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Some general bounds for one-dimensional scattering

Matt Visset
Physics Department, Washington University, Saint Louis, Missouri 63130-4899
(Received 12 May 1998; revised manuscript received 26 August)1998

One-dimensional scattering problems are of wide physical interest and are encountered in many diverse
applications. In this paper | establish some very general bounds for reflection and transmission coefficients for
one-dimensional potential scattering. Equivalently, these results may be phrased as general bounds on the
Bogolubov coefficients or statements about the transfer matrix. A similar analysis can be provided for the
parametric change of frequency of a harmonic oscillator. A number of specific examples are discussed. In
particular | provide a general proof that sharp step function potentials always scatter more effectively than the
corresponding smoothed potentials. The analysis also serves to collect together and unify what would other-
wise appear to be quite unrelated resUl&1050-294®9)08101-9

PACS numbd(s): 03.65.Nk

I. INTRODUCTION V(x—*2)—=V.,, 2

One-dimensional scattering problems occur in a wide vathen in each of the two asymptotic regions there are two
riety of physical contexts. In acoustics one might be interindependent solutions to the Schilmger equation
ested in the propagation of sound waves down a long pipe,
while in electromagnetism one might be interested in the . exp( ik X)
physics of waveguides. In quantum physics the canonical 1/1(i|;ioo;x)~k—. ()
examples are barrier penetration and reflection, while in clas- xe
sical hysios o Scupaln robler = e anayeis f PAters the cistnguishes rghtmaving modes ¥ fom
analyzed in the séme mathematical framework, though fo?eft-movmg modesg" ", while t_heioo specifies which of
-, : Lo he asymptotic regions we are in. Furthermore,
definiteness | shall present the discussion in terms of the

Schralinger equation, commenting on alternative formula- 2m(E—V..)
tions as appropriate. kiw:—“_ %)
For one-dimensional scattering problems there is a large f

catalog of specific potentials for which exact analytic results
are known. There are also well-developed numerical techT0 even begin to set up a scattering problem the minimum
niques for estimating the scattering properties. In this paper flequirement is that the potential asymptotically approaches
wish to take a different tack: | shall develop a number ofSome constant, and this assumption will be made henceforth.
very general and rather simpb®undson the reflection and The so-called Jost solutionkl6] are exact solutions
transmission probabilitie@quivalently, these bounds can be J=(X) of the Schrdinger equation that satisfy
presented in terms of the Bogoliubov coefficients or in terms

of statements about the transfer matrixhese bounds, be- exp( +ik 4 .X)

cause they are so general, are powerful aids imtiaditative Ji (Xt o0)— k. ' ®)
understanding of one-dimensional scattering. Furthermore, e
this analysis provides a unifying theme that serves to connect .

; : : ; R exp( —ik _,x)
together seemingly quite disparate results obtained in indi- J (X =) —— (6)
vidual special cases. NS

Il. GENERAL ANALYSIS and

A. Shabat-Zakharov systems

) exp(+ik_,x) exp(—ik_,X)
Consider the one-dimensional time-independent Schro J+(X——°)—a ” +B - . (D)
dinger equatiori1-15 VK- VK_ o

h? d? exp—ik,ox) exp(+ik .x)

— == 5 (X) +V(X) P(X)=E (x). () J_(X=+®)—a o B o

2m dx?

®

Here @ and B are the(right-moving Bogoliubov coeffi-
cients, which are related to tlfgght-moving reflection and
*Electronic address: visser@Xkiwi.wustl.edu transmission amplitudes by

If the potential asymptotically approaches a constant
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1 I now rewrite the Schrdinger equation in terms of two
, t= P C) coupled first-order differential equations for these position-
dependent Bogolubov coefficients. To do this note that

These conventions correspond to an incoming flux of right-

moving particles(incident from the left being partially dzl/f_ d( ¢’ tig g
transmitted and partially scattered. The left-moving Bogoliu- 4,2 ~ dx| ' ﬁ{ae —be '} (15)
bov coefficients are just the complex conjugates of the right-
moving coefficients; however, it should be borne in mind 2
that the phases g8 and 8* are physically meaningless in :("P ) {ae*i¢+be 19}
that they can be arbitrarily changed simply by moving the Jo'
origin of coordinates. The phases @fanda*, on the other
hand, do contain real physical information. ) dl a | dl b i
: : - tiep'\ —| —|e""— | —|e'?¢

In this paper | will derive some very general bounds on ® 1 dx Jo' dx| o'
|@| and|B|, which also lead to general bounds on the reflec- ¢ ¢
tion and transmission probabilities @' _ _

+i——{ae"'¢—be "¢} (16)
R=Ir|?, T=|t (10 Vo'

The key idea is to rewrite the second-order Sdimger 12 , ,
equation as a particular type of Shabat-Zakhdrb¥] sys- =— \/—_,{ae+""+ be™'¢}
tem: a particular set of two coupled first-order differential ¢
equations for which bounds can be easily established. A 2i0’ da "
similar representation of the Schiliager equation is briefly + ik —etie_j Lbe““’ (17)
discussed by Peirlgl8] and related representations are well \/? dx \/?
known, often being used without giving an explicit reference
(see, e.g., Ref.19]). However, an exhaustive search has not /2
uncovered prior use of the particular representation of this =_ (P_{ae+i¢+ be ¢}
paper, nor the idea of using the representation to place \/?
bounds on one-dimensional scattering. .

| start by introducing an arbitrary auxiliary functias(x) _ 2'_‘P’ %e‘i*‘# i ‘P;"aeﬂ(p (18)
that may be either real or complex, though | do demand that Vo' dX Jo' '

¢'(x)#0, and then defining

_ ) (The last two relations use the gauge condifidtow insert
p+ie) exp—ig) these formulas into the Schdimger equation written in the

g b(x) g (11 form

This representation effectively seeks to use quantities resem- d? 5 2mE—V(x)]
bling the “phase integral” wave functions as a basis for the F =—k(X)" ¢=— T
true wave function[20]. This representation is of course X

highly redundant since one complex numlygx) has been

traded for two complex numbeex(x) andb(x) plus an es- t0 deduce

sentially arbitrary auxiliary functiorp(x). In order for this

representation to be most useful it is best to arrange things so da 1 )
thata(x) andb(x) asymptotically approach constants at spa- ax + ;{QD"b exp(—2iep)
tial infinity, which we shall soon see implies that we should ¢

pick the auxiliary function to satisfy +i[k3(x)—(¢")?][a+b exp(—2i@)]}, (20)

eX
P(x)=a(x)

¥ (19

¢ (X)—Kie, as x— oo, (12)

db 1
. . —=+—{¢" +2i
To trim down the number of degrees of freedom it is useful dx 2¢’ {e"aexp(+2i¢)

to impose a “gauge condition”
—i[K*(x)—(¢")?l[b+a exp+2i¢)]}. (21)

b .
\/——,) e '*=0. (13) It is easy to verify that this first-order system is compatible
¢ with the gauge conditioiil3) and that by iterating the sys-
tem twice(subject to this gauge conditibone recovers ex-
actly the original Schidinger equation. These equations
dy hold for arbitrary ¢, real or complex, and when written in
s = \/?{a(x)exp( +ig)—b(xexp—ig)). (14 mit;grfrg);m’n'?FQi?.lt a deep connection with the transfer ma:

dl a +i‘“_d
x| Jor/® T dx

Subject to this gauge condition,
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B. Bounds Integrate this inequality

To obtain our bounds on the Bogoliubov coefficients we

start by restricting attention to the case thdi) is areal 1 X Xt
function of x. (Since ¢ is an essentially arbitrary auxiliary {cosh |a|}|xi$ N ¥ dx. (30
function this is not a particularly restrictive conditiprn- '
der this assumption the probability current is Taking limits asx;— — andx;— + o,
dw +

j=|m+ 1 &]:{|a|2_|b|2}_ (22 COSh_l|a|$j 9 dx, (31)
Now atx~ + o the wave function is purely right moving and that is
normalized to 1 because we are considering one-dimensionaﬂ '
Jost solution$16]. Then for allx we have a conserved quan-
. + o
tity |a|scosr( f & dx) : (32

|a]?—|b|?=1. (23 _ , o
which automatically implies

It is this result that makes it useful to interpedix) andb(x)

asposition-dependent Bogoliubov coefficierdfative to the . +o

auxiliary functione(x). Now use the fact that |,8|ssm}-< fﬁ ﬁdx). (33
d|a| 1 da da* Since this result holds foall real choices of the auxiliary
ax 208 Tte (24 function ¢(x) (subject only toe’#0 and ¢’ —k... asx

and use Eq(20) to obtain

— * ), it encodes an enormously wide class of bounds on
the Bogoliubov coefficients. When translated to reflection
and transmission coefficients the equivalent statements are

da| 1 , . : o
WZMZ_@’{(P [a*bexp(—2ig)+ab*exp(+2i¢)] Tzsecﬁ(f ﬁdx) (34)
+i[k3(x)—(¢")?][a*b —2i
i[K200 ~ (¢")?][a* bexp( ~2i ) and
—ab*exp(+2i¢)]}, (25
. o
that is, Rstanh’-(f ﬁdx). (35
dlal 1 1 p L2 N2 I shall soon turn this general result into more specific theo-
W_MZ_WRG({QD ik (x) = (")} rems.
x[a*bexp(—2igp)]). (26) C. Transfer matrix representation
The right-hand side can now be bounded from above, by The system of equatior&0) and(21) can also be written
systematically using R&B)<|A| |B|. This leads to in matrix form. It is convenient to define
dlal \/(@")2+[k2(x)—(¢')2]2| | 7 p=¢"+i[K* ()= (¢")?]. (36)
< b|. 2
dx 2|’ Then

It is essential thap be real to havéexp(—2i¢)|=1, which is

the other key ingredient above. Now define the non-negative ~ dfa| 1 i Im[p] pexp—2ie)|la
quantity dx(b] 24| p*exp+2ip)  —ilm[p] [Ib]
(37)
"2 2 _ \272
I o(x),k(x)]= V(e "+ K~ (¢")°] (28)  This has the formal solution
2|’

and use the conservation |1&&3) to write axp)| _ a(xi)

ae3) bixe) |~ B2 pix) | (39)

in terms of a generalized position-dependent “transfer ma-

%sﬁ la]?—1 (29
dx ' trix” [21]
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X 1
E(xf,xi)=PeXp<f —
x 2¢'

where the symbaoP denotes “path ordering.” In particular, if we take— —o andx;— + we obtain a formal but exact
expression for the Bogoliubov coefficients

=P [
= OO,—OC = ex —_—
*°°2(P/

iim[p] pexp—2igp)

prexp(+2i¢)  —itmp] |V (39

a pB*
B a*

iIm[p] peXp(—2i¢)

p*exp+2ip) —ilm[p] 40

The matrixE is not unitary, though it does have determinant These bounds are exact nonperturbative results; however, for

1. Itis in fact an element of the group €1)1). Taking high energies it may be convenient to use the slightly less
restrictive (but analytically much more tractablbounds
+1 O a1 )
= +o0
Tlo -1 “1 m(f IV—V..|dx
so that ¢7,)?=+1, and definingE"=(E*)7, it is easy to see T=1- 2(E—V.,)h2 (48)
that
and
Eto,E=0,. (42 +oo 2
m( j |V—Vm|dx)
This is the analog of the invariance of the Minkowski metric R< - _ (49)
for Lorentz transformations in S@,1). Similarly, if we de- 2(E—V.)h?

fine the “complex structure’J by
This version of the bounds also holds for all energies, but is

not very restrictive for low energy.
J= 0 1 (43) The transfer matrices can be analyzed by checking that
-1 0/ the evolution equations simplify to

2_ _

thenJ°=—1 and da —-im(V—-V,) )
PRy a— {a+bexp —2ik.x)}, (50

Ef=JEJ. (44) )

db  +im(V-V.)

IIl. SPECIAL CASE 1 =
dx h2k.,

{aexp(+ 2ik,x) +b}. (51

Suppose now that the potential satisfigs..=V_.,.
Also, choose the phase functiap(x) to be o=k, x. We  This can be written in matrix form as
also requirek.,# 0, that is,E>V_..... This is the special case

discussed in a different context by Peiefls3]. Then the dla| —im(V—-V,)
evolution equations simplify tremendously and dxib| ™ 72k
1 exp — 2ik,,X
g Kkl mVOO —Ve] (45) |~ exp(+2ik.x) ' 1 | b
— = —ex ik.X -
2k, 7K., 52
. 9 B
Using (ik.)"=2m(E—V.), the bounds become This version of the Shabat-Zakharov systEtd] has a for-
mal solution in terms of the transfer matrix
T=sech 1\/ i f+x|v V.|d (46) —im [
=sech| —\/——— —V,| dx i
i N 2(E-V,)J)-= E(xs. i) =P exp — f [V(X)— V]
h koo Xt
and 1 o 2ikx
X etk g dx). (53

. (47  The formal but exact expression for the Bogoliubov coeffi-
cients is now

1 m +oo
Rstanr?(—\/—f [V=V.| dx
N 2(E-V,)J) =
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a B*
B a*}:E(m’_w)
_Im ©
=7?exp(ﬁ2k Jl [V(X)—= V]
1 e_2ik°°x
X _ et 2ikux 1 dx]|. (54)

Furthermore, the form of the systefB0) and (51) suggests
that it might be useful to define
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+im im [+
B~ 2k expg + ﬁzkajm [V(X)—V,]dx
+ o
xf [V(X) =V ]exp( + 2ik.X)
X - Im fx V(y)—V.]dy|d 62
R ) V)~ Valdy|dx (€2

This is one form of the distorted Born wave approximation.

In short, this type of analysis collects together a large
number of results that otherwise appear quite unrelated. By
taking further specific cases of these bounds and related re-
sults it is possible to reproduce many analytically known
results, such as foé-function potentials, doublé-function
potentials, square wells, and ségbotentials, as discussed
later in this paper(See Sec. V).

IV. SPECIAL CASE 2

Suppose now we takie(x) = ¢’(x). This means that we
are choosing our auxiliary function so that we use the WKB
approximation for the true wave function as a “basis” for
calculating the Bogoliubov coefficients. This choice is per-
fectly capable of handling the ca%g ..#V_.,, but because
of the assumed reality af is limited to considering scatter-
ing over the potential barrier(This is the special case im-
plicit in a different context in Ref.19].) The evolution equa-
tions again simplify tremendously to yield

da__ 1. 2i 63
X 2@,{90 exp(—2ig)}, (63
db_ 1 +2i 64
X 2@,{90 aexp(+2ig)}. (64)

This form of the evolution equations can be related to the
qualitative discussion of scattering over a potential barrier
presented by Migdal and Kraind22,23. For this choice of

~ im [x ]
a=aexg + V(y)—V.]dy|, 55
p_ hszw[ (y) ]y_ (59)
b=b | imjx[V()V]d- (56)
=bexg — -V, .
P_ PED I y Y_
Then
da —im[V(x)—Voc]B o 2ikx) 57
—=—————"bexp—2ik.X),
dx 72K,
db  +im[V(X)—V.]- o+ 21k 58
—=—————-2aex iKX).
dx %K.,
This representation simplifies some of the results, for in-
stance,
w B .
~ ~, |TE(®,—x)
B o
P p(_imfw[vu V..
=P ex X) =V
72K, o
0 e*2ikwx
X _ ot 2ikex 0 dx|. (59

This can be used as the basis of an approximation scheme for

B. Suppose that for akt we have|b(x)|<1, so that/a(x)|
~1. Then

db  +im[V(x)-V.]

— exp(+ 2ikX). 60
ix pens o ) (60)
This may be immediately integrated to yield
~ +im [+ )
B~ 2 f [V(X) =V, ]exp +2ik,x)dx. (61

This is immediately recognizable as ttfiest) Born approxi-

mation. If we instead work in terms of the original definition

B,

auxiliary function

n kl
eIkl .
2l¢"| 2|k
and the bounds become
T H(ljﬂlk,'d ) (66)
=sechf| = —dx
2) - K]
and
R<t r?(ﬁ”"“'a) 67
<tanlf| = —dx].
2] |

The relevant transfer matrix is now
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1 (x¢"
E(xf,xi)zPexp(—f —
2)x o'

The Bogolubov coefficients are now

0 o2 and write

e+2i(p 0

dx) . (68

X

P(X)= @i ftpx(y)dy (79

(where “tp” denotes the turning pointo obtain

a pB*
N =E(c0,—)
B «a da K’ }
. —— =+ —bexp—2igyp)ex +2f K|, (76)
o ¢/r 0 e_2|(P dX 2K
- db + < o+ 2i @) p{ ZJ (77
—=+-—aex o expg — K.
This type of analysis collects together and unifies several dx 2k i

analytically known results for scattering over the barrier,
such as for asymmetric square wells and Poschl-Teller poThus we areviolating our previous condition thap be real,
tentials.(See Sec. V).After a few general comments, | shall though we still requiree’#0. This is a perfectly good
turn to specializing this still rather general result to moreShabat-Zakharov system that works in the forbidden region.
specific cases. However, one cannot now use this to derive bounds on the
transmission coefficient. The difficulty resides in the fact that
A. Reflection above the barrier the formula for the probability current is modified and that in

. _the forbidden region the probability current is
The systen(63) and(64) can also be used as the basis of

an approximation scheme f@. Suppose that for ak we dy _

have|b(x)|<1, so thafja(x)|~1. Then J=Imy gt (=2 Imabtexp(+2iep)t. (78
db_¢" . For a properl lized flux in the allowed regiofal@
W 1 2i0). 7 properly normalized flux in the allowed regiofa
dx 24’ exp+2i¢) 70 —|b]?=1), we have in the forbidden region

This may be immediately integrated to yield 2 Im{ab* exp(+ 2i @)} = 1. (79

.t While this does imply £a||b|>1, the inequality is unfortu-
1 (+2¢"(X) ) ) > .
~ _J ——exp(+2ip)dx (70 nately in the wrong direction to be useful for placing bounds

2) - ' (x on the transmission coefficient.

or the equivalent C. Special case 2a

'(X) X Suppose now tha¥(x) is continuous and monotonically
5 EXp<+2if k(y)dy)dx. (720 increasing or decreasing, varying froM_,=V(—«=) to
—= K(x) o V,.,,=V(+®). SupposeE=maxV_..,V,..} so there is no

. . . . . classical turning point. Then
This result serves to clarify the otherwise quite mysterious gp

discussion of “reflection above the barrier” given by Migdal J+w|k,| ‘ ( k. )
In -

1 (+=k

and Krainov[22,23. Even though the WKB wave functions —dx=
are buried in the representation of the wave function under-
lying the analysis leading to this approximation, the validity . , - .
of this result for| 8| does not require validity of the WKB and the transmission and reflection probabilities satisfy

approximation.

(80)

k—x

If the shifted potentiaV—V,, is “small” we can recover T= 4Ky Ko 81)
the Born approximation in the usual manner. In that case (Kiotk_.)?
k'=mV'/h%k~mV'/h%k,,, while exp(2fk)~exp(ak.x). A
single integration by parts then yields and

Vo0 - Ve Jexa+2ik,x0dx. - (73) < Wmke) ®2
~—j— X) = Vo Jexp + 2ik,x)dx. ST
IB flzkw —x (k+oc+k—OO)2

_ These bounds are immediately recognizable as the exact ana-
B. Under the barrier? lytic results for a step-function potentigl, 7,8 and the result

What goes wrong when we try to extend this analysis intosserts that for arbitrary smooth monotonic potentials the

the classically forbidden region? Analytically continuing the step function provides upper and lower bounds on the exact
system(63) and (64) is trivial. Replace result. If we are interested in physical situations such as a

time-dependent refractive indd25,26 or particle produc-
o' (X)=k—ik=iy2m(V—E)/#A (74)  tion due to the expansion of the univefgF], this technique
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shows thatsuddenchanges in refractive index or size of the
universe provide a strict upper bound on particle production.

D. Special case 2b

Suppose now thaV¥(x) has a single unique extremum

(either a peak or a vallgy and provided thatE

=max V., ,Vexremum V + ) SO that there is no classical turn-

ing point, k(x) moves monotonically fronk_., t0 Keytremum
and then back td, ... Under these circumstances

f+deX— I kextremu + ln kextremu (83)
- Kk k—oo k+oo
— In kgxtremum (84)
KoK
This implies
|a|<coshIn Koarsmum (85
VKoK o
which yields
|B| sm}-{ [kextremum‘| (86)
VKooK o

To be more specific, if in additiol(—«)=0=V(+=), so

thatk_.=Kk,.,, then we have
| C¥| kgxtremum'i_ k2 (87)
2kextremunkoc
and
|B| |kextremum k2| (88)
2kextremunkoo
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R (Vextremum_ Voc)z
( 2E—- Vextremum_ Ve ) 2

(92

For low energies, these results are weaker than the bounds
derived under special case[Eqgs. (46) and(47)] and[Eqgs.

(48) and (49)], but have the advantage of requiring more
selective information about the potential. For high energies

> ﬁz(vextremum_ Vm)z
2m(f L7V (x) = V..[dx)?’

(93

the present resulfwhen it is applicable leads to tighter
bounds on the transmission and reflection coefficients.
Numerous generalizations of these formulas are possible.
For example, at the cost of a little extra notation, we already
have enough information to provide a bound oreagmmet-
ric barrier orasymmetriavell. As long as it has only a single
extremum(maximum or minimuny, we apply the previous
equations to derive

2
kextremum k+ OCk— 0

e < — (94)
2kextremum k+ockfoc
and
|kextremum k+°ck °C| (95)

|Bl= —
Zkextremum k+00k*

Translated into statements about the transmission and reflec-
tion probabilities, this becomes

4k, k_ k>

extremum

{kextremum k+ oo\ — 00}2

(96)

and

{kextremum k+ o 06}2

R< (97)
{kextremum+ k k °°}2

Translated into statements about the transmission and reflegr, equivalently,

tion probabilities this becomes

E-V.)(E- Vex remu
T= ( ) tremund 89)

1
( E- Voc)( E- Vextremun) + Z (Vextremum_ Voc)z

and

R< %1 (Vextremum_ Voo) 2 (90)

1
( E- Voc)( E- Vextremun} + Z(Vextremum_ Voc)z

or, equivalently,

_ 2
T=1— (Vextremum Voc) . (91)
(2E - Vextremum_ Voo)

and

4(E_Vextremun) \/(E—V+m)(E—V,w)
[(E_Vextremun)‘l' \/(E—V+w)(E—V,x)]z

(98)

and

_ LB~ Vexremun = V(E- V. ) (E-V_.)]?
[(E Vexwremun * V(E=V ) (E=V_.)]*
This can be compared, for example, with known analytic

results for the asymmetric square well; see @44) in Sec.
VI.

(99

E. Special case 2c

Suppose now tha¥/(x) has a number of extrem@oth
peaks and valleys | allow V(+%)#V(—«), but demand
that for all extremaE=maxV_..,V. . ,Vigemud SO that
there is no classical turning point.
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For definiteness, suppose the ordering -isc—peak V. PARAMETRIC OSCILLATIONS

—valley - valley—peak—te. Then Though the discussion so far has been presented in terms

vk | KL KL of the spatial properties of the time-independent Sdimger
J _dxz‘m[ pea"l +‘In[ Va"eyl equation, the mathematical structure of parametrically ex-
S K_o k;eak cited oscillations is identical, needing only a few minor
. translations to be brought into the current form. For a para-
Ko i i i
vt lin npfjk] " In{ n+ J . (100 metrically excited oscillator we have
valley. I(pea dz(/’
Y _ 2
Defining gz e (110
1 (k)= H [ o (101) Just mag—X, w(t)—k(x), andé— . In the general analy-
P peaks Moo sis of Egs.(28)—(35) the quantityd should be replaced by
. Vie")?+[w”—(¢")%T?
,00= 11 Kiaey: (102 I e(t),0(t)]= . (11D
valleys 2|(p’|
i The analysis then parallels that of the Salingier equation.
Me(k)= TT  Keemum (103 some key results are given below.
extrema
we see A. Special case 1
) 2(k If w(—%)=we=w(+*)#0, then by choosing the aux-
fMde: In p(K) . (104) iliary function to beg = wt we can use Eq$46) and(47) to
—» Kk Kok oIT2(K) deduce
This bounds the Bogolubov coefficients as 1 [+ 5
|a|<cos —f |w?(t) — wg|dt (112
2(1)0 —®
|@|<coshIn __Mlo (105
L Vkak T (k) | and
that is, . 1 [+ ,
| B|=<sin —f |w?(t)— w§|dt |. (113
KK, o T2(K) + TI2(K) 2wg7 ~
|a|< (106
2VK ook 1Te(K) B. Special case 2
and If w(—) andw(+*)+#0 are both finite so that suitable
asymptotic states exist and assuming(t)=0 so that the
Bl |k,mk+wH5(k)—H§(k)| (107) frequency is always positive, then applying E¢86) and

2K K TTo(K)

Then the transmission and reflection probabilities satisfy

. a4k, k. IT3(k)
{IT2(K) + Kook T2(K) )2

(108)

and

{T15(K) = Kook TT5(K) Y2
THTI2(K) + Kok TT2(K)Y

(109

(67) to the case of parametric resonance yields

_ el
|a|\cos?‘{ fﬁw o0 dt‘ (119

_ L ple )
|,6'|\S|n}+ fo e dt‘.

C. Special case 2a

and

(115

In these formulas, peaks and valleys can be interchanged in Suppose now thab®(t) is positive semidefinite, continu-
the obvious way and by letting the initial or final peak sink 0us, and monotonic increasing or decreasing, varying from
down toV. .. as appropriate we obtain bounds for sequence§ == ®(=*)#0 10 w_.=w(+*)#0. The Bogoliubov

such as -—w—valley—peak:--valley—peak—+w or
—wo—peak-valley - -peak—valley— +«. In the case of one

or zero extrema these formulas reduce to the previously

given resultd Egs. (96) and (97)]. Further modifications of

coefficients satisfy

(110

these formulas are still possible. The cost is that more spe-
cific assumptions are needed to derive more specific resultand
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|w,w—w+x|

|B|$m- (117

D. Special case 2b

Under the restrictiomw(— )= wy= w(+%)# 0, with the

additional constraint thab(t) has a single unique extremum

(either a maximum or a minimum but not bp#nd provided
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W_ o(,Hg(w)-i-l_lz(a))
|a]< —— : (125
Vo, .o Tl(w)
and
W _ w4 IT2(K) = T12(k)
|ﬁ|<| - ) (126)

VO 4 0, I1o(K)

W gemun0 SO that we do not encounter complex frequen-

cies(no classical turning pointthe Bogoliubov coefficients
satisfy

2 2
Wo + W extremum

la|< (118
2 WoWextremum
and
2 2
wWy— W
|B|$ | 0 extremunl\. (119)

2 WoWextremum

Suppose now thab?(t) has a single unique extremum kn

(either a peak or a vallgybut thatw(+%«)# w(—=) and

further thatw?(t)>0 so that there is no classical turning

point. The Bogoliubov coefficients satisfy

2
W00 + @ extremum

| a| < (120
2N W _ 0@ 1 o Wextremum
and
2
W_W 0™ W
| + extremunL (121)

|8l=< :
2N W _ 0 1 o Wextremum

E. Special case 2c

Suppose now thab(t) has a number of extremdoth
peaks and valleys| allow w(+%)# w(—), but demand
that for all extremawyyemuns>0 SO that there is no classical
turning point.

For  definiteness, suppose the
—w—peak—valley - valley—peak—+. Define

ordering

Hp(w)zgkswgeak, (122
II,(w) Evﬁys ey (123
Me(w)= H wiextremum' (124

extrema

The Bogoliubov coefficients satisfy

is

In these formulas, peaks and valleys can be interchanged in
the obvious way and by letting the initial or final peak sink
down tow ., as appropriate we obtain bounds for sequences
such as —w—valley—peak--valley—peak—-+w or —ow
—peak—valley - -peak—valley—+-co. In the case of one or
zero extrema these formulas reduce to the previously given
results.

Again, further specializations of these formulas are still
possible. As always, there is a trade-off between the strength
of the result and its generality.

VI. COMPARISON WITH KNOWN ANALYTIC RESULTS

For comparison purposes, in this section | collect several
own analytic results and show how they relate to the gen-
eral results presented in this paper.

A. éfunction potential

For a &function potential

V(X)=ad(x), (127
the transmission coefficient is known to &3]
1
(128

T=—
1+ (ma?/2ER)

This satisfies the boun6) and also Eq.(48) and for E
—oo asymptotically approaches the bound, thus showing that
the bound cannot be improved in the high-energy regime
unless additional hypotheses are made

Though these bounds werderived assuming well-
behaved functions, the statemefd$) and (48) continue to
make good sense even férfunction potentials. Thus any
smooth set of well-behaved functions tending té-fainction
limit may be used to establish Eq&l6) and (48) even for
potentials containing-function contributions.

B. Double-é-function potential
For the doubles function

V(x)=a{8(x—L/2)+ 8(x+L/2)}, (129
the transmission coefficient [41]
1
T= .
1+[(2mal/t?k)cog kL) + 1/2(2mal# k) ?sin(kL) ]?
(130
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It is an easy exercise to check that this satisfies the bound®ling under a square barrier is much more populafhe

(46) and (48). exact transmission coefficient is
C.s barri T E(E—Ve) (131
. Oquare barrier = .
, o E(E—Ve)+ V2sir[ V2m(E—V,)L/#]
Tunnelingovera square barrier is an elementary problem
that however, is not always discussed in the textboOksn-  (See Refs[1] or [9].) If we rewrite this as
1
T= ; : : (132
1+ (mVAL2/2EA2)/sir?[ 2m(E— V) L/ATI2m(E—V)L%/%2
|
then it is clear that the boun@6) is satisfied. It is also and use the inequalityx(>0)
possible to verify that this satisfies the general lower bound
(66) that | have presented above and in fact oscillates be- )
tween this lower bound and the uppB&1 unitarity limit.
For certain values of the barrier widtfKegemunk= (2N tant? x>1+x2>secﬁ(1/x). (138
+1)#/2] the square well saturates this bound, thus showing
that this bound cannot be improvadless additional hypoth- Then
eses are made
D. tanh potential T=secH[#/(m\2mEL)] (139
For a smoothed step function of the form
2 4 [m2L|Vy #? (140
V_,+V,., V. ..—V_, X =sech| —\/z=——mMM8M8M8m—|.
V=T ta”k(f), (133 mYZE A BmivyL®

] o _ Provided the extremum is a pedk.,>0, we can use the
the reflection coefficient is known analytically to p| bound 8nVj,eul 2<72 to deduce

[ M 2L|Vpeal
2E 3 ’
This certainly satisfies the general boun@l) and (82 o ) o

. 2
_ S|nf'[27r(k_m—k+x)L]) | 134

sinf 27m(K_ o+ K 0)L] T=seck (149

bound. V<0 we need a different analysis.
E. sech potential F. Asymmetric square-well potential
For a sech potential of the form For the asymmetric square well
V(x)=VgsecR(x/L), (135 Vi, x<a
= X<
the transmission coefficient is known analytically to[li¢ Vx) V2, a<x<b (142
Vs, b<x
T= sinfP[.my2mE U] we definek;=+y2m(E—V,)/%. The transmission coefficient
sint?[ y2mEU#]+ coS[1/2m\1—8mV,L%/%2?] is [15]
(136
provided 8nV,L?<#%2. This satisfies the general bounds, 4k k3ks

both (34) and(81), enunciated abovéHowever, proving this T= 2,2 202 0 L2/ 12 L2 L2\ :
is tedious) Start by noting that for this sech potential (kq+kg)"ky+[kikz+Ka(ky— ki k3)]5|n2(k2L)(143)

T=tantf[ 7y2mEUA ] (137  Then
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G. Poschl-Teller potential

4k, k3kq
(144 For the Poschl-Teller potential

=—.
(K3+kiks)?

Similarly to the case for the symmetric square well, the V(x)=VgcosHu (tanK[ (x— wL)/L]} +tanhu)?
transmission probability for the asymmetric square well os- (145
cillates between the boun(®6) and the unitarity limitT

=1. For certain values of the width of the wgk,L=(2n  We have

+1)#/2] the transmission coefficient saturates the bound,

thus showing that this bound cannot be improuedess ad- V_..=Voe %, Vewemui=0: V_.=Voe 2~
ditional hypotheses are madeBecauseV_.#V,. the (146
bound (34) is not applicable, at least not without modifica-

tion from its original form. The transmission coefficient [24]

2 siniwk_,L)sinh( 7k L)

T= . 14
coshi m(K_.+k,.)L]+cod mV1+ (8mVoL/7%)cosfu] (147

It is now a straightforward if tedious exercise to check thiscase 2, as presented in E¢86) and(67) and their special-
analytic result against all the bounds derived in this paper. izations, applies only to scattering over the barrier, but has
the advantage of being much more selective in how much
VII. DISCUSSION information is needed concerning the scattering potential. In
) ) _ summary, the bounds presented in this paper are useful in
_ The various special cases discussed above are merely sRagaplishing qualitative analytic properties of one-

cific examples of the general result82)—(35) illustrating  dimensional scattering and as such are complementary to

the power of the technique. There are many other variationgotny explicit numerical investigations and the guidance ex-

on the bounds presented above that can be derived for spgacted from exact analytic solutions.

cific choices ofe(x) and specific restrictions on the scatter-

ing potentialV(x).
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