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Besides their use for efficient computation, quantum computers and quantum robots form a base for studying
guantum systems that create valid physical theories using mathematics and physics. If quantum mechanics is
universally applicable, then quantum mechanics must describe its own validation by these quantum systems.
An essential part of this process is the development of a coherent theory of mathematics and quantum-
mechanics together. It is expected that such a theory will include a coherent combination of mathematical
logical concepts with quantum mechanics. That this might be possible is shown here by defining truth, validity,
consistency, and completeness for a quantum-mechanical version of a gifapkecal expression enumera-
tion machine described by Smullyan. Some of the expressions are chosen as sentences denoting the presence
or absence of other expressions in the enumeration. Two of the sentences are self-referential. It is seen that, for
an interpretation based on a Feynman path sum over expression paths, truth, consistency, and completeness for
the quantum system have different properties than for the classical system. For instance, the truth of a sentence
Sis defined only on those paths containiiglt is undefined elsewhere. Als®and its negation can both be
true provided they appear on separate paths. This satisfies the definition of consistency. The definitions of
validity and completeness connect the dynamics of the system to the truth of the sentences. It is proved that
validity implies consistency. It is seen that the requirements of validity and maximal completeness strongly
restrict the allowable dynamics for the quantum system. Aspects of the existence of a valid, maximally
complete dynamics are discussed. An exponentially efficient quantum computer is described that is also valid
and complete for the set of sentences considered [©1€©50-29479)02506-9

PACS numbes): 03.67.Hk, 03.65.Bz, 02.10.By

I. INTRODUCTION Another reason for interest in quantum computers and
quantum robots is that they represent a basis for beginning
Most of the activity in quantum computing is supported the description of quantum systems that make decisions, are
by the possibility that some problems can be solved moreyare of their environment, and have important characteris-
efficiently on quantum computers than on classical machinegcs of intelligence. The existence problem for these intelli-
[1-4]. These possibilities in turn have generated much worlgent quantum systems is already solved as such systems in-
tovyards possible physical realization of quantum computerg|,de the reader&@nd hopefully the authdmof this paper.
using such techniques as NMF®] and trapped ion$6]. It should be noted that the fact that the only examples of
Other work on theoretic4l’] and experimentdl8] error cor- e jjigent quantum systems we know of are macroscopic

rection codes and other_ method to make quar_ltum com- $~1O25 degrees of freedomand may be described classi-
puters more robust against decoherence resulting from envi-

ronmental interferencglO] and other influences also is part S
EL0] P description. By study of quantum robots or quantum comput-

of this activity. : . .
The extreme sensitivity of quantum computers to environ.Er's one can find out if such systems must be essentially clas-
i if so, in what ways a quantum-mechanical descrip-

mental influences presents a barrier to the practical realizax 2! and,

tion of quantum computatiofL1]. As a result it is not clear ton fails. _ _ _ _ o
if quantum computers will ever become a practical reality. ~ From the viewpoint of this paper an essential activity of
The same arguments apply to quantum ropd83. These intelligent systems is the construction of valid physical theo-
are mobile quantum Systems that include a quantum Con‘rjes by use of mathematics and phySiCS. The details of this
puter and other ancillary systems on board that interact witiyalidation process are not important here. What is important
arbitrary environments of quantum systems. The types ofs that, if the theory being validated is universally applicable,
environments and their interactions with quantum robots cathen the theory is also the same theory that describes the
be quite general. This is unlike the case for quantum comeynamics of the systems carrying out this validation activity.
puters which either seek to minimize environmental influ- It follows that a universal theory must include a descrip-
ences or consider very special types of environments such &®n in some form of both the mathematical and physical
oracles[13], data basef2], or additional quantum registers aspects of its own validation. This suggests the need for a
[12]. coherent theory of mathematics and physics together. Such a
theory will refer to its own validity and maximal complete-
ness to the maximum extent possible. It also will be valid
*Electronic address: pbenioff@anl.gov and maximally completgThe importance of maximal com-

cally, does not remove the need for a quantum-mechanical
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pleteness to these ideas was realized only when the work faerpreted as describing properties of other expressions gen-
this paper was dong. erated by the quantum system.

If quantum mechanics is universal, then such a coherent Another point is that, as is well known, computers can be
theory of mathematics and quantum mechanics must neceand are used to manipulate sentences of languages and axiom
sarily include the description of intelligent quantum systemssystems. An example is a computer that enumerates the theo-
that can construct and validate the coherent theory. As suatems of an axiom systefi28]. However, all these computer
the coherent theory should refer to its own validity and maxi-operations deal with the syntactic properties only of the lan-
mal completeness to the maximum extent possible, and guages. The fact that these sentences may or may not have
should be valid and maximally compleft#4]. meaning is outside the realm of what computers, as con-

It is to be expected that such a theory will incorporate orceived so faf29], can do.
combine aspects of mathematical logic with quantum me- Here the emphasis is on the semantic properties of the
chanics. This would require use in a quantum-mechanicdRnguage expressions or their meaning to an external ob-
context of mathematical logical concepts such as syntacticgerver. Following a very simple classical example described
and semantics and their relation to one anothis—17. by Smullyan[16], the sentences will be interpreted as refer-
Syntactics deals with expressions as strings of symbols anidng to the appearance or nonappearance of other expressions
languages as sets of expressions. This includes the descrip-the superposition. Based on this interpretation, definitions
tion of constants, variables, terms, formulas, axioms, theoof truth, validity, consistency, and completeness for the set
rems, and proofs. Semantics is concerned with the meanin@f sentences will be given and some of their properties in-
of expressions in a language. This includes concepts such ¥gstigated.
interpretations, models, truth, validity, completeness, and Since the paper is long, a summary of the sections is in
consistency. order. Following the description of Smullyan’s exam[ilé]

There is other work in the literature that recognizes then the next section, is a description in Sec. Ill of a quantum-
potential importance of trying to combine mathematical logi-mechanical model of Smullyan’s machine. The model con-
cal concepts with quantum mechanics and of describing insists of a quantum computer or quantum robot moving on a
telligent systems in quantum mechanics. The former includel-ary quantum register as a one-dimensiofid) lattice of
work on formulas in first-order logif18,19, set theory and k-ary qubytes(This term is used here instead of qubits for
quantum mechanid®0—-22, and other work23]. The latter values ofk>2.) Discrete space and time are assumed. The
includes work on consciousness and quantum mechanigngle time-step generator for the dynamics of the overall
[29,24,25. quantum system is a unitary operafoacting on the Hilbert

In this paper steps will be taken towards the use of mathspace of system states. A description of the system compo-
ematical logical concepts in quantum mechanics by considaents is followed by a description of the propertiesTof
ering a quantum-mechanical systéeng., head or quantum Various projection operators for expressions and combina-
robot moving on a lattice of stationary quantum systemstions of expressions are also described. A representation of
where the states of each lattice system are, in general, line#te overall state of the evolving quantum enumeration sys-
superpositions of symbol states in some basis. As the systetim is given as a Feynm480] sum over paths or sequences
moves and interacts with the lattice systems, the system sta@é expressions.
can be represented as a linear superposition of symbol string In Sec. IV a simple subset of the set of sentences in Smul-
states. If one symbol is chosen as a blank, then the stalgan’s example is chosen. An interpretation is considered
corresponds to a linear superposition of sequences or patMélich, for each sentenc8 in the subset, is based on the
of expressions as sequences of nonblank symbols separat@gasurement at some time stefor the occurrence or non-
by one or more blanks. occurrence offollowed by a later measurement at time step

The main new feature added here is that some of th&+m for the presence or absence of the expression to which
expressions in the superposition paths will be considered asrefers.
formal sentences or words that are interpreted as having Based on these measurements, definitions are given for
meaning to an outside observer. This is different than théhe n,m-truth of the sentences. The main new feature of the
usual state of affairs where the outcomes of measurementaterpretation used here is that them-truth of Sis defined
considered as numbefsymbol strings have meaning to the only on those paths in the path sum for whigis present at
observer carrying out the experiment. However, they are ndime n. It is undefined on paths not containirf®y Among
usually considered to be sentences in some language thather things, this avoids an impossible situation that arises in
may also have meaning to an outside observer. caseS appears in no paths.

It is necessary to be quite clear about this point. This A definition of n,m-true andn,m-false is given for the
paper does not address the more ambitious goal of considedomain of definition for then,m-truth of S. Informally if S
ing a quantum system that emits sentences that have meanifgtes that some expressi¥g is present, theis is n,m-true
to the quantum system generating the sentences. Here the,m-false] if all [not all] paths containing at timen con-
selection of which expressions are sentences and how thégin Xg at the later timen+m. If S states thaiXg does not
are to be interpreted is imposed externally. The quantunappear thenS is n,m-true [n,m-false| if no paths[some
system knows nothing about which expressions are chosguathg containingS at timen containXg at timen+m.
as sentences or how they will be interpreted. The dependence of these definitionsroandm is prob-

This is the main reason why the problems raised by Albertematic because the,m-truth of a sentence is not preserved
[26,27] are not relevant for this paper. This is the case evemnder for changes im or n. This problem is removed in the
though, as will be seen, the sentences generated will be imefinition of truth forS. The definition is asymptotic in in
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that it says informally tha is true[falsg] if it is n,0-true
[n,0-falsg in the limit n—co. It turns out that the limit defi-
nition is independent afn som can be set equal to 0.

A definition of n,m-validity is given that is quite similar
to that used in mathematical logi&5]. The definition con-
nectsT to then,m-truth of Sby sayingT is n,m-valid for S
if the n-printability of Simplies thatSis n,m-true. The defi-
nition is satisfying in that it is proved that if is n,m-valid
for S and its negation then it is-consistent forS and its
negation. That is, no path has bdand its negation in the
region[ 0,n—2] of the register lattice.

The problematic dependence onm is removed by a
limit definition of validity. That is, T is valid for S if the
printability of S implies thatS is true. It follows from this
definition that if T is valid for S and its negation thef is
consistent forS and its negation.

A problem with the definition of validity is that one way m
for T to be valid for all sentences is to never print any sen
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tum system telling us something must do so by means of
emitting or printing sentences with meaning.

II. SMULLYAN'S ENUMERATION MACHINE

Smullyan’s exampl¢l16] consists of gclassical machine
or computer that prints or enumerates expressions consisting
of finite nonempty strings of the five symboisPN(). If an
expression is printable by the machine it will eventually be
printed. The norm of any expressi¢his defined as the ex-
pressionX(X).

The sentences are defined to be any of the four types of
expression®(X),~P(X),PN(X),~PN(X) whereX is any
expression. The sentences are interpreted to apply to the enu-
meration generated by the machine in the sense RIGx)
meansX is printable, ~P(X) meansX is not printable,
PN(X) means the norm oK is printable, and~PN(X)
eans the norm oX is not printable. Thug?(X) is true if
and only if X is printable,~P(X) is true if and only ifX is

tences. This possibility is removed by the requirement of, printable,PN(X) is true if and only if the norm oK is

completenessT is complete forSif Sis printable(i.e., S
appears in some pathT is complete ifT is complete for all

printable, and~ PN(X) is true if and only if the norm oK is
not printable. Here and in the following denotes either an

sentences; otherwise it is incomplete. Note that unlike th@xpression variable or a name for a specific expression. It
classical case botB and its negation can be printable; con- should be clear from context which is meant.

sistency demands that they not appear on the same path butUnder this interpretation the sentences refer to dynamic
says nothing about their appearance on different paths in theroperties of the machine that generates them in that they

linear superposition.

describe what the machine does or does not do. More pre-

The set of sentences considered is expanded to include tleésely, the interpretation is assumed to\adid for the ma-
self-referential sentence that asserts its own nonprintabilitghine in that any sentence that is printed is true or, equiva-

and its negation to show that T is valid for these two
sentences then they are not printable. In this daiseéncom-

plete. This is the equivalent here of G&'s incompleteness

lently, no false sentence is printed. ThudifX) is printed,
then X has been or will be printed eventually, and if
~PN(X) is printed thenX(X) will not ever be printed.

theorem[16,15. This suggests the introduction of maximal Similar statements hold for the other two types of sentences.

completenessT is maximally complete if it is complete for

The implications, printable implies truftor falseness im-

all sentences except those excluded by consistency requirglies not printablg which hold if the interpretation is valid,

ments.
The question of the existence Bthat are valid and maxi-

are one sided as the converse implications are false. To see
this consider the senteneePN(~PN) [16]. This sentence

mally complete is discussed in Sec. V. The relations betweeis self-referential in that it refers to its own nonprintability.
the truth definitions and correlations between the occcurThus this sentence is true if and only if it itself is not print-
rence ofSandXg are noted. An exponentially efficient quan- able. Since the interpretation is supposed to be valid for the
tum computer solution to the existence problem is shown fomachine, this is a sentence that is true that the machine can-

a slight generalization of th€ considered here.

not print. Also the sentend@N(~ PN) is not printable as it

The relation between the existence of a valid, maximallyis false.
completeT and the set of expressions taken as sentences is The nonprintability of a true sentence, assuming validity,
shown by expanding the set of sentences to include more shows that for this machine printability is not equivalent to
those in Smullyan’s example. It is seen that one must b&uth of the sentences. This is similar to Tarski's theorem
careful with closed inductive definitions which are widely [17,16 which says that in any formal axiom system the set

used in mathematical logic. Some are harmless; others, sueti true formulas is not definable in the system. Thus the truth
as that used to define sentences in Smullyan’s example, hawg falseness of the sentences is a property not expressible by
nontrivial consequences for quantum-mechanical systems. the machine for the assumed interpretation. In a similar way
A final discussion section includes the point that there aréhe system is incomplete in that neither the senteRte
many other interpretations possible for the sentences. An eX~PN) nor its negation are printable. This is an example of
ample of another very simple interpretation is briefly dis-Godel's incompleteness theoreh7,15 if printability is in-
cussed. It is noted that, due to the freedom in the choice of terpreted as provability16].
basis for representing the symbols, many more interpreta- For use in the following two aspects are worthy of note.
tions are possible in quantum mechanics than in classic&bne can show that the senteneeB N(~PN) andPN(PN)
mechanics. are the only two self-referential sentences. To see this write
Another point is that the discussion of the printability ~PN(X)=X(X) and require that the number of symbols in
both of the sentences and the expressions to which they reféte expressions on both sides of the equal sign be the same.
may be of more general applicability than would appear forThis shows thaK must have three symbols. FBIN(X) one
this special example. This is based on the fact that any quarshows thatX has two symbols.
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The other aspect is that, as will be seen later, the definisingle time step. If7(0) is the overall system state at time 0
tions of sentences and their meaning is quite complicated antien ¥ (n) =T"¥(0) is the state at time.
not really necessary for the purposes of this paper. For this In order thatT describe enumerations of symbols on the
reason all sentences of the forAN(X),~PN(X) will be  qubyte lattice it is necessary to require that the states of
excluded as will sentences of the fof{X),~P(X) where qubytes in finite lattice regions become asymptoticdig
X is a sentence. Here sentences will be limited to be of th&— ) stationary. Any dynamics in which the states of finite
form P(X),~P(X) whereX is an expression that is not a regions of the quantum register are always changing does not
sentence. represent an enumeration. Mathematically this condition can
be expressed by the requirement that the expectation value
(V(n)|Ps |¥(n)) has alimit an—o. HerePg_ is the pro-
. A QUANTUM-MECHANICAL MODEL OF AN jection operator for the symbol string sta® in a finite
ENUMERATION MACHINE regionR of the lattice. -
To keep things simple this requirement will be satisfied
here by requirindl to describe motion of the quantum robot
A quantum-mechanical model of a symbol enumeratiorin one direction only on the 1D lattice of qubytes. Each
machine as described above consists of a multistate head @ération of T will move the quantum robot or head one site
quantum robot moving on a lattice or quantum register ofto the right. During this motion the internal state of the head

5-ary qubytes. The interaction between the quantum robadnd the states of the qubytes at the original and final loca-
and the lattice qubytes is local and includes changing théons of the head can be changed.

states of the neighborhood qubytes. For the purposes of this To this end lefT be given by

paper it is immaterial whether the whole system is regarded

as a multiregister quantum computer or as a quantum robot

or as a multistate head moving on a quantum reg[t2}. T=U®u. @
The set of five symbols represented by the states of each

qubyte are~, P, (,), and 0. The @enotes the blank sym-

bol and will be interpreted as a spacer to separate a string dfereu is the unitary shift operator for moving the quantum

five symbols into a string of expressions separated by spa¢obot one lattice site to the right and is an arbitrary

ers. A convenient set of basis states for the quantum regist@5L -dimensional unitary operator on the internal head

is the set of statefs)=®_ _.|s;) where|s;) denotes sit¢  states and states of the two lattice qubytes, one at and one

qubyte in a state corresponding to any one of the five symijust to the right of the head location.

bols. The statés) describes an infinite symbol string state ~ The action of T on each overall system stafgj,s) is

for which at most a finite number of symbols are nonblank.given by

This limitation, referred to as the 0 state tail condition, is

used to keep the Hilbert space of the overall system, includ-

A. Component description

ing the register, separable. TILis)=li+1sepj+1)

The states of the head or quantum robot can be repre-
sented in the fornjl,j) where|l) denotes any of the states X > ||’,Sj' s(ls] ,sj’+l|u|| Sj,Sj41)s
of the internal degrees of freedom of the head fnds the 1.8 8{11
lattice position state of the head. For example, if the internal )
degrees of freedom of the head or quantum robot consist of

anotherm state head moving on a lattice of qubits L
= n i

mn(2"). Based on the above a_general normallzed state O\}cvhere|s¢[j i+1)) is the state of lattice qubytes outside of
the overall system has the forfi==3, : .c, . {/I,j,S) where Lol S

g o8l g sl 02 sitesj,j+1 andu|j)=|j+1) has been used.
the ¢, ; ¢ are arbitrary complex coefficients whose absolute : . : .
8 . . . To be consistent with the O state tail condition and the
squares sum to unity. The sum is over all lattice system hoi f h bol blank he initial
basis states that satisfy the O state tail condition choice o 0 as the symbol blank or vacuum, the initial state
' of interest here |$0,09>. This state has the head in internal

state O at lattice site 0 and a completely blank quantum reg-
ister. Inclusion of initial wave packet states of different head
positions and internal states is not necessary here.

The dynamics of the overall system is given by a unitary An expansion off™ acting on the initial statéao,o,g), in
step operatoiT that represents the changes occurring in aerms of intermediate states gives

B. System dynamics

v Smog! L
msl, ’

Tm|009>=|m,9#[0’m])s > > | 2| 11 mSio,m—17-Sm){Im+Siom=17 Sml Y|l m=1,S(0.m—2;Sm-—1.0m)
. o 12

X{Im-1,S[0.m-2] »Sm—1,0ml Ul m-2,S0.m-318m-2:Om-1m) - - *{11,50,51,0;2,m|U[0,00). 3
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Heres;o ) denotes a string of symbatsg, ... ,s;, in the region
0,1,... b of lattice sites.
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not occur in interval§ m,m+ k] with k<j, i.e., the first oc-
currence ofX. Note that the projection operators in theum

This equation shows that the quantum system with dyare pairwise orthogonal.

namics given byT is a satisfactory enumeration system in

In what follows projection operators are needed for ex-

that once the head passes a lattice site the states of gltessions, that, once generated by iterations,0ére not

gubytes in passed regions, denoted by the slla’ggz_@) are
not changed by more iterations @t The growth in the
passed lattice region by one site geiteration is shown by
the increase ob to b+1 in the state#s[o,b]) appearing in
each matrix element. The sum over the unprinseckpre-

changed by further iterations. One way to achieve this is to
include projection operators for head positions to the right of
expressions of interest. To this end [@f’(’[m’n] be the pro-

jection operator foiX anywhere in the regiofm,n] whereX

is separated from other expressions in the region by one or

sents the completed effect of the passage of the head in gemore (5. If X ends at siten there is a 0 at site+1; if X

erating the states|op;); the sum over primed gives inter-

begins at siten, there is a 0 at sittn— 1. The head is at site

mediate changes in qubyte states at the location of the head+2. That is

C. Some expression projectors

Q?(,[m,n]:QX,[m,n]QE+21 8)

ExpressionsX are defined as consecutive finite strings ofyhere Q" , is the projection operator for the head at posi-

any of the four symbol®, (,),~ with 0 excluded withinX.

To separat& from other expressions in a symbol string, it is

required that the terminal symbol #fis followed by at least

one 0. Similarly the initial symbol oK is preceded by at
least one 0. Len,b be the initial and terminal symbol site

location of X wherel(X) is the length ofX. One hasa=b
—1(X)+1.

DefineQy , to be the projection operator for findingat
lattice sitesa,a+1,... b, Os at sitesa—1b+1, and any

tion n+2 and in any of thd internal states. A useful gen-
eralization is the projection operatorQ?(y[myn],k
:QX,[m,n]Q2+k+2 for X anywhere in the intervdlm,n] and
the headk+2 sites beyond. For non-negative this pro-

jector has the following commutation relation withas de-

fined by Eq.(2):

TQ?(,[m,n],k:Q?(,[m,n],k+1T' 9

symbol, including the blank, at other lattice sites. The quan-  Tne Jimit projectorQ!} defined by
tum robot can be anywhere and in any internal state. This

operator is basic to all that follows.
Let [m,n] with n>m be a lattice region of sitem,m

+1,... 1. DefineQy m n to be the projection operator for

finding X somewhere in the regidm,m]. Qx (m,n is defined
by

n

sup  Qx- (4)

k=m+1(X)—1

QX,[m,n] =

The least upper bound is used becaQsg, and Qy y with
k#k’ are not necessarily orthogon&y (m =0 if the re-
gion is too short to accomodaie

Let Q-x,mn b€ the projection operator for not finding
anywhere i'm,n]. Clearly

QX,[m,n] +Q—-X,[m,n] =1 (5)

Additional useful properties of these projectors are

QX,[m,n]<QX,[m,n+1] ’

Q-x,[m,n] = Q=x,[mn+1]» (6)
and
n
Qx,[m,n] :HE(X) Qitmme+ 1 - (7

HereQ}f}mymH] is the projection operator foX occurring in
the regionfm,m+j] with the terminal symbol oK at site
m+j, Os at sitesm+j+1,m+j—1(X), and noX anywhere
else in[m,m+j]. Q}(Syfmymﬂ] is the identity on all other
lattice sites. The superscript 1st denotes the factxhdves

Q=2 Qxjom (10
corresponds tX located anywhere to the right of the origin
and the head at least two sites beyond the terminal symbol of
X. The projectors in the sum are pairwise orthogonal because
of the orthogonality of the head location projectors. Whether
or not this limit exists is not important here because the limit
operator can always be replaced(bS‘(v[ovn] for somenin any
of the matrix elements that occur in this work.
Let X andY be two expressions. Then
Q?(/\Y,[m,n] = Q?(,[m,n]Q:](,[m,n] (11)
is the projection operator for finding andY in the region
[m,n] and the head at site+2. This projection operator is
zero if the region is too small to contai and Y without
overlap. This is the case evenYfis a subexpression of
because the projectors include blank symbols preceding and
following each expression.

More generally IthAm Y, be defined by
k=1

h _ h _ h
Q/\Ew:lYk—HELlQYk—JZO QAm v, .[0j-21Q; - (12

This is the projection operator for finding expressions
Y1, ...,Y anywhere to the right of the lattice origin and to
the left of the headand a 0 just left of the head

It is important to note that the symbots/\ appearing in
the subscripts are in the metalanguage used to describe the
properties of the system. They do not appear in the expres-
sions or sentences described here. The opeQﬁQrprojects
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out all expression path states that do not contaamywhere.  as a finite string of 6, and iteration ofl .., generates a linear

This is the case whethet is or is not a sentence. superposition of expression states. Note thaand T4 do
not commute.
D. Sums over paths of expressions Using the fact thafT"=(Ty+T.()" and collecting to-

At this point it is worthwhile to look more closely at gether powers ofp and T, gives
iterations of T and the generation of an exponentially grow-

ing tree of paths or sequences of expressjons separated by En: 5%:]) [(.I_ht The- l.I.ht 2., Thephs
strings of &. To this end define the projection operators =1h #0°0 0 " #0
Qoz,i Qo,jle;n +T2[T201' T120T21)5t,0dd+(Tng201’"Tllo
= T T - ToY 6t eved- (15)
Q#):j;oc Q;to,j,lQJh. (13 Thet sum is over the number of expressions and intervening

spacers, and thesums are over the length of the expressions
and spacers in an alternation witlspacers and expressions.
The upper limit of theh sums denotes the requirement that
h;+h,+-.-+h=n. The above shows that four types of
alternations are possible; they may begin or end with either
Ty or To. How they end depends on how they begin and
whethert is even or odd. The two types foiodd are shown
in the first line above multipled by & function for t odd.
T=(Qo+ Qo) T=To+To. (14)  The second line gives the two types toeven.

The above can be used to expafi0,00) into a Feyn-
The projectors are chosen so that for any overall system statean sum[30] over sequences or paths of expression states
¥, Ty, andT. oV show, respectively, a 0 or an expres- separated by 9 similar to the sum over phase paths used
sion symbol state for the qubyte at the site last visited by thelsewherd12]. In order to keep things simple the expansion
head. These states have the property that iteration o will be given for the first alternation type only withodd and
these states does not change these qubyte states as charfgésaccount will be taken of the fact that once the head
are limited to those qubytes at and immediately to the righpasses a lattice region no further interactions occur with the
of the head location. Iteration df, generates a spacer state qubytes in the region. One has

Here th is the projector for the head at siteQg; -, is the
projector for a O at sitg—1, andQ..q; 1 is the projector for
any one of the four symbolg),P,~ at sitej—1. It is clear
thatQo+ Q=1

These operators can be used to separatefined by Eq.
(1) into the sum of two operatorg,, T .q:

n 8(Z,n)
"o, OD> 2 E 2 2 Z [1¢,1,0% X% 0% Xo% 0%, - - -, % 0% X[ 11 1)/* S'* 0)
=10, ST X1 X0 X[(t+1)12] - - - - -

hy_
X (¢ ,X[(t+1)/2]*St'|T9§0||t—1aStLl*9><|t—1:9*~°'t'71|-|_0t 1||t72’st,72*9>

X+ (15,0%| Te? 11, 57%0) (14, X1 * 57| T7|0,00). (16)

Thel sums are over head or robot internal states, and the The action ofT i, differs only in that the final state is
s’ sums are over intermediate statexluding 0) of qubytes X x5, 'y whereX; |s an expression of length; . Sums over
at the head location. As shown earlier they may be changed
by the next iteration off. The X sums are over all possible gl andX _are |mpI|ed th? that this represents_the genera-
completed expressions of length specified by thesum pon of a Imegr super_posmor_] of Iengﬂq expression states
terms. The head position state has been suppressed in e the specified _Iattlce lattice region. Except for future
matrix elements. The asterisk denotes concatenation of synfht@nglements with states of qubytes not yet reached by
bols and expressions. the head, the expression states are not changed by

Each matrix element shows the state changes resultingloré iterations of T. This is shown by the fact
from one alternation. For examplEy is active on the lattice that each X; also appears in the final output state
region extending fronE]_1h, (the initial head positionto [16,n,0% Xy O* Xg* 0%, . o * 0% X1+ 1)/2* 8 *0) which
E{(:1hk (the final head position It converts the state of shows the head in the internal stitat positionn. The state

qubytes in the lattice region frofs;_,*0) to |0*s’> where ~Shows the sequence of expressios, Xy, ... X1
0 denotes a string df; Os and a sum oves is implied. separated by finite strings ofsO The terminal expression

(Here the subscript |s an alternation |ndex not a lattice X[(”l),’zl iS_ complete for th9se compopents in Wh_iCh one
site) more iteration ofT convertss; to 0. It is incomplete in the
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other components of the sums of E46). The qubytes at sions of the meaning and truth of the sentences.

lattice sites not in the regiof0,n] are in statd0). A feature introduced by these interpretations is that the
Equation(16) shows a sum over all expression sequenceneaning of a sentenc®is limited to those paths containing

states consistent with the requirement that the lengths of alh Shas no meaning in paths not containfdt says nothing

expressions and spacers sumnmidt includes components for about the presence or absencexgfin these paths. This is a

one expression of length—2 up to components fdr/2] consequence of the presence of many paths in the path sum

expressions each containing one symbol. Other components Eq. (16). Classically, where there is just one path, this

with expressions of varying length are also included. partial definability is reflected in the fact that, for the inter-
The amplitude associated with each expression sequengeetation used here, any sentence not appearing in the enu-
state |ly,n,0% X;* 0% Xo* 0%, ... * 0% X[(111y2*S{*0) is  meration path also has no meaning for the expressions in the

given by a partial sum over products of matrix elementspath. . . .

shown in Eq(16). It depends sensitively on the properties of  The meaning o6is closely connected to the carrying out
the 29 dimensional unitary operatod, Eq. (1), which ~ of measurements on the quantum enumeration system. Sup-
shows the changes in the lattice system states as the quant@mse one carries out a measurement of the obser

robot moves along the lattice. +-S{J'g at timen on the stateV (n)=T"/0,00) andmtime
It is clear from the above that each expression path magteps later carries out a measurement of the observable
contain many different expressionX,Y,Z, ... as well as xSQ';(SJr—-xSQEXS on the component sta@gW(n)), This

repetitions of expressions. L&y o,-2) be the projection ¢4, pe described by adding two ternary qubytes to the quan-
operator for the expressiorf appearing somewhere in the tm enumeration systems to record the outcomes of these
region[0O,n—2] and the hﬁag at site in any mterr?al state, gperations. The qubyte stat$s.|i)x, denote the initial or

Eq. (8). Then the statdQyT |0’09>:QY,[0,n—2]T |0’0’(_)_>’ no measurement state and the other states denote the possible
expanded as a sum over expression pgHags(16)], contains two outcomes of each measurement

all expression path states withappearing somewhere in the The overall process is described by unitary operatéis

ren9|c:1n [On —n2]. For later times m+n the state ,.qXs that establish correlations between the states of the
T"Qv 10n-217"0,00), expanded as a path sum, shows agnymeration system and the qubytes. The result of carrying
sum over expression path states with m symbols, includ- 5t the two measurements is given by

ing blanks, that have in common the appearanc¥ séme-

where in the regiofion—2]. UXSTMUSE ()i}l = Q T"QEF (M)] 1) g 1)

h h
IV. TRUTH, VALIDITY, CONSISTENCY, +QIx T"Qs¥(n)|1)¢0)x,

AND COMPLETENESS m~h .
o , +T Qas‘l’(n)|0>s||>xs- 17
A. Sentences and their interpretation; truth

So far expressions have been discussed without any men-
tion of which ones are sentences and how the sentences
should be interpreted. Here sentences are those expressi
with the form P(X),~P(X) whereX is any expression that
is not a sentence. In the following will often be used to
denote a sentence and the expression to which the sen-
tence refers.

A sentence S is defined to be n-printable
(0,00/(T")"QYT"|0,00)>0. It is not n-printable if the
matrix element equals 0. S is printable if clusions are affected.

I|mnax(0,09|(TT)”QgT“|0,09>>O. Otherwise it is not In order to keep things simple it has been assumed in the
printable. QY is given by EQ.(10) with X=S. The limit  above that the projection operata@ andQ", whereX is
clearly exists because the matrix element is nondecreasing a& expression or sentence can be measured in one time step.
n increases and is real, positive and bounded above by 1. This is unrealistic as the measurement involves searching for
The definition of printability means that 8is printable it X in an arbitrarily large region of the lattice. A more realistic
will appear somewhere in the sum of E46). The limit n approach would be to replace this one step operation with a
—o is needed because, in general, there is no upper boundeasurement described as a multistep search task carried out
on when a sentence must first appear in the different path&y a quantum robot moving along the lattice of qubytEz].
Conversely a sentence is not printable if it never appears ifror each timen the search would terminate as a finite lattice

In the above the amplification or decoherence by interac-
with the environmenf10] necessary to complete the
measurement process is ignored as it is not needed here. In

Peres’ languagg31] the above is a premeasurement.

The limitation of theXg measurement to component states
containingS is made because extension of the measurement
it of X5 to component states not containigis not needed
here. However, if desired, the extension can be included. The
only effect is to add an additional term to E4.7). No con-

any path. region [O,n—2] only needs to be searched. However the
There are many possible ways to interpret the sente®ces number of steps in the search is polynomiahin
Here the interpretation d?(X), stated informally, is that all Eq. (17) clearly supports the idea that for a measurement

paths in the path sum of Eql6) that containP(X) also at time n the meaning or interpretation @& is limited to
containX. The informal interpretation of~-P(X) is that no  those component path states in whi&bccurs somewhere in
path containing- P(X) also containX. P(X) or ~P(X) are  the region[0,n—2]. Shas no meaning for those component
true if their informal meaning statements are true. The goastates in whichS occurs nowhere ifiO,n—2]. This would

of the following is to make precise these informal expres-remain the case even if the measuremeniXgfwere ex-
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tended to paths not containirf§y The equation also shows In other words, the truth at time for a sentencé& is defin-
that for the measurement at tirméethe domain of states for able on the (unnormalizegl states TmQQW(n) for m

which Shas meaning is the Hilbert space spanned by the set0,1, . . . . It is notdefinable on the statéE"Q" W (n).

of normalized states T"QLW(n)/|QYW(n))| for m Many definitions ofn,m-truth for the sentences are pos-
=0,1,....This Hilbert space is empty i has more than sible. Heren,m-truth will be defined as followsS= P(X) is
n—2 symbols. n,m-true [ n,m-falsg] if the amplitude of the second right-

This Hilbert space is also the state space or domain ofiand term of Eq.17) =0[>0]. S=~P(X) is n,m-true
truth definition for the sentenc®at timen. It corresponds to [ n,m-falsg] if the amplitude of the first right-hand term

the states shown in the first two right-hand terms of @4). =0[>0]. That is
|
is n,m-true N N hmoh Mo =0
P(X)is n.m-false ' (P (n)]Qpx)(THMQL,T™Qp(x| (n)>>0, (18)
is n,m-true N xmmhrmh =0
NP(X)iS n.m-false it (W(n)|QLpx)(TH™MQXT Q~P(X)|‘l’(n)>>0_ (19

These definitions follow the practice in mathematical lodi6] of defining the truth of formal sentences relative to the
informal truth of the statements that are the interpretation of the sentences. Here the interpreR¢¥nisfthe mathematical
statemen(\P(n)|Q'F‘,(x)(TT) mQEXTmQE(X)W(n)):O that describes a property of the quantum system shown by the measure-
ment of Eq.(17). P(X) is n,m-true[ n,m-false] if the mathematical statement is trifelse] for the system. Similarly- P (X)
is n,m-true [ n,m-false if the statemen(‘l'(n)|Q'lp(x)(TT)mQQTmQ'lp(Xﬂ\If(n))=0 is true[false] for the system.

The above definitions also have different properties from the usual definitions. Besides the need for a state domain of truth
definition, it is not the case thaP(X) is n-true if ~P(X) is false and conversely. This is a consequence of the quantum-
mechanical nature of the enumeration system with the presence of multiple paths in the path sum. In fact there is no reason
why these sentences cannot bothrhm-true on their respective domains of definition.

An equivalent definition oh,m-truth follows from the fact thaQ?( and QEX are orthogonal and sum to unity:

is n,m-true +xmehcmeh h =0
P(X)is n.m-false it (W(n)[(T)™QxT QP(X)lW(n)>_<\P(n)|QP(X)|\P(n)><0 (20
is n,m-true £ memh h h =0
~PXig 1 garse T Y MITDTRETTQ b [W(n)) = (W(m) Q1 pol ¥ (M) _ (21

The fact that the projector@g and (’I’T)”‘Q?(STm commute has been used to obtain these expressions.

The connection of these definitions i n-truth to the measurement is shown by the fact that the definition correlates the
n,m-truth of Sto the amplitudes of states appearing in the first two terms of(Ef). Also the domains of definability and
undefinability ofn,m-truth are shown in the equation.

These definitions also illustrate another reason for use of a domain of definability for the truth of a sentence.atdme
the special case where the probability of findiB@t timen is 0 then the normalized measurement state corresponding to
finding Satn, QW (n)/|| Q¥ (n)| is undefined. In addition, if the definitions nfm-truth also applied for this case, it would
be impossible foilSto ben,m-false. This untenable situation is avoided by the use of domains of definability.

A problem with these definitions is their dependenceyoandn. To see this lefl be such that there is no upper bound on
the distance of first appearance X§ from the origin. That is, for eacn there exist paths in Eq16) such that for some
m’>m Xgis notin[0,n+m—2] butis in[0,n+m’—2]. This means tha®(X) can ben,m-false anch,m’-true. Also~ P(X)
can ben,m-true andn,m’-false. This follows from Eq(6).

It is also the case that,m-truth depends on. For exampleT may be such thab is n,m-true but isn’,m-false for some
n’>n. This is possible because asncreases, extensions and branching of paths occurs. Sin@y first occur in some of
these extensions or branches, it is possibleSitw ben’,m-false on some of these extensions. Additional dependence on
arises from the above argument fordependence because the size of the region foXthmeasurement, Eq17), depends
on bothn andm.
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The definition of truth should be such as to exclude the dependenoeand m. It should also maximize the domain of
definability of truth for a sentence. These goals are attained by taking thenlimit in Eq. (17) and in the definitions of
n,m-truth. The desired maximization is achieved becduE(an)|Qg|‘If(n)> is a nondecreasing function afbounded above
by 1.

In addition, for the limit definition, the value ohis arbitrary as the limit values of the matrix elements are independent of
m. This is shown in the Appendix. Because of this the valumaiill be chosen to be 0. Based on these aspects true and false
are defined as follows for the two types of sentences:

istrue hoh =0

PX)q arse I (¥ (MIQUQE0 W (M) _ (22
istrue hoh =0

P caige i IIM (WMIQXQ el (M) _ (23

n—oo

Equivalent definitions corresponding to those of EH@€) and (21) are

istrue hoh ) o =0
P(X)is false it lim (¥(n)|QxQpx)| ¥ (n))— lim <‘I’(n)|QP(X)|‘I’(n)><O (24)
istrue - . h =0
NP(X)is false it lim (¥(n)|Q2xQ% (x| ¥ (n)) — lim <‘I’(n)|Q~P(X)|‘I’(n)><O_ (295

These definitions remove thedependence in that if a sen-  This definition is quite similar to that used in mathemati-
tenceS is n,0-true for eac then it is true. The converse, cal logic where a sentence is valid for some interpretation if
namely that ifSis true, it isn,0-true for each, is true for  itis is true for the interpretatiofil5,17]. (It is also similar to
S=~P(X). This follows from Eq.(23) as the matrix ele- the notion of accuracy or correctness used by Smullyan
ment is nondecreasing asincreases. The converse is not [16].) The main difference is that here the domain of defin-
necessarily true fos=P(X). However, one can show from ability of n,m-truth plays an important role. Note that for
Eq. (7) and the material in the Appendix thatR{(X) is true  as defined here no sentence with more thar?2 symbols is
then it isn,~-true for eachn. n-printable. HoweverT is n,m-valid for all these sentences.
The definition ofn,m-validity for Sis closely connected
with the measurement o8 and Xg, Eq. (17). If S'is
B. Validity and consistency n-printable ands= P (X)[S=~ P(X)], then then,m-validity
The definitions ofn,m-truth and truth for the sentences Of T for Smeans that the secofiiirst] right-hand term of Eq.
given above clearly depend on the system dynarhi¢sow- (17)is 0. ) _ _ _
ever they place no restrictions Gh Each sentence with a  The equation also shows thitis n,m-valid for Sif the
nonempty domain oh,m-truth definition (i.e., n-printable ~ Probability thatSdoes not appear in the regipd,n—2] plus
can ben,m-true orn,m-false, (or true or falsg on the do- the probability thatS appears in the region and msm-true
main. The main idea here is to use validity to conrie¢b ~ On its domain of definition equals 1. In terms of matrix ele-
the truth of the sentences. ments for the two types of sentences this is expressed by
Informally the idea is thal is n,m-valid for a sentenc&
if Sis in factn,m-true on its domain of definition. That is, all
paths containind®(X)[ ~P(X)] in the region[0,n—2] also  fy, P(X) <q,(n)|(TT)mQ§Tng(X)|q,(n)>
contain[do not contaif X. This is captured in the following
definition: h _
Definition 1: T is n,mvalid for a sentence S if S is not Y MIQppol ¥ (M) =1,
n-printable or S is n-printable and n,m-true on its domain of
definition.
An equivalent statement of the definition is thatis fomeh meh
n,m-valid for S if n-printability of S implies thatS is  for —P(X) (W(m[(THMQIT™Qp(sy| W (M)
n,m-true on its domain of definition. As noted the domain is h
nonempty if and only ifSis n-printable. +H(W(N)| Q2 _p(x| ¥ (M) =1. (26)
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both appear in some path. It is not a necessary condition
The definition ofn,m-validity for Scan be extended to all since it is possible foll to ben-consistent but nat, m-valid
sentencesT is n,m-valid if it is n,m-valid for all sentences for these two sentences. Note thaim-validity of T for
S. In terms of single sentence measurements described B(X) and ~P(X) does not prevent them from appearing in
Eq. (17) if T is n,m-valid then Egs(26) hold for each sen- some pathgi.e., both can ba-printable. They cannot, how-
tence. Measurements can be limited to just those sentencesger, both appear on the same path.

that will fit in the region[0O,n—2] as T is automatically The dependence of, m-truth onn andm also results in a
n,m-valid for all other sentences because they are nosimilar dependence fon,m-validity. For example if S
n-printable. =P(X) thenT may ben,m’-valid for S but notn,m-valid

It may be possible to combine all the single sentence meder Swherem’>m. If S=~P(X) thenT may ben,m-valid
surements into one measurement observable antkatfiea-  for S but notn,m’-valid for S A similar dependence holds
surements into another observable. If this is the case theior changes im.
n,m-validity can be described in terms of one type of mea- As was done for n,m-truth, this undesirable
surement. These observables are much more complexm-dependence can be removed by setting0 and taking
than those in Eq.(17). The complexity is shown even the limitn—co. To this end one defin€bto be valid forShy
for the measurement for just two senten&endS’. In this  the following definition.
case the left-hand side of Eq(l7) is replaced by Definition 2: T isvalid at S if either S is not printable or
UXS,UXSTmUS,US\P(n”i>S’|i>S|i>XS|i>XS;' The right-hand S is printable and true on its domain of truth definition.

An equivalent statement of the definition is tHais valid

side is a sum of nine terms, four for components containin L S . .
P %r Sif printability imples truth on the domain of truth defi-

both S and S’ as each sentence can lem,-true or " ; e , .
n,m-false, two for each of the two components containingnltlon Here prmtablllty Is defined as in Sec. IVA by
just one of the two sentences in whiohm-truth is defined m___{¥(n)|Qg¥(n))>0 and truth by Eqs(22) and(23)
for the sentence appearing, and one for components contaifer Egs.(24) and (25)].
ing neither sentence. For this term,m-truth is undefined The definition of validity for a sentence can be extended
for both sentences. Note that the two unitary operatorXfor to all sentences by definingto be valid if T is valid for all
andXg commute as do the two f@andS'. sentences. That iBis valid if for all sentence$ printability

If T is n,m-valid for both these sentences, then theof Simplies thatSis true on its domain of definition. This
n,m-truth conditions give the result that at most four of the definition can be given in an equivalent form based on Eq.
the nine terms are nonzero. These are the terms that exclu¢@6):
paths showing then,m-falseness of either sentence. Definition 3: T isvalid if for all expressions X that are
As a specific example leS=P(X) and S'=~P(Y). notsentences
If T is n,m-valid for these two sentences, then only four
terms may be nonzero. The term of most intererst here i
that containing all paths in which botR(X) and ~P(Y)
appear and are n,m-true. This is the state

$im (W (n)| QRQB o T (M) + lim (W(n)| Q" py| W (N))=1,

n—oo n—oo

Q?(A—‘YTmQE'(X)/\wP(Y)\P(nM1>P(X)|1>~P(Y)|1>X|O>Y- Con- lim <"P(n)|QEXQEp(X)|\I’(n)>
servation of probability and the unitarity df gives the re- n— oo
sult: .
+lim (W (n)| Q2 _p | ¥ (n))=1. 27
n—oo

<‘P(n)|(TT)mQ?(A—-YTmQrI;(X)/\~P(Y)|‘P(n)>
Note that the limitn—c commutes with the sum in ER7).

:(\P(n)|QE(X)A~P(Y)|\P(n)>. The definition ofn-consistency can also be extended to
the limit n—o as follows:
This equation is interesting becauseXi Y then the left- Definition 4: T is consistentfor P(X) and ~P(X) if
hand matrix element is 0 because the projection operatdrm <\If(n)|Q*F‘,(X)ANP(X)|\P(n))=0.
Q%;-x=0. Thus the following theorem has been proven.  gince the matrix element in this definition is nondecreas-
Theorem 1h Let T be n,malid for P(X) and for~P(X).  ing asn increases, this definition is equivalent to definifg
Then(¥ (n)|Qp )~ peo| ¥ (n))=0. to be consistent foP(X) and ~P(X) if for eachn, T is
This theorem is SatiSfying since it shows thatTifis n-consistent for these two sentences.
n,m-valid for the sentence®(X) and ~P(X), then these It should be noted that the use of consistency here seems

sentences are-consistent fofT. Here a sentence and its ne- different from that used in the consistent histories theory of
gation are defined to be-consistenfor T if no path in the  quantum mechanic§32—34. Here consistency refers to
path sum of Eq(16) contains both the sentence and its ne-properties of certain pairs of sentences generated by a quan-
gation in the lattice region [On—2]. That is tum system. In the consistent histories approach consistency
<\I,(n)|Qg(x)/\~p(x)|qj(n)>:0- is a property of projectors on a tensor product of Hilbert
It is clear thatn,m-validity of T for P(X) and~P(X) is  spaces associated with multitime events or histories of a
a sufficient condition foiT to be n-consistent for these sen- quantum systerfi32].
tences because without the conditionrmgf-validity for T One can use the above definition of consistency and the
there is no reason why a sentence and its negation could ndefinition of validity to obtain the following theorem:
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Theorem 2: If T is valid for P(X) and-P(X) then T is  Since the two projection operators appearing in the left-hand

consistent for P(X) and-P(X). matrix element are orthogonal, the matrix element is zero for
To prove this theorem note that by the properties of theeachn. Thus both matrix elements in the equality must equal
projection operators the following two relations hold: 0 which contradicts the assumption thatPN(~PN) is

printable. So this sentence is not printable.
For the sentencBN(~ PN) the properties of the projec-

lim (W(n)|Q?(Q[|;(X)Q}1P(X)|lp(n)> tion operators give the result
n—o
_ - lim <\P(n)|QE’N(~PN)QEPN(~PN)|\P(n)>
< lim (¥ (n)[QxQ" p(x)| ¥ (1)), e

n—oo

< lim (¥(n)| QP n—pry ¥ (M),

n—o

lim (¥ (n)[ Q24 Qpx Q" sy ¥ (N)) SinceT is valid for this sentence, then either the right-hand
n—e= matrix element=0 or it is >0 and equals the left-hand
) h matrix elementby the definition of truth But, by theorem 2
< lim (‘P(n)|QﬁxQP(X)|\P(n)>- on consistency, this is impossible. Thus the right hand matrix
e element is zero in either case, §0N(~PN) is also not
printable, which proves the theorem.
It follows that for this expanded set of sentendeis not
mplete. Note that this holds for &l in the definition ofT,
g. (1). This suggests that one define a concept of maximal

SinceT is valid for these two sentences, by E(&2) and
(23), the right-hand sides of these two inequalities are botfbo
equal to 0. Addition of these two inequalities and noting that

the limits commute V}ﬂ'th the sum, and USI@}fr Q=1 completeness. A validl is maximally completéf it is com-
gives lim __(¥(n)|Qpx)Q px|¥(n))=0 which proves piete for all sentences subject only to the requirements of
the theorem. consistency. For the interpretation considered here for the
T is said to be consistent if for all expressiakghat are ~ sentences, all uses of consistency including theorem proofs,
not sentencesJ is consistent forP(X) and ~P(X). It is ultimately depend on the fact that the projection operators
clear from the above that T is valid then it is consistent. Q% andQ"y are orthogonal for any expressidh
The other self-referential sentenéd\(PN) (Sec. I), can
be included at no cost. The reason is that if it is printable it is
trivially true. Thus the requirement thaf be valid for
PN(PN) imposes no restrictions ofl. Completeness for

As noted if T is valid then each sentence is either nOtPN(PN) just requires that the sentence be printab|e_
printable or it is printable and true. Thus amywhich does

not print any sentence at all is valid. Su@hare easy to
construct as it is easily decidable which expressions are sen-

C. Completeness

V. THE EXISTENCE OF VALID AND MAXIMALLY

tences.

Completeness is used to remove this possiblity: COMPLETE T

Definition 5: T iscomplete for a sentenc®if S is print- The above considerations raise the issue of the existence
able. T iscompleteif it is complete for all sentences. Other- of step operatorgor generators of the dynamic¥ that are
wise it is incomplete. valid and maximally complete for the set of sentences and

As is known from the Gdel incompleteness theorem, interpretation considered here. This is not trivial because it is
[15-17 there exist sets of sentences with axioms that arglear from the above that these requirements are quite restric-
incomplete. The same situation can occur here. To see thive. (For the set of sentences used here maximal complete-
add to the set of sentencps the formP(X) and ~P(X)] ness is equivalent to completengss.

the two sentences, in Smullyan’s exampN(X) and It is an open question if there exist satisfying Eq.(1)
~PN(X) whereX=~PN. For this value ofX ~PN(X) is  that are valid and complete for the sentences considered here.
self-referential. One aspect is that the requirement that the sentences be true

For the interpretation of the sentences used kanel ad-  requires the presence of strong correlations between the oc-
dition of N to the set of expression symbpls is easy to  currences of a sentenc® and the expressioXg. If S=
prove the following theorem: ~P(X) then~P(X) is true if and only if there is a complete

Theorem 3: Let T be valid for the sentenceBN(~PN)  negative correlation between the occurrence-d¢#(X) and
and PN¢-PN). Then neither of these sentences is printableX no matter how far apart they ar@(X) is true if and only

To prove this theorem assumeP N(~PN) is printable.  if there is a complete positive correlation between the occur-
SinceT is valid for this sentence it must then be true. By therence ofP(X) andX. However, unlike the case for P(X),

definition of truth, Eq.(23), this correlation can be of finite length because oXacurs
. h h in a path containind?(X) the truth definition is satisfied for
nl'm (WM QL pn-pn QL pr(~pry ¥ (M) all paths that are extensions of the path segment containing
— 00 X.
= lim <\I,(n)|erPN(~PN)|\I,(n)>' These correlation requirements are shown by Eg4)

n—oo and (25). In essence, these equations show the deviations
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from the condition of no correlation imposed by the truth
definitions. No correlation is expressed by

lim (¥ ()| QX QYW (n)) = lim (¥ (n)|Qx | ¥(n))

X(¥(n)|QYW(n)).

If one relaxes the requirement th@tsatisfy Eq.(1) to
allow limited backward motion, then there exist both classi-

4n
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cal and quantum computer solutions to the existence ques-
tion. The quantum computéor robo) proceeds as follows:
For each n=1,2,...,%", generate the superposition
1V2(|0)a+|~)a) [P(X)O)(as1p Of states of all P(X),
~P(X) whereX is any lengthn expression. Then for each
correlate whetheK is [is not] a sentencéa decidable prop-
erty) with the stateg1)4[|0)4] of a qubitg. Change an ad-
jacent state oh Os to X only for the sentenc&(X) and
only for thoseX that are not sentences. Increasby 1 and
move to the next region of &(*+1)+5 blank sites.

For eachn the overall state transformations are given by

1 (10 at|~ a)
|0>q|9>[a,b]|9>[b,c]—>ﬁ le “»q%|P(X)0>[a+l,b]|9>[b,c]
1 (& > (10)at|~)a)
—’W(EX: |0>q+§x: |1>q)T|P(X)O>[a+1,b]|9>[b,c]
. 1 § 0) (|0P(X)0>[a,b]|x>[b,c]+|~P(X)0>[a,b]|9>[b,c])
s
(|0>a+|~>a)
+2 e 5 IPO0)as1n|Oina (28)

Hereb=n+4—a andc=n—1—b. The sums3;°,33 are
over all lengthn expressions that are not§) or are (S
sentences. The last line shows that nothing is done t& fhe
components. The number of lengtlexpressions that are not
sentences is™- A whereA=4""3+4""4 The quantum ro-
bot starts at positiom in internal statg0) and ends in state
|0) at positionc+ 1 to repeat the cycle fan+1. The value

Here the probability distribution of B(Y) as a function ofy

is completely different from that of- P(Y). For OP(Y) the
distribution is uniformly distributed over a¥ whereas for
~P(Y) the distribution is to a good approximatipof order
(A/4")?] a & function atY=0. (Here, depending on context,
expressions are either strings ofsymbols or 4-ary num-
berg. Since these probability distributions are so different it

of M reflects the presence of a quantum computer with 3 jikely that, as is the case for other quantum algorithms

register of at leasM qubits on board the quantum robot. In
this way the quantum robot has with it a record of the activ
value ofn.

This quantum computer is exponentially efficient in that
the number of steps required to generate the final state for
T that is valid and complete for all sentenceéshere the
length of Xg is <2M is polynomial in (2+1)2M/2. The
efficiency is shown by the fact that the number of sentence
included in the final state is given By=32",2(4"—A).

This efficiency is lost if one wants to determine by mea-
surement ofX values if T is in fact valid and complete as

€,

[1,3], they can be determined to good accuracy in polynomi-
ally (in n) many repetitions of preparation and measurement
of OP(Y) and ~P(Y).

a This quantum computer solution for the existence prob-
lem refers to an example for which the same quantum system
generates both the sentences and the expressions to which
Lhe sentences refer. Of more general interest is the case
where the quantum system generating the sentences is dis-
tinct from the quantum system to which the sentences refer.
This is the usual case in physics where the system carrying
out measurements is distinct from the system being mea-

~N repetitions of the preparation and measurement of thgreq. Study of these systems is deferred to future work.

state shown above would have to be carried out. A much

It is worth noting that the existence problem is strongly

more promising approach is to carry out a Fourier transformelated to the set of expressions admitted as sentences. Sup-

over the qubytes in regioja+3b—1] that give the argu-
ment X of P(X),~P(X) in the E;S final-state part of Eq.
(28). This gives the state

4N—1 =S

> > 0) €™ Y X4 T|OP(Y)0) 10,65 X)(b.c]
2 Y=0 X

+|~P(Y)0)(a,01|0p.]-

4"

pose, following Smullyari16], one expands the set of sen-
tences by dropping the requirement tiais not a sentence.
This introduces many complexities into the discussion. Sup-
pose for exampld is valid and maximally complete for all
sentences in the expanded set. Then the sente(Ex)) is
printable and true which means th{X) is printable and
also true. This means informally that all paths containing
P(P(X)) also containP(X) and all paths containin@(X)
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containX. Of courseP(X) may be present in paths not con- generate chains of sentences. A very simple chain of length 2
taining P(P(X)). results fromX=P. If PN(P) is printable and true so is

Application of the same argument BR{~ P (X)) gives the  P(P). SinceP(P) is a sentence it is also printable and true.
result that all paths containing this sentence must contaifhe chain stops here &sis not a sentence.

~P(X) and none of the paths containirgP(X) may con- Other X give longer chains. FOX=PN(P one has
tain X. In a similar fashion, none of the paths containing
~P(P(X)) may containP(X) and all paths containing(X) PN(PN(P)—PN(P(PN(P)—P(P(PN(P(P(PN(P)

containX; for ~P(~P(X)) no path containing this sentence
may contain~P(X) and no path containing-P(X) may
containX. The chain terminates because the last expression is not a

This is a complex set of requirements especially becausgentencéno terminal]. The chain forX= PN~ P
each of the eight sentences involved is printable. For ex- '

—P(PN(P(P(PN(P.

ample, consistency means thB(P(X)) and ~P(P(X)) PN(PN(~P)—PN(~P(PN(~P)
have no paths in common. The same holds for the pair
P(~P(X)) and~P(~P(X)). However, in addition consis- —~P((PN(~P(~P(PN(~P)

tency demands tha®(P(X)) and P(~P(X)) also have no . _
paths in common. The reason is that any path containin§tops one stage earlier than the chainXer PN(P because
both these sentences must contain bB{X) and ~P(X) the last sentence, which is true by validity asserts the non-
which is not possible. The same argument fails for the paiPrintability of an expression.
~P(P(X)) and ~P(~P(X)) because validity and com- There is even a nonterminating chain. To see thisxset
pleteness mean that any path containing both these sentence§® N(PN. The first few terms are
must contain neitheP(X) nor ~P(X). This is possible.

This shows how the complexity of the requirements of PN(PN(PN)—PN(PN(PN(PN)
validity and completeness for grows if one includes sen- —PN(PN(PN(PN(PN(PN)— - - -
tences of order greater than the first order, the atomic sen-

tences, which is the set considered here. As is shown aboygjs clear that the number of symbols in the successive sen-
the complexity is appreciable even for the eight types ofences grows exponentially with increasing position in the
second-order sentences described above. chain. If N, denotes the number of repetitions PN in the

This also shows quite forcefully that closed inductive i position then one sees that,,;=2(N,—1), where
definitions, which are used so much in mathematical IogicN1:3_

should be used here only with careful examination of the
consequences. To see the problem, note that Smullyan’s
definition of sentencdd 6] restricted to sentences of the type

P(X) and~P(X) can be given agl) All expressionsP(X) It is important to reemphasize that the choice of which
and ~P(X) where X is not a sentence are sentenc#®  expressions are sentences and the particular interpretation as-
atomic sentencgs(2) If X is a sentence so afe(X) and  sumed for the sentences is external to the quantum enumera-
~P(X), (3) Sentences are only as defined above. tion system. It is imposed from the outside. As such the
The problem with this definition resides in the secondrestrictions that validity and completeness place on the dy-
requirement which expresses closure. Here a definition imamics are relative to this interpretation. The quantum sys-
terms of inductive orders is more suitable. For e&echl tem is completely silent on which expressions, if any, are
candidatesentences of ordet+1 are defined as those ex- sentences and how they are to be interpreted. This is the case
pressions of the fornP(X) or ~P(X) whereXis a sentence even forT that are valid and maximally complete. It is a very
of orderk. For eachk=1,2, ... T is k-valid andk-complete  |ong way from valid and complet€ as described here to the
if it is valid and complete for all sentences of ordek. If  dynamics of quantum systems that describe to the maximum
and only if there existT that arek-valid and k-complete  extent possible their own validity and completeness.
should one consider expanding the set to include the candi- Nevertheless the example described here has aspects that
date sentences of ordkr-1 as sentences. may be useful for a description of systems that describe their
The reason for this is that as the sentence order increasesn validity and completeness. It is expected, for instance
the validity and completeness requirements become increaghat the definitions of validity, completeness, and possibly
ingly onerous. For example there may well be mdnthat  consistency will remain. So will some aspects of the defini-
are k-valid andk-complete but are notk( 1)-valid and k tion of truth. It also may be that the notion of printability will
+1)-complete. An example of &ithat is valid and complete remain in more general systems. This follows from the fact
for the first-order(atomig sentences but is not valid and that any quantum system that is telling us something about
complete for the second-order sentences would beTethgt  some other quantum system has to print or enumerate strings
generates paths containing boB(P(X)) and P(~P(X)) of symbols as some type of sequence of physical signals. It
and is valid and complete for the atomic sentences. also has to tell us which groups of signél®., expressions
This situation is even more complex if sentences of theare meaningfu{sentencesand which are meaningless noise.
form PN(X) and~PN(X) are admittedSec. I) even ifXis  If the system cannot print or enumerate anything it cannot
not a sentence. Not only must one deal with the fact thatell us anything.
different sentences denote the same expredsan, P(Y) It should also be noted that there are many other interpre-
andPN(X) whereY = X(X)], but for someX these sentences tations of the sentences in addition to the interpretation de-

VI. DISCUSSION
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scribed here. A very simple one defines the printability ofments may have some important and significant characteris-
expressions as is done here but defines the truth of sentendiss of intelligence. As such these limit systems may be quite
differently. That is P(X) is true [falsg if different from classical computers which are also limits of
Iimn%<\P(n)|Q§|\If(n))>o [=0] and ~P(X) is true quantum systems.

[falsg] if P(X) is false[true]. The same definitions of valid-
ity and completeness can be used to show that consistency is ACKNOWLEDGMENT
a consequence of validity and that the system is incomplete Thjs work was supported by the U.S. Department of En-

if the sentence®N(~PN),~PN(~PN) are included.  ergy, Nuclear Physics Division, under Contract No. W-31-
This interpretation is much simpler than the one examined gg.ENG-38.

in this paper as truth is defined everywhere ang(X) is

true[falsg] if P(X) is false[true]. However, it makes no use APPENDIX

of the quantum-mechanical nature of the enumeration sys-

tem. Also, the path sum description of the evolution plays no In the main texin,m-truth andn,m-validity were defined.

role in this interpretation as there is no path connection beThe valuem=0 was chosen and the limit— oo of n,0-truth

tween the occurrence &(X) or ~P(X) andX. was used to define truth and validity. Another way to gener-
The existence of different interpretations or models of theate limit definitions is to start witm,m-truth and take the

sentences is well known in mathematical logic in that condimit m—co to definen-truth andn-validity. Truth and valid-

sistent axiom systems have many different inequivalent modity are then defined by taking the limit—c. The indepen-

els[15,17. For some axiom systems some models are moreence of the limit definitions on the choice wiffollows if it

useful than others. An example is arithmetic where the stanean be proved that the two limit definitions are the same.

dard model is almost universally used. However there als@hat is one must prove that

exist many nonstandard models of arithmetic which may be

useful for some purposes. lim lim (‘I’(n)|(TT)mQ?<STng|‘I’(n)>

In quantum mechanics the freedom of choice of interpre- N em—e
tations is much greater thgn that in c_Iass_lcaI mecha_mcs. F(_)r = lim (\If(n)|Q§‘< ng,(n». (A1)
example, there are many linear combinations of the five basis N oo S

states|P),|(),])),|~),|0) that also can be used to represent
the five symbols. In addition the choice of linear combina- To see that this is the case, note that the following rela-
tions can be different at different lattice sites. tions hold:
This freedom is similar to the gauge freedom that exists in
quantum field theory in that many different gauge choices <‘lf(n)|(TT)mQQSTng|\If(n))
are possiblg35]. This similarity may be quite important in fmeh b
future developments of the ideas presented here. =(WPM(T)"Qx Q8 jon-21mT" W (N))
In spite of the specialized nature of the example, it does hoh
serve to introduce the use of mathematical logical concepts <(¥(n+m)|Qx Qg ¥(n+m)),
such as truth, validity, consistency, and completeness into
physics in a fashion similar to how they are defined and use#here Egs(9) and(6) have been used along with the com-
in mathematical logid15,17. It is strongly suspected that mutativity OfQQS andQg. Since this is true for eaat,m the
the definitions of these concepts and their use as restrictiongft-hand limit is< the right-hand limit.
on the generators of the dynamics of a sentence generating Conversely for eact the unitarity of T and the above

system is quite general and applies to the situation where theoted commutativity and referenced equations give
system that enumerates sentences is distinct from the system

to which the sentences refer. In this context the existence (\If(n)|Q§‘<SQg|\If(n))
question is very important.
It is also suspected that the classical limit of these systems = (‘P(n)|(TT)mQ?<S on-2] meQ2|\If(n)>
may play an important role. However, the classical limit S
must be taken so that at each step in the limiting process the s(‘1’(n)|Qg(TT)'T‘Q?(S'"mQQ‘If(n)>,

dynamics generator refers to its own validity and complete-
ness to the maximum extent possible. It is speculated thawhich completes the proof. It follows from this that Eqg. Al
this type of limit of quantum robots interacting with environ- also holds ifQ;}S is replaced b)QEXS.
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