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Some general bounds for one-dimensional scattering
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One-dimensional scattering problems are of wide physical interest and are encountered in many diverse
applications. In this paper I establish some very general bounds for reflection and transmission coefficients for
one-dimensional potential scattering. Equivalently, these results may be phrased as general bounds on the
Bogolubov coefficients or statements about the transfer matrix. A similar analysis can be provided for the
parametric change of frequency of a harmonic oscillator. A number of specific examples are discussed. In
particular I provide a general proof that sharp step function potentials always scatter more effectively than the
corresponding smoothed potentials. The analysis also serves to collect together and unify what would other-
wise appear to be quite unrelated results.@S1050-2947~99!08101-9#

PACS number~s!: 03.65.Nk
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I. INTRODUCTION

One-dimensional scattering problems occur in a wide
riety of physical contexts. In acoustics one might be int
ested in the propagation of sound waves down a long p
while in electromagnetism one might be interested in
physics of waveguides. In quantum physics the canon
examples are barrier penetration and reflection, while in c
sical physics an equivalent problem is the analysis of pa
metric resonances. All of these physical problems can
analyzed in the same mathematical framework, though
definiteness I shall present the discussion in terms of
Schrödinger equation, commenting on alternative formu
tions as appropriate.

For one-dimensional scattering problems there is a la
catalog of specific potentials for which exact analytic resu
are known. There are also well-developed numerical te
niques for estimating the scattering properties. In this pap
wish to take a different tack: I shall develop a number
very general and rather simpleboundson the reflection and
transmission probabilities~equivalently, these bounds can b
presented in terms of the Bogoliubov coefficients or in ter
of statements about the transfer matrix!. These bounds, be
cause they are so general, are powerful aids in thequalitative
understanding of one-dimensional scattering. Furtherm
this analysis provides a unifying theme that serves to con
together seemingly quite disparate results obtained in i
vidual special cases.

II. GENERAL ANALYSIS

A. Shabat-Zakharov systems

Consider the one-dimensional time-independent Sch¨-
dinger equation@1–15#

2
\2

2m

d2

dx2
c~x!1V~x! c~x!5E c~x!. ~1!

If the potential asymptotically approaches a constant
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V~x→6`!→V6` , ~2!

then in each of the two asymptotic regions there are t
independent solutions to the Schro¨dinger equation

c~6 i ;6`;x!'
exp~6 ik6`x!

Ak6`

. ~3!

Here the6 i distinguishes right-moving modese1 ikx from
left-moving modese2 ikx, while the6` specifies which of
the asymptotic regions we are in. Furthermore,

k6`5
A2m~E2V6`!

\
. ~4!

To even begin to set up a scattering problem the minim
requirement is that the potential asymptotically approac
some constant, and this assumption will be made hencefo

The so-called Jost solutions@16# are exact solutions
J6(x) of the Schro¨dinger equation that satisfy

J1~x→1`!→
exp~1 ik1`x!

Ak1`

, ~5!

J2~x→2`!→
exp~2 ik2`x!

Ak2`

, ~6!

and

J1~x→2`!→a
exp~1 ik2`x!

Ak2`

1b
exp~2 ik2`x!

Ak2`

, ~7!

J2~x→1`!→a*
exp~2 ik1`x!

Ak1`

1b*
exp~1 ik1`x!

Ak1`

.

~8!

Here a and b are the ~right-moving! Bogoliubov coeffi-
cients, which are related to the~right-moving! reflection and
transmission amplitudes by
427 ©1999 The American Physical Society
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r 5
b

a
, t5

1

a
. ~9!

These conventions correspond to an incoming flux of rig
moving particles~incident from the left! being partially
transmitted and partially scattered. The left-moving Bogol
bov coefficients are just the complex conjugates of the rig
moving coefficients; however, it should be borne in mi
that the phases ofb and b* are physically meaningless i
that they can be arbitrarily changed simply by moving t
origin of coordinates. The phases ofa anda* , on the other
hand, do contain real physical information.

In this paper I will derive some very general bounds
uau andubu, which also lead to general bounds on the refl
tion and transmission probabilities

R5ur u2, T5utu2. ~10!

The key idea is to rewrite the second-order Schro¨dinger
equation as a particular type of Shabat-Zakharov@17# sys-
tem: a particular set of two coupled first-order different
equations for which bounds can be easily established
similar representation of the Schro¨dinger equation is briefly
discussed by Peirls@18# and related representations are w
known, often being used without giving an explicit referen
~see, e.g., Ref.@19#!. However, an exhaustive search has n
uncovered prior use of the particular representation of
paper, nor the idea of using the representation to pl
bounds on one-dimensional scattering.

I start by introducing an arbitrary auxiliary functionw(x)
that may be either real or complex, though I do demand
w8(x)Þ0, and then defining

c~x!5a~x!
exp~1 iw!

Aw8
1b~x!

exp~2 iw!

Aw8
. ~11!

This representation effectively seeks to use quantities res
bling the ‘‘phase integral’’ wave functions as a basis for t
true wave function@20#. This representation is of cours
highly redundant since one complex numberc(x) has been
traded for two complex numbersa(x) andb(x) plus an es-
sentially arbitrary auxiliary functionw(x). In order for this
representation to be most useful it is best to arrange thing
thata(x) andb(x) asymptotically approach constants at sp
tial infinity, which we shall soon see implies that we shou
pick the auxiliary function to satisfy

w8~x!→k6` as x→6`. ~12!

To trim down the number of degrees of freedom it is use
to impose a ‘‘gauge condition’’

d

dxS a

Aw8
D e1 iw1

d

dxS b

Aw8
D e2 iw50. ~13!

Subject to this gauge condition,

dc

dx
5 iAw8$a~x!exp~1 iw!2b~x!exp~2 iw!%. ~14!
t-

-
t-

-

l
A

l

t
is
e
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l

I now rewrite the Schro¨dinger equation in terms of two
coupled first-order differential equations for these positio
dependent Bogolubov coefficients. To do this note that

d2c

dx2
5

d

dxS i
w8

Aw8
$ae1 iw2be2 iw% D ~15!

5
~ iw8!2

Aw8
$ae1 iw1be2 iw%

1 iw8H d

dxS a

Aw8
D e1 iw2

d

dxS b

Aw8
D e2 iwJ

1 i
w9

Aw8
$ae1 iw2be2 iw% ~16!

52
w82

Aw8
$ae1 iw1be2 iw%

1
2iw8

Aw8

da

dx
e1 iw2 i

w9

Aw8
be2 iw ~17!

52
w82

Aw8
$ae1 iw1be2 iw%

2
2iw8

Aw8

db

dx
e2 iw1 i

w9

Aw8
ae1 iw. ~18!

~The last two relations use the gauge condition.! Now insert
these formulas into the Schro¨dinger equation written in the
form

d2c

dx2
52k~x!2 c[2

2m@E2V~x!#

\2
c ~19!

to deduce

da

dx
51

1

2w8
$w9b exp~22iw!

1 i @k2~x!2~w8!2#@a1b exp~22iw!#%, ~20!

db

dx
51

1

2w8
$w9a exp~12iw!

2 i @k2~x!2~w8!2#@b1a exp~12iw!#%. ~21!

It is easy to verify that this first-order system is compatib
with the gauge condition~13! and that by iterating the sys
tem twice~subject to this gauge condition! one recovers ex-
actly the original Schro¨dinger equation. These equation
hold for arbitraryw, real or complex, and when written i
matrix form, exhibit a deep connection with the transfer m
trix formalism @21#.
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B. Bounds

To obtain our bounds on the Bogoliubov coefficients
start by restricting attention to the case thatw(x) is a real
function of x. ~Sincew is an essentially arbitrary auxiliar
function this is not a particularly restrictive condition.! Un-
der this assumption the probability current is

J5ImH c*
dc

dxJ 5$uau22ubu2%. ~22!

Now atx;1` the wave function is purely right moving an
normalized to 1 because we are considering one-dimensi
Jost solutions@16#. Then for allx we have a conserved quan
tity

uau22ubu251. ~23!

It is this result that makes it useful to interpreta(x) andb(x)
asposition-dependent Bogoliubov coefficientsrelative to the
auxiliary functionw(x). Now use the fact that

duau
dx

5
1

2uau S a*
da

dx
1a

da*

dx
D ~24!

and use Eq.~20! to obtain

duau
dx

5
1

2uau
1

2w8
$w9@a* b exp~22iw!1ab* exp~12iw!#

1 i @k2~x!2~w8!2#@a* b exp~22iw!

2ab* exp~12iw!#%, ~25!

that is,

duau
dx

5
1

2uau
1

2w8
Re„$w91 i @k2~x!2~w8!2#%

3@a* b exp~22iw!#…. ~26!

The right-hand side can now be bounded from above,
systematically using Re(AB)<uAu uBu. This leads to

duau
dx

<
A~w9!21@k2~x!2~w8!2#2

2uw8u
ubu. ~27!

It is essential thatw be real to haveuexp(22iw)u51, which is
the other key ingredient above. Now define the non-nega
quantity

q@w~x!,k~x!#[
A~w9!21@k2~x!2~w8!2#2

2uw8u
~28!

and use the conservation law~23! to write

duau
dx

<qAuau221. ~29!
al

y

e

Integrate this inequality

$cosh21uau%uxi

xf<E
xi

xf
q dx. ~30!

Taking limits asxi→2` andxf→1`,

cosh21uau<E
2`

1`

q dx, ~31!

that is,

uau<coshS E
2`

1`

q dxD , ~32!

which automatically implies

ubu<sinhS E
2`

1`

q dxD . ~33!

Since this result holds forall real choices of the auxiliary
function w(x) ~subject only tow8Þ0 and w8→k6` as x
→6`), it encodes an enormously wide class of bounds
the Bogoliubov coefficients. When translated to reflecti
and transmission coefficients the equivalent statements a

T>sech2S E
2`

1`

q dxD ~34!

and

R<tanh2S E
2`

1`

q dxD . ~35!

I shall soon turn this general result into more specific th
rems.

C. Transfer matrix representation

The system of equations~20! and~21! can also be written
in matrix form. It is convenient to define

r[w91 i @k2~x!2~w8!2#. ~36!

Then

d

dxFabG5 1

2w8
F i Im@r# r exp~22iw!

r* exp~12iw! 2 i Im@r#
G FabG .

~37!

This has the formal solution

Fa~xf !

b~xf !
G5E~xf ,xi !Fa~xi !

b~xi !
G , ~38!

in terms of a generalized position-dependent ‘‘transfer m
trix’’ @21#
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E~xf ,xi !5P expS E
xi

xf 1

2w8
F i Im@r# r exp~22iw!

r* exp~12iw! 2 i Im@r#
GdxD , ~39!

where the symbolP denotes ‘‘path ordering.’’ In particular, if we takexi→2` andxf→1` we obtain a formal but exac
expression for the Bogoliubov coefficients

Fa b*

b a* G5E~`,2`!5P expS E
2`

` 1

2w8
F i Im@r# r exp~22iw!

r* exp~12iw! 2 i Im@r#
GdxD . ~40!
nt

ric

e

, for
ess

t is

that

ffi-
The matrixE is not unitary, though it does have determina
1. It is in fact an element of the group SU~1,1!. Taking

sz5F11 0

0 21G ~41!

so that (sz)
251I , and definingE†5(E* )T, it is easy to see

that

E†szE5sz . ~42!

This is the analog of the invariance of the Minkowski met
for Lorentz transformations in SO~3,1!. Similarly, if we de-
fine the ‘‘complex structure’’J by

J5F 0 1

21 0G , ~43!

thenJ252I and

E†5JEJ. ~44!

III. SPECIAL CASE 1

Suppose now that the potential satisfiesV1`5V2` .
Also, choose the phase functionw(x) to be w5k` x. We
also requirek`Þ0, that is,E.V6` . This is the special cas
discussed in a different context by Peierls@18#. Then the
evolution equations simplify tremendously and

q→
uk22k`

2 u

2k`

5
muV~x!2V`u

\2k`

. ~45!

Using (\k`)252m(E2V`), the bounds become

T>sech2S 1

\
A m

2~E2V`!
E

2`

1`

uV2V`u dxD ~46!

and

R<tanh2S 1

\
A m

2~E2V`!
E

2`

1`

uV2V`u dxD . ~47!
These bounds are exact nonperturbative results; however
high energies it may be convenient to use the slightly l
restrictive~but analytically much more tractable! bounds

T>12

mS E
2`

1`

uV2V`udxD 2

2~E2V`!\2
~48!

and

R<

mS E
2`

1`

uV2V`udxD 2

2~E2V`!\2
. ~49!

This version of the bounds also holds for all energies, bu
not very restrictive for low energy.

The transfer matrices can be analyzed by checking
the evolution equations simplify to

da

dx
5

2 im~V2V`!

\2k`

$a1b exp~22ik`x!%, ~50!

db

dx
5

1 im~V2V`!

\2k`

$a exp~12ik`x!1b%. ~51!

This can be written in matrix form as

d

dxFabG5 2 im~V2V`!

\2k`

3F 1 exp~22ik`x!

2exp~12ik`x! 21 G FabG .
~52!

This version of the Shabat-Zakharov system@17# has a for-
mal solution in terms of the transfer matrix

E~xf ,xi !5P expS 2 im

\2k`

E
xf

xi
@V~x!2V`#

3F 1 e22ik`x

2e12ik`x 21 GdxD . ~53!

The formal but exact expression for the Bogoliubov coe
cients is now
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Fa b*

b a* G5E~`,2`!

5P expS 2 im

\2k`

E
2`

`

@V~x!2V`#

3F 1 e22ik`x

2e12ik`x 21 GdxD . ~54!

Furthermore, the form of the system~50! and ~51! suggests
that it might be useful to define

a5ã expF1
im

\2k`

E
2`

x

@V~y!2V`#dyG , ~55!

b5b̃ expF2
im

\2k`

E
2`

x

@V~y!2V`#dyG . ~56!

Then

dã

dx
5

2 im@V~x!2V`#

\2k`

b̃ exp~22ik`x!, ~57!

db̃

dx
5

1 im@V~x!2V`#

\2k`

ã exp~12ik`x!. ~58!

This representation simplifies some of the results, for
stance,

F ã b̃*

b̃ ã*
G5Ẽ~`,2`!

5P expS 2 im

\2k`

E
2`

`

@V~x!2V`#

3F 0 e22ik`x

2e12ik`x 0 GdxD . ~59!

This can be used as the basis of an approximation schem
b̃. Suppose that for allx we haveub̃(x)u!1, so thatuã(x)u
'1. Then

db̃

dx
'

1 im@V~x!2V`#

\2k`

exp~12ik`x!. ~60!

This may be immediately integrated to yield

b̃'
1 im

\2k`

E
2`

1`

@V~x!2V`#exp~12ik`x! dx. ~61!

This is immediately recognizable as the~first! Born approxi-
mation. If we instead work in terms of the original definitio
b,
-

for

b'
1 im

\2k`

expF1
im

\2k`

E
2`

1`

@V~x!2V`# dxG
3E

2`

1`

@V~x!2V`#exp~12ik`x!

3expF2
im

\2k`

E
2`

x

@V~y!2V`# dyGdx. ~62!

This is one form of the distorted Born wave approximatio
In short, this type of analysis collects together a lar

number of results that otherwise appear quite unrelated.
taking further specific cases of these bounds and related
sults it is possible to reproduce many analytically know
results, such as ford-function potentials, double-d-function
potentials, square wells, and sech2 potentials, as discusse
later in this paper.~See Sec. VI.!

IV. SPECIAL CASE 2

Suppose now we takek(x)5w8(x). This means that we
are choosing our auxiliary function so that we use the WK
approximation for the true wave function as a ‘‘basis’’ fo
calculating the Bogoliubov coefficients. This choice is pe
fectly capable of handling the caseV1`ÞV2` , but because
of the assumed reality ofw is limited to considering scatter
ing over the potential barrier.~This is the special case im
plicit in a different context in Ref.@19#.! The evolution equa-
tions again simplify tremendously to yield

da

dx
51

1

2w8
$w9b exp~22iw!%, ~63!

db

dx
51

1

2w8
$w9a exp~12iw!%. ~64!

This form of the evolution equations can be related to
qualitative discussion of scattering over a potential bar
presented by Migdal and Krainov@22,23#. For this choice of
auxiliary function

q→
uw9u

2uw8u
5

uk8u

2uku
~65!

and the bounds become

T>sech2S 1

2E2`

1` uk8u

uku
dxD ~66!

and

R<tanh2S 1

2E2`

1` uk8u

uku
dxD . ~67!

The relevant transfer matrix is now
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E~xf ,xi !5P expS 1

2Exf

xiw9

w8
F 0 e22iw

e12iw 0 GdxD . ~68!

The Bogolubov coefficients are now

Fa b*

b a* G5E~`,2`!

5P expS E
2`

` w9

w8
F 0 e22iw

e12iw 0 GdxD . ~69!

This type of analysis collects together and unifies sev
analytically known results for scattering over the barri
such as for asymmetric square wells and Poschl-Teller
tentials.~See Sec. VI.! After a few general comments, I sha
turn to specializing this still rather general result to mo
specific cases.

A. Reflection above the barrier

The system~63! and~64! can also be used as the basis
an approximation scheme forb. Suppose that for allx we
haveub(x)u!1, so thatua(x)u'1. Then

db

dx
'

w9

2w8
exp~12iw!. ~70!

This may be immediately integrated to yield

b'
1

2E2`

1`w9~x!

w8~x!
exp~12iw!dx ~71!

or the equivalent

b'
1

2E2`

1`k8~x!

k~x!
expS 12i E

2`

x

k~y!dyD dx. ~72!

This result serves to clarify the otherwise quite mysterio
discussion of ‘‘reflection above the barrier’’ given by Migd
and Krainov@22,23#. Even though the WKB wave function
are buried in the representation of the wave function und
lying the analysis leading to this approximation, the valid
of this result forubu does not require validity of the WKB
approximation.

If the shifted potentialV2V` is ‘‘small’’ we can recover
the Born approximation in the usual manner. In that c
k8[mV8/\2k'mV8/\2k` , while exp(2i*k)'exp(2ik`x). A
single integration by parts then yields

b'2 i
m

\2k`

E
2`

1`

@V~x!2V`#exp~12ik`x!dx. ~73!

B. Under the barrier?

What goes wrong when we try to extend this analysis i
the classically forbidden region? Analytically continuing t
system~63! and ~64! is trivial. Replace

w8~x!5k→ ik5 iA2m~V2E!/\ ~74!
al
,
o-

f

s

r-

e

o

and write

w~x!5w tp1 i E
tp

x

k~y!dy ~75!

~where ‘‘tp’’ denotes the turning point! to obtain

da

dx
51

k8

2k
b exp~22iw tp!expS 12E k D , ~76!

db

dx
51

k8

2k
a exp~12iw tp!expS 22E k D . ~77!

Thus we areviolating our previous condition thatw be real,
though we still requirew8Þ0. This is a perfectly good
Shabat-Zakharov system that works in the forbidden reg
However, one cannot now use this to derive bounds on
transmission coefficient. The difficulty resides in the fact th
the formula for the probability current is modified and that
the forbidden region the probability current is

J5ImH c*
dc

dxJ 52 Im$ab* exp~12iw tp!%. ~78!

For a properly normalized flux in the allowed region (uau2
2ubu251), we have in the forbidden region

2 Im$ab* exp~12iw tp!%51. ~79!

While this does imply 2uauubu.1, the inequality is unfortu-
nately in the wrong direction to be useful for placing boun
on the transmission coefficient.

C. Special case 2a

Suppose now thatV(x) is continuous and monotonicall
increasing or decreasing, varying fromV2`5V(2`) to
V1`5V(1`). SupposeE>max$V2` ,V1`% so there is no
classical turning point. Then

E
2`

1` uk8u

uku
dx5U lnS k1`

k2`
D U ~80!

and the transmission and reflection probabilities satisfy

T>
4k1`k2`

~k1`1k2`!2
~81!

and

R<
~k1`2k2`!2

~k1`1k2`!2
. ~82!

These bounds are immediately recognizable as the exact
lytic results for a step-function potential@1,7,8# and the result
asserts that for arbitrary smooth monotonic potentials
step function provides upper and lower bounds on the ex
result. If we are interested in physical situations such a
time-dependent refractive index@25,26# or particle produc-
tion due to the expansion of the universe@27#, this technique
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shows thatsuddenchanges in refractive index or size of th
universe provide a strict upper bound on particle producti

D. Special case 2b

Suppose now thatV(x) has a single unique extremum
~either a peak or a valley!, and provided that E
>max$V` ,Vextremum,V1`% so that there is no classical turn
ing point, k(x) moves monotonically fromk2` to kextremum
and then back tok1` . Under these circumstances

E
2`

1` uk8u

k
dx5U lnFkextremum

k2`
GU1U lnFkextremum

k1`
GU ~83!

5U lnF kextremum
2

k2`k1`
GU . ~84!

This implies

uau<coshU lnF kextremum

Ak2`k1`
GU , ~85!

which yields

ubu<sinhU lnF kextremum

Ak2`k1`
GU . ~86!

To be more specific, if in additionV(2`)505V(1`), so
that k2`5k1` , then we have

uau<
kextremum

2 1k`
2

2kextremumk`

~87!

and

ubu<
ukextremum

2 2k`
2 u

2kextremumk`

. ~88!

Translated into statements about the transmission and re
tion probabilities this becomes

T>
~E2V`!~E2Vextremum!

~E2V`!~E2Vextremum!1
1

4
~Vextremum2V`!2

~89!

and

R<

1
4 ~Vextremum2V`!2

~E2V`!~E2Vextremum!1
1

4
~Vextremum2V`!2

~90!

or, equivalently,

T>12
~Vextremum2V`!2

~2E2Vextremum2V`!2
~91!

and
.

c-

R<
~Vextremum2V`!2

~2E2Vextremum2V`!2
. ~92!

For low energies, these results are weaker than the bou
derived under special case 1@Eqs. ~46! and ~47!# and @Eqs.
~48! and ~49!#, but have the advantage of requiring mo
selective information about the potential. For high energi

E@
\2~Vextremum2V`!2

2m~*2`
1`uV~x!2V`udx!2

, ~93!

the present result~when it is applicable! leads to tighter
bounds on the transmission and reflection coefficients.

Numerous generalizations of these formulas are poss
For example, at the cost of a little extra notation, we alrea
have enough information to provide a bound on anasymmet-
ric barrier orasymmetricwell. As long as it has only a single
extremum~maximum or minimum!, we apply the previous
equations to derive

uau<
kextremum

2 1k1`k2`

2kextremumAk1`k2`

~94!

and

ubu<
ukextremum

2 2k1`k2`u

2kextremumAk1`k2`

. ~95!

Translated into statements about the transmission and re
tion probabilities, this becomes

T>
4k1`k2`kextremum

2

$kextremum
2 1k1`k2`%2

~96!

and

R<
$kextremum

2 2k1`k2`%2

$kextremum
2 1k1`k2`%2

~97!

or, equivalently,

T>
4~E2Vextremum!A~E2V1`!~E2V2`!

@~E2Vextremum!1A~E2V1`!~E2V2`!#2
~98!

and

R<
@~E2Vextremum!2A~E2V1`!~E2V2`!#2

@~E2Vextremum!1A~E2V1`!~E2V2`!#2
. ~99!

This can be compared, for example, with known analy
results for the asymmetric square well; see Eq.~144! in Sec.
VI.

E. Special case 2c

Suppose now thatV(x) has a number of extrema~both
peaks and valleys!. I allow V(1`)ÞV(2`), but demand
that for all extremaE>max$V2` ,V1` ,Vextremum

i % so that
there is no classical turning point.
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For definiteness, suppose the ordering is2`→peak
→valleȳ valley→peak→1`. Then

E
2`

1` uk8u

k
dx5U lnF kpeak

1

k2`
GU1U lnF kvalley

1

kpeak
1 GU

1¯1U lnF kpeak
n

kvalley
n21 GU1U lnF k1`

kpeak
n GU . ~100!

Defining

)p~k![ )
peaks

kpeak
i , ~101!

)v~k![ )
valleys

kvalley
i , ~102!

)e~k![ )
extrema

kextremum
i , ~103!

we see

E
2`

1` uk8u

k
dx5U lnF )p

2~k!

k2`k1`)v
2~k!

GU . ~104!

This bounds the Bogolubov coefficients as

uau<coshU lnF )p~k!

Ak2`k1`)v~k!
GU , ~105!

that is,

uau<
k2`k1`)v

2~k!1)p
2~k!

2Ak1`k2`)e~k!
~106!

and

ubu<
uk2`k1`)v

2~k!2)p
2~k!u

2Ak1`k2`)e~k!
. ~107!

Then the transmission and reflection probabilities satisfy

T>
4k1`k2`)e

2~k!

$)p
2~k!1k1`k2`)v

2~k!%2
~108!

and

R<
$)p

2~k!2k1`k2`)v
2~k!%2

$)p
2~k!1k1`k2`)v

2~k!%2
. ~109!

In these formulas, peaks and valleys can be interchange
the obvious way and by letting the initial or final peak si
down toV6` as appropriate we obtain bounds for sequen
such as 2`→valley→peak̄ valley→peak→1` or
2`→peak→valleȳ peak→valley→1`. In the case of one
or zero extrema these formulas reduce to the previou
given results@Eqs. ~96! and ~97!#. Further modifications of
these formulas are still possible. The cost is that more s
cific assumptions are needed to derive more specific res
in

s

ly

e-
ts.

V. PARAMETRIC OSCILLATIONS

Though the discussion so far has been presented in te
of the spatial properties of the time-independent Schro¨dinger
equation, the mathematical structure of parametrically
cited oscillations is identical, needing only a few min
translations to be brought into the current form. For a pa
metrically excited oscillator we have

d2f

dt2
5v~ t !2f. ~110!

Just mapt→x, v(t)→k(x), andf→c. In the general analy-
sis of Eqs.~28!–~35! the quantityq should be replaced by

q@w~ t !,v~ t !#[
A~w9!21@v22~w8!2#2

2uw8u
. ~111!

The analysis then parallels that of the Schro¨dinger equation.
Some key results are given below.

A. Special case 1

If v(2`)5v05v(1`)Þ0, then by choosing the aux
iliary function to bew5v0t we can use Eqs.~46! and~47! to
deduce

uau<coshS 1

2v0
E

2`

1`

uv2~ t !2v0
2udtD ~112!

and

ubu<sinhS 1

2v0
E

2`

1`

uv2~ t !2v0
2udtD . ~113!

B. Special case 2

If v(2`) andv(1`)Þ0 are both finite so that suitabl
asymptotic states exist and assumingv2(t)>0 so that the
frequency is always positive, then applying Eqs.~66! and
~67! to the case of parametric resonance yields

uau<coshU E
2`

1` uv8~ t !u

uv~ t !u
dtU ~114!

and

ubu<sinhU E
2`

1` uv8~ t !u

uv~ t !u
dtU . ~115!

C. Special case 2a

Suppose now thatv2(t) is positive semidefinite, continu
ous, and monotonic increasing or decreasing, varying fr
v2`5v(2`)Þ0 to v1`5v(1`)Þ0. The Bogoliubov
coefficients satisfy

uau<
v2`1v1`

2Av2`v1`

~116!

and
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ubu<
uv2`2v1`u

2Av2`v1`

. ~117!

D. Special case 2b

Under the restrictionv(2`)5v05v(1`)Þ0, with the
additional constraint thatv(t) has a single unique extremum
~either a maximum or a minimum but not both! and provided
vextremum

2 .0 so that we do not encounter complex freque
cies~no classical turning point!, the Bogoliubov coefficients
satisfy

uau<
v0

21vextremum
2

2v0vextremum

~118!

and

ubu<
uv0

22vextremum
2 u

2v0vextremum

. ~119!

Suppose now thatv2(t) has a single unique extremum
~either a peak or a valley!, but thatv(1`)Þv(2`) and
further thatv2(t).0 so that there is no classical turnin
point. The Bogoliubov coefficients satisfy

uau<
v2`v1`1vextremum

2

2Av2`v1`vextremum

~120!

and

ubu<
uv2`v1`2vextremum

2 u

2Av2`v1`vextremum

. ~121!

E. Special case 2c

Suppose now thatv(t) has a number of extrema~both
peaks and valleys!. I allow v(1`)Þv(2`), but demand
that for all extremavextremum

i .0 so that there is no classica
turning point.

For definiteness, suppose the ordering
2`→peak→valleȳ valley→peak→1`. Define

)p~v![ )
peaks

vpeak
i , ~122!

)v~v![ )
valleys

vvalley
i , ~123!

)e~v![ )
extrema

vextremum
i . ~124!

The Bogoliubov coefficients satisfy
-

s

uau<
v2`v1`)v

2~v!1)p
2~v!

Av1`v2`)e~v!
~125!

and

ubu<
uv2`v1`)v

2~k!2)p
2~k!u

Av1`v2`)e~k!
. ~126!

In these formulas, peaks and valleys can be interchange
the obvious way and by letting the initial or final peak sin
down tov6` as appropriate we obtain bounds for sequen
such as 2`→valley→peak̄ valley→peak→1` or 2`
→peak→valleȳ peak→valley→1`. In the case of one or
zero extrema these formulas reduce to the previously gi
results.

Again, further specializations of these formulas are s
possible. As always, there is a trade-off between the stren
of the result and its generality.

VI. COMPARISON WITH KNOWN ANALYTIC RESULTS

For comparison purposes, in this section I collect seve
known analytic results and show how they relate to the g
eral results presented in this paper.

A. d-function potential

For ad-function potential

V~x!5ad~x!, ~127!

the transmission coefficient is known to be@2,3#

T5
1

11~ma2/2E\!
. ~128!

This satisfies the bound~46! and also Eq.~48! and for E
→` asymptotically approaches the bound, thus showing
the bound cannot be improved in the high-energy regi
unless additional hypotheses are made.

Though these bounds werederived assuming well-
behaved functions, the statements~46! and ~48! continue to
make good sense even ford-function potentials. Thus any
smooth set of well-behaved functions tending to ad-function
limit may be used to establish Eqs.~46! and ~48! even for
potentials containingd-function contributions.

B. Double-d-function potential

For the doubled function

V~x!5a$d~x2L/2!1d~x1L/2!%, ~129!

the transmission coefficient is@11#

T5
1

11@~2ma/\2k!cos~kL!11/2~2ma/\2k!2sin~kL!#2
.

~130!
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It is an easy exercise to check that this satisfies the bou
~46! and ~48!.

C. Square barrier

Tunnelingovera square barrier is an elementary proble
that however, is not always discussed in the textbooks.~Tun-
n
b

in
-

he

s,
dsneling under a square barrier is much more popular.! The
exact transmission coefficient is

T5
E~E2Ve!

E~E2Ve!1 1
4 Ve

2sin2@A2m~E2Ve!L/\#
. ~131!

~See Refs.@1# or @9#.! If we rewrite this as
T5
1

11~mVe
2L2/2E\2!/sin2@A2m~E2Ve!L/\#/2m~E2V!L2/\2

, ~132!
f

t

then it is clear that the bound~46! is satisfied. It is also
possible to verify that this satisfies the general lower bou
~66! that I have presented above and in fact oscillates
tween this lower bound and the upperT<1 unitarity limit.
For certain values of the barrier width@kextremumL5(2n
11)p/2# the square well saturates this bound, thus show
that this bound cannot be improvedunless additional hypoth
eses are made.

D. tanh potential

For a smoothed step function of the form

V~x!5
V2`1V1`

2
1

V1`2V2`

2
tanhS x

L D , ~133!

the reflection coefficient is known analytically to be@1#

R5S sinh@2p~k2`2k1`!L#

sinh@2p~k2`1k1`!L#
D 2

. ~134!

This certainly satisfies the general bounds~81! and ~82!
enunciated above and asL→0 approaches and saturates t
bound.

E. sech potential

For a sech2 potential of the form

V~x!5Ve sech2~x/L !, ~135!

the transmission coefficient is known analytically to be@1#

T5
sinh2@pA2mEL/\#

sinh2@pA2mEL/\#1cos2@1/2pA128mVeL
2/\2#

,

~136!

provided 8mVeL
2,\2. This satisfies the general bound

both~34! and~81!, enunciated above.~However, proving this
is tedious.! Start by noting that for this sech potential

T>tanh2@pA2mEL/\# ~137!
d
e-

g

and use the inequality (x.0)

tanh2 x.
x2

11x2
.sech2~1/x!. ~138!

Then

T>sech2@\/~pA2mEL!# ~139!

5sech2F 4

p
Am

2E

2LuVeu

\

\2

8muVeuL2G . ~140!

Provided the extremum is a peakVpeak.0, we can use the
bound 8mVpeakL

2,\2 to deduce

T>sech2FAm

2E

2LuVpeaku

\
G . ~141!

This is the particularization of Eq.~34! to the present case. I
Ve,0 we need a different analysis.

F. Asymmetric square-well potential

For the asymmetric square well

V~x!5H V1 , x,a

V2 , a,x,b

V3 , b,x

~142!

we defineki[A2m(E2Vi)/\. The transmission coefficien
is @15#

T5
4k1k2

2k3

~k11k3!2k2
21@k1

2k3
21k2

2~k2
22k1

22k3
2!#sin2~k2L !

.

~143!

Then
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T>
4k1k2

2k3

~k2
21k1k3!2

. ~144!

Similarly to the case for the symmetric square well, t
transmission probability for the asymmetric square well
cillates between the bound~96! and the unitarity limitT
51. For certain values of the width of the well@k2L5(2n
11)p/2# the transmission coefficient saturates the bou
thus showing that this bound cannot be improvedunless ad-
ditional hypotheses are made. BecauseV2`ÞV1` the
bound~34! is not applicable, at least not without modific
tion from its original form.
his
r

s

on
s
r-

qs
os
ifi
e
ci
s a

v
c

-

a-
-

,

G. Poschl-Teller potential

For the Poschl-Teller potential

V~x!5V0cosh2m „tanh$@~x2mL !/L#%1tanhm…

2

~145!

we have

V2`5V0e22m, Vextremum50; V2`5V0e22m.
~146!

The transmission coefficient is@24#
T5
2 sinh~pk2`L !sinh~pk1`L !

cosh@p~k2`1k1`!L#1cos@pA11 ~8mV0L2/\2!cosh2m#
. ~147!
has
uch
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s

It is now a straightforward if tedious exercise to check t
analytic result against all the bounds derived in this pape

VII. DISCUSSION

The various special cases discussed above are merely
cific examples of the general results~32!–~35! illustrating
the power of the technique. There are many other variati
on the bounds presented above that can be derived for
cific choices ofw(x) and specific restrictions on the scatte
ing potentialV(x).

The most general form of the bounds are given in E
~32!–~35!. Because of the large amount of freedom in cho
ing the functionw these bounds encode even more spec
cases beyond those discussed in this paper and have th
tential for leading to interesting specific cases. The spe
cases I discussed in this paper were chosen for directnes
simplicity.

For instance, special case 1, as presented in Eqs.~46!–
~49!, has the advantage that it applies to scattering both o
the barrier and under the barrier. On the other hand, spe
.

pe-

s
pe-

.
-
c
po-
al
nd

er
ial

case 2, as presented in Eqs.~66! and ~67! and their special-
izations, applies only to scattering over the barrier, but
the advantage of being much more selective in how m
information is needed concerning the scattering potential
summary, the bounds presented in this paper are usefu
establishing qualitative analytic properties of one
dimensional scattering and as such are complementar
both explicit numerical investigations and the guidance
tracted from exact analytic solutions.
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