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Bound-state calculations of Coulomb three-body systems
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Various geometrical and energetical properties in the symmetric muonic moleculap ppnsldu,ttu,
molecular iongppe ddette, and exotic systemue (u* u*e™) are determined with high accuracy by using
the two-stage strategy proposed by FrglBNys. Rev. A57, 2436(1998]. The significant difference between
bound-state spectra in muonic molecular igsuw,ddu,ttu and molecular ionppeddette ions is ex-
plained by using the general theory of bound-state spectra in Coulomb three-body systems, which is closely
related with the general theory of compact operators. In particular, the principal classification of the bound-
state spectra in such systems can be made in the same manner as for compact operators. For instance, the
discrete spectrum of a Coulomb three-body system may have the Hilbert-Schmidt, nuclear or finite-
dimensional structure. Moreover, this structure can be changed by varying some of the physical parameters
(e.g., masses or chargesf the system. The developed theory is applied to the case of symmetric Coulomb
three-body systems with unit chargéS1050-294{@9)02706-1

PACS numbes): 36.10.Dr

I. INTRODUCTION found between muonic and molecular ions. However, it
should be mentioned that there is a principle difference be-
The two-stage strategy proposed previolidlywas found  tween the bound-state spectra in muonic and molecular ions.
to be a very effective and quite simple approach for the conindeed, the total number of bound states in such systems
struction of extremely accurate wave functions for variousincreases rapidly when the two masses of positively charged
three-body systems. In the present study we consider thigarticles (i.e., m; and m,) grow to infinity. For instance,
strategy for the symmetric muonic molecular ionsthere are only two bound states in th@u ion, six bound
ppu,ddu,ttu, “adiabatic® molecular ionsppeddette,  states in thety ion, and many dozens of bound states in any
and the exotic systempue (u” " e"). Our main goal iS 10 ¢ the the molecular ions, e.g., in thie ion. This problem is
perform highly accurate calculations for a number of prop-giqcssed in Sec. IV. Here, we consider the general structure

erties of suph systems. It S.hOUId be mentioned that some Qf the pound-state spectra in Coulomb three-body systems

:)heeerﬁ)rggrirtftsegf trg(\a/i(;rsjg(();elzce rr;ole[ciJl_ag])logﬁewprioe 2%’:3 (and furthermore, in quantum systemk is shown that the

of the ddepion an be found ,ir[l.g.6] and.ener Fi)espfor all principal classification of bound-state spectra in such sys-
! 9 tems can be made as for compact operators. In particular, the

adiabatic molecular ions ifi7] (see, also[8] and[9]). In . ;
general, all muonic properties found in various calculationsdlscreua spectrum of a quantum system may have the Hilbert-

for ppau,ddu,ttu agree quite well, but for the internuclear Schmidt, _nuclear or finite-dimensional st'ructure.. This prob—
distances and other internuclear properties, éd,..) and lem is of'lnterest not only from a theoretical point of view,
nuclear cuspr. . such an agreement is not so good. Unfor-Put also_ in o_rder to develop new, _adva_nced procedures for
tunately, these properties determine the appropriate fusioﬁerformlng highly accurate calculations in such sy§tems. For
probabilities and other important characteristics which are ofstance, the structure of the bound-state spectra ip fhe
interest for thermonuclear applications. In the case of adia@nd tte ions and in the He atom differ significantly from
batic systems such ggpe dde tte the situation with nuclear €ach other, but in actual calculations this fact is simply ig-
properties is even worse. Presently, we attempt to computeored and essentially the same numerical methods are used
such properties more accurately than in a number of previout® determine the bound states in all these systems. The next
studies(see, e.g.[2], and references thergiriThe basic idea generation of highly accurate numerical methods should take
of this study is to apply the two-stage strategy in order tointo account the principal structure of the bound-state spectra
chose the optimal values for the nonlinear parameters. Fin the considered system. Conclusive remarks can be found
nally, the convergence rate of the variational expansion useigh the Conclusion.

in computations increases significantly. The two-stage strat-

egy is discussed in detail in Sec. Il. The results of high-

precisio_n calculations for _both muonic molecular and mo- Il. THE TWO-STAGE STRATEGY

lecular ions can bg found in Sec. Ill. _ FOR HIGH-PRECISION,

. Note that all highly accurate _calculatlor_]s for mok_acylar BOUND-STATE CALCULATIONS

ions have been performed by using the universal variational

expansion in the relative coordinateg,,r;;, andr,;. In In 1968, Delves and Kalotas published a pafgHs] on
particular, no assumption was made that the internuclearariational calculations of the muonic molecular ipmpu
variabler 4 is slow in the adiabatic systems. This means thafthe groundS(L =0) statd. This work contained a few bril-
from the computational point of view no difference can beliant ideas which have been transformed latterly into a quite
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simple, but very effective procedure to perform highly accu-§ pecomes extremely ill-conditioned, since the correspond-
rate, three—_body calculations of various _systen".ns.lln partlcul-ng condition numberA(8) = IN(\pa/Air) €XCeeds 6570
lar, in [10] it was shown that the following variational ex- [12]. Here, Xy and A designate the maximal and mini-

pansion: . - .
mal eigenvalues of the overlajs) matrix. As a result, the
1 N solution of the eigenvalue problenr(-E-S)C=0 compli-
W=—(1+kPy) >, Ciexp—a;ils—Bilz1— Vi 1) cates significantly12]. Briefly, this means that the approach
2 i=1 based on Eq(2) is quite restricted in real applications.
) In order to avoid the second restriction in high precision,

variational, three-body calculations we propose to use the
two-stage procedurfd]. In this approach the trial wave func-
tion ¥ is represented by the sum of the very well optimized,
short-term functionV; and roughly optimizedor even non-
optimized, long-term functionV,. If the total number of
terms equalsN, then we may write: ¥ (N)=%,(Ngp)
+W,(N—Ng), whereNy<N (and alsoNy>1). Let us con-
sider in detail the exponential variational expansion Eg}.
nSince in this case each of the basis functions contains three
Nonlinear parameters, the shobt;(Ny) function includes
three Ny nonlinear parameters, while the secodd,(N
—Ng) function contains threeN—Ng) such parameters.
Correspondingly, the first stage of the procedure is to opti-
mize quite well only the threeN, nonlinear parameters,
which is significantly smaller than the total number of these
parameters (R) in the trial wave function?. In the second
stage the total number of nonlinear parameters grows exten-
sively, but they can be chosen by approximate optimization
or even without optimization, e.g., in a regufd0] or qua-
sirandom mannefsee, e.g.[2], and references therginThe
detail discussion of the regular choice of the nonlinear pa-
rameters can be found ji0], while the quasirandom choice

whereE..(<0),A(>0) andy(>0) are the three constants. iS described, e.g., if2]. o

Obviously, E.. is the asymptotidi.e., exact value of the Now, for the two-stage procedure one easily finds from

energy, which formally corresponds to the infinite basisEd- (2):

function limit, i.e.,N=o. The numerical value o¥ is criti-

cally important, since ify is not large enouglte.g., y<3), Ng\”

then the procedure will not work successfully.[t0] it was En=E.+(Ey,— Ex)(W) , ()]

found thaty=8 for the groundS(L=0) state of theppu

ion. This indicates the very fast convergence of @ginthe  yhereN, is the number of basis functions in the short-term

considered case. o _ function ¥, and N is the total number of basis functions
It follows from Eq.(2) that the variational calculations for  ,seq. 1n actual calculations for the grous(L =0) state in

the ground state of thppu ion and other similar systems o symmetrical system&\~700-800, while Ny~ 200.

can be made, in principle, with arbitrarily high accuracy, gincey~7-8, the factor No/N)” is really small. Since the

sinceEy—E.., whenN— . However, in reality, a number oot term function¥ , is assumed to be well optimized, the
of various restrictions can be found and performance of suchc,\ute value of the first factolE(, —E..) is also very
0 oo

calculations is quite difficult. The first restriction follows small. Thus, the deviatioR,, from E., is represented in the
from the fact that the parameter depends significantly on " ’ N * )
b oraep 9 y factorized form of the two small terms, and in general, the

:?2 ?ﬂgi}%?c?zzg:ﬂ: (;:r? Sr égi?ﬂﬁ%%i@?&fﬁg%ﬁ? difference|EN— E.| is significantly smaller than in the case
The accuracy of the energy determination decreases corr8f. Eq. (2) [if all .no.nlln.ear parameters in qu) are chosen
spondingly. This phenomena is called adiabatic divergenc ithout any optimizatioh It should b? pointed oqt that the
of Eqg. (2). The detail analysis of adiabatic divergence can be "© value has to be large enOL_Jgh, .8lg>1, orin other
found in[7] or [11] (see, also, the Appendix words, Eng~Ee - The computational advantage of the pro-
The second restriction follows from the fact that in actualPosed two-stage strategy and E8).is obvious. Indeed, if in
calculations the maximal number of basis functibhs, can  actual calculationdN does not exceed thl, value, then
not be increased to infinity. Furthermore, such a numbefVven in these casdsy can be approache@ery closely to
Npmay is determined almost uniformly if all neccessary quan-the exactE.. value, by using a more careful optimization of
tum numbers and permutation symmetry are given for théhe short-term energlfy obtained withN, basis functions.
considered system. For instance, for the gros{td=0) Note also, that if1) the N value has been chosen, atg]
state in theppu,ddu, andttu ions the appropriatd®N,,., ~ optimization of the short-term functio®d'; has been per-
values equat=800. For larger dimensions the overlap matrix formed, then the results of the second stégeergy calcu-

can be used successfully in ground-stdte-Q) calculations
for various Coulomb three-body systems. H&eare linear
(or variationa) parameters and;,3;, andy; are nonlinear
parameters. The operat8,; is the permutation of the two
identical(1 and 2 particles in the symmetric systems, where
k=+1 (or —1), otherwisex=0. In the present study only
the casex= +1 is discussed.

It should be mentioned that the variational expansion Eq
(1) has been used extensively in nuclear physics calculatio
previously[10]. The main advantage ¢f.0] follows from
the observation made in this work: the variational endggy
depends significantly upon the number of basis functidns
(whenN is quite largg, rather than the concrete values of the
nonlinear parameteus; ,B; , andy, . In other words, at large
N the dependencEy can be expressed in the quite simple
form which containgwith good accuracyonly the param-
eterN. In [10] it was represented in the form:

ENy=E A 2
N— oc+my ()
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TABLE |. The total energiegE) in muon atomic units ifi,=1/=1e=1) for the ground and first
excited states¥) of symmetric muonic molecular ionsl designates the number of basis functions used.

N E(ppu) E(ddu) E(ttu)
200 —0.494 386 820 231 708 —0.531111135140824 —0.546 374218 843 03
400 —0.494 386 820 247 662 —0.531111135374 284 —0.546 374 225 424 60
500 —0.494 386 820 248 520 —0.531111135400 115 —0.546 374 225582 94
600 —0.494 386 820 248 739 —0.531111135401532 —0.546 374 225 606 61
700 —0.494 386 820 248 818 —0.531111135402 154 —0.546 374225612 58
750 —0.494 386 820 248 837 —0.531111135402 251 —0.546 37422561309
800 —0.494 386 820 248 853 —0.531111 135402 300 —0.546 374225613 37
900 —0.494 386 820 248 875 —0.531111 135402 340 —0.546 37422561360
1000 —0.494 386 820 248 885 —0.531111 135402 353 —0.546 37422561373
1200 —0.494 386 820 248 895 —0.531111 135402 366 —0.546 374225613 80
N E((ddu)*) E((ttw)*)
600 —0.479 706 380 367 595 —0.496 762 894 22151
700 —0.479 706 380 368 626 —0.496 762 894 244 93
800 —0.479 706 380 368 825 —0.496 762 894 248 02
900 —0.479 706 380 368 861 —0.496 762 894 248 88
1000 —0.479 706 380 368 878 —0.496 762 894 249 32
1200 —0.479 706 380 368 890 —0.496 762 894 24978

lations can be represented by EB). In this case one easily The results forN=200(=N;) (Table ) correspond to the
finds that in Eq(2) A= (En,—E)N{. highly accurate short-term wave functiok,;. As follows
from Table | the accuracy achieved for the total energies
L. RESULTS by using the proposed two-stage approach is significantly
' higher than known from the previous works. But, in prin-

In the present study we consider the ground states in synfiPle, such an accuracy can be increased drastically by per-

metric muonic molecular iongpu,ddu,ttx, molecular forming better optimization for the short-ter; function.
ions ppeddette, and exotic systemuue (or u*ute ). For the excited states in the muonic molecular iddg and

All constants, conversion factors and particle masses used E‘Sﬁ, r\:\éei}n;epb?rr]tdiiﬂg-rae?:grlqigglyatr?a%20;33:4824?&%?2'72264Cg(;e-
calculations have been taken frofh3]. In particular, the y
parti‘éle o Sos o6 o3, In- particu (N=1200) and—83.770 726 685 475 eVN=1200) for the

ddu andttu ions, respectively. These figures are signifi-
cantly more accurate than the values known for those states

m,=1836.152 70, my=3670.483 01k, from previous calculations. But the bound-state properties
for the excited states have not been computed, since the first
m,=5496.921 581, m,=206.768 26, 3Ny nonlinear parameters were optimized for the ground
states only.

Also, in the present study we assume that the masses of the The numerical values for some of the properties., ex-

positive and negative muons exactly equal each other. pectation valuesn muon atomic units can be found in Table
Il In this table only stable figures from calculations with the

higher N are presented for most of the properties. For the

two-particle cusps only the best results are given in Table Il.
As is mentioned above, for the muonic molecular ionsThe physical meaning for all of the expectation values in

ppur,ddu, andttu the first stage produces a very compactTable Il is quite clear from the notations usér more

and highly accurate wave functiolf;. The appropriate en- detail, see als$1]). So, here we wish to make only a few

ergy contains approximately 8—10 correct decimal figuires  following remarks. In all the formulas given below and also

muon atomic units The second stage of the procedure givesin Table Il the notations 1 and 2 mean positively charged

as a rule 2—3 additional correct decimal figures to the totaheavy nuclei, while the notation 3 designates the muon. The

energy, and generates extremely accurate wave functionsptations 831,51, and 8354 stand for the two- and three-

which can be used to compute various properties of thesparticle Dirac delta functions, respectively. The two-body

systems. The nonlinear parameters for the second stage ofisp ratios are determined in a traditional manner:

the procedure were chosen quasirandomly from three real

intervals(this step is discussed in detail in our w¢&). The (8(rij)(alaryy))

variational energies obtained are presented in Table |, while Vij :W (4)

the numerical values for some of the properiies., expec- !

tation valueg are presented in Table II. In both Tables | andwhere &;;=&(r;) is the appropriate Dira@ function and

Il only muon atomic units are useth,=1e=1,anda=1. (ij)=(21) and (31). The exact value of; equals

A. Muonic molecular ions
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TABLE Il. The expectation valuegX;;) in muon atomic unitsth, =1/ =1,e=1) of some properties for
the ground states in some muonic molecular ions. The notations 1 and 2 designate the two identical particles,
while 3 stands for the muonu(").

(Xij) PPy ddu ttu
(r 2 0.148 722 055 49 0.177 66787885 0.191 0913592
(r3?) 0.995871 45379 1.145319 646 2 1.209 447 757
(rof) 0.351831516 25 0.394 750 585 09 0.414 2784733
(rat) 0.67030257837 0.728 486 427 95 0.7535134622
(ru) 3.299 486 184 4 2.8344517658 2.652 824758
(rap) 2.385 666 5856 2.1199316476 2.017373311
(r3) 12.390 408 464 8.876 754 6419 7.662 138315
(r3y 7.769503814 4 5.946 2232197 5.312 898 697
(r3) 52.273664 4217 30.436 930 50 23.9243907
(r3) 31.549 086 335 20.296 958 1 16.858 099 2
(r3) 245.523 4997 113.481 402 80.308 859 2
(r3p 151.4437157 80.396 436 9 61.627 0187
((rarrs) b 0.375 475599 99 0.448 344 486 61 0.481 6434922
((rarro)™ Y 0.254 910 661 39 0.305 175 663 44 0.3282243818
Ta1 0.544 146 849 14 0.534 079203 14 0.5293921143
To1 0.151 67804455 0.181105291 67 0.194 8528257
() 0.059 992 935 708 0.062 315 924 485 0.063 409 263 60
(Fa1-T32) 1.574 299 582 4 1.507 8458988 1.481 829 540
(Fa1-To0) 6.195204 2321 4.4383773209 3.831069 157
(—3V? 0.286 758 809 20 0.379017 603 93 0.442 086 3156
(—3V3 0.429 803 280 37 0.488 408 956 46 0.5131158217
(V1-Vy) —0.143 71433802 —0.269 626 251 40 —0.371056 809 6
(V1-V3) —0.178 97305568 —-0.176 797 915 38 —-0.1637937085
(831) 0.13150088 0.158 73900 0.1703622
(851) 0.39370x 104 0.243841 1075 0.21673<10°©
(8320) 0.55516% 104 0.426 73107 0.22368<10°©
vy —0.898 790 296 —0.946 674 495 —0.963 756 03
vy @ —0.898 787 928 788 —0.946 67143105 —0.963 74833350
v 4.440 147 68 8.879 636 62 13.128 088
vy 4.440 122 200 669 27 8.875837 564 471 09 13.292 469 373 2735
7 1.044x 10 12 2.783x 10 12 9.447x 10712

€

—253.150 192 338 374

—325.070 689 006 490

—362.906 55475170

aThe exact two-particle cusp vallgg. (5)].

whereq; andq; are the charges and; andm; the masses of

the particles.

The expectation values of the two interpartidesine

functions are determined traditionally:

<f>=<¢

Up Uz Us

F32r31 21

g

:f f f |(uy,Up,Uz)|?usupusdusduydus.  (7)

The value(f) can be calculated directly or by applying .
Their coincidence indicates that thesg , 735,731, and(f)

have been computed correctly. The equalities

(6)

i T + 73t T3=1+

Tij :<COS(rik/\rjk)>:<r|:%<krr.:(k>’ Tt Tt T m L ACD ®

Y hold for an arbitrary three-body system. For the considered
symmetric systems we havg,= 7.

where §,j,k)=(1,2,3). The quantity<f> is expressed in The virial factor » is determined as follows:

terms of the relative coordinatesaf,rs,,r»1) Or perimetric

coordinates (;,uU,,u;) [where ui=%(rij+rik—rjk), and

(i,i.k)=(1,2,3)] as follows: ":’1 (V)

o) ®
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where(T) and(V) are the expectation values of the kinetic where (,j,k)=(1,2,3). The expectation values form both
and potential energy, respectively. The deviation of the facsides of this equality can be found in Table Il. Note, how-
tor % from zero indicates, in principle, the quality of the ever, that the last three equalities are obeyed only in Carte-

wave function used. The appropriate binding energiese  sjan coordinates and only iﬁF("Wi- In the present

given in eV (the conversion factors are 1 m.a.u. study such a choice is used, and theref@fé,-ﬁ) can be

= 206.768262 a.u. and 1 a.t 27.21139%1 eyl Note expressed through—%V?) and vice versa. Moreover, in the
however, that even exact coincidence of the faetarith 0

, A Ll

does not indicate the high quality of the wave function. In-Symmetric systems we hf”“’¢?l>_‘<_p2> and (rs;-rpy)

deed, by using the so-called scaling transformatiop=¢x = (32’20, respectively. This simplifies some of the equa-

'f;) one can make the factoy very close to zero, in prin- tions presented above. For the symmetric systems one easily
1 1

ciple, for an arbitrary wave function. Analogously, an excel-finds  that (V,-V;) is always negative, since
lent coincidence between computed and expected cusp velVi- V)= —(—z §><0-
ues can be found in some cades easily madgfor wave
functions whicha priori have a very poor quality. In par-
ticular, for any of the considered muonic molecular ion one
can easily construct a few term trial function Ed) which The procedure described above can not be applied directly
reproduces quite well the bound-state energy and also th® the adiabatic molecular ionspe ddette, and the exotic
exact values for both the,; and v;; cusps. But for other systemuue (u™un*e™). For these systems the parameger
properties the quality of such a function will be very poor. Inin Eq. (2) is really small (y~1.25-1.80). This is the adia-
general, the wave function has a high qualityaihd only if batic divergence of Eq1) mentioned abové&or more detail
it reproduces very accurately a large number of the boundsee Appendix The source of the problem is quite clear: the
state properties. relative motion of the two heavy particldse., nuclei or
The numerical values for the properties in Table Il agreequasinuclei differs significantly from the electron motion.
quite well with the values known from previous calculations For the vibrationally ground states in such systems the nuclei
(see, e.9.[2]). Note only that some expectation values in are localized. The appropriate wave functioa 6(r,;—R),
Table Il can be expressed as the linear combinations of othavhereR is the nuclear-nuclear distarjagannot be easily and
properties. For instance, for the three relative vectorsaccurately constructed from the exponential basis functions

B. Molecular ions

F30.F31, andr, we have Eg. (1). In order to avoid this problem if¥] it was proposed
to use the so-called universal variational three-body expan-
- - s 2 sion. This expansion has the following form:
r32_ r31+ er: 0 (10) p g

N

Therefore, the three following equalitigéi, j k) =(1,2,3)] - E(1+K|S )S ¢
2 W ™

O |
fik'rjkzz(rizﬁrjzk_rizj) (11 X exp(— il 3o~ Bil 31~ il 21)
Xexp1irotieira+ifira), (16)
hold in any case. For the appropriate expectation values one
finds (see Table I
where all other notations are exactly the same as in(Eq.
R 1 Here is the imaginary unit and; ,e; and f; are the three
Nk Tjk)= E((rizk)Jr(rjzk)—(rﬁ)). (12 additional nonlinear parameters. This variational expansion
can be successfully applied to computation of the bound
states in an arbitrary Coulomb three-body system, including
the pure adiabati€H,* ion. Note also, that the two nonlin-
ear parameterg; ande; in each of the basis function can be
(13) chosen equal to zero identically. In other words, the only
internuclear coordinate,; requires the complex nonlinear
parametersfor more detail se€l]). The energy convergence
and is represented well by the formula E@) whenN=50-75
[in Eq. (16)]. If N=75, then for the”H, " ion the parameter
- - 1, ) ) v in Eg. (2) =6. For the adiabatic molecular ions
(Pi- P =5 (Pl —(P{) —(Pi)), (14 tte,ddeppe this parametery is larger than 6.5—Fwhen
N=75). This means that the two-stage strategy described
i Cy — ; > above can be applied also for adiabatic systemblyi 75.
respectively,[(1.],k) =(1,2,3)]. Moreover, f the threep, In the results of numerous calculations we have found that
for adiabatic systems the value §, can be equal to 100n
Eqg. (16)]. In other words, the first stage is the high-quality
optimization of the nonlinear parameters in the trial function
(v, v’_>:< _ EV2> _< _ —V2> _< _ EV»2> (15) Eqg. (16) with Ng= 100 basis functions. The maximal number
b e of basis functions used in our present calculations is 500.

Analogously, sincep; + p,+ps=0, then we write

- -1
PP =5 (Pk—P{—P))

are determined by the relatiops=(—1)V, in Cartesian co-
ordinates, then one finds
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TABLE lIl. The total energie4E) in atomic units (n,=1,/=1,e=1) for the ground states of symmetric

molecular ionsN designates the number of basis functions used.

N E(tte) E(dde) E(ppe E(upe)
100 —0.59950366824 —0.598788191453 —0.5971390549488 —0.585113695960
200 —0.59950683489 —0.598788745520 —0.5971390582613 —0.585125852 260
300 —0.59950690169 —0.598788779015 —0.5971390621104 —0.585126081539
400 —0.59950690938 —0.598788783185 —0.5971390630479 —0.585126096 363
450 —0.59950690966 —0.598788783703 —0.5971390630943 —0.585126097079
500 —0.59950690980 —0.598788783890 —0.5971390631076 —0.585126097176

The choice of the nonlinear parameters for the second stagegain, that the final accuracy can be increased significantly

of the procedure follows in detdil]. by performing better optimization for the nonlinear param-
The results of high precision calculations for energies anckters in the short-term wave functioh; (Ny=2100). The

other properties in adiabatic molecular ioppe ddette,  properties from Tables Il and IV foppe and dde ions

and exotic systenuue can be found in Tables Il and IV, agree very well with the results of the previous calculations

respectively. In both of these tables only atomic unitg, ( [1], [3], and[6]. Analogous properties for thite and pue

=14=1, ande=1) are used. As it follows from Table lll, (u*u*e”) ions were never reported. Note, however, that

the two-stage approach produces variational energies whidior the nuclear two-body cusp,, and delta function( 8,)

are lower than those known previougly1,3—9). But note  even an approximate agreement is not obserseg Table

TABLE IV. The expectation valuegX;;) in atomic units (ne=1/=1,e=1) of some properties for the
ground states in some molecular ions. The notations 1 and 2 designate the two identical particles, while 3
stands for the electrore().

(Xij) tte dde ppe Hue
(ro? 0.246 808 952 0.245928 351 0.243 923 499 0.230 000 890
(r3d) 1.435 63397 1.43264079 1.425 744 87 1.374 907 93
(ro0h) 0.494 9495386 0.493 6532395 0.490 707 798 5 0.470427 3255
(ra) 0.8469816772 0.8456153995 0.842 492 962 3 0.8203397609
(rap) 2.035 386 064 2.044 070089 2.063913 868 2.205215 237
(rap) 1.677 707 696 1.682 346 570 1.692 966 209 1.769 302 444
(r3) 4.173 214590 4.215 643 294 4.313285 946 5.036 585 56
(r3) 3.485 248 982 3.507 528 085 3.558 797 931 3.938 458 00
(r3) 8.618702 31 8.77122044 9.125657 56 11.896 594 0
(r3) 8.414 75232 8.503 741 65 8.709 88159 10.294 5930
(r3) 17.927 969 1 18.4094722 19.542 349 4 29.0229421
(r3y 22.8853795 23.2301941 24.0348353 30.486 4922
((rarsp) ™ 0.614 265 769 80 0.612 265 279 95 0.607 695 916 81 0.575 446 694 24
((rara)™h 0.420871612 67 0.419 458 836 83 0.416 234 396 52 0.393564 038 61
5 0.508 819 323 445 0.508 819 323 445 0.509171320463  0.515336 167 535
™ 0.255 371 799 452 0.254 335121 993 0.251989492721  0.236 181640584
(f) 0.068 252 611 586 0.068 169 440 730 0.067 981 259 120 0.066 713493913
(rai-rap) 1.398 641687 3 1.399706 4379 1.402 154958 8 1.420165 2222
(ra1-To0) 2.086 607 2951 2.107 8216470 2.156 642 9732 2.5182927783
(—3V?) 4.389 948 286 7 3.6204511918 2.6133703410 0.990 366 383 04
(—3V3) 0.597 909 667 1 0.596 816 037 4 0.594 2924911 0.575546 617 43
(831 0.208 151 732 0.207 727 169 0.206 736 288 0.198 930331
(821) 0.126x1077 0.205x 1077 0.6241x10°° 0.2706<10°°
(8301 0.604x10°7 0.187x10°© 0.1169< 108 0.265710°°
Va1 —0.9998294270  —0.9997131915  —0.9994491648 —0.9951817637
vy 2 —0.9998181131  —0.9997276305  —0.9994556794  —0.995186 9454
vy —111.8368 —107.1541 —108.7270 —63.0451
vy, 2 2748.460 790 0 1835.241 5070 918.076 350 50 103.384 13100
7 3.228<10°° 6.885<10°° 9.614x 10 % 1.6090x 10°°

&€

—2.710 196 635 590

—2.691 886 505 863

—2.650695 384 281

—2.381884 916 999

&The exact two-particle cusp valjgg. (5)].
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IV). The same is true for the three-particle delta functionpresent analysis is restricted to the ground states only. Actu-
(8301). Furthermore, we assume that the rel,) and(s8s,)  ally, there is no technical problem to compute any of the
values for all presented molecular ions are 3610 3!  excited states, since the same variational expansion can be
times smaller than the values given in Table IV. The largestuised in such calculations, but the total numbers of bound
deviations can be found for tlkde andtte ions. Indeed, the states differ significantly for muonic and molecular ions. In
mass dependence for tHeS,;) expectation values in the principle, these two group of ions have completely different
Coulomb three-body systems was studied in detail in oustructures of bound-state spectra. Such a difference is dis-
work [14]. As it follows from Table | in this work, the gen- cussed below in this section, where we consider the classifi-
eral dependence between the logarithms of the mass ratimtion of the bound-state spectra in Coulomb three-body sys-

and(8,,) takes the form: tems. The proposed classification is based on the fact that the
general theory of bound-state spectra in such systems is

m;\ | closely related with the general theory of compact operators.

logaf 521>=k20 Dy 10910 m_x) ) (17)  This means that the principal classification of the bound-state

spectra in the Coulomb three-body systems can be made in

wherem, andm, are the particle masses for the X*Z~ the same manner as for compact operators. In particular, it is
(or X~X~Z") system. In the adiabatic regicfwhere my shown below that the discrete spectrum of a Coulomb three-

>5m,) we can restrict ourselvesiith quite good accuragy ~ P0dY System may have the Hilbert-Schmidt, nuclear or finite-
by the first three terms in the last equation, i.e., dlmensmnal structure. It should be mentioned that initially
this theory was developed only for the Coulomb three-body
2 systems with unit charges. However, later, it was found that
_” the same arguments may be used for an arbitrary quantum
m system, and finally, the theory can be represented in a more
general form.
By using the results from Table | ifl4] we have found As is well known the discretéor bound statespectra can

the following numerical values for the coefficients in be founq in a large numper of quantum systems. Moreover,
the last equation: Do=—4.636344170938D,= many different types of discrete spectra have been observed

—3.568167 272 272 anid,= __3_497 573648 938. Now. for in various experiments and theoretical considerations of

the (8,1) expectation values in the considered ions one fingguantum systems. Now, th_e clz_assﬁlca'glon_ of bound-state
from the last equation: spectra in quantum systems is of increasing interest for many

theoretical problems as well as applications. A few decades
ago only atomic, molecular, and nuclear spectra were known.
Recently, such spectra for a number of other systems have
been observed and studied, e.g., muonic and mesonic atoms
(8,0(ppe)=5.621X107%,  (5)(uue)=7.474<10""°.  and molecules. In terms of this the general classification of
the bound-state spectra in quantum systems becomes an ac-
tual problem. For these purposes we propose to use the so-

c_Ioser to reality, than va_lues presented in Table IV_' In Palcalled natural classification which is based on the “nature”
ticular, the(,;) expectation values from Table IV gives an ¢ the Hamiltonian for the di i

extremely large fusion rates for dense deuterium and tritium®' the am(’;qmgm or the |screts f)P?C > In quantum
Actually, the energy gain from nuclear fusion reactionsSYSIEMS, and It does not use any “obvious™ approximations.

would be so large in this case, that these gases could not be Thus,. in this section we sha!l consider the bounq-state
liquified ever. Furthermore, any experimental work with SPECtra in quantum systems. Without loss of generality we

those substances would be impossible, because of the mﬁba" assume thdfl) such states are stationary, a@)_they
coming intense neutron fluxes can be found as the solutions of the respective Stihger

In principle, such a huge difference between predicteduation(15]:
and computed values fdi5,1),v,,, and{ 3,1y must be ex-
plained in the course of the further investigations. Briefly, A y(x) = Eg(x),
this indicates that the adiabatic divergence for Coulomb
three-body systems is not a completely solved problem. A o0
alternative explanation suggests that such wrong cusps cor-
respond to some effectivie.e., non-Coulomp potential be-
tween two nuclei in thepe and relative ions. In particular,
this explains why the observed deviation between computed
and predicted cusps increases in the series
uwute, ptpte”, d'd'e”, t'tTe", etc. and integration is over the whole domain xf Here, for
simplicity, we may assume that all functiongx) form a
IV. THE BOUND-STATE SPECTRA IN COULOMB complete Hilbert spacé(. The Hamiltonian operatdt is a
THREE-BODY SYSTEMS symmetric operator, i.e{,¢|Hy)=(Ha|4). In general,H
In the previous sections we considered the bound-statéontains some operatofs.qg., differential operatoyswhich
properties of the muonic molecular iongr(“,dd,u,ttﬂ) are not determined (3n the whole Hilbert spake This
and molecular ionsgpeddette). Note, however, that our means that, in generdl is not a self-adjoint operator dH.

1091 521)=Do+ Dy +Ds

log g

| mz
O -
J10] My

(8,1 (tte)=6.071x 10" %,  (8,,)(dde)=4.352x10"%,

These values for thés,,) delta function are significantly

f I (X) p(X)dxsK <+, (19)
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However, as a rule it can be extended uniformly into a selfthat the operatoH _ is a compact self-adjoint operator. One

adjoint operator by using the following approach. ~  finds this directly from the well-known Hilbert-Schmidt
Let us designate the domain of tht operator byD (H) theorem[17], which is of great value in various applications.
which is a subset ifH, but it is dense i, i.e., D(H)CH Thus, as it follows from the consideration above, the

L ~ theory of bound statéor discret¢ spectra in quantum sys-
andD(H) =" [16]. Also, the range of the operatbi can be tems is very closely related with the general theory of com-

defined byR(H) =H(D(H)). Obviously,R(H) is a subsetin  pact operators, which is a well developed branch of modern
H. Then, the routine proceduf&7] can be applied in order functional analysi§18]. In our present study such a connec-
to transform bottD (H) andR(H) into the closed subspaces tion is used mainly for the two following purposed) in

D(I:|) and R(I:|). The appropriate orthogonal complementsorder to produce the so-called natural classification of the

= = . bound-state spectra in quantum systems, @pdo consider
of the D(H) andR(H) are called the deficiency subspaces,ihe properties of the so-called Rellich Hamiltonians which

and the dimensions ofD(H))* and (R(H))" are the so- have only discrete spectra.
called deficiency indicesng;,m,) of the operatod. When Let us show now that the so-called natural classification
(and only wheh m;=m, the operatori can be extended of the bound-state spectra in quantum systems can be made

into a self-adjoint operator. This statement is the well-knowri" {€ms of the respective classification scheme for compact
von Neumann theoreff19]. operators. Indeed, it is well know(see, e.g.[17]) that com-

Usually, in actual physical applications the respective dePact operators form a c.:losed two-sided ided the ring of
ficiency indices for the Hamiltonian operatér are equal. Pounded operator8. This means that botk-y andy-x are

This means that the Hamiltonian operaférof an arbitrary ~COMPact operators, ik is a compact operator anyl is a
quantum system may be extended into a self-adj@inhy- ~ Pounded operator. Moreover, it can be shown alsoltiaa
permaximal[19]) operator. Note that for an arbitrary sym- maximal two-sided ideal iiB. On the other hand, this idehl
metric operator with real coefficients such an extension cagontains a number of subidealg such thatx-yely and
be made directlyi.e., without the von Neumann theorgm 9-§<EIK, if Xxe Ik and§/el. The four following subideals
Below, we shall designate the self-adjoint extension for thehave a specific importance for our present consideratigf.
operatorH by using the same lette . is the class of the Hilbert-Schmidt compact operatbysis
Now, let us apply the spectral theorem to the self-adjointhe class of the so-called nuclear compact operakgris, the

operatorfl. This theorem states that any self-adjoint operato€lass of compact operators with the finite range gnis the
~ . . 2 class of compact operators with zero range. It can be shown
H determines a generalized spectral functitfh) and may

be represented by means of the following spectral integraﬁhat if H is an infinite-dimensional space, then one finds
ie. IoCleClIyClysCICB.

However, it is not necessary to show explicitly that the

o N o H_ operator is, e.g., the Hilbert-Schmidt compact operator.
g:f NEN) =D, MEDLJ NdE(N), (200 Actually, such a classification of the bound-state spectra in
—o i=1 e guantum systems can be made in terms of the following sum:

tr

whereN may be equal either to zer@n this case the sum N N

equals zerp or a finite integer, or an infinite integer number. S = N [P di Al = NP dimi K 29

The appropriate lower limik, in the integral corresponds to P 21 INil? dim{ h)} Zl N (M (22

the lowest(on the energydissociation threshold for the con- . o _ _

sidered quantum system. Without loss of generality we shalherep is non-negative integer number and dia\)} is

suppose below that,=0. Note, also that the similar spec- the total(or algebrai¢ dimension of the appropriate eigens-

tral expansion for an operatét may be written in the space Pace (y) corresponding to the eigenvalug. Note, that

G which is more general that/ (HCG). However, since the infinite-dimensional space which corresponds to the

our present consideration is restricted to the discrete specttresholdA=\A,=0 is not included in the last equation.

only, it is not necessary to introduce such a supersg@gace Now, to classify the compact operator we need to determine:
In terms of the last formula we can write the so-called(1) the minimal non-negative integgr for which S; con-

Hamiltonian of the discrete spectruh_ (or theH_ opera-  verges(andS;_; diverges, respectivelyand(2) the numeri-

tor for shonj: cal value of this sum i§;. For instance, by following17]

one can show thatl) if S,=0 atp=0, thenH_ has an

empty discrete spectrum, i.¢1,_ e lo; (2) if S, converges at

p=0 and S,>0, thenH_el¢; (3) if S, converges ap

) N ) =1, but diverges ap=0, thenA_el; (3) if S, converges

wheree is any §ma||, pOSI'FIV-e and real n.umber. Obviously, atp=2, but diverges ap=1, thenH_ e I s, etc.

the operatoH _ is a self-adjoint operator, i.e., al} are real. Let us apply this classification scheme to real physical

Moreover, it follows from spectral properties of actual quan-(quantun systems. First, consider the Coulomb three-body

tum systems that the threshold polyt=0 is the only limit  systems with unit charges*Y*Z~ (or X" Y~ Z*). They are

point for the subsef\;}. In other words, ifA;#0 then the  of interest in various applications, and the general theory for

appropriate eigenspadsg; is finite dimensional. This means bound-state spectra in these systems can be foufzDjnIn

N 0
H_zzl xiéi+f NE(N), (21)
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particular, it was shown that the total number of bound stategjnce\ =0 is not an eigenvalue dfi_, this operator is in-
in such systems, their energies and other properties depe

: . . Q/grtible, i.e., the correspondirig ! operator exists. Below,
upon two dimensionless mass ratios, e.g.,

we shall call suchd _ operators as Rellich or invertible com-

my m, pact operators, and designate themgs In the so-called

vz (23)  “physical form” the Rellich theorem means that if the
threshold state is not an actual physical state in the consid-

wherem;(i=X,Y,Z) are the three particle massdger more  ered system, then the discrete spectrum eigenfunctions form

Ux

Cmy+tmyt+m,’ Cmytmy+my’

details, se¢2]). a complete set in the Hilbert spag¢é This corresponds, for
Now, note that theu” u~ e~ ion has an empty bound- instance, to the well-known harmonic oscillator. In this case

state spectrum, i.e.j:l,(,u*,u*e*) elyg. The ute e the HamiltonianH,, is unbounded, but the inverse operator

(Mu~) and ete" e~ (Ps’) ions have only one bound Hpy?is the Rellich compact operator.

(ground state. That means that in both of these cddes In some cases the appropriate substitution of variables can

el . In the muonic molecular iop*p* .~ there are two be found which transforms the initial Hamiltoni&h(in gen-
bound states, while in the simild¥d* &~ andt*t* .~ ions eral, H has the both discrete and continuous spgdtrehe

the bound-state spectra contain five and six such states, rBellich compact operator. For instance, Fés&e, .9.,23])
. . ~ , used a coordinate transformation for Coulomb systems (
spectively. Actually, in all such casé$_elg. The differ-

ence between them can be detected from the comparison 51‘2” V= 2E) to exclude the continuous spectrum and disso-

numerical values for the appropria® and S, sums|[Eq. clation threshold. SomeUmes this procedure is called the
(16)]. completeness of the discrete spectrum. Note that as a rule,

It can be show20] that whenmy— + o the total num- for actual qqantum systems the dissociation thres_hold state is
ber of bound states in the symmetricéf X*Y~ (i.e., the & real physical statée.g., for the hydrogen atomi.e., the
H,* ion) grows to infinity. It follows from [17] that elgenfuncfuons of the discrete spectrum do not form a com-
- . Cx . plete set in{. Now, we can determine the Rellich Hamil-
H_(H;") is a nuclear compact operator, i.&4_(H2")  {onjan as an operatgHamiltonian which is a Rellich com-
eln. However, in the united atom limii.e., in the case of pact operator or its inverse is a Rellich compact operator.
the He' ion) the H_ operator changes its type again and weThe Rellich Hamiltonians are of specific interest in applica-
have |3|_(He+) elys, ie., the I3|_(He+) operator is the tions, since they have the complete systems of basis func-
Hilbert-Schmidt compact operator. This explains the princi-tions.
pal difference between the bound-state spectra in atoms and
in molecular ions. Indeed, for instance, both thatom and
*H, ion have an infinite number of bound states, but for the V. CONCLUSION
first system H_el,s, while for the secondH_ely.

Briefly, we can say that such an infinity of states for the
atom is “larger” than that for the”H, ™" ion.

Thus, in the present study we have performed high-
precision, bound-state calculations for a number of Coulomb
A three-body systems, including adiabatic molecular ions:
The classification of boun_d-state spectra _for other quanbpe,dde,tte and one exotic system* u*e". The varia-
tum systemsmolecular, atomic, nuclear, exotic, 8tcan be o0 energies obtained in the present calculations are lower
made in an analogous manner. In general, the type dfithe  than the appropriate values known from previous works.
operator depends on the asymptotic fdianlarge distances various geometrical and dynamical properties are found to
of the potential in the lowest-energy decay channel for theye in good agreement with the results known from earlier
system. Note, that in all actual cases such a channel is thé&mputations. Our study indicates that the two-stage strategy
tWO-bOdy channel, i.e., the dissociation problem can be COI'[-]_] works quite well for the energies and many other prop-
sidered as a two-body problem with the interaction potentiakrties in various adiabatic Coulomb three-body systems, i.e.,
V(r). The final conclusion depends essentially upon th&or molecular iongppe ddette, and similar systems. How-
asymptotic form ofV/(r). If this asymptotic form has a Cou- ever, some problems related with the nuclear cusp énd
lomb attractive structurgi.e., V(r)——a/r, wherea is a  function expectation valuegetween the two positive par-
positive parametgr then the H_ operator is a Hilbert- ticles) remain unsolved.

Schmidt operator. If this potential vanishesrat-oo faster In order to explain the principal difference between the
thanr ~2, then theH _ operator is a finite compact operator. bound-state spectra in nonadiabatic and adiabatic systems,

For the exact ~2 asymptotic form(and for definite values of We apply the general theory of the bound-state spectra in
a) one findsi_ < | Coulomb three-body systems. It is shown that this theory is
— N .

Let us discuss now the closely related problem on th closely related with the theory of compact operators. There-

completeness of the discrete spectrum of eigenfunction ore, the principal classification of the bound-state spectra in

This question is of interest for some physical applicationss.uCh systems can b.e made as for compact operatqr;. In par-

H ) thél ‘ ) tors th ticular, one easily finds three-body systems with finite

ar?;,z\(:reirsi tsrllcgj and lzol(l)ci)v(\algr?)r; ?rﬁ ggﬂgﬁgd ORp(:Iriir?rss ec(?(and empty spectrum, €.g., Psppu,ddu (@andu”p )
PECjions: (2) with nuclear spectrum, e.g., th”&-|2+ ion; and(3)

tral theorem{ 21, 22. This theorem states thatXf=0 is not with Hilbert-Schmidt spectrum, e.g., the He atom of idn.

an eigenvalue ofi_, thenH=3;@ X, , where’™, is the  Each of these systems has a completely different structure of
eigenspace corresponding to the eigenvalue Note that, the bound-state spectrum. The next generations of the highly
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accurate methods for bound-state calculations should be APPENDIX
quite flexible and take into account the principal information

about the structure of the bound-state spectrum. Now, let us discuss very briefly the adiabatic divergence

of Eg. (1) (for more detail se¢7]). The main source of this

problem is well known: the Hamiltonian of an arbitrary

many-body system changes its type when any two particle
| am grateful to Dr. Garry T. Smith for his valuable help masses increase to the infinity and all other masses do not

and discussions, Vedene H. Smith, Jr. for useful referenceshange. Indeed, let us consider, e.g., the three-particle case.

and the Natural Sciences and Engineering Research Coundil this case, the Hamiltonian takes the following fofim the
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where for simplicity atomic units are usefi€1,e?=1, and  so-called small parameter method corresponds to the Born-
me=1). This operator is a differential operator of the secondOppenheimer approximation in physi€¢85]. Actually, all
order on the relative coordinates,,r3;, andr,;. However, terms containing the,;(=R) variable can be separated from
its structure depends on the ratios of the three particlghe remaining part of the Hamiltonian E@A1). Finally, one
masses, e.gm;/mz and m,/m;. At certain values of the will find the two following, completely different problems to
mass ratios, the Hamiltonian can change its structure. Suckplve: (1) one (or light) particle motion, and?2) the motion
mass ratios can be called the singular points for the Hamilof two (heavy particles.
tonian Eq.(Al). From Eq.(Al) it is easy to understand that  Note, however, that the reduction of the initial Hamil-
the case when all three masseg,m, , and m; are finite  tonian Eq.(A1) to the adiabatic one-particle Hamiltonian Eq.
(i.e., finite mass ratigscorresponds to the regulére., non- (A2) is based on the assumption that @Fl&r%ﬁ,<5/t9r21>
singulay points. Furthermore, it is easy to see that the situ-and(1/r,,9/dr,,) expectation values do not increase together
ation when only one of the three masses is infinite and thgyith the massesn; and m,. But this depends essentially
other two are comparable with each other is not a singulagpon the properties of the variational expansion used in cal-
point for the Hamiltonian Eq(Al), since the operator, EQ. ¢ylations as well as upon thé(r,,) potential. In real appli-
(A1), does not change its structure in this case. Such a sityations the only Coulomb case is very important, i.e.,
ation can be found, e.g., for the He atom and He-like ionS-V(r21)=q1q2/r21. Now, let us consider the variational ex-
In the case when two masses are significantly greater thahansjon Eq(1) for the two following cases;q,>0 (repul-
the third mass, i.e., whem; and m, become infinite, one  gjory) and 0,0,<0 (attraction. The attraction case corre-

easily finds that the Hamiltonian formally becomes sponds, e.g., to the muonic atoms and ions such as
He?* u~e™. In this case by choosing very large values for
1 # 2 9 1 /6> 2 9 they; (i=1, ... N) parameters in Eq1), one may increase
=— —t—— |- —|—=+—— 27 9.2 ;
H 2:m5 | 12, Tea 0] 2Mg| gr2, ' Tar dTay the (d /ar?0,<a/ar21> and {1/r 519/ 9r 51 expectation values
as many times as needed to keep all terms in the Hamiltonian
1 r34rd-r2 P2 Eq. (Al)., in principle, for arbitrary large masses, andmz..
T orax Er +V3Ars) Finally, in this case §,0,<0) we can predict that the varia-
3 3231 327731 tional expansion Eq1) will provide highly accurate results
+V31(rag) +Voy(ro). (A2)  for arbitrarily large masses); andm;.

The situation changes drastically wheyg,>0 (i.e., re-

This operator does not contain any differential operator orpulsion. In this case any possible choice of the nonlinear
the r,, relative coordinate. Actually, here the interparticle parameters in Eg. (1) does not increase the
distancer,;, can be considered as an external parameter ofd%/dr,),(a/dr ») and((1/r»1)(3/dr»1)) expectation values.
the problem. This means that the point,(/mz= +x, Finally, at very largem; andm, masses, appropriate terms in
m,/my=+) is a singular point in the two-dimensional the Hamiltonian Eq(Al) become negligible. The operator
mass ratio planésuch a point corresponds, e.g., to the'H Eq. (Al) is reduced to the form of EqA1), which means
ion). It should be mentioned that in mathematics there are ¢hat the variational expansion E(.) cannot represent accu-
few methods to consider operators with such singularities imately the nuclear motion in adiabatic systems. The final ac-
front of the higher-order derivativeee, e.g.[24]). The  curacy of the method drops rapidly. This is called the adia-
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batic divergence of Eq.1). In contrast with this the This means that for arbitrary large masses and m, we
variational expansion Eq16) is significantly more flexible, cannot lose the nuclear motion. In other words, the varia-
since by choosing quite large values for the nonlinear parantional expansion Eq(16) allows us to avoid the adiabatic
eters f; (i=1,...N) one can easily increase the divergence, which is typical for any expansion in the relative
(9213r5.) (a1 9r 20y, and((1/r ) (9] 3r »1)) expectation values. coordinategsee, e.g., Eql)].
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