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Distributed quantum computation over noisy channels
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We analyze the use of entangled states to perform quantum computations nonlocally among distant nodes in
a quantum network. The complexity associated with the generation of multiparticle entangled states is quan-
tified in terms of the concept of global cost. This parameter allows us to compare the use of physical resources
in different schemes. We show that, for ideal channels and for a sufficiently large number of nodes, the use of
maximally entangled states is advantageous over uncorrelated ones. For noisy channels, one has to use en-
tanglement purification procedures in order to create entangled states of high fidelity. We show that under
certain circumstances a quantum network supplied with a maximally entangled input still yields a smaller
global cost, provided thatn belongs to a given intervalnP@nmin ,nmax#. The values ofnmin andnmax crucially
depend on the purification protocols used to establish then processor entangled states, as well as on the
presence of decoherence processes during the computation. The phase estimation problem has been used to
illustrate this fact.@S1050-2947~99!09606-7#

PACS number~s!: 03.67.Lx, 05.40.2a, 89.70.1c
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I. INTRODUCTION

Consider a quantum computation that can be divided
subroutines so that each subroutine can be run on a sep
quantum processor. The processors may be placed at d
ent locations/nodes of a computational network and may
change data with a selected central processor@1#. Each pro-
cessor operates on a partial input that has a fixed size.
partial inputs may be independent of each other, correla
or even entangled. When the computation is finished,
central processor, after collecting partial outputs from
other processors, stores the global output. This type of
tributed computation may be repeated several times to y
a desired result and as such it features frequently in quan
parameter estimation procedures; e.g., the phase estim
in frequency standards@2,3#. In some computational tasks
e.g., estimating a given parameter with a prescribed pr
sion, the number of repetitions depends on the form of
input state — some entangled states require less repeti
than uncorrelated inputs. In the case of correlated in
states, we have to precompute the input state for each ru
the computation and this involves an additional use of ph
cal resources. Are we still better off when the complexity
the precomputation is included? How shall we include a
compare the use of different physical resources?

In this paper we quantify this complexity by introducin
the notion of the cost of physical operations, such as the
of establishing an entangled pair over a channel, the cos
transmitting one classical bit between components, the
of running a quantum processor, etc., and discuss the pe
mance of the distributed quantum computation when the
terprocessor quantum communication is prone to errors,
when the quantum channels among the processors are n
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This paper has been organized as follows. In Sec. II
introduce the notion of cost in distributed quantum comp
tation and show that, if the ratio between the number
repetitions for the entangled and separate inputs decre
fast enough with the size of the network, then, above so
critical size, the computation can be made cheaper using
tangled inputs. This behavior is illustrated explicitly in th
case of the estimation of a small phase shift for quantum
~qubits!, which was considered in Ref.@1#. In Sec. III we
introduce the phase estimation problem for disentangled
maximally entangled states and show how to compare
two scenarios. In Sec. IV we analyze the ideal case of no
less channel and error-free computations. Noise along
channels linking the nodes of the network is taken into
count in Sec. V and the use of different purification schem
is considered. We show that for certain purification protoc
it is advantageous to use entangled states, whereas for o
the cost of the precomputation is not offset by the subsequ
reduction in the number of repetitions. In Sec. VI we analy
the effects of decoherence during the computational proc
at each node and show how they affect the results obtaine
the preceding sections. Finally, in Sec. VII we summar
the main results of this work.

II. COSTS OF DISTRIBUTED QUANTUM COMPUTATION

Let us start out by considering a generic scenario for d
tributed quantum computation: a central processorA and n
21 processors labeledBi( i 51,2, . . . ,n21) represent the
nodes of a quantum network. These nodes agree on perf
ing a given computation that consists of three steps.~i! Pre-
computation: In order to prepare the initial state of all th
nodes they exchange certain classical and quantum infor
tion. ~ii ! Computation at each node: Each of the nodes per
forms a well defined operation locally, followed by a me
surement.~iii ! Communication of the results: The B nodes
report the outcomes of their measurements to the cen
4249 ©1999 The American Physical Society
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4250 PRA 59CIRAC, EKERT, HUELGA, AND MACCHIAVELLO
node by sendingk bits of classical information. With this
information, the central node estimates the outcome of
complete computation. The computation gives the correct
sult with certain probability, and therefore it has to be
peated a number of times in order to achieve a prescr
precision.

We are interested in the cost of the computation in ter
of the number of uses of the processors, and the amoun
classical and quantum communication involved in the wh
computation. Let us denote byP(n) the cost of the precom
putation, i.e., the cost of establishing the initial state for thn
nodes. In general, if one wants to create an entangled sta
all the nodes, one has to send quantum information thro
the channels. Besides, due to the presence of noise du
transmission and processing, the nodes will have to use
ther purification or error correction methods, which will r
quire in addition some classical communication. Thus,
cost of precomputation will depend on the costs of send
qubits and classical bits through the communication chan
that link the nodes. We denote byZ the cost of running a
quantum processor at each node, and byY the cost of send-
ing the outcomes of the measurement from one node to
central node. Finally, we will denote byR(n) the number of
times the computation has to be repeated in order to obta
prescribed precision. With these definitions, one can ca
late the total cost of the computation. We wish to analyze
advantages of using entangled input states in the comp
tion with respect to the case of initial uncorrelated stat
Thus, we consider the following two scenarios.

(i) Disentangled states: If the initial state of the proces
sors is disentangled, no communication is required in
precomputation. Therefore we takeP(n)50 @4# and obtain

C1~n!5R1~n!@nZ1~n21!Y#. ~1!

(ii) Entangled states:If the initial state of the processors
entangled, communication is required in the precomputat
We have

C2~n!5R2~n!@P2~n!1nZ1~n21!Y#. ~2!

We can now evaluate the ratio between the costC2(n) cor-
responding to entangled inputs and the costC1(n) for inde-
pendent processors. We obtain

C2~n!

C1~n!
5

R2~n!

R1~n!

P2~n!1~n21!Y1nZ

~n21!Y1nZ
. ~3!

This ratio depends crucially on the ratio between the rep
tions needed in each case, as well as on the cost of
precomputation. Under ideal conditions, the use of entang
states in general decreases the number of repetitions
quired, i.e.,R2(n),R1(n). The use of entangled states w
be cost efficient if what one gains in the number of repe
tions compensates what one loses in the precomputa
Thus, we expect that there will be a certainnmin such that, if
n.nmin , the use of entangled states is cost efficient. On
other hand, in the nonideal situation in which one has no
either in the quantum channel or during the computati
R2(n) may increase withn more rapidly thanR1(n), since
entangled states are more prone to errors. Thus, we w
expect that for a specific task there is a maximum valuenmax
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such that forn,nmax the use of entangled states is co
efficient. Therefore, ifnmin,nmax there will be an interval
@nmin ,nmax# in which entangled states are more advan
geous. In the opposite casenmin.nmax, it will be more con-
venient to use disentangled states. The values ofnmin and
nmax will depend on the specific computation and on t
methods used to create the entangled states. In the follow
we will concentrate on the specific but relevant problem
phase estimation addressed in Ref.@1#. We will first analyze
the ideal noiseless case. Then we will consider the prese
of noise in the quantum channel, and analyze two ways
overcoming this noise using entanglement purification.
nally, we will consider the effects of decoherence during
computation.

III. PHASE ESTIMATION PROBLEM

As an illustrative and, in spite of its simplicity, importan
example, consider a network ofn processors, each perform
ing computationC defined as a small conditional phase sh
on a qubit

u0&→u0&, ~4!

u1&→eifu1&. ~5!

ComputationC is performed at each of then nodes (A,Bi).
Each run consists of a conditional phase shift and the su
quent measurement protocol. ComputationC is then reset
after each repetition: we assume that no extra-phase accu
lation is allowed by means of consecutive runs of the co
putationC on the same qubit before the measurement is p
formed.

A. Disentangled states

Without internode entanglement, the best way to estim
f is to prepare each node in the initial state

uC& i5
1

A2
~ u0& i1e2 if1u1& i). ~6!

wheref1 is a given phase that can be adjusted from com
tation to computation. ComputationC is then applied, fol-
lowed by a Hadamard transformationH given by H
51/A2(u0&^0u2u1&^1u1u0&^1u1u1&^0u). The last step is
the independent measurement of each qubit in the comp
tional basis. The result of the measurement will be either 0
1 with probabilitiesp1 and 12p1, respectively. Each of the
Bi nodes then transmits one classical bit, corresponding
the result of the measurement, to the central nodeA. This
process is repeatedR1 times, yielding a binomial probability
distribution. In this way one can estimatef at nodeA with
precision

e15
ADp1

Udp1

df UAR1

, ~7!

whereDp15p1(12p1) is the variance of the binomial dis
tribution. In general,e1 will depend onf andf1. As soon as
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the first outcomes of the measurements are obtained~first
repetitions! the value off1 can be adjusted in order to min
mize e1 @5#.

B. Entangled states

Let us now assume that the initial state of then nodes is
an entangled state ofn qubits of the form

uC id&5
1

A2
~ u000 . . . 0&1e2 inf2u111 . . . 1&). ~8!

Under ideal conditions, this state can be obtained as follo
The central processor at the central node generatesn21
Einstein-Podolsky-Rosen~EPR! pairs and sends one memb
of each pair to the remaining nodes. An EPR pair sha
between nodesA and Bi is referred to as theA-Bi pair. In
order to obtain the state in Eq.~8!, we pick up one of the
n21 qubits at nodeA and, using it as a control qubit, w
apply the quantum controlled-NOT operation ue1&ue2&
→ue1&ue1% e2& (e1,250,1 and % denotes addition modulo
2! with the remainingn22 target qubits at nodeA. Then we
measure then22 targets in the computational basis. At th
stage we have already established an entangled state ofn
nodes; in order to put it into the form~8! we simply perform
operationNOT (sx) at locationBk if the result of the mea-
surement performed atA on the qubit belonging to theA-Bk
pair was 1. Finally, all the nodes perform a phase-shift tra
formation with anglef2. In Fig. 1 we have depicted a setu
for the simplest case, involving only three processors. O
EPR pairs of the form 1/A2(u0&Au0&Bi

1u1&Au1&Bi
) have been

established between nodesAB1 andAB2 ~via channels rep-
resented in the figure by a thick line networking the cen
node with the other two!, the central nodeA performs a
controlled NOT~CNOT! operation between the two qubi
stored in A. A measurement of the targe
bit in the computational basis reduces the three-n
composite state to either the state 1/A2(u0&Au0&B1

u0&B2

1u1&Au1&B1
u1&B2

) ~outcome 0! or to the state

1/A2(u0&Au0&B1
u1&B2

1u1&Au1&B1
u0&B2

) ~outcome 1!. In the

FIG. 1. Experimental setup for performing a distributed qua
tum computation among three nodes sharing an entangled sta
s.
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e
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latter case, nodeB2 has to invert the state of its qubit b
means of a local operation. Therefore, the precomputa
requires nodesA and B2 to exchange classical information
as illustrated in the figure by the dotted line connecting th
nodes.

Once a state close to the ideal state~8! is prepared, at each
node we run computationC followed by the Hadamard trans
form. A measurement on the computational basis is then
formed at each node. NodesBi report their outcomes to nod
A by broadcasting one bit of information and the over
parity of the reported bits, and the outcome at nodeA is
calculated atA. This will give a bit value of 0 or 1 with
probabilities p2(f) and 12p2(f). The procedure is re-
peatedR2 times and gives an estimation off with precision

e25
ADp2

Udp2

df UAR2

, ~9!

whereDp25p2(12p2). In general,e2 will depend onf and
f2. As soon as the first outcomes of the measurements
obtained~first repetitions! the value off2 is adjusted in or-
der to minimizee2 @5#.

C. Comparison

In order to compare the two procedures, we impose
condition that the precision required be the same, i.e.,e1
5e2[e. We obtain

R2~n!

R1~n!
5

Dp2

Dp1
S dp1

df D 2S dp2

df D 22

, ~10!

where in this expression the phasesf1,2 are assumed to be
chosen independently of each other in order to minimizee.
Once the values ofDpi and dpi /df are known, one can
substitute this expression in Eq.~3!. The value ofP2(n) will
depend on the purification procedures used in the genera
of the state~8!.

IV. IDEAL CHANNELS AND COMPUTATIONS

We consider first the simple situation in which no dec
herence is present. In this case

p15
1

2
@12cos~f2f1!#, ~11a!

p25
1

2
@12cos~nf2nf2!#. ~11b!

One obtainse151/(nR1)1/2 and e251/(nR2)1/2 indepen-
dently of the values off1,2. Therefore, we haveR1(n)
51/(ne2) andR2(n)51/(ne)2. On the other hand, the cos
of the precomputation using the procedure described ab
is simplyP2(n)5(n21)X1(n22)Y, whereX is the cost of
sending one qubit from the central node to any other no
We finally obtain

C2

C1
5

1

n S ~2n23!Y1~n21!X1nZ

~n21!Y1nZ D . ~12!

-
.
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This expression implies that, forn larger than a certain valu
nmin , the global cost for computation with entangled state
smaller than the one with independent states. It can be e
checked that for (2Y1X1Z)/(Y1Z)@1

nmin'
2Y1X1Z

Y1Z
. ~13!

If the costZ is much smaller thanX and Y, andY is much
smaller thanX, the threshold value is given by the ratio
the costs of distributing entanglement and classical com
nication. Figure 2 illustrates this behavior.

V. NOISY CHANNELS

We have seen in the preceding sections that the us
entanglement is cost efficient above a certain threshold in
number of nodes of a quantum network. However, this re
holds under the assumption that the channels networking
nodes are ideal. In particular, this implies that ideal e
tangled statesuC id& can be distributed among then nodes. In
reality, this will never be the case, and therefore one ha
analyze what will happen for noisy channels. While creat
the stateuC id& ~using, for instance, the protocol exemplifie
in Fig. 1!, there will be errors. The state will no longer be
pure state, but will rather be described by a density oper
rÞuC id&^C idu. The closeness of this state to the ideal one
measured by the fidelityF05^C iduruC id&. This means that
the number of repetitionsR2(n) required to perform the
computation to a prescribed precision will increase~since the
probability distribution of obtaining the right outcome b
comes worse!. On the other hand, one may use entanglem
purification in order to increase the value ofF0 and therefore
to reduce the number of required repetitions. However,
requires a higher precomputation costP2(n). In this section
we analyze this problem for two different purification prot
cols, specially suited for different situations. In order to f
cus on the role of noise along the channels, we will assu
that all local operations~both the ones required for the e
tablishment of the entangled states and the ones involve
the computation at each node! are error free.

We assume that using a two-qubit purification proto

FIG. 2. Cost ratioC2 /C1 as a function of the number of node
within the quantum network for two different sets of values of t
parameters (X,Y,Z)5(100,10,1),(1000,10,1). Above a threshol
nth'X/Y, the global cost of the computation is smaller when us
a maximally entangled input.
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and afters steps, one creates an entangled pair betw
nodesA andBi with fidelity Fs&1. Let us denote byP1(s)
the cost required to create such a state. Once we have
entangled pairs we use the method described above~see Fig.
1! to create the entangled state among then nodes. Assuming
that the pairs are in a Werner-like state, the fidelity of t
n-qubit state will beFn.Fs

(n21) . In order to estimate how
the results are affected by noise, we consider for simplic

r5xnuC id&^C idu1
12xn

2n
I , ~14!

whereFn5xn1(12xn)/2n. If we perform the computation
with this state instead of the ideal one, we obtain

p25
xn

2
@12cos~nf2nf2!#1

12xn

2
. ~15!

Therefore, to estimate the parameterf with precisione, the
computation has to be run a number of times

R2~n!5
1

n2e2 S 11
12xn

2

xn
2 sin2~nf2nf2!

D , ~16!

which now depends onf and f2. We take the optimal
choice off2, which gives

R2~n!5
1

n2e2xn
2

, ~17!

and obtain the cost ratio

C2~n!

C1~n!
5

1

nxn
2 S ~n21!P0~s!1~2n23!Y1nZ

~n21!Y1nZ D . ~18!

Taking into account thatxn.Fn.Fs
(n21) , we see that for a

sufficiently high value ofn this ratio will be as big as we
please. This implies the existence of a valuenmax such that
for n*nmax there is no gain in using entangled states. In fa
it may happen that there is no gain for any value ofn. On the
other hand, the valuenmax will depend onP0(s) andFs , i.e.,
on the specific purification procedure. Besides, as bef
there will be a valuenmin such that ifnP@nmin ,nmax# then
entangled states can be cost efficient. We will illustrate th
features for some specific purification protocols.

A. Purification scheme 1

Let us assume that we can create pairs between nodA
~central node! and nodeBi( i 51, . . . ,n21) with fidelity F0.
For simplicity we assume that they are in a Werner state.
consider that local operations are perfect, and therefore
can use the purification procedures of Refs.@6,7#. One can
easily show that afters successful purification steps the fi
delity will be

Fs<12~2/3!s~12F0!e0 . ~19!

In order to calculateP0(s) we note that to obtain one pair o
fidelity Fs one uses up at least 2s21 pairs, and performs in
each of them at least one operation. Therefore,P0(s)
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>2s21U, where nowU denotes the joint cost per used pa
Upon substituting these expressions in Eq.~18! we see that,
unlessU is much smaller than the other costs orF0.1, there
is no gain at all in using entangled states.

B. Purification scheme 2

We will evaluate now the cost associated with precom
tation when the nodes are networked via photonic chan
@8#. As in the previous scheme, the maximum fidelity resu
ing in this case,Fs , approaches 1, with the numbers of
purification steps exponentially fast,

Fs.12as~12F0!, ~20!

wherea,1 is a constant. In this scheme the cost of est
lishing one entangled pairP0(s)5bs is proportional to the
number of steps. Substituting these quantities in Eq.~18!,
one can see the existence of an interval@nmin ,nmax# in
which the use of maximally entangled states is more con
nient with respect to uncorrelated ones.

This purification protocol is more efficient than the prev
ous one sinceP0 does not scale exponentially withs. The
reason for this scaling law in the purification scheme 1 is t
one discards one pair at each purification step, which ma
it very ineffective. Therefore, it is more desirable to use
purification scheme giving a finite yield, such as the hash
or breeding methods@9#. Moreover, the purification proto
cols used here are just based on the ones developed fo
qubits, which lead to the exponential dependence ofF on n.
By using ideas similar to the ones developed for quant
repeaters@10#, it may be possible to improve this exponent
dependence.

VI. NOISE IN THE COMPUTATIONAL PROCESS

Let us now assume that at each node the computa
itself is not error-free but dephasing-type decoherence
present at a rateg; namely, a random phase is introduced
front of the componentu1& of the qubit with probabilitye2gt

at time t ~notice that if one considers a quantum-optic
implementation, the results that we will present in the f
lowing hold also in the presence of spontaneous emissi!.
When measured in the computational basis, the bit valu
will now be obtained with probabilities@3#

p15
1

2
@12cos~f2f1!e2gtc#, ~21!

when dealing with independent processors, and

p25
F

2
@12cos~nf2nf2!e2ngtc#1

12F

2
, ~22!

in the case of maximally entangled nodes of the form~8!. In
the above equationstc is the time required to perform com
putationC and will be regarded as a fixed parameter in
comparison of the two schemes. To achieve resolutione the
computationC must be performed
-
ls
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-

e-

t
es

g
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l

n
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l
-

0

e

R15
1

ne2

e2gtc2cos2~f2f1!

sin2~f2f1!
~23!

times with independent processors and

R25
1

n2e2F2

e2ngtc2F2cos2~nf2nf2!

sin2~nf2nf2!
~24!

times when a maximally entangled input is distribut
among then nodes. The relative cost of both procedures
no longerf independent. Following the argument presen
in the preceding section, we select the controllable pha
f1,2 in both procedures in such a way that the measu
phase approachesp/2, when dealing with uncorrelated in
puts, andp/2n, when one uses entangled states. Therefo
we can write

R15
1

ne2
e2gtc, ~25!

while

R25
1

n2e2F2
e2ngtc. ~26!

The cost ratio is then given by

C2

C1
5e2gtc(n21)S C2

C1
D

g50

. ~27!

As can be seen from Fig. 3, the effect of dephasing-ty
decoherence is negligible in the limitgtc!1/n. The net ef-
fect of decoherence during the computational process
further reduction of the domain where the use of entang
ment is cost efficient, beingnmax(gÞ0),nmax(g50).

FIG. 3. Cost ratio as a function of the number of nodes fo
phase estimation problem. The dotted line corresponds to the
when dephasing-type decoherence takes place during the com
tional process. The net effect is that the domain where the us
entanglement is cost efficient gets shrunken with respect to the
of error free computation, represented by the solid line.
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VII. CONCLUSIONS

In summary, we have introduced the notion of a gene
cost of physical operations in distributed quantum compu
tion. This parameter allows us to quantify the efficiency o
quantum computation that can be run separately on diffe
quantum processors belonging to a quantum network. Pr
ous work @1,11# has shown that the use of entangled sta
could be advantageous for certain computations. Howeve
was not obvious that the cost of generating entanglemen
the inclusion of noise during the computational proce
might not nullify their advantage. We have shown that un
certain circumstances a quantum network supplied wit
maximally entangled input results in a smaller global c
than the one required when dealing withn independent in-
puts, provided thatn belongs to a given intervaln
n

.
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t

P@nmin,nmax#. We have illustrated this for the case of pha
estimation. The values ofnmin andnmax crucially depend on
the purification protocols used to establish then processor
entangled states, as well as on the presence of decohe
processes during the computation.
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