

^r 31
2 & 3.485 248 982 3.507 528 085 3.558 797 931 3.938 458 00

^r 21
3 & 8.618 702 31 8.771 220 44 9.125 657 56 11.896 594 0

^r 31
3 & 8.414 752 32 8.503 741 65 8.709 881 59 10.294 593 0

^r 21
4 & 17.927 969 1 18.409 472 2 19.542 349 4 29.022 942 1

^r 31
4 & 22.885 379 5 23.230 194 1 24.034 835 3 30.486 492 2

^(r 31r 32)
21& 0.614 265 769 80 0.612 265 279 95 0.607 695 916 81 0.575 446 69

^(r 31r 21)
21& 0.420 871 612 67 0.419 458 836 83 0.416 234 396 52 0.393 564 03

t31 0.508 819 323 445 0.508 819 323 445 0.509 171 32 046 3 0.515 336 16
t21 0.255 371 799 452 0.254 335 121 993 0.251 989 49 272 1 0.236 181 64
^ f & 0.068 252 611 586 0.068 169 440 730 0.067 981 259 120 0.066 713 49

^r31•r32& 1.398 641 687 3 1.399 706 437 9 1.402 154 958 8 1.420 165 22
^r31•r21& 2.086 607 295 1 2.107 821 647 0 2.156 642 973 2 2.518 292 77

^2
1
2 ¹1

2& 4.389 948 286 7 3.620 451 191 8 2.613 370 341 0 0.990 366 38

^2
1
2 ¹3

2& 0.597 909 667 1 0.596 816 037 4 0.594 292 491 1 0.575 546 61

^d31& 0.208 151 732 0.207 727 169 0.206 736 288 0.198 930 331
^d21& 0.12631027 0.20531027 0.624131029 0.270631029

^d321& 0.60431027 0.18731026 0.116931028 0.265731029

n31 20.999 829 427 0 20.999 713 191 5 20.999 449 164 8 20.995 181 763 7
n31

a 20.999 818 113 1 20.999 727 630 5 20.999 455 679 4 20.995 186 945 4
n21 2111.8368 2107.1541 2108.7270 263.0451

n21
a 2748.460 790 0 1835.241 507 0 918.076 350 50 103.384 131 00

h 3.22831029 6.88531029 9.614310211 1.609031029

« 22.710 196 635 590 22.691 886 505 863 22.650 695 384 281 22.381 884 916 99

aThe exact two-particle cusp value@Eq. ~5!#.
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IV !. The same is true for the three-particle delta funct
^d321&. Furthermore, we assume that the real^d21& and^d321&
values for all presented molecular ions are 1029210231

times smaller than the values given in Table IV. The larg
deviations can be found for theddeandtte ions. Indeed, the
mass dependence for the^d21& expectation values in the
Coulomb three-body systems was studied in detail in
work @14#. As it follows from Table I in this work, the gen
eral dependence between the logarithms of the mass
and ^d21& takes the form:

log10̂ d21&5 (
k>0

DkF log10S mZ

mX
D Gk

, ~17!

wheremX andmZ are the particle masses for theX1X1Z2

~or X2X2Z1) system. In the adiabatic region~where mX
>5mZ) we can restrict ourselves~with quite good accuracy!
by the first three terms in the last equation, i.e.,

log10̂ d21&5D01D1F log10S mZ

mX
D G1D2F log10S mZ

mX
D G2

.

~18!

By using the results from Table I in@14# we have found
the following numerical values for the coefficients
the last equation: D0524.636 344 170 938,D15
23.568 167 272 272 andD2523.497 573 648 938. Now, fo
the ^d21& expectation values in the considered ions one fi
from the last equation:

^d21&~ tte!56.071310241, ^d21&~dde!54.352310237,

^d21&~ppe!55.621310231, ^d21&~mme!57.474310216.

These values for thêd21& delta function are significantly
closer to reality, than values presented in Table IV. In p
ticular, the^d21& expectation values from Table IV gives a
extremely large fusion rates for dense deuterium and tritiu
Actually, the energy gain from nuclear fusion reactio
would be so large in this case, that these gases could no
liquified ever. Furthermore, any experimental work w
those substances would be impossible, because of the
coming intense neutron fluxes.

In principle, such a huge difference between predic
and computed values for^d21&,n21, and^d321& must be ex-
plained in the course of the further investigations. Briefl
this indicates that the adiabatic divergence for Coulo
three-body systems is not a completely solved problem.
alternative explanation suggests that such wrong cusps
respond to some effective~i.e., non-Coulomb! potential be-
tween two nuclei in theppe and relative ions. In particular
this explains why the observed deviation between compu
and predicted cusps increases in the se
m1m1e2, p1p1e2, d1d1e2, t1t1e2, etc.

IV. THE BOUND-STATE SPECTRA IN COULOMB
THREE-BODY SYSTEMS

In the previous sections we considered the bound-s
properties of the muonic molecular ions (ppm,ddm,ttm)
and molecular ions (ppe,dde,tte). Note, however, that ou
n

t

r

tio

s

-

.

be

ut-

d

,
b
n
or-

d
s

te

present analysis is restricted to the ground states only. A
ally, there is no technical problem to compute any of t
excited states, since the same variational expansion ca
used in such calculations, but the total numbers of bou
states differ significantly for muonic and molecular ions.
principle, these two group of ions have completely differe
structures of bound-state spectra. Such a difference is
cussed below in this section, where we consider the clas
cation of the bound-state spectra in Coulomb three-body
tems. The proposed classification is based on the fact tha
general theory of bound-state spectra in such system
closely related with the general theory of compact operat
This means that the principal classification of the bound-s
spectra in the Coulomb three-body systems can be mad
the same manner as for compact operators. In particular,
shown below that the discrete spectrum of a Coulomb thr
body system may have the Hilbert-Schmidt, nuclear or fin
dimensional structure. It should be mentioned that initia
this theory was developed only for the Coulomb three-bo
systems with unit charges. However, later, it was found t
the same arguments may be used for an arbitrary quan
system, and finally, the theory can be represented in a m
general form.

As is well known the discrete~or bound state! spectra can
be found in a large number of quantum systems. Moreo
many different types of discrete spectra have been obse
in various experiments and theoretical considerations
quantum systems. Now, the classification of bound-s
spectra in quantum systems is of increasing interest for m
theoretical problems as well as applications. A few deca
ago only atomic, molecular, and nuclear spectra were kno
Recently, such spectra for a number of other systems h
been observed and studied, e.g., muonic and mesonic a
and molecules. In terms of this the general classification
the bound-state spectra in quantum systems becomes a
tual problem. For these purposes we propose to use the
called natural classification which is based on the ‘‘natur
of the Hamiltonian for the discrete spectraĤ2 in quantum
systems, and it does not use any ‘‘obvious’’ approximatio

Thus, in this section we shall consider the bound-st
spectra in quantum systems. Without loss of generality
shall assume that~1! such states are stationary, and~2! they
can be found as the solutions of the respective Schro¨dinger
equation@15#:

Ĥc~x!5Ec~x!,

where

E c* ~x!c~x!dx<K,1`, ~19!

and integration is over the whole domain ofx. Here, for
simplicity, we may assume that all functionsc(x) form a
complete Hilbert spaceH. The Hamiltonian operatorĤ is a
symmetric operator, i.e.,̂fuĤc&5^Ĥfuc&. In general,Ĥ
contains some operators~e.g., differential operators!, which
are not determined on the whole Hilbert spaceH. This
means that, in general,Ĥ is not a self-adjoint operator onH.
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However, as a rule it can be extended uniformly into a s
adjoint operator by using the following approach.

Let us designate the domain of theĤ operator byD(Ĥ)
which is a subset inH, but it is dense inH, i.e., D(Ĥ),H
andD(Ĥ)5H @16#. Also, the range of the operatorĤ can be

defined byR(Ĥ)5Ĥ„D(Ĥ)…. Obviously,R(Ĥ) is a subset in
H. Then, the routine procedure@17# can be applied in orde
to transform bothD(Ĥ) andR(Ĥ) into the closed subspace

D(Ĥ) and R(Ĥ). The appropriate orthogonal complemen

of the D(Ĥ) andR(Ĥ) are called the deficiency subspace

and the dimensions of„D(Ĥ)…' and „R(Ĥ)…' are the so-
called deficiency indices (m1 ,m2) of the operatorĤ. When
~and only when! m15m2 the operatorĤ can be extended
into a self-adjoint operator. This statement is the well-kno
von Neumann theorem@19#.

Usually, in actual physical applications the respective
ficiency indices for the Hamiltonian operatorĤ are equal.
This means that the Hamiltonian operatorĤ of an arbitrary
quantum system may be extended into a self-adjoint~or hy-
permaximal@19#! operator. Note that for an arbitrary sym
metric operator with real coefficients such an extension
be made directly~i.e., without the von Neumann theorem!.
Below, we shall designate the self-adjoint extension for
operatorĤ by using the same letterĤ.

Now, let us apply the spectral theorem to the self-adjo
operatorĤ. This theorem states that any self-adjoint opera
Ĥ determines a generalized spectral functionÊ(l) and may
be represented by means of the following spectral integ
i.e.,

Ĥ5E
2`

1`

ldÊ~l!5(
i 51

N

l i Êi1E
l tr2«

1`

ldÊ~l!, ~20!

whereN may be equal either to zero~in this case the sum
equals zero!, or a finite integer, or an infinite integer numbe
The appropriate lower limitl tr in the integral corresponds t
the lowest~on the energy! dissociation threshold for the con
sidered quantum system. Without loss of generality we s
suppose below thatl tr50. Note, also that the similar spec
tral expansion for an operatorĤ may be written in the spac
G which is more general thanH (H,G). However, since
our present consideration is restricted to the discrete spe
only, it is not necessary to introduce such a superspaceG.

In terms of the last formula we can write the so-call
Hamiltonian of the discrete spectrumĤ2 ~or theĤ2 opera-
tor for short!:

Ĥ25(
i 51

N

l i Êi1E
2«

0

ldÊ~l!, ~21!

where« is any small, positive and real number. Obvious
the operatorĤ2 is a self-adjoint operator, i.e., alll i are real.
Moreover, it follows from spectral properties of actual qua
tum systems that the threshold pointl tr50 is the only limit
point for the subset$l i%. In other words, ifl iÞ0 then the
appropriate eigenspaceÊi is finite dimensional. This mean
f-

,

n

-

n

e

t
r

l,

ll

tra

,

-

that the operatorĤ2 is a compact self-adjoint operator. On
finds this directly from the well-known Hilbert-Schmid
theorem@17#, which is of great value in various application

Thus, as it follows from the consideration above, t
theory of bound state~or discrete! spectra in quantum sys
tems is very closely related with the general theory of co
pact operators, which is a well developed branch of mod
functional analysis@18#. In our present study such a conne
tion is used mainly for the two following purposes:~1! in
order to produce the so-called natural classification of
bound-state spectra in quantum systems, and~2! to consider
the properties of the so-called Rellich Hamiltonians whi
have only discrete spectra.

Let us show now that the so-called natural classificat
of the bound-state spectra in quantum systems can be m
in terms of the respective classification scheme for comp
operators. Indeed, it is well known~see, e.g.,@17#! that com-
pact operators form a closed two-sided idealI in the ring of
bounded operatorsB. This means that bothx̂• ŷ and ŷ• x̂ are
compact operators, ifx̂ is a compact operator andŷ is a
bounded operator. Moreover, it can be shown also thatI is a
maximal two-sided ideal inB. On the other hand, this idealI

contains a number of subidealsI K such thatx̂• ŷPI K and
ŷ• x̂PI K , if x̂PI K and ŷPI . The four following subideals
have a specific importance for our present consideration.I HS
is the class of the Hilbert-Schmidt compact operators,I N is
the class of the so-called nuclear compact operators,I F is the
class of compact operators with the finite range andI 0 is the
class of compact operators with zero range. It can be sh
that if H is an infinite-dimensional space, then one fin
I 0,I F,I N,I HS,I ,B.

However, it is not necessary to show explicitly that t
Ĥ2 operator is, e.g., the Hilbert-Schmidt compact opera
Actually, such a classification of the bound-state spectra
quantum systems can be made in terms of the following s

Sp5(
i 51

N

ul i up dim$f~l i !%5(
i 51

N

ul i up dim$Hl i
%, ~22!

wherep is non-negative integer number and dim$f(l i)% is
the total~or algebraic! dimension of the appropriate eigen
pace (Hl i

) corresponding to the eigenvaluel i . Note, that
the infinite-dimensional space which corresponds to
threshold l5l tr50 is not included in the last equation
Now, to classify the compact operator we need to determ
~1! the minimal non-negative integerp̄ for which Sp̄ con-
verges~andSp̄21 diverges, respectively!, and~2! the numeri-
cal value of this sum isSp̄ . For instance, by following@17#

one can show that~1! if Sp50 at p50, then Ĥ2 has an
empty discrete spectrum, i.e.,Ĥ2PI 0; ~2! if Sp converges at
p50 and S0.0, then Ĥ2PI F ; ~3! if Sp converges atp
51, but diverges atp50, thenĤ2PI N ; ~3! if Sp converges
at p52, but diverges atp51, thenĤ2PI HS, etc.

Let us apply this classification scheme to real physi
~quantum! systems. First, consider the Coulomb three-bo
systems with unit chargesX1Y1Z2 ~or X2Y2Z1). They are
of interest in various applications, and the general theory
bound-state spectra in these systems can be found in@20#. In
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particular, it was shown that the total number of bound sta
in such systems, their energies and other properties de
upon two dimensionless mass ratios, e.g.,

vX5
mX

mX1mY1mZ
, vZ5

mZ

mX1mY1mZ
, ~23!

wheremi( i 5X,Y,Z) are the three particle masses~for more
details, see@2#!.

Now, note that them1m2e2 ion has an empty bound
state spectrum, i.e.,Ĥ2(m1m2e2)PI 0. The m1e2e2

(Mu2) and e1e2e2 (Ps2) ions have only one bound
~ground! state. That means that in both of these casesĤ2

PI F . In the muonic molecular ionp1p1m2 there are two
bound states, while in the similard1d1m2 andt1t1m2 ions
the bound-state spectra contain five and six such states
spectively. Actually, in all such casesĤ2PI F . The differ-
ence between them can be detected from the compariso
numerical values for the appropriateS0 and S1 sums @Eq.
~16!#.

It can be shown@20# that whenmX→1` the total num-
ber of bound states in the symmetricalX1X1Y2 ~i.e., the
H2

1 ion! grows to infinity. It follows from @17# that
Ĥ2(H2

1) is a nuclear compact operator, i.e.,Ĥ2(H2
1)

PI N . However, in the united atom limit~i.e., in the case of
the He1 ion! the Ĥ2 operator changes its type again and
have Ĥ2(He1)PI HS, i.e., the Ĥ2(He1) operator is the
Hilbert-Schmidt compact operator. This explains the prin
pal difference between the bound-state spectra in atoms
in molecular ions. Indeed, for instance, both theH atom and
`H2

1 ion have an infinite number of bound states, but for

first system Ĥ2PI HS, while for the secondĤ2PI N .
Briefly, we can say that such an infinity of states for theH
atom is ‘‘larger’’ than that for the`H2

1 ion.
The classification of bound-state spectra for other qu

tum systems~molecular, atomic, nuclear, exotic, etc.! can be
made in an analogous manner. In general, the type of theĤ2

operator depends on the asymptotic form~at large distances!
of the potential in the lowest-energy decay channel for
system. Note, that in all actual cases such a channel is
two-body channel, i.e., the dissociation problem can be c
sidered as a two-body problem with the interaction poten
V(r ). The final conclusion depends essentially upon
asymptotic form ofV(r ). If this asymptotic form has a Cou
lomb attractive structure@i.e., V(r )→2a/r , where a is a
positive parameter#, then the Ĥ2 operator is a Hilbert-
Schmidt operator. If this potential vanishes atr→` faster
than r 22, then theĤ2 operator is a finite compact operato
For the exactr 22 asymptotic form~and for definite values o
a) one findsĤ2PI N .

Let us discuss now the closely related problem on
completeness of the discrete spectrum of eigenfunctio
This question is of interest for some physical applicatio
However, since theĤ2 operators are compact operators t
answer is trivial and follows from the so-called Rellich spe
tral theorem@21, 22#. This theorem states that ifl50 is not
an eigenvalue ofĤ2 , thenH5( i %Hl i

, whereHl i
is the

eigenspace corresponding to the eigenvaluel i . Note that,
s
nd

re-

of

-
nd

e

-

e
he
n-
l

e

e
s.
.

-

sincel50 is not an eigenvalue ofĤ2 , this operator is in-

vertible, i.e., the correspondingĤ2
21 operator exists. Below

we shall call suchĤ2 operators as Rellich or invertible com

pact operators, and designate them asĤR . In the so-called
‘‘physical form’’ the Rellich theorem means that if th
threshold state is not an actual physical state in the con
ered system, then the discrete spectrum eigenfunctions f
a complete set in the Hilbert spaceH. This corresponds, for
instance, to the well-known harmonic oscillator. In this ca
the HamiltonianHh is unbounded, but the inverse operat
Hh

21 is the Rellich compact operator.
In some cases the appropriate substitution of variables

be found which transforms the initial HamiltonianH ~in gen-
eral, H has the both discrete and continuous spectra! to the
Rellich compact operator. For instance, Fock~see, e.g.,@23#!
used a coordinate transformation for Coulomb systemsx
52r /A22E) to exclude the continuous spectrum and dis
ciation threshold. Sometimes this procedure is called
completeness of the discrete spectrum. Note that as a
for actual quantum systems the dissociation threshold sta
a real physical state~e.g., for the hydrogen atom!, i.e., the
eigenfunctions of the discrete spectrum do not form a co
plete set inH. Now, we can determine the Rellich Hami
tonian as an operator~Hamiltonian! which is a Rellich com-
pact operator or its inverse is a Rellich compact opera
The Rellich Hamiltonians are of specific interest in applic
tions, since they have the complete systems of basis fu
tions.

V. CONCLUSION

Thus, in the present study we have performed hig
precision, bound-state calculations for a number of Coulo
three-body systems, including adiabatic molecular io
ppe,dde,tte and one exotic systemm1m1e2. The varia-
tional energies obtained in the present calculations are lo
than the appropriate values known from previous wor
Various geometrical and dynamical properties are found
be in good agreement with the results known from ear
computations. Our study indicates that the two-stage stra
@1# works quite well for the energies and many other pro
erties in various adiabatic Coulomb three-body systems,
for molecular ionsppe,dde,tte, and similar systems. How
ever, some problems related with the nuclear cusp and
function expectation values~between the two positive par
ticles! remain unsolved.

In order to explain the principal difference between t
bound-state spectra in nonadiabatic and adiabatic syst
we apply the general theory of the bound-state spectra
Coulomb three-body systems. It is shown that this theory
closely related with the theory of compact operators. The
fore, the principal classification of the bound-state spectra
such systems can be made as for compact operators. In
ticular, one easily finds three-body systems with~1! finite
~and empty! spectrum, e.g., Ps2,ppm,ddm ~andm1m2e2)
ions; ~2! with nuclear spectrum, e.g., the`H2

1 ion; and~3!
with Hilbert-Schmidt spectrum, e.g., the He atom or Li1 ion.
Each of these systems has a completely different structur
the bound-state spectrum. The next generations of the hi
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accurate methods for bound-state calculations should
quite flexible and take into account the principal informati
about the structure of the bound-state spectrum.
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APPENDIX

Now, let us discuss very briefly the adiabatic divergen
of Eq. ~1! ~for more detail see@7#!. The main source of this
problem is well known: the Hamiltonian of an arbitrar
many-body system changes its type when any two part
masses increase to the infinity and all other masses do
change. Indeed, let us consider, e.g., the three-particle c
In this case, the Hamiltonian takes the following form~in the
relative coordinates!:
H52
1

2 S 1

m3
1

1

m2
D S ]2

]r 32
2

1
2

r 32

]

]r 32
D 2

1

2 S 1

m3
1

1

m1
D S ]2

]r 31
2

1
2

r 31

]

]r 31
D 2

1

2 S 1

m2
1

1

m1
D S ]2

]r 21
2

1
2

r 21

]

]r 21
D

2
1

m3

r 32
2 1r 31

2 2r 21
2

2r 32r 31

]2

]r 32]r 31
2

1

m2

r 32
2 1r 21

2 2r 31
2

2r 32r 21

]2

]r 32]r 21
2

1

m1

r 31
2 1r 21

2 2r 32
2

2r 31r 21
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where for simplicity atomic units are used (\51,e251, and
me51). This operator is a differential operator of the seco
order on the relative coordinatesr 32,r 31, andr 21. However,
its structure depends on the ratios of the three part
masses, e.g.,m1 /m3 and m2 /m3. At certain values of the
mass ratios, the Hamiltonian can change its structure. S
mass ratios can be called the singular points for the Ha
tonian Eq.~A1!. From Eq.~A1! it is easy to understand tha
the case when all three massesm1 ,m2 , and m3 are finite
~i.e., finite mass ratios! corresponds to the regular~i.e., non-
singular! points. Furthermore, it is easy to see that the s
ation when only one of the three masses is infinite and
other two are comparable with each other is not a sing
point for the Hamiltonian Eq.~A1!, since the operator, Eq
~A1!, does not change its structure in this case. Such a
ation can be found, e.g., for the He atom and He-like ion

In the case when two masses are significantly greater
the third mass, i.e., whenm1 and m2 become infinite, one
easily finds that the Hamiltonian formally becomes

H52
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]

]r 31
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2 1r 31

2 2r 21
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2r 32r 31

]2

]r 32]r 31
1V32~r 32!

1V31~r 31!1V21~r 21!. ~A2!

This operator does not contain any differential operator
the r 21 relative coordinate. Actually, here the interpartic
distancer 21 can be considered as an external paramete
the problem. This means that the point (m1 /m351`,
m2 /m351`) is a singular point in the two-dimensiona
mass ratio plane~such a point corresponds, e.g., to the H2

1

ion!. It should be mentioned that in mathematics there ar
few methods to consider operators with such singularitie
front of the higher-order derivatives~see, e.g.,@24#!. The
d

le
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il-

-
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.
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so-called small parameter method corresponds to the B
Oppenheimer approximation in physics@25#. Actually, all
terms containing ther 21(5R) variable can be separated fro
the remaining part of the Hamiltonian Eq.~A1!. Finally, one
will find the two following, completely different problems to
solve: ~1! one ~or light! particle motion, and~2! the motion
of two ~heavy! particles.

Note, however, that the reduction of the initial Ham
tonian Eq.~A1! to the adiabatic one-particle Hamiltonian E
~A2! is based on the assumption that all^]2/]r 21

2 &,^]/]r 21&
and^1/r 21]/]r 21& expectation values do not increase togeth
with the massesm1 and m2. But this depends essentiall
upon the properties of the variational expansion used in
culations as well as upon theV(r 21) potential. In real appli-
cations the only Coulomb case is very important, i.
V(r 21)5q1q2 /r 21. Now, let us consider the variational ex
pansion Eq.~1! for the two following casesq1q2.0 ~repul-
sion! and q1q2,0 ~attraction!. The attraction case corre
sponds, e.g., to the muonic atoms and ions such
He21m2e2. In this case by choosing very large values f
theg i ( i 51, . . . ,N) parameters in Eq.~1!, one may increase
the ^]2/]r 21

2 &,^]/]r 21& and ^1/r 21]/]r 21& expectation values
as many times as needed to keep all terms in the Hamilto
Eq. ~A1!, in principle, for arbitrary large massesm1 andm2.
Finally, in this case (q1q2,0) we can predict that the varia
tional expansion Eq.~1! will provide highly accurate results
for arbitrarily large massesm1 andm2.

The situation changes drastically whenq1q2.0 ~ i.e., re-
pulsion!. In this case any possible choice of the nonline
parameters in Eq. ~1! does not increase th
^]2/]r 21

2 &,^]/]r 21& and^(1/r 21)(]/]r 21)& expectation values
Finally, at very largem1 andm2 masses, appropriate terms
the Hamiltonian Eq.~A1! become negligible. The operato
Eq. ~A1! is reduced to the form of Eq.~A1!, which means
that the variational expansion Eq.~1! cannot represent accu
rately the nuclear motion in adiabatic systems. The final
curacy of the method drops rapidly. This is called the ad
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batic divergence of Eq.~1!. In contrast with this the
variational expansion Eq.~16! is significantly more flexible,
since by choosing quite large values for the nonlinear par
eters f i ( i 51, . . . ,N) one can easily increase th
^]2/]r 21

2 &,^]/]r 21&, and^(1/r 21)(]/]r 21)& expectation values
A

s.

-

-

This means that for arbitrary large massesm1 and m2 we
cannot lose the nuclear motion. In other words, the va
tional expansion Eq.~16! allows us to avoid the adiabati
divergence, which is typical for any expansion in the relat
coordinates@see, e.g., Eq.~1!#.
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