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Simple example of definitions of truth, validity, consistency, and completeness
in quantum mechanics

Paul Benioff*
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 19 November 1998!

Besides their use for efficient computation, quantum computers and quantum robots form a base for studying
quantum systems that create valid physical theories using mathematics and physics. If quantum mechanics is
universally applicable, then quantum mechanics must describe its own validation by these quantum systems.
An essential part of this process is the development of a coherent theory of mathematics and quantum-
mechanics together. It is expected that such a theory will include a coherent combination of mathematical
logical concepts with quantum mechanics. That this might be possible is shown here by defining truth, validity,
consistency, and completeness for a quantum-mechanical version of a simple~classical! expression enumera-
tion machine described by Smullyan. Some of the expressions are chosen as sentences denoting the presence
or absence of other expressions in the enumeration. Two of the sentences are self-referential. It is seen that, for
an interpretation based on a Feynman path sum over expression paths, truth, consistency, and completeness for
the quantum system have different properties than for the classical system. For instance, the truth of a sentence
S is defined only on those paths containingS. It is undefined elsewhere. AlsoS and its negation can both be
true provided they appear on separate paths. This satisfies the definition of consistency. The definitions of
validity and completeness connect the dynamics of the system to the truth of the sentences. It is proved that
validity implies consistency. It is seen that the requirements of validity and maximal completeness strongly
restrict the allowable dynamics for the quantum system. Aspects of the existence of a valid, maximally
complete dynamics are discussed. An exponentially efficient quantum computer is described that is also valid
and complete for the set of sentences considered here.@S1050-2947~99!02506-8#

PACS number~s!: 03.67.Hk, 03.65.Bz, 02.10.By
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I. INTRODUCTION

Most of the activity in quantum computing is support
by the possibility that some problems can be solved m
efficiently on quantum computers than on classical mach
@1–4#. These possibilities in turn have generated much w
towards possible physical realization of quantum compu
using such techniques as NMR@5# and trapped ions@6#.
Other work on theoretical@7# and experimental@8# error cor-
rection codes and other methods@9# to make quantum com
puters more robust against decoherence resulting from e
ronmental interference@10# and other influences also is pa
of this activity.

The extreme sensitivity of quantum computers to envir
mental influences presents a barrier to the practical rea
tion of quantum computation@11#. As a result it is not clear
if quantum computers will ever become a practical reality

The same arguments apply to quantum robots@12#. These
are mobile quantum systems that include a quantum c
puter and other ancillary systems on board that interact w
arbitrary environments of quantum systems. The types
environments and their interactions with quantum robots
be quite general. This is unlike the case for quantum co
puters which either seek to minimize environmental infl
ences or consider very special types of environments suc
oracles@13#, data bases@2#, or additional quantum register
@12#.

*Electronic address: pbenioff@anl.gov
PRA 591050-2947/99/59~6!/4223~15!/$15.00
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Another reason for interest in quantum computers a
quantum robots is that they represent a basis for beginn
the description of quantum systems that make decisions
aware of their environment, and have important characte
tics of intelligence. The existence problem for these inte
gent quantum systems is already solved as such system
clude the readers~and hopefully the author! of this paper.

It should be noted that the fact that the only examples
intelligent quantum systems we know of are macroscop
(;1025 degrees of freedom! and may be described class
cally, does not remove the need for a quantum-mechan
description. By study of quantum robots or quantum comp
ers one can find out if such systems must be essentially c
sical and, if so, in what ways a quantum-mechanical desc
tion fails.

From the viewpoint of this paper an essential activity
intelligent systems is the construction of valid physical the
ries by use of mathematics and physics. The details of
validation process are not important here. What is import
is that, if the theory being validated is universally applicab
then the theory is also the same theory that describes
dynamics of the systems carrying out this validation activi

It follows that a universal theory must include a descr
tion in some form of both the mathematical and physi
aspects of its own validation. This suggests the need fo
coherent theory of mathematics and physics together. Su
theory will refer to its own validity and maximal complete
ness to the maximum extent possible. It also will be va
and maximally complete.~The importance of maximal com
4223 ©1999 The American Physical Society
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pleteness to these ideas was realized only when the wor
this paper was done.!

If quantum mechanics is universal, then such a cohe
theory of mathematics and quantum mechanics must ne
sarily include the description of intelligent quantum syste
that can construct and validate the coherent theory. As s
the coherent theory should refer to its own validity and ma
mal completeness to the maximum extent possible, an
should be valid and maximally complete@14#.

It is to be expected that such a theory will incorporate
combine aspects of mathematical logic with quantum m
chanics. This would require use in a quantum-mechan
context of mathematical logical concepts such as syntac
and semantics and their relation to one another@15–17#.
Syntactics deals with expressions as strings of symbols
languages as sets of expressions. This includes the des
tion of constants, variables, terms, formulas, axioms, th
rems, and proofs. Semantics is concerned with the mea
of expressions in a language. This includes concepts suc
interpretations, models, truth, validity, completeness, a
consistency.

There is other work in the literature that recognizes
potential importance of trying to combine mathematical lo
cal concepts with quantum mechanics and of describing
telligent systems in quantum mechanics. The former inclu
work on formulas in first-order logic@18,19#, set theory and
quantum mechanics@20–22#, and other work@23#. The latter
includes work on consciousness and quantum mecha
@29,24,25#.

In this paper steps will be taken towards the use of ma
ematical logical concepts in quantum mechanics by con
ering a quantum-mechanical system~e.g., head or quantum
robot! moving on a lattice of stationary quantum syste
where the states of each lattice system are, in general, li
superpositions of symbol states in some basis. As the sys
moves and interacts with the lattice systems, the system
can be represented as a linear superposition of symbol s
states. If one symbol is chosen as a blank, then the s
corresponds to a linear superposition of sequences or p
of expressions as sequences of nonblank symbols sepa
by one or more blanks.

The main new feature added here is that some of
expressions in the superposition paths will be considere
formal sentences or words that are interpreted as ha
meaning to an outside observer. This is different than
usual state of affairs where the outcomes of measurem
considered as numbers~symbol strings! have meaning to the
observer carrying out the experiment. However, they are
usually considered to be sentences in some language
may also have meaning to an outside observer.

It is necessary to be quite clear about this point. T
paper does not address the more ambitious goal of cons
ing a quantum system that emits sentences that have mea
to the quantum system generating the sentences. Here
selection of which expressions are sentences and how
are to be interpreted is imposed externally. The quan
system knows nothing about which expressions are cho
as sentences or how they will be interpreted.

This is the main reason why the problems raised by Alb
@26,27# are not relevant for this paper. This is the case e
though, as will be seen, the sentences generated will be
or

nt
s-

s
ch
-
it

r
-

al
cs

nd
rip-
o-
ng
as
d

e
-
n-
s

ics

-
d-

s
ar
m

ate
ng
te

ths
ted

e
as
g
e

nts

ot
hat

s
er-
ing
the
ey
m
en

rt
n
in-

terpreted as describing properties of other expressions
erated by the quantum system.

Another point is that, as is well known, computers can
and are used to manipulate sentences of languages and a
systems. An example is a computer that enumerates the t
rems of an axiom system@28#. However, all these compute
operations deal with the syntactic properties only of the l
guages. The fact that these sentences may or may not
meaning is outside the realm of what computers, as c
ceived so far@29#, can do.

Here the emphasis is on the semantic properties of
language expressions or their meaning to an external
server. Following a very simple classical example describ
by Smullyan@16#, the sentences will be interpreted as refe
ring to the appearance or nonappearance of other expres
in the superposition. Based on this interpretation, definitio
of truth, validity, consistency, and completeness for the
of sentences will be given and some of their properties
vestigated.

Since the paper is long, a summary of the sections is
order. Following the description of Smullyan’s example@16#
in the next section, is a description in Sec. III of a quantu
mechanical model of Smullyan’s machine. The model co
sists of a quantum computer or quantum robot moving o
k-ary quantum register as a one-dimensional~1D! lattice of
k-ary qubytes.~This term is used here instead of qubits f
values ofk.2.) Discrete space and time are assumed.
single time-step generator for the dynamics of the ove
quantum system is a unitary operatorT acting on the Hilbert
space of system states. A description of the system com
nents is followed by a description of the properties ofT.
Various projection operators for expressions and comb
tions of expressions are also described. A representatio
the overall state of the evolving quantum enumeration s
tem is given as a Feynman@30# sum over paths or sequence
of expressions.

In Sec. IV a simple subset of the set of sentences in Sm
lyan’s example is chosen. An interpretation is conside
which, for each sentenceS in the subset, is based on th
measurement at some time stepn for the occurrence or non
occurrence ofS followed by a later measurement at time st
n1m for the presence or absence of the expression to wh
S refers.

Based on these measurements, definitions are given
the n,m-truth of the sentences. The main new feature of
interpretation used here is that then,m-truth of S is defined
only on those paths in the path sum for whichS is present at
time n. It is undefined on paths not containingS. Among
other things, this avoids an impossible situation that arise
caseS appears in no paths.

A definition of n,m-true andn,m-false is given for the
domain of definition for then,m-truth of S. Informally if S
states that some expressionXS is present, thenS is n,m-true
@n,m-false# if all @not all# paths containingS at timen con-
tain XS at the later timen1m. If S states thatXS does not
appear thenS is n,m-true @n,m-false# if no paths @some
paths# containingS at timen containXS at timen1m.

The dependence of these definitions onn andm is prob-
lematic because then,m-truth of a sentence is not preserve
under for changes inm or n. This problem is removed in the
definition of truth forS. The definition is asymptotic inn in
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PRA 59 4225SIMPLE EXAMPLE OF DEFINITIONS OF TRUTH . . .
that it says informally thatS is true @false# if it is n,0-true
@n,0-false# in the limit n→`. It turns out that the limit defi-
nition is independent ofm so m can be set equal to 0.

A definition of n,m-validity is given that is quite similar
to that used in mathematical logic@15#. The definition con-
nectsT to then,m-truth of S by sayingT is n,m-valid for S
if the n-printability of S implies thatS is n,m-true. The defi-
nition is satisfying in that it is proved that ifT is n,m-valid
for S and its negation then it isn-consistent forS and its
negation. That is, no path has bothS and its negation in the
region @0,n22# of the register lattice.

The problematic dependence onn,m is removed by a
limit definition of validity. That is,T is valid for S if the
printability of S implies thatS is true. It follows from this
definition that if T is valid for S and its negation thenT is
consistent forS and its negation.

A problem with the definition of validity is that one wa
for T to be valid for all sentences is to never print any se
tences. This possibility is removed by the requirement
completeness.T is complete forS if S is printable~i.e., S
appears in some path!. T is complete ifT is complete for all
sentences; otherwise it is incomplete. Note that unlike
classical case bothS and its negation can be printable; co
sistency demands that they not appear on the same pat
says nothing about their appearance on different paths in
linear superposition.

The set of sentences considered is expanded to includ
self-referential sentence that asserts its own nonprintab
and its negation to show that ifT is valid for these two
sentences then they are not printable. In this caseT is incom-
plete. This is the equivalent here of Go¨del’s incompleteness
theorem@16,15#. This suggests the introduction of maxim
completeness;T is maximally complete if it is complete fo
all sentences except those excluded by consistency req
ments.

The question of the existence ofT that are valid and maxi-
mally complete is discussed in Sec. V. The relations betw
the truth definitions and correlations between the occc
rence ofSandXS are noted. An exponentially efficient quan
tum computer solution to the existence problem is shown
a slight generalization of theT considered here.

The relation between the existence of a valid, maxima
completeT and the set of expressions taken as sentence
shown by expanding the set of sentences to include mor
those in Smullyan’s example. It is seen that one must
careful with closed inductive definitions which are wide
used in mathematical logic. Some are harmless; others,
as that used to define sentences in Smullyan’s example,
nontrivial consequences for quantum-mechanical system

A final discussion section includes the point that there
many other interpretations possible for the sentences. An
ample of another very simple interpretation is briefly d
cussed. It is noted that, due to the freedom in the choice
basis for representing the symbols, many more interpr
tions are possible in quantum mechanics than in class
mechanics.

Another point is that the discussion of the printabili
both of the sentences and the expressions to which they
may be of more general applicability than would appear
this special example. This is based on the fact that any qu
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tum system telling us something must do so by means
emitting or printing sentences with meaning.

II. SMULLYAN’S ENUMERATION MACHINE

Smullyan’s example@16# consists of a~classical! machine
or computer that prints or enumerates expressions consis
of finite nonempty strings of the five symbols;PN(). If an
expression is printable by the machine it will eventually
printed. The norm of any expressionX is defined as the ex
pressionX(X).

The sentences are defined to be any of the four type
expressionsP(X),;P(X),PN(X),;PN(X) whereX is any
expression. The sentences are interpreted to apply to the
meration generated by the machine in the sense thatP(X)
meansX is printable, ;P(X) meansX is not printable,
PN(X) means the norm ofX is printable, and;PN(X)
means the norm ofX is not printable. ThusP(X) is true if
and only if X is printable,;P(X) is true if and only ifX is
not printable,PN(X) is true if and only if the norm ofX is
printable, and;PN(X) is true if and only if the norm ofX is
not printable. Here and in the followingX denotes either an
expression variable or a name for a specific expression
should be clear from context which is meant.

Under this interpretation the sentences refer to dyna
properties of the machine that generates them in that t
describe what the machine does or does not do. More
cisely, the interpretation is assumed to bevalid for the ma-
chine in that any sentence that is printed is true or, equ
lently, no false sentence is printed. Thus ifP(X) is printed,
then X has been or will be printed eventually, and
;PN(X) is printed thenX(X) will not ever be printed.
Similar statements hold for the other two types of sentenc

The implications, printable implies truth~or falseness im-
plies not printable!, which hold if the interpretation is valid
are one sided as the converse implications are false. To
this consider the sentence;PN(;PN) @16#. This sentence
is self-referential in that it refers to its own nonprintabilit
Thus this sentence is true if and only if it itself is not prin
able. Since the interpretation is supposed to be valid for
machine, this is a sentence that is true that the machine
not print. Also the sentencePN(;PN) is not printable as it
is false.

The nonprintability of a true sentence, assuming valid
shows that for this machine printability is not equivalent
truth of the sentences. This is similar to Tarski’s theore
@17,16# which says that in any formal axiom system the s
of true formulas is not definable in the system. Thus the tr
or falseness of the sentences is a property not expressib
the machine for the assumed interpretation. In a similar w
the system is incomplete in that neither the sentencePN
(;PN) nor its negation are printable. This is an example
Gödel’s incompleteness theorem@17,15# if printability is in-
terpreted as provability@16#.

For use in the following two aspects are worthy of no
One can show that the sentences;PN(;PN) andPN(PN)
are the only two self-referential sentences. To see this w
;PN(X)5X(X) and require that the number of symbols
the expressions on both sides of the equal sign be the s
This shows thatX must have three symbols. ForPN(X) one
shows thatX has two symbols.
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4226 PRA 59PAUL BENIOFF
The other aspect is that, as will be seen later, the de
tions of sentences and their meaning is quite complicated
not really necessary for the purposes of this paper. For
reason all sentences of the formPN(X),;PN(X) will be
excluded as will sentences of the formP(X),;P(X) where
X is a sentence. Here sentences will be limited to be of
form P(X),;P(X) whereX is an expression that is not
sentence.

III. A QUANTUM-MECHANICAL MODEL OF AN
ENUMERATION MACHINE

A. Component description

A quantum-mechanical model of a symbol enumerat
machine as described above consists of a multistate hea
quantum robot moving on a lattice or quantum register
5-ary qubytes. The interaction between the quantum ro
and the lattice qubytes is local and includes changing
states of the neighborhood qubytes. For the purposes of
paper it is immaterial whether the whole system is regar
as a multiregister quantum computer or as a quantum ro
or as a multistate head moving on a quantum register@12#.

The set of five symbols represented by the states of e
qubyte are;, P, (,), and 0. The 0denotes the blank sym
bol and will be interpreted as a spacer to separate a strin
five symbols into a string of expressions separated by s
ers. A convenient set of basis states for the quantum reg
is the set of statesus&5 ^ j 52`

` usj& whereusj& denotes sitej
qubyte in a state corresponding to any one of the five s
bols. The stateus& describes an infinite symbol string sta
for which at most a finite number of symbols are nonbla
This limitation, referred to as the 0 state tail condition,
used to keep the Hilbert space of the overall system, inc
ing the register, separable.

The states of the head or quantum robot can be re
sented in the formu l , j & whereu l & denotes any of theL states
of the internal degrees of freedom of the head andu j & is the
lattice position state of the head. For example, if the inter
degrees of freedom of the head or quantum robot consis
anotherm state head moving on a lattice ofn qubits L
5mn(2n). Based on the above a general normalized stat
the overall system has the formC5( l , j ,scl , j ,su l , j ,s& where
the cl , j ,s are arbitrary complex coefficients whose absol
squares sum to unity. Thes sum is over all lattice system
basis states that satisfy the 0 state tail condition.

B. System dynamics

The dynamics of the overall system is given by a unita
step operatorT that represents the changes occurring in
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single time step. IfC(0) is the overall system state at time
thenC(n)5TnC(0) is the state at timen.

In order thatT describe enumerations of symbols on t
qubyte lattice it is necessary to require that the states
qubytes in finite lattice regions become asymptotically~as
n→`) stationary. Any dynamics in which the states of fini
regions of the quantum register are always changing does
represent an enumeration. Mathematically this condition
be expressed by the requirement that the expectation v
^C(n)uPsR

uC(n)& has a limit asn→`. HerePsR
is the pro-

jection operator for the symbol string stateus& in a finite
regionR of the lattice.

To keep things simple this requirement will be satisfi
here by requiringT to describe motion of the quantum rob
in one direction only on the 1D lattice of qubytes. Ea
iteration ofT will move the quantum robot or head one si
to the right. During this motion the internal state of the he
and the states of the qubytes at the original and final lo
tions of the head can be changed.

To this end letT be given by

T5U ^ u. ~1!

Hereu is the unitary shift operator for moving the quantu
robot one lattice site to the right andU is an arbitrary
25L-dimensional unitary operator on theL internal head
states and states of the two lattice qubytes, one at and
just to the right of the head location.

The action ofT on each overall system stateu l , j ,s& is
given by

Tu l , j ,s&5u j 11,sÞ[ j , j 11]&

3 (
l 8,sj8 ,sj 118

u l 8,sj8 ,sj 118 &^ l 8,sj8 ,sj 118 uUu l ,sj ,sj 11&,

~2!

where usÞ[ j , j 11]& is the state of lattice qubytes outside
sites j , j 11 anduu j &5u j 11& has been used.

To be consistent with the 0 state tail condition and t
choice of 0 as the symbol blank or vacuum, the initial st
of interest here isu0,0,0&. This state has the head in intern
state 0 at lattice site 0 and a completely blank quantum r
ister. Inclusion of initial wave packet states of different he
positions and internal states is not necessary here.

An expansion ofTm acting on the initial stateu0,0,0&, in
terms of intermediate states gives
Tmu000&5um,0Þ[0,m]& (
s0 ,•••,sm

(
s18 ,•••,sm8

(
l 1 ,•••,l m

u l m ,s[0,m21] ,sm8 &^ l m ,s[0,m21] ,sm8 uUu l m21 ,s[0,m22]sm218 ,0m&

3^ l m21 ,s[0,m22] ,sm218 ,0muUu l m22 ,s[0,m23]sm228 ,0[m21,m]&•••^ l 1 ,s0 ,s18 ,0[2,m] uUu0,0,0&. ~3!
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Heres[0,b] denotes a string of symbolss0,...,sb in the region
0,1, . . . ,b of lattice sites.

This equation shows that the quantum system with
namics given byT is a satisfactory enumeration system
that once the head passes a lattice site the states o
qubytes in passed regions, denoted by the statesus[0,b]& are
not changed by more iterations ofT. The growth in the
passed lattice region by one site perT iteration is shown by
the increase ofb to b11 in the statesus[0,b]& appearing in
each matrix element. The sum over the unprimeds repre-
sents the completed effect of the passage of the head in
erating the statesus[0,b]&; the sum over primeds gives inter-
mediate changes in qubyte states at the location of the h

C. Some expression projectors

ExpressionsX are defined as consecutive finite strings
any of the four symbolsP,(,),; with 0 excluded withinX.
To separateX from other expressions in a symbol string, it
required that the terminal symbol ofX is followed by at least
one 0. Similarly the initial symbol ofX is preceded by a
least one 0. Leta,b be the initial and terminal symbol sit
location of X where l (X) is the length ofX. One hasa5b
2 l (X)11.

DefineQX,b to be the projection operator for findingX at
lattice sitesa,a11, . . . ,b, 0s at sitesa21,b11, and any
symbol, including the blank, at other lattice sites. The qu
tum robot can be anywhere and in any internal state. T
operator is basic to all that follows.

Let @m,n# with n.m be a lattice region of sitesm,m
11, . . . ,n. DefineQX,[m,n] to be the projection operator fo
finding X somewhere in the region@n,m#. QX,[m,n] is defined
by

QX,[m,n]5 sup
k5m1 l ~X!21

n

QX,k . ~4!

The least upper bound is used becauseQX,k andQX,k8 with
kÞk8 are not necessarily orthogonal.QX,[m,n]50 if the re-
gion is too short to accomodateX.

Let Q¬X,[m,n] be the projection operator for not findingX
anywhere in@m,n#. Clearly

QX,[m,n]1Q¬X,[m,n]51. ~5!

Additional useful properties of these projectors are

QX,[m,n],QX,[m,n11] ,

Q¬X,[m,n].Q¬X,[m,n11] , ~6!

and

QX,[m,n]5 (
j 5 l (X)

n

QX,[m,m1 j ]
1st . ~7!

HereQX,[m,m1 j ]
1st is the projection operator forX occurring in

the region@m,m1 j # with the terminal symbol ofX at site
m1 j , 0s at sitesm1 j 11,m1 j 2 l (X), and noX anywhere
else in @m,m1 j #. QX,[m,m1 j ]

1st is the identity on all other
lattice sites. The superscript 1st denotes the fact thatX does
-

all

en-

ad.

f

-
is

not occur in intervals@m,m1k# with k, j , i.e., the first oc-
currence ofX. Note that the projection operators in thej sum
are pairwise orthogonal.

In what follows projection operators are needed for e
pressions, that, once generated by iterations ofT, are not
changed by further iterations. One way to achieve this is
include projection operators for head positions to the righ
expressions of interest. To this end letQX,[m,n]

h be the pro-
jection operator forX anywhere in the region@m,n# whereX
is separated from other expressions in the region by on
more 0s. If X ends at siten there is a 0 at siten11; if X
begins at sitem, there is a 0 at sitem21. The head is at site
n12. That is

QX,[m,n]
h 5QX,[m,n]Qn12

h , ~8!

whereQn12
h is the projection operator for the head at po

tion n12 and in any of theL internal states. A useful gen
eralization is the projection operator QX,[m,n],k

h

5QX,[m,n]Qn1k12
h for X anywhere in the interval@m,n# and

the headk12 sites beyondn. For non-negativek this pro-
jector has the following commutation relation withT as de-
fined by Eq.~1!:

TQX,[m,n],k
h 5QX,[m,n],k11

h T. ~9!

The limit projectorQX
h defined by

QX
h5 (

n50

`

QX,[0,n]
h ~10!

corresponds toX located anywhere to the right of the origi
and the head at least two sites beyond the terminal symbo
X. The projectors in the sum are pairwise orthogonal beca
of the orthogonality of the head location projectors. Wheth
or not this limit exists is not important here because the lim
operator can always be replaced byQX,[0,n]

h for somen in any
of the matrix elements that occur in this work.

Let X andY be two expressions. Then

QX`Y,[m,n]
h 5QX,[m,n]

h QY,[m,n]
h ~11!

is the projection operator for findingX and Y in the region
@m,n# and the head at siten12. This projection operator is
zero if the region is too small to containX and Y without
overlap. This is the case even ifY is a subexpression ofX
because the projectors include blank symbols preceding
following each expression.

More generally letQ`
k51
m Yk

h
be defined by

Q`
k51
m Yk

h
5Pk51

m QYk

h 5(
j 50

`

Q`
k51
m Yk ,[0,j 22]Qj

h . ~12!

This is the projection operator for finding expressio
Y1 , . . . ,Yk anywhere to the right of the lattice origin and
the left of the head~and a 0 just left of the head!.

It is important to note that the symbols¬,` appearing in
the subscripts are in the metalanguage used to describe
properties of the system. They do not appear in the exp
sions or sentences described here. The operatorQ¬X

h projects
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out all expression path states that do not containX anywhere.
This is the case whetherX is or is not a sentence.

D. Sums over paths of expressions

At this point it is worthwhile to look more closely a
iterations ofT and the generation of an exponentially gro
ing tree of paths or sequences of expressions separate
strings of 0s. To this end define the projection operators

Q05 (
j 52`

`

Q0,j 21Qj
h ,

QÞ05 (
j 52`

`

QÞ0,j 21Qj
h . ~13!

HereQj
h is the projector for the head at sitej, Q0,j 21 is the

projector for a 0 at sitej 21, andQÞ0,j 21 is the projector for
any one of the four symbols(,),P,; at site j 21. It is clear
that Q01QÞ051.

These operators can be used to separateT defined by Eq.
~1! into the sum of two operatorsT0 ,TÞ0:

T5~Q01QÞ0!T5T01TÞ0 . ~14!

The projectors are chosen so that for any overall system s
C, T0C, andTÞ0C show, respectively, a 0 or an expre
sion symbol state for the qubyte at the site last visited by
head. These states have the property that iteration ofT on
these states does not change these qubyte states as ch
are limited to those qubytes at and immediately to the ri
of the head location. Iteration ofT0 generates a spacer sta
th
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as a finite string of 0s, and iteration ofTÞ0 generates a linea
superposition of expression states. Note thatT0 andTÞ0 do
not commute.

Using the fact thatTn5(T01TÞ0)n and collecting to-
gether powers ofT0 andTÞ0 gives

Tn5(
t51

n

(
h1 ,•••,ht

d~(,n!

@~TÞ0
ht T0

ht21TÞ0
ht22

•••T0
h2TÞ0

h1

1T0
htTÞ0

ht21
•••TÞ0

h2 T0
h1!d t,odd1~T0

htTÞ0
ht21

•••TÞ0
h1

1TÞ0
ht T0

ht21
•••T0

h1!d t,even#. ~15!

The t sum is over the number of expressions and interven
spacers, and theh sums are over the length of the expressio
and spacers in an alternation witht spacers and expression
The upper limit of theh sums denotes the requirement th
h11h21•••1ht5n. The above shows that four types o
alternations are possible; they may begin or end with eit
T0 or TÞ0. How they end depends on how they begin a
whethert is even or odd. The two types fort odd are shown
in the first line above multipled by ad function for t odd.
The second line gives the two types fort even.

The above can be used to expandTnu0,0,0& into a Feyn-
man sum@30# over sequences or paths of expression sta
separated by 0s similar to the sum over phase paths us
elsewhere@12#. In order to keep things simple the expansi
will be given for the first alternation type only witht odd and
full account will be taken of the fact that once the he
passes a lattice region no further interactions occur with
qubytes in the region. One has
Tnu0,0,0&5(
t51

n

(
h1 ,•••,ht51

d~(,n!

(
l 1 ,•••,l t

(
s18 ,•••,st8

(
X1 ,X2 ,•••,X[( t11)/2]

u l t ,n,0* X1* 0* X2* 0* ,•••,* 0* X@~ t11!/2#* s8t* 0&

3^ l t ,X@~ t11!/2#* st8uTÞ0
ht u l t21 ,st218 * 0&^ l t21 ,0* st218 uT0

ht21u l t22 ,st228 * 0&

3•••^ l 2 ,0*s28uT0
h2u l 1 ,s18* 0&^ l 1 ,X18* s18uTÞ0

h1 u0,0,0&. ~16!
ra-

re
by
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te
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The l sums are over head or robot internal states, and
s8 sums are over intermediate states~including 0) of qubytes
at the head location. As shown earlier they may be chan
by the next iteration ofT. The X sums are over all possibl
completed expressions of length specified by theh sum
terms. The head position state has been suppressed i
matrix elements. The asterisk denotes concatenation of s
bols and expressions.

Each matrix element shows the state changes resu
from one alternation. For example,T0

hj is active on the lattice
region extending from(k51

j 21hk ~the initial head position! to
(k51

j hk ~the final head position!. It converts the state o
qubytes in the lattice region fromusj 218 * 0& to u0* sj8& where
0 denotes a string ofhj 0s and a sum oversj8 is implied.
~Here the subscriptj is an alternation index, not a lattic
site.!
e

ed

the
m-

ng

The action ofTÞ0
hj differs only in that the final state is

uXj* sj8& whereXj is an expression of lengthhj . Sums over
sj8 andXj are implied. Note that this represents the gene
tion of a linear superposition of lengthhj expression states
in the specified lattice lattice region. Except for futu
entanglements with states of qubytes not yet reached
the head, the expression states are not changed
more iterations of T. This is shown by the fact
that each Xj also appears in the final output sta
u l t ,n,0* X1* 0* X2* 0* , . . . ,* 0* X@(t11)/2#* st8* 0& which
shows the head in the internal statel t at positionn. The state
shows the sequence of expressionsX1 ,X2 , . . . ,X[( t11)/2]

separated by finite strings of 0s. The terminal expression
X[( t11)/2] is complete for those components in which o
more iteration ofT convertsst8 to 0. It is incomplete in the
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other components of the sums of Eq.~16!. The qubytes at
lattice sites not in the region@0,n# are in stateu0&.

Equation~16! shows a sum over all expression sequen
states consistent with the requirement that the lengths o
expressions and spacers sum ton. It includes components fo
one expression of lengthn22 up to components for@n/2#
expressions each containing one symbol. Other compon
with expressions of varying length are also included.

The amplitude associated with each expression sequ
state u l t ,n,0* X1* 0* X2* 0* , . . . ,* 0* X@(t11)/2)]* st8* 0& is
given by a partial sum over products of matrix eleme
shown in Eq.~16!. It depends sensitively on the properties
the 25L dimensional unitary operatorU, Eq. ~1!, which
shows the changes in the lattice system states as the qua
robot moves along the lattice.

It is clear from the above that each expression path m
contain many different expressions ,X,Y,Z, . . . as well as
repetitions of expressions. LetQY,[0,n22]

h be the projection
operator for the expressionY appearing somewhere in th
region @0,n22# and the head at siten in any internal state,
Eq. ~8!. Then the stateQY

hTnu0,0,0&5QY,[0,n22]
h Tnu0,0,0&,

expanded as a sum over expression paths@Eq. ~16!#, contains
all expression path states withY appearing somewhere in th
region @0,n22#. For later times m1n the state
TmQY,[0,n22]

h Tnu0,0,0&, expanded as a path sum, shows
sum over expression path states withn1m symbols, includ-
ing blanks, that have in common the appearance ofY some-
where in the region@0,n22#.

IV. TRUTH, VALIDITY, CONSISTENCY,
AND COMPLETENESS

A. Sentences and their interpretation; truth

So far expressions have been discussed without any m
tion of which ones are sentences and how the sente
should be interpreted. Here sentences are those expres
with the formP(X),;P(X) whereX is any expression tha
is not a sentence. In the followingS will often be used to
denote a sentence andXS the expression to which the sen
tence refers.

A sentence S is defined to be n-printable if
^0,0,0u(T†)nQS

hTnu0,0,0&.0. It is not n-printable if the
matrix element equals 0. S is printable if
lim

n→`
^0,0,0u(T†)nQS

hTnu0,0,0&.0. Otherwise it is not

printable. QS
h is given by Eq.~10! with X5S. The limit

clearly exists because the matrix element is nondecreasin
n increases and is real, positive and bounded above by

The definition of printability means that ifS is printable it
will appear somewhere in the sum of Eq.~16!. The limit n
→` is needed because, in general, there is no upper bo
on when a sentence must first appear in the different pa
Conversely a sentence is not printable if it never appear
any path.

There are many possible ways to interpret the sentencS.
Here the interpretation ofP(X), stated informally, is that al
paths in the path sum of Eq.~16! that containP(X) also
containX. The informal interpretation of;P(X) is that no
path containing;P(X) also containsX. P(X) or ;P(X) are
true if their informal meaning statements are true. The g
of the following is to make precise these informal expre
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sions of the meaning and truth of the sentences.
A feature introduced by these interpretations is that

meaning of a sentenceS is limited to those paths containin
S. Shas no meaning in paths not containingS. It says nothing
about the presence or absence ofXS in these paths. This is a
consequence of the presence of many paths in the path
of Eq. ~16!. Classically, where there is just one path, th
partial definability is reflected in the fact that, for the inte
pretation used here, any sentence not appearing in the
meration path also has no meaning for the expressions in
path.

The meaning ofS is closely connected to the carrying o
of measurements on the quantum enumeration system.
pose one carries out a measurement of the observableSQS

h

1¬SQ¬S
h at timen on the stateC(n)5Tnu0,0,0& andm time

steps later carries out a measurement of the observ
XSQXS

h 1¬XSQ¬XS

h on the component stateQS
huC(n)&. This

can be described by adding two ternary qubytes to the qu
tum enumeration systems to record the outcomes of th
operations. The qubyte statesu i &S ,u i &XS

denote the initial or
no measurement state and the other states denote the po
two outcomes of each measurement.

The overall process is described by unitary operatorsUS

andUXS that establish correlations between the states of
enumeration system and the qubytes. The result of carry
out the two measurements is given by

UXSTmUSC~n!u i &Su i &XS
5QXS

h TmQS
hC~n!u1&Su1&XS

1Q¬XS

h TmQS
hC~n!u1&Su0&XS

1TmQ¬S
h C~n!u0&Su i &XS

. ~17!

In the above the amplification or decoherence by inter
tion with the environment@10# necessary to complete th
measurement process is ignored as it is not needed her
Peres’ language@31# the above is a premeasurement.

The limitation of theXS measurement to component stat
containingS is made because extension of the measurem
of XS to component states not containingS is not needed
here. However, if desired, the extension can be included.
only effect is to add an additional term to Eq.~17!. No con-
clusions are affected.

In order to keep things simple it has been assumed in
above that the projection operatorsQX

h andQ¬X
h whereX is

an expression or sentence can be measured in one time
This is unrealistic as the measurement involves searching
X in an arbitrarily large region of the lattice. A more realist
approach would be to replace this one step operation wi
measurement described as a multistep search task carrie
by a quantum robot moving along the lattice of qubytes@12#.
For each timen the search would terminate as a finite latti
region @0,n22# only needs to be searched. However t
number of steps in the search is polynomial inn.

Eq. ~17! clearly supports the idea that for a measurem
at time n the meaning or interpretation ofS is limited to
those component path states in whichSoccurs somewhere in
the region@0,n22#. S has no meaning for those compone
states in whichS occurs nowhere in@0,n22#. This would
remain the case even if the measurement ofXS were ex-
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tended to paths not containingS. The equation also show
that for the measurement at timen the domain of states fo
which Shas meaning is the Hilbert space spanned by the
of normalized states TmQS

hC(n)/iQS
huC(n)&i for m

50,1, . . . .This Hilbert space is empty ifS has more than
n22 symbols.

This Hilbert space is also the state space or domain
truth definition for the sentenceSat timen. It corresponds to
the states shown in the first two right-hand terms of Eq.~17!.
et

of

In other words, the truth at timen for a sentenceS is defin-
able on the ~unnormalized! states TmQS

hC(n) for m
50,1, . . . . It is notdefinable on the statesTmQ¬S

h C(n).
Many definitions ofn,m-truth for the sentences are po

sible. Heren,m-truth will be defined as follows:S5P(X) is
n,m-true @n,m-false# if the amplitude of the second right
hand term of Eq.~17! 50@.0#. S5;P(X) is n,m-true
@n,m-false# if the amplitude of the first right-hand term
50@.0#. That is
he
l
sure-

of truth
tum-
o reason

s the

e
g to
d

on

on
P~X!
is n,m-true

is n,m-false
if ^C~n!uQP(X)

h ~T†!mQ¬X
h TmQP(X)

h uC~n!&
50

.0,
~18!

;P~X!
is n,m-true

is n,m-false
if ^C~n!uQ;P(X)

h ~T†!mQX
hTmQ;P(X)

h uC~n!&
50

.0.
~19!

These definitions follow the practice in mathematical logic@15# of defining the truth of formal sentences relative to t
informal truth of the statements that are the interpretation of the sentences. Here the interpretation ofP(X) is the mathematica
statement̂C(n)uQP(X)

h (T†)mQ¬X
h TmQP(X)

h uC(n)&50 that describes a property of the quantum system shown by the mea
ment of Eq.~17!. P(X) is n,m-true @n,m-false# if the mathematical statement is true@false# for the system. Similarly;P(X)
is n,m-true @n,m-false# if the statement̂C(n)uQ;P(X)

h (T†)mQX
hTmQ;P(X)

h uC(n)&50 is true@false# for the system.
The above definitions also have different properties from the usual definitions. Besides the need for a state domain

definition, it is not the case thatP(X) is n-true if ;P(X) is false and conversely. This is a consequence of the quan
mechanical nature of the enumeration system with the presence of multiple paths in the path sum. In fact there is n
why these sentences cannot both ben,m-true on their respective domains of definition.

An equivalent definition ofn,m-truth follows from the fact thatQX
h andQ¬X

h are orthogonal and sum to unity:

P~X!
is n,m-true

is n,m-false
if ^C~n!u~T†!mQX

hTmQP(X)
h uC~n!&2^C~n!uQP(X)

h uC~n!&
50

,0,
~20!

;P~X!
is n,m-true

is n,m-false
if ^C~n!u~T†!mQ¬X

h TmQ;P(X)
h uC~n!&2^C~n!uQ;P(X)

h uC~n!&
50

,0.
~21!

The fact that the projectorsQS
h and (T†)mQXS

h Tm commute has been used to obtain these expressions.

The connection of these definitions ofm,n-truth to the measurement is shown by the fact that the definition correlate
n,m-truth of S to the amplitudes of states appearing in the first two terms of Eq.~17!. Also the domains of definability and
undefinability ofn,m-truth are shown in the equation.

These definitions also illustrate another reason for use of a domain of definability for the truth of a sentence at timn. For
the special case where the probability of findingS at time n is 0 then the normalized measurement state correspondin
finding Sat n, QS

hC(n)/iQS
hC(n)i is undefined. In addition, if the definitions ofn,m-truth also applied for this case, it woul

be impossible forS to ben,m-false. This untenable situation is avoided by the use of domains of definability.
A problem with these definitions is their dependence onm andn. To see this letT be such that there is no upper bound

the distance of first appearance ofXS from the origin. That is, for eachm there exist paths in Eq.~16! such that for some
m8.m XS is not in@0,n1m22# but is in@0,n1m822#. This means thatP(X) can ben,m-false andn,m8-true. Also;P(X)
can ben,m-true andn,m8-false. This follows from Eq.~6!.

It is also the case thatn,m-truth depends onn. For example,T may be such thatS is n,m-true but isn8,m-false for some
n8.n. This is possible because asn increases, extensions and branching of paths occurs. SinceS may first occur in some of
these extensions or branches, it is possible forS to ben8,m-false on some of these extensions. Additional dependencen
arises from the above argument form dependence because the size of the region for theXS measurement, Eq.~17!, depends
on bothn andm.
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The definition of truth should be such as to exclude the dependence onn andm. It should also maximize the domain o
definability of truth for a sentence. These goals are attained by taking the limitn→` in Eq. ~17! and in the definitions of
n,m-truth. The desired maximization is achieved because^C(n)uQS

huC(n)& is a nondecreasing function ofn bounded above
by 1.

In addition, for the limit definition, the value ofm is arbitrary as the limit values of the matrix elements are independe
m. This is shown in the Appendix. Because of this the value ofm will be chosen to be 0. Based on these aspects true and
are defined as follows for the two types of sentences:

P~X!
is true

is false
if lim

n→`
^C~n!uQ¬X

h QP(X)
h uC~n!&

50

.0,
~22!

;P~X!
is true

is false
if lim

n→`
^C~n!uQX

hQ;P(X)
h uC~n!&

50

.0.
~23!

Equivalent definitions corresponding to those of Eqs.~20! and ~21! are

P~X!
is true

is false
if lim

n→`
^C~n!uQX

hQP(X)
h uC~n!&2 lim

n→`
^C~n!uQP(X)

h uC~n!&
50

,0,
~24!

;P~X!
is true

is false
if lim

n→`
^C~n!uQ¬X

h Q;P(X)
h uC~n!&2 lim

n→`
^C~n!uQ;P(X)

h uC~n!&
50

,0.
~25!
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These definitions remove then dependence in that if a sen
tenceS is n,0-true for eachn then it is true. The converse
namely that ifS is true, it isn,0-true for eachn, is true for
S5;P(X). This follows from Eq.~23! as the matrix ele-
ment is nondecreasing asn increases. The converse is n
necessarily true forS5P(X). However, one can show from
Eq. ~7! and the material in the Appendix that ifP(X) is true
then it isn,`-true for eachn.

B. Validity and consistency

The definitions ofn,m-truth and truth for the sentence
given above clearly depend on the system dynamicsT. How-
ever they place no restrictions onT. Each sentence with a
nonempty domain ofn,m-truth definition ~i.e., n-printable!
can ben,m-true or n,m-false, ~or true or false! on the do-
main. The main idea here is to use validity to connectT to
the truth of the sentences.

Informally the idea is thatT is n,m-valid for a sentenceS
if S is in factn,m-true on its domain of definition. That is, a
paths containingP(X)@;P(X)# in the region@0,n22# also
contain@do not contain# X. This is captured in the following
definition:

Definition 1: T is n,m-valid for a sentence S if S is no
n-printable or S is n-printable and n,m-true on its domain
definition.

An equivalent statement of the definition is thatT is
n,m-valid for S if n-printability of S implies that S is
n,m-true on its domain of definition. As noted the domain
nonempty if and only ifS is n-printable.
f

This definition is quite similar to that used in mathema
cal logic where a sentence is valid for some interpretatio
it is is true for the interpretation@15,17#. ~It is also similar to
the notion of accuracy or correctness used by Smull
@16#.! The main difference is that here the domain of defi
ability of n,m-truth plays an important role. Note that forT
as defined here no sentence with more thann22 symbols is
n-printable. However,T is n,m-valid for all these sentences

The definition ofn,m-validity for S is closely connected
with the measurement ofS and XS , Eq. ~17!. If S is
n-printable andS5P(X)@S5;P(X)#, then then,m-validity
of T for Smeans that the second@first# right-hand term of Eq.
~17! is 0.

The equation also shows thatT is n,m-valid for S if the
probability thatSdoes not appear in the region@0,n22# plus
the probability thatS appears in the region and isn,m-true
on its domain of definition equals 1. In terms of matrix el
ments for the two types of sentences this is expressed b

for P~X! ^C~n!u~T†!mQX
hTmQP(X)

h uC~n!&

1^C~n!uQ¬P(X)
h uC~n!&51,

for ;P~X! ^C~n!u~T†!mQ¬X
h TmQ;P(X)

h uC~n!&

1^C~n!uQ¬;P(X)
h uC~n!&51. ~26!
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The definition ofn,m-validity for Scan be extended to a
sentences.T is n,m-valid if it is n,m-valid for all sentences
S. In terms of single sentence measurements describe
Eq. ~17! if T is n,m-valid then Eqs.~26! hold for each sen-
tence. Measurements can be limited to just those sente
that will fit in the region @0,n22# as T is automatically
n,m-valid for all other sentences because they are
n-printable.

It may be possible to combine all the single sentence m
surements into one measurement observable and allXS mea-
surements into another observable. If this is the case
n,m-validity can be described in terms of one type of me
surement. These observables are much more com
than those in Eq.~17!. The complexity is shown even
for the measurement for just two sentencesS andS8. In this
case the left-hand side of Eq.~17! is replaced by
UXS8UXSTmUS8USC(n)u i &S8u i &Su i &XS

u i &XS8
. The right-hand

side is a sum of nine terms, four for components contain
both S and S8 as each sentence can ben,m,-true or
n,m-false, two for each of the two components containi
just one of the two sentences in whichn,m-truth is defined
for the sentence appearing, and one for components con
ing neither sentence. For this term,n,m-truth is undefined
for both sentences. Note that the two unitary operators forXS
andXS8 commute as do the two forS andS8.

If T is n,m-valid for both these sentences, then t
n,m-truth conditions give the result that at most four of t
the nine terms are nonzero. These are the terms that exc
paths showing then,m-falseness of either sentenc
As a specific example letS5P(X) and S85;P(Y).
If T is n,m-valid for these two sentences, then only fo
terms may be nonzero. The term of most intererst her
that containing all paths in which bothP(X) and ;P(Y)
appear and are n,m-true. This is the state
QX`¬Y

h TmQP(X)`;P(Y)
h C(n)u1&P(X)u1&;P(Y)u1&Xu0&Y . Con-

servation of probability and the unitarity ofT gives the re-
sult:

^C~n!u~T†!mQX`¬Y
h TmQP(X)`;P(Y)

h uC~n!&

5^C~n!uQP(X)`;P(Y)
h uC~n!&.

This equation is interesting because ifX5Y then the left-
hand matrix element is 0 because the projection oper
QX`¬X

h 50. Thus the following theorem has been proven
Theorem 1: Let T be n,m-valid for P(X) and for;P(X).

Then^C(n)uQP(X)`;P(X)
h uC(n)&50.

This theorem is satisfying since it shows that ifT is
n,m-valid for the sentencesP(X) and ;P(X), then these
sentences aren-consistent forT. Here a sentence and its n
gation are defined to ben-consistentfor T if no path in the
path sum of Eq.~16! contains both the sentence and its n
gation in the lattice region @0,n22#. That is
^C(n)uQP(X)`;P(X)

h uC(n)&50.
It is clear thatn,m-validity of T for P(X) and;P(X) is

a sufficient condition forT to ben-consistent for these sen
tences because without the condition ofn,m-validity for T
there is no reason why a sentence and its negation could
by

es

t

a-

en
-
ex

g

in-

de

is

or

-

ot

both appear in some path. It is not a necessary condi
since it is possible forT to ben-consistent but notn,m-valid
for these two sentences. Note thatn,m-validity of T for
P(X) and;P(X) does not prevent them from appearing
some paths~i.e., both can ben-printable!. They cannot, how-
ever, both appear on the same path.

The dependence ofn,m-truth onn andm also results in a
similar dependence forn,m-validity. For example if S
5P(X) then T may ben,m8-valid for S but not n,m-valid
for Swherem8.m. If S5;P(X) thenT may ben,m-valid
for S but notn,m8-valid for S. A similar dependence hold
for changes inn.

As was done for n,m-truth, this undesirable
n,m-dependence can be removed by settingm50 and taking
the limit n→`. To this end one definesT to be valid forSby
the following definition.

Definition 2: T isvalid at S if either S is not printable or
S is printable and true on its domain of truth definition.

An equivalent statement of the definition is thatT is valid
for S if printability imples truth on the domain of truth defi
nition. Here printability is defined as in Sec. IV A b
lim

n→`
^C(n)uQS

huC(n)&.0 and truth by Eqs.~22! and~23!

@or Eqs.~24! and ~25!#.
The definition of validity for a sentence can be extend

to all sentences by definingT to be valid if T is valid for all
sentences. That isT is valid if for all sentencesSprintability
of S implies thatS is true on its domain of definition. This
definition can be given in an equivalent form based on E
~26!:

Definition 3: T isvalid if for all expressions X that are
not sentences,

lim
n→`

^C~n!uQX
hQP(X)

h uC~n!&1 lim
n→`

^C~n!uQ¬P(X)
h uC~n!&51,

lim
n→`

^C~n!uQ¬X
h Q;P(X)

h uC~n!&

1 lim
n→`

^C~n!uQ¬;P(X)
h uC~n!&51. ~27!

Note that the limitn→` commutes with the sum in Eq.~27!.
The definition ofn-consistency can also be extended

the limit n→` as follows:
Definition 4: T is consistentfor P(X) and ;P(X) if

lim
n→`

^C(n)uQP(X)`;P(X)
h uC(n)&50.

Since the matrix element in this definition is nondecre
ing asn increases, this definition is equivalent to definingT
to be consistent forP(X) and ;P(X) if for each n, T is
n-consistent for these two sentences.

It should be noted that the use of consistency here se
different from that used in the consistent histories theory
quantum mechanics@32–34#. Here consistency refers t
properties of certain pairs of sentences generated by a q
tum system. In the consistent histories approach consiste
is a property of projectors on a tensor product of Hilb
spaces associated with multitime events or histories o
quantum system@32#.

One can use the above definition of consistency and
definition of validity to obtain the following theorem:
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Theorem 2: If T is valid for P(X) and;P(X) then T is
consistent for P(X) and;P(X).

To prove this theorem note that by the properties of
projection operators the following two relations hold:

lim
n→`

^C~n!uQX
hQP(X)

h Q;P(X)
h uC~n!&

< lim
n→`

^C~n!uQX
hQ;P(X)

h uC~n!&,

lim
n→`

^C~n!uQ¬X
h QP(X)

h Q;P(X)
h uC~n!&

< lim
n→`

^C~n!uQ¬X
h QP(X)

h uC~n!&.

SinceT is valid for these two sentences, by Eqs.~22! and
~23!, the right-hand sides of these two inequalities are b
equal to 0. Addition of these two inequalities and noting th
the limits commute with the sum, and usingQX

h1Q¬X
h 51

gives lim
n→`

^C(n)uQP(X)
h Q;P(X)

h uC(n)&50 which proves

the theorem.
T is said to be consistent if for all expressionsX that are

not sentences,T is consistent forP(X) and ;P(X). It is
clear from the above that ifT is valid then it is consistent.

C. Completeness

As noted if T is valid then each sentence is either n
printable or it is printable and true. Thus anyT which does
not print any sentence at all is valid. SuchT are easy to
construct as it is easily decidable which expressions are
tences.

Completeness is used to remove this possiblity:
Definition 5: T iscomplete for a sentenceS if S is print-

able. T iscompleteif it is complete for all sentences. Othe
wise it is incomplete.

As is known from the Go¨del incompleteness theorem
@15–17# there exist sets of sentences with axioms that
incomplete. The same situation can occur here. To see
add to the set of sentences@of the form P(X) and;P(X)#
the two sentences, in Smullyan’s example,PN(X) and
;PN(X) whereX5;PN. For this value ofX ;PN(X) is
self-referential.

For the interpretation of the sentences used here~and ad-
dition of N to the set of expression symbols! it is easy to
prove the following theorem:

Theorem 3: Let T be valid for the sentences;PN(;PN)
and PN(;PN). Then neither of these sentences is printab

To prove this theorem assume;PN(;PN) is printable.
SinceT is valid for this sentence it must then be true. By t
definition of truth, Eq.~23!,

lim
n→`

^C~n!uQ¬;PN(;PN)
h Q;PN(;PN)

h uC~n!&

5 lim
n→`

^C~n!uQ;PN(;PN)
h uC~n!&.
e

h
t

t

n-

e
is

.

Since the two projection operators appearing in the left-h
matrix element are orthogonal, the matrix element is zero
eachn. Thus both matrix elements in the equality must eq
0 which contradicts the assumption that;PN(;PN) is
printable. So this sentence is not printable.

For the sentencePN(;PN) the properties of the projec
tion operators give the result

lim
n→`

^C~n!uQPN(;PN)
h Q;PN(;PN)

h uC~n!&

< lim
n→`

^C~n!uQPN(;PN)
h uC~n!&.

SinceT is valid for this sentence, then either the right-ha
matrix element50 or it is .0 and equals the left-han
matrix element~by the definition of truth!. But, by theorem 2
on consistency, this is impossible. Thus the right hand ma
element is zero in either case, soPN(;PN) is also not
printable, which proves the theorem.

It follows that for this expanded set of sentencesT is not
complete. Note that this holds for allU in the definition ofT,
Eq. ~1!. This suggests that one define a concept of maxim
completeness. A validT is maximally completeif it is com-
plete for all sentences subject only to the requirements
consistency. For the interpretation considered here for
sentences, all uses of consistency including theorem pro
ultimately depend on the fact that the projection operat
QX

h andQ¬X
h are orthogonal for any expressionX.

The other self-referential sentence,PN(PN) ~Sec. II!, can
be included at no cost. The reason is that if it is printable i
trivially true. Thus the requirement thatT be valid for
PN(PN) imposes no restrictions onT. Completeness for
PN(PN) just requires that the sentence be printable.

V. THE EXISTENCE OF VALID AND MAXIMALLY
COMPLETE T

The above considerations raise the issue of the existe
of step operators~or generators of the dynamics! T that are
valid and maximally complete for the set of sentences a
interpretation considered here. This is not trivial because
clear from the above that these requirements are quite res
tive. ~For the set of sentences used here maximal compl
ness is equivalent to completeness.!

It is an open question if there existT satisfying Eq.~1!
that are valid and complete for the sentences considered h
One aspect is that the requirement that the sentences be
requires the presence of strong correlations between the
currences of a sentenceS and the expressionXS . If S5
;P(X) then;P(X) is true if and only if there is a complet
negative correlation between the occurrence of;P(X) and
X no matter how far apart they are.P(X) is true if and only
if there is a complete positive correlation between the occ
rence ofP(X) andX. However, unlike the case for;P(X),
this correlation can be of finite length because onceX occurs
in a path containingP(X) the truth definition is satisfied fo
all paths that are extensions of the path segment contai
X.

These correlation requirements are shown by Eqs.~24!
and ~25!. In essence, these equations show the deviat
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from the condition of no correlation imposed by the tru
definitions. No correlation is expressed by

lim
n→`

^C~n!uQXS

h QS
huC~n!&5 lim

n→`
^C~n!uQXS

h uC~n!&

3^C~n!uQS
huC~n!&.

If one relaxes the requirement thatT satisfy Eq.~1! to
allow limited backward motion, then there exist both clas
t
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cal and quantum computer solutions to the existence q
tion. The quantum computer~or robot! proceeds as follows
For each n51,2, . . . ,2M, generate the superpositio
1/A2(u0&a1u;&a)uP(X)0& [a11,b] of states of all P(X),
;P(X) whereX is any lengthn expression. Then for eachX
correlate whetherX is @is not# a sentence~a decidable prop-
erty! with the statesu1&q@ u0&q] of a qubit q. Change an ad-
jacent state ofn 0s to X only for the sentenceP(X) and
only for thoseX that are not sentences. Increasen by 1 and
move to the next region of 2(n11)15 blank sites.

For eachn the overall state transformations are given b
u0&qu0& [a,b] u0& [b,c]→
1

A4n (
X51

4n

u0&q

~ u0&a1u;&a)

A2
uP~X!0& [a11,b] u0& [b,c]

→
1

A4n S (X
¬S

u0&q1(
X

S

u1&qD ~ u0&a1u;&a)

A2
uP~X!0& [a11,b] u0& [b,c]

→
1

A4n (
X

¬S

u0&q

~ u0P~X!0& [a,b] uX& [b,c]1u;P~X!0& [a,b] u0& [b,c] )

A2

1(
X

S

u1&q

~ u0&a1u;&a)

A2
uP~X!0& [a11,b] u0& [b,c] . ~28!
t,
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Here b5n142a and c5n212b. The sums(X
¬S ,(X

S are
over all lengthn expressions that are not (¬S) or are ~S!
sentences. The last line shows that nothing is done to the(X

S

components. The number of lengthn expressions that are no
sentences is 4n2D whereD54n2314n24. The quantum ro-
bot starts at positiona in internal stateu0& and ends in state
u0& at positionc11 to repeat the cycle forn11. The value
of M reflects the presence of a quantum computer wit
register of at leastM qubits on board the quantum robot.
this way the quantum robot has with it a record of the act
value ofn.

This quantum computer is exponentially efficient in th
the number of steps required to generate the final state f
T that is valid and complete for all sentencesS where the
length of XS is <2M is polynomial in (2M11)2M/2. The
efficiency is shown by the fact that the number of senten

included in the final state is given byN5(n51
2M

2(4n2D).
This efficiency is lost if one wants to determine by me

surement ofX values if T is in fact valid and complete a
'N repetitions of the preparation and measurement of
state shown above would have to be carried out. A m
more promising approach is to carry out a Fourier transfo
over the qubytes in region@a13,b21# that give the argu-
ment X of P(X),;P(X) in the (X

¬S final-state part of Eq.
~28!. This gives the state

1

4nA2
(
Y50

4n21

(
X

¬S

u0&qe2p iYX/4n
@ u0P~Y!0& [a,b] uX& [b,c]

1u;P~Y!0& [a,b] u0& [b,c] ] .
a

e

t
r a

s

-

e
h

Here the probability distribution of 0P(Y) as a function ofY
is completely different from that of;P(Y). For 0P(Y) the
distribution is uniformly distributed over allY whereas for
;P(Y) the distribution is to a good approximation@of order
(D/4n)2# a d function atY50. ~Here, depending on contex
expressions are either strings ofn symbols or 4-ary num-
bers!. Since these probability distributions are so differen
is likely that, as is the case for other quantum algorith
@1,3#, they can be determined to good accuracy in polyno
ally ~in n) many repetitions of preparation and measurem
of 0P(Y) and;P(Y).

This quantum computer solution for the existence pro
lem refers to an example for which the same quantum sys
generates both the sentences and the expressions to w
the sentences refer. Of more general interest is the c
where the quantum system generating the sentences is
tinct from the quantum system to which the sentences re
This is the usual case in physics where the system carr
out measurements is distinct from the system being m
sured. Study of these systems is deferred to future work

It is worth noting that the existence problem is strong
related to the set of expressions admitted as sentences.
pose, following Smullyan@16#, one expands the set of sen
tences by dropping the requirement thatX is not a sentence
This introduces many complexities into the discussion. S
pose for exampleT is valid and maximally complete for al
sentences in the expanded set. Then the sentenceP„P(X)… is
printable and true which means thatP(X) is printable and
also true. This means informally that all paths containi
P„P(X)… also containP(X) and all paths containingP(X)
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containX. Of courseP(X) may be present in paths not co
taining P„P(X)….

Application of the same argument toP„;P(X)… gives the
result that all paths containing this sentence must con
;P(X) and none of the paths containing;P(X) may con-
tain X. In a similar fashion, none of the paths containi
;P„P(X)… may containP(X) and all paths containingP(X)
containX; for ;P„;P(X)… no path containing this sentenc
may contain;P(X) and no path containing;P(X) may
containX.

This is a complex set of requirements especially beca
each of the eight sentences involved is printable. For
ample, consistency means thatP(P(X)) and ;P„P(X)…
have no paths in common. The same holds for the p
P„;P(X)… and;P„;P(X)…. However, in addition consis
tency demands thatP„P(X)… and P„;P(X)… also have no
paths in common. The reason is that any path contain
both these sentences must contain bothP(X) and ;P(X)
which is not possible. The same argument fails for the p
;P„P(X)… and ;P„;P(X)… because validity and com
pleteness mean that any path containing both these sente
must contain neitherP(X) nor ;P(X). This is possible.

This shows how the complexity of the requirements
validity and completeness forT grows if one includes sen
tences of order greater than the first order, the atomic s
tences, which is the set considered here. As is shown ab
the complexity is appreciable even for the eight types
second-order sentences described above.

This also shows quite forcefully that closed inducti
definitions, which are used so much in mathematical log
should be used here only with careful examination of
consequences. To see the problem, note that Smully
definition of sentences@16# restricted to sentences of the typ
P(X) and;P(X) can be given as~1! All expressionsP(X)
and ;P(X) where X is not a sentence are sentences~the
atomic sentences!, ~2! If X is a sentence so areP(X) and
;P(X), ~3! Sentences are only as defined above.

The problem with this definition resides in the seco
requirement which expresses closure. Here a definition
terms of inductive orders is more suitable. For eachk11
candidatesentences of orderk11 are defined as those ex
pressions of the formP(X) or ;P(X) whereX is a sentence
of orderk. For eachk51,2, . . . ,T is k-valid andk-complete
if it is valid and complete for all sentences of order<k. If
and only if there existT that arek-valid and k-complete
should one consider expanding the set to include the ca
date sentences of orderk11 as sentences.

The reason for this is that as the sentence order incre
the validity and completeness requirements become incr
ingly onerous. For example there may well be manyT that
are k-valid andk-complete but are not (k11)-valid and (k
11)-complete. An example of aT that is valid and complete
for the first-order~atomic! sentences but is not valid an
complete for the second-order sentences would be anyT that
generates paths containing bothP„P(X)… and P„;P(X)…
and is valid and complete for the atomic sentences.

This situation is even more complex if sentences of
form PN(X) and;PN(X) are admitted~Sec. II! even ifX is
not a sentence. Not only must one deal with the fact t
different sentences denote the same expression@e.g., P(Y)
andPN(X) whereY5X(X)#, but for someX these sentence
in
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generate chains of sentences. A very simple chain of leng
results fromX5P. If PN(P) is printable and true so is
P(P). SinceP(P) is a sentence it is also printable and tru
The chain stops here asP is not a sentence.

OtherX give longer chains. ForX5PN(P one has

PN~PN~P!→PN~P~PN~P!→P~P~PN~P~P~PN~P!

→P~PN~P~P~PN~P.

The chain terminates because the last expression is n
sentence@no terminal!#. The chain forX5PN;P

PN~PN~;P!→PN~;P~PN~;P!

→;P~~PN~;P~;P~PN~;P!

stops one stage earlier than the chain forX5PN(P because
the last sentence, which is true by validity asserts the n
printability of an expression.

There is even a nonterminating chain. To see this seX
5PN(PN. The first few terms are

PN~PN~PN!→PN~PN~PN~PN!

→PN~PN~PN~PN~PN~PN!→•••.

It is clear that the number of symbols in the successive s
tences grows exponentially with increasing position in t
chain. If Nn denotes the number of repetitions ofPN in the
nth position then one sees thatNn1152(Nn21), where
N153.

VI. DISCUSSION

It is important to reemphasize that the choice of whi
expressions are sentences and the particular interpretatio
sumed for the sentences is external to the quantum enum
tion system. It is imposed from the outside. As such
restrictions that validity and completeness place on the
namics are relative to this interpretation. The quantum s
tem is completely silent on which expressions, if any, a
sentences and how they are to be interpreted. This is the
even forT that are valid and maximally complete. It is a ve
long way from valid and completeT as described here to th
dynamics of quantum systems that describe to the maxim
extent possible their own validity and completeness.

Nevertheless the example described here has aspects
may be useful for a description of systems that describe t
own validity and completeness. It is expected, for instan
that the definitions of validity, completeness, and possi
consistency will remain. So will some aspects of the defi
tion of truth. It also may be that the notion of printability wi
remain in more general systems. This follows from the f
that any quantum system that is telling us something ab
some other quantum system has to print or enumerate str
of symbols as some type of sequence of physical signal
also has to tell us which groups of signals~i.e., expressions!
are meaningful~sentences! and which are meaningless nois
If the system cannot print or enumerate anything it can
tell us anything.

It should also be noted that there are many other interp
tations of the sentences in addition to the interpretation
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scribed here. A very simple one defines the printability
expressions as is done here but defines the truth of sente
differently. That is P(X) is true @false# if
lim

n→`
^C(n)uQX

h uC(n)&.0 @50# and ;P(X) is true

@false# if P(X) is false@true#. The same definitions of valid
ity and completeness can be used to show that consisten
a consequence of validity and that the system is incomp
if the sentencesPN(;PN),;PN(;PN) are included.

This interpretation is much simpler than the one examin
in this paper as truth is defined everywhere and;P(X) is
true @false# if P(X) is false@true#. However, it makes no us
of the quantum-mechanical nature of the enumeration
tem. Also, the path sum description of the evolution plays
role in this interpretation as there is no path connection
tween the occurrence ofP(X) or ;P(X) andX.

The existence of different interpretations or models of
sentences is well known in mathematical logic in that co
sistent axiom systems have many different inequivalent m
els @15,17#. For some axiom systems some models are m
useful than others. An example is arithmetic where the s
dard model is almost universally used. However there a
exist many nonstandard models of arithmetic which may
useful for some purposes.

In quantum mechanics the freedom of choice of interp
tations is much greater than that in classical mechanics.
example, there are many linear combinations of the five b
statesuP&,u(&,u)&,u;&,u0& that also can be used to represe
the five symbols. In addition the choice of linear combin
tions can be different at different lattice sites.

This freedom is similar to the gauge freedom that exists
quantum field theory in that many different gauge choic
are possible@35#. This similarity may be quite important in
future developments of the ideas presented here.

In spite of the specialized nature of the example, it do
serve to introduce the use of mathematical logical conce
such as truth, validity, consistency, and completeness
physics in a fashion similar to how they are defined and u
in mathematical logic@15,17#. It is strongly suspected tha
the definitions of these concepts and their use as restrict
on the generators of the dynamics of a sentence gener
system is quite general and applies to the situation where
system that enumerates sentences is distinct from the sy
to which the sentences refer. In this context the existe
question is very important.

It is also suspected that the classical limit of these syst
may play an important role. However, the classical lim
must be taken so that at each step in the limiting process
dynamics generator refers to its own validity and comple
ness to the maximum extent possible. It is speculated
this type of limit of quantum robots interacting with enviro
un
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ments may have some important and significant characte
tics of intelligence. As such these limit systems may be qu
different from classical computers which are also limits
quantum systems.
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APPENDIX

In the main textn,m-truth andn,m-validity were defined.
The valuem50 was chosen and the limitn→` of n,0-truth
was used to define truth and validity. Another way to gen
ate limit definitions is to start withn,m-truth and take the
limit m→` to definen-truth andn-validity. Truth and valid-
ity are then defined by taking the limitn→`. The indepen-
dence of the limit definitions on the choice ofm follows if it
can be proved that the two limit definitions are the sam
That is one must prove that

lim
n→`

lim
m→`

^C~n!u~T†!mQXS

h TmQS
huC~n!&

5 lim
n→`

^C~n!uQXS

h QS
huC~n!&. ~A1!

To see that this is the case, note that the following re
tions hold:

^C~n!u~T†!mQXS

h TmQS
huC~n!&

5^C~n!u~T†!mQXS

h QS,[0,n22],m
h TmuC~n!&

<^C~n1m!uQXS

h QS
huC~n1m!&,

where Eqs.~9! and ~6! have been used along with the com
mutativity of QXS

h andQS
h . Since this is true for eachn,m the

left-hand limit is< the right-hand limit.
Conversely for eachn the unitarity of T and the above

noted commutativity and referenced equations give

^C~n!uQXS

h QS
huC~n!&

5^C~n!u~T†!mQXS,[0,n22],m

h TmQS
huC~n!&

<^C~n!uQS
h~T†!mQXS

h TmQS
huC~n!&,

which completes the proof. It follows from this that Eq. A
also holds ifQXS

h is replaced byQ¬XS
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