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Reduction criterion of separability and limits for a class of distillation protocols

Michat Horodeckf
Institute of Theoretical Physics and Astrophysics, University of Gkia80-952 Gdask, Poland

Pawet HorodecKi
Faculty of Applied Physics and Mathematics, Technical University of €da80-952 Gdask, Poland
(Received 12 November 1997

We analyze the problem of distillation of entanglement of mixed states in higher-dimensional compound
systems. Employing the positive maps methibld Horodeckiet al,, Phys. Lett. A223 1(1996] we introduce
and analyze a criterion of separability that relatesdtnacturesof the total density matrix and its reductions.
We show that any state violating the criterion can be distilled by suitable generalization of the two-qubit
protocol that distills any inseparable two-qubit state. In particular, this means that any sibte/o N-level
systems with(¢, | @| 4, )>1/N can be distilled ¢, is the singlet state generalized to higher dimensidhe
criterion also singles out all the states that can be distilled by a class of protocols. The proof involves
construction of the family of states that are invariant under transformatiet ® U* oUT@ U* T, whereU is
a unitary transformation and the asterisk denotes complex conjugation. The states are related to the depolar-
izing channel generalized to the nonbinary c4$4.050-294{©9)05904-1

PACS numbdps): 03.67—a, 03.65.Bz, 42.50.Dv, 89.76¢c

[. INTRODUCTION that the necessary and sufficient condition for separability of
mixed state is its positivity under all the maps of the form
Quantum entanglemefii] produces many rather nonin- |®A, whereA is any positive mag19]. This separability
tuitive quantum phenomena such as quantum parallg§m condition reduces for 2 and 2<3 systemg20] to posi-
quantum Cryptograph)[gl guantum dense C(‘)dir]g4_,5:|7 tiVity of the state under partial transpose_.
guantum teleportatiof6,7], and reduction of communication ~ Clearly, to answer the above question, apart from the
complexity [8]. In practice we usually deal with noisy en- char_acterlzatlon of mse_pe_lraple states it was necessary to in-
tanglement, due to the fact that the pure states evolve to théeStigate protocols of distillatiofi0—-13. For 2x 2 systems,
mixed states under uncontrolled interaction with environ-t as been showii13] that a protocol composed of local

; ; - - filtering [21,22 and recurrence protoc§ll0] is capable of
ment. A mix i ntain en nlmnle. - . .
cae;mtot be V\ﬁgtztnatiﬁ ;:ufgfr?g]ed to contain entanglement istilling all inseparable statd23]. It seemed to be obvious

that all the inseparable states can be distilled. However, re-
cent results showed that this is not so. Namely, it turned out
0=2 piohook (1)  [24] that the states that do not violate the Peres condition
i cannot be distilled and there are explicit examples of mixed
states the entanglement of which cannot be brought into sin-
(we call such a state entangled or insepanable benefit glet form. Such a nondistillable entanglement is called
from the entanglement contained in an inseparable mixe@ound. Thus the answer to the above-mentioned question is
state, we must convert it to the active singlet form by meansegative.
of local quantum operations and classical communication In this context a basic problem arises: Can all the states
(LQCC) between the parties sharing the pairs of particles inviolating the Peres condition be distilled? The answer to this
the mixed stat¢10—13. Such a process is called purification question is at present unknown. To solve the problem, one
or distillation of noisy entanglement. should analyze distillation in higher dimensions. In this pa-
It is clear that the separable states of the fgfincannot  per we perform such investigations.
be distilled, since LQCC operations cannot change the sepa- One of the important tools we employ here is positive
rable states into inseparable ones. Then it is natural to ask imaps: we introduce a necessary condition for separability
this context: Can any inseparable state be distilled? To anwe call it reduction criterionbased on positive maji (A)
swer this question, one had to deal with two problems. First=1 Tr A—A. The condition is equivalent to separability for
it was necessary to have an operational criterion of separ&x 2 (and 2x 3) systems. Moreover, it has the property that
bility (inseparability. Various necessary conditions of sepa-any state oN XN system that violates it can be effectively
rability in terms of Bell and entropic inequalitigd4—-17  distilled by suitable generalization of the protocol given in
were presented. An important step is due to PEt8§ who  Ref.[13]. The converse also holds: the only states that can be
showed that positivity of partial transpose of a state is alistilled by such protocols necessarily violate the criterion.
necessary condition for separability. Then it has been prove®hus we obtain limits on the use of the considered class of
protocols. One of the essential steps is determining the fam-
ily of states that is invariant under product unitary transfor-
*Electronic address: michalh@iftia.univ.gda.pl mation of the formU®U*, where the star denotes complex
"Electronic address: pawel@mifgate.pg.gda.pl conjugation. These are mixtures of completely chaotic

1050-2947/99/5@%)/420611)/$15.00 PRA 59 4206 ©1999 The American Physical Society



PRA 59 REDUCTION CRITERION OF SEPARABILITY AND ... 4207

states and the maximally entangled afe. We obtain that monly regarded as the definition of a completely positive
for NXN systems such Bl®@U* invariant state can be dis- (CP) map [25]. For finite-dimensional systems an even
tilled if and only if (||, )>1/N. The family of states is weaker condition is sufficientsee Appendix Finally, one
closely related to theN-dimensional generalization of the can distinguish an important subfamily of the CP maps that

generalized depolarizing channel. preserves trace, i.e.,
This paper is organized as follows. In Sec. Il we outline
the method of investigation of inseparability by means of TrA(o)=Tro.

positive maps. In Sec. Il we present a reduction criterion of

separability based on the above-mentioned positive map. In In contrast with such a general and slightly abstract ap-
particular, we show that it constitutes the necessary and suproach, one can consider the basic processes allowed by the
ficient condition for separability for 22 and 2<3 systems. quantum formalism:

We also show that it is weaker than the Peres criterion for

higher dimensions. In Sec. IV we discuss the criterion in the (i) e—e@®¢’ (adding a system in stag@’),

context of the entropic criteria relating the density matrix of (i) e—Ug@UT (unitary transformatioy

the system to its reductions. In Sec. V we derive the family (i) 0ag— Trg@ s (discarding the system—partial trace

of states that are invariant under action of unitahg U* o )
transformations. We show how the family is related to theONe can argue that any map describing physical processes
N-dimensional depolarizing channel. Subsequently, in Sechould be able to be written by means of the above three
VI, we utilize the results of the previous section to show thatMaps[25]. It appears that comparison of the two approaches
any state violating the reduction criterion can be distilled to€@ds to a satisfactory result: any trace-preserving CP map
the singlet form. It is done via generalizedr operation and €an be composed of the above trace-preserving CP maps.
U®U* twirling operation. We also point out that the crite- Suppl_ementlng the three basic processes with the process of
rion determines the range of use of a class of distillatiorS€lection after measurement, we obtain the family of all CP
protocols. We mean here the protocols consisting of twd"@ps. Thus, the most general physical process the quantum
steps:(i) one-side, single-pair filteringii) the procedure that Staté can undergo is described by a CP map. As a result, the
cannot distill the states with a fully entangled fraction lessStructure of the family of the CP maps has been extensively

than 1N. In Sec. VIl the results are illustrated by means ofinvestigated 26,29 and is at present well known. However,
some examples. one knows that there exist positive maps that are not CP

maps. A familiar example is time-reversal operator, which

acts as a transposition of a matrix in a chosen basis,
Il. POSITIVE MAPS, COMPLETELY POSITIVE MAPS,

AND INSEPARABILITY (To) =0y - 3)

In quantum mechanics, the state of a physical system is . ) .
represented by a density matrix, i.e., positive operator of unif © S€€ that it is not CP, hence cannot describe a physical
trace. Positivity means that the matrix is Hermitian and all itsPr0c€ss27,28, consider a two-spi- system in the singlet
eigenvalues are nonnegatiliean operatoro is positive we ~ Stete given by
write o=0). This assures that diagonal elements of a density

matrix written in any basis are nonnegative so that they can v =i(|T>|l>—|l>|T>) @
be interpreted as probabilities of events. Then, to describe s 2 '
the change of state due to a physical process, we need a
(linean map that preserves positivity of operators, Suppose that one of the subsystems is subjected to transpo-
sition while the other one does not evolve. Then it is easy to
0=0=A(0)=0. (2)  see that the resulting operatér=(I®T)(|){4|) is not
positive.

Such maps are callepositive maps. However, it has been  Since the positive maps that are not CP cannot describe
recognized 25] that the above condition isot sufficient for  physical evolution, their structure has not been extensively
a given map to describe a physical process. Consider twimvestigated and remains still obscure. However, recently it
systemsA and B in some joint state@ 4. Suppose the sys- has been realized that they can be a powerful tool in the
tems are spatially separated, so that each one evolves sefavestigation of quantum inseparability of mixed st&t&g)].
rately and the evolution of the subsystems is given by mapFo see this, let us discuss in more detail the considerable
A andAg. Then the total evolution is described by the mapfailing of the positive non-CP maps. The fault is that there
A=A, ®Ag. Of course the operat@r=A (o) describing are states of compound systertlike the singlet statethat

the state after evolution must still be positive. It leads us to are mapped by® A onto operators that are not positive. The
very strong condition: the tensor multiplication of the mapsbasic question is, what features of the “bad” states cause the
describing the physical processes must still be a positiverouble? To answer the question, recall that the singlet state
map. The maps belonging to the subset of positive map®& entangled since it cannot be written as a product of two
satisfying this condition are calletbmpletely positivelt ap-  state vectors describing the subsystems. As we mentioned in
pears that a map. belongs to this family if and only ifA the Introduction, the notion of entanglement extends natu-
®ly is a positive map for each naturll, wherely:My rally to cover mixed statefsee formula(1)]. Now, let us

— My denotes an identity map acting dwX N matrices note that there is no trouble with positive non-CP maps as
(i.e., the matrices witiN rows andN columng. This is com- long as we deal with separable states only. Indeed, in this
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case, if one of the systems is subjected to a positive map, thgtter. Then we have=To=0, hence also for any CP map

resulting operator remains positive: A cp the operator (T (o)) is positive(hereA denotes the
_ ‘ mapl®A). Consequently, if a positive, but not CP, mAp

=Z piopa®A(0g)=0 (5) can be written a®\ = ApT (or equivalentyA=TAcp, see
: Appendix and a state satisfies the conditid®), then it also
satisfies the condition =0 constituted by\. Thus we see

sinceA(QiB)BO due to positivity ofA. Thus, if a positive : =TT
map is not CP, this can be recognized only by means O1ihat the reduction criterion is not stronger than the Peres

: S o iterion.

inseparable states. In other words, it is oimgeparability cn . .

that forces us to remove some positive maps from the family. On Fhe'other har_1d, there exist state§ that satisfy the reduc-
of maps describing physical processes. This suggests that t gn criterion but violate the Peres criterion. These are the

positive maps can be extremely useful tool for investigation'/eMer stategd] Wy of NN system, given by

of inseparability. Indeed, a theorem has been projd Wa=(N3=N)"Y(N= &) +(Nb—1)V 11
stating thatany state is inseparable if and only if there exists N=( )TAN= @I +(Ng— DV, (D
a positive map such thqt ® A)(e) is not positive In par- |y hare — 1<¢=<1 andV is defined as/y@ Y=9® . The

ticular, if we have a positive map that is not CP, then itgiaias are inseparable fab<0. For a 2<2 system the
automatically provides a necessary condition for separabilityyarner states take a simple folfi83]

that can be written as

(I®A)

Ei PiOA® 0

I
(1eA)(0)=0. (6) Wo=(1=a) 7+ al o) (il —3<as<l, (12

This means that if a state is separable, the above inequali

holds B’eing mixtures of the maximally chaotic state and the singlet

state fora=0. It can be seen that foN=3 inseparable
Werner states violate the partial transpose criterion while sat-
isfying the reduction one. Indeed, they have maximally

In this section we will utilize the magacting on matrices Mixed reductions and the norfmaximal eigenvalueis less

[lI. REDUCTION CRITERION OF SEPARABILITY

NXx N) of the form[29] than 1N, hence the inequalit{8) cannot be violate@explic-
itly, the reduction criterion for Werner states is written as 2
A(o)=1Tro—o, (7)  —N=¢=<N, which is satisfied foN=3).

The family of Werner states has an interesting property,
wherel is an identity matrix. It is easy to see thatd=0  namely, they are the only states invariant under any transfor-
then alsol Tr c—o0=0, henceA is a positive map. Writing mation of the form
the condition(6) explicitly for this particular map, we obtain
[30] o—UeUpUToUT, (13

0A®1—0=0, (8 whereU is a unitary transformation. As we will see, our
criterion will lead in a natural way to distinguishing another
wherep ,=Trgp is a reduction of the state of interest. Thus, family of states that are invariant under any transformation
to use the criterion, one should find the reduct@g and  of the form
check nonnegativity of the eigenvalues of the operatgr
®|—p. Of course, one can also consider the dual criterion e—UaU*eUTeU*T, (14

l® og—0=0. (9)  where the asterisk denotes complex conjugation of matrix
elements ofU (we will call such statedJ®U* invarian).
Since the two conditions involve reduction of the densityThe two families are identicdlp to a local unitary transfor-
matrix, we will refer to their conjunction as the reduction mation for the two-qubit case, but become distinct for
criterion. higher dimensions.
Let us now consider briefly the reduction criterion in the  To summarize, in higher dimensions the reduction crite-
context of the Peres partial transpose criteli@B], which  rion is weaker than the Peres criteric@¥]. The advantage of

can be explicitly written as the reduction criterion is that, as will be shown, all the states
violating it can be distilled. The latter result is compatible
(1eT)(e)=e'e=0. (100 with [13], where it is shown that the two-qubit states that
T T violate the Peres criterion can be distilled.
Hereg ® | =(en®f,lo'8le,®f,)=0n,n, and{e®f}; Finally, there is a question of whether one could obtain a

is any product basis. It is easy to see that both criteria arstronger criterion by applying the present one to the state of
equivalent for the X2 (and 2x 3) case. Indeed, the m&p)  the formp® - - - ® ¢ rather than to the state of single pair

is, in this case, of the forrr\(A)=(<ryAay)T producing then  (we will call it collective application of the criterion Here
equivalent criterion. Note that for higher dimensions, thethe big tensor product divides the full system into the sys-
map (7) can be composed of a transpose and a completeliems of single pairs, in contrast to the small one, which di-
positive map(see Appendix Hence, according tf19], if a  vides the system into Alice and Bob systems. Consider now
given state violates the criterig8) then it must also violate the Peres conditioil0) and apply it collectively. One can
the Peres criteriofi32]. Indeed, suppose that satisfies the check thaf18]
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tions are not useless. For instance, the von Neumann condi-

T(e1®0,)=T(0)®T(0,). 15
(€1®e2)=T(e)®T(e2) @39 tional entropy has been recently used for definition of quan-
Hence, if the stat@ ® ¢ violates the criterion, then so does tum coherent information—a very important characteristic of

¢, so that the collective application of the Peres criterion
does not produce a stronger one. Recently, Rains pri@&d

guantum channel$86]. If, however, one is interested in char-
acterization of separablénseparablg states, the structural

that in the case of the reduction criterion, too, if the statecriteria are much more convenient. Let us now show that the

01® 0, of two pairs violates it, then the state of each pair

reduction criterion is stronger than theeentropy inequality.

separately also does. Indeed, denoting the partial traces dhe latter criterion says, in fact, that for a separable state the

statesg,; and g, over the systems B by; and r,, respec-
tively, one obtains

Ao1®e)=(18)0(1e1)—01®0,,  (16)
hence
Ae®A(e)=(lemn—0)a(181,—-0,)
=A(01®02)+20:®0;
—01®(I®n)—(lem)®e,. (17)

This can be rewritten as

7\(91®92):7\(Ql)®7\(92)+91®7\(91)+7\(92)®Q(i-8)

Hence one obtains the desired result, i.e.,

[A(e1)=0 and A(,)=0]=A(0;®0,)=0. (19

IV. REDUCTION CRITERION AND ENTROPIC
CRITERIA

It is interesting to discuss the reduction criterion in the

largest eigenvalue of the density matrix of the total system
cannot exceed the largest eigenvalue of any of the reduced
density matrices:

”Q”E)\max(g)$)\ma>&ex)z”QX”!

It is seen that the above inequalities are implied by the con-
ditions (8),(9). Indeed, suppose thdB) is satisfied, i.e.,
e<p,®l. Note that if O<o;<o0, then we have also
0<||o4]|<<||o,||. Consequently, sincep is positive and
leal=llea® [, we immediately obtain thdte|<[ea®!|
=|eal. Similarly, (9) implies|lo|<|eg|.

For the states with maximally disordered subsystems the
reduction criterion is equivalent to the-entropy inequality.
Indeed, in this case the smallest eigenvalue of the operator
ea®l—¢ is equal tox=(1N)—lle|=]leal-lel., hence
both criteria are satisfied or violated simultaneously. Finally,
the reduction criterion isessentially stronger than the
-entropy inequalities, as the latter are not sufficient for
separability for two-qubit systend.9] while the reduction
criterion is, as shown in the preceding section.

X=A,B. (23

V. U®U*-INVARIANT STATES
In this section, applying the method used by Werf8dr

context of entropic criteria, which also exploit the relation W& derive the family ofU®U* invariant states. For this
between the total system and its subsystems. The first necd&/POse let us consider a Hermitian operatorwhich we
sary condition of separability of this type was constructed byVant to beU® U invariant. Let us write its matrix elements
means of von Neumann entropies of the system and suli? & product basis

systemg 15]. The entropic criteria were then generalized by
using the quantum RéngntropiesS, [16]. They are given
by the following inequalities for conditional entropies
[16,17:

S,(A|B)=0, S,(B|A)=0 (20

with
S«(A|B)=S,(¢)—S,(2s),

Su(B|A)=S,(0) = S.(en),
(21)

where

S 1-a

" InTr ¢ for 1<a<ow, (22

S, is the von Neumann entropy ai®l = —In|¢||. It has been
shown[15,16,19 that the above inequalities are satisfied by
separable states far=1, 2, andeo.

The crucial difference is that these aealar conditions,
while the reduction criterion relates tis&ructureof the den-
sity matrix to its reductions rather than scalar functions. Thi

the reduction criterion. In fact, it is the case fer=1 (see
[31]) and == (see below Of course, even weak condi-

(mnAlpg)=(en®en|Ale,@e,). (24)

Imposing onA the condition ofU ® U* invariance with uni-
tary operationsU converting somegmg) into —|mg) and
leaving the other basis elements unchanged, we obtain that
the only nonzero elements are of  type
(mn|Almn), (mn|Ajnm), and (mmA|nn). Now, taking

into account another set of unitary transformations, each of
the latter multiplying some single basis element by imagi-
nary uniti and leaving the remaining elements unchanged,
we obtain immediately that almn|A|nm),m+#n elements
must vanish. Then, considering all two-element permutations
of basis vectors we obtain that the set of nonvanishing matrix
elements can be divided into three groupsin|A/mn),m

#n, (mmA|nn),m#n, and{mmA|mm) with all elements

in each group being equal. Thus, adg U* invariant Her-
mitian operator can be written a®\=bB+cC+dD,
where B==mzn/mny{mn[,C==.,/mm)ynn|,D

=3 /mmy(mm. Obviously, hermiticity ofA implies that
parameter$,c,d should be real. One can introduce real uni-
tary transformation of type

S
suggests that the entropic inequalities should be weaker than

U,0U;=(U,8 1y )@ (U@ ly_») (25)

with
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~ cos¢ sin ¢
Y2=| _gin ¢ cose|’ (2

whereU, acts on some two-dimensional subspaigeof the
Hilbert spaceH of a subsystem anld,_, is a projection onto
an orthogonal complement &f; . It can be easily shown that
the operatoD is not invariant undetJ,® U, and hence is
not U U* invariant. Thus parametat appears to be lin-
early dependent oh andc. Demanding, in addition, TK)
=1, we obtain that the set of Hermitidd®@ U* invariant
operators with unit trace are described by one real line

parameter. On the other hand, it can be checked immediate

that the family

I
Qa=(1—a/)ﬁz+a|:’+ 27
fulfills the above criteria. Her®  =| ¢, ){(¢, | with
1 N
=— H®|i 28
ve= i el (28

is the generalized singlet state. Indeed, the identity operator (o ®1—¢|#)=0 forany eCNoCN,

is obviouslyU® U* invariant and forP, we obtain

UgU*P,UT@U* =19U*UTP.I®(U*UN) =P,
(29

where the property37] A®l¢. =1®ATy, was used. Im-
posing now the positivity conditioriwe are interested in
state$, we obtain the family

N°—1

|
Qa=(1—a)m+ap+, with <sa<1. (30

Note thatp, can be viewed as a generalization of the two-
qubit Werner-Popescu stat&2) being a mixture of singlet
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The family presented defines theN-dimensional
a-depolarizing channelwhich completely randomizes the
state ofN-level input systems with probabilityr while it
leaves it undisturbed with probability-1«. Such a channel,
in the caseN=2, has recently been extensively investigated
[12,38. As will be shown, the corresponding family of states
(30) resulting from sending half of the stake, through the
(N, a)-depolarizing channel can be distilled by means of
LQCC operations if and only iF>1/N, respectively[ «
>1/(N+1)]. Then by using the results relating quantum
capacities and distillable entanglemé¢tg], we obtain that
he considered channel supplemented by a two-way classical
éﬁannel[lZ] has nonzero quantum capacity for this range of
a. This reproduces the known reswtt>3%(a>3) for N
=2 [12].

VI. DISTILLATION PROTOCOL

Now our goal is to distill the states that violate the con-
dition (8). The first stagdfiltering) [21,22 will be almost
identical to that of the protocol given ifi3]. For this pur-
pose rewrite the conditiof8) in the form

lyll=1,
(33

or

TroP,<Tr ea0X, (34)
whereP,=|¢)(y| and ey is reduced density matrix d?,,.
Note that if we takeP , to be maximally entangled states and
maximize the left-hand side of E¢34) over them, we will
obtain the condition for fully entangled fracti¢th0,12 gen-
eralized to higher dimensions,

f(o)=maxTr(gPy), (35
2

and maximally chaotic states. The family can be param-

etrized by fidelityF=Trp P, as follows:

2 [

m'f’ F——

N

1
Qa(F)EQF:m[(l_F) 2)P+},

(31)

The above states are inseparableFor1/N, since they vio-
late the condition8). SinceF is aU®U* invariant param-
eter, we obtain that foF<1/N [respectively,a<1/(N
+1)] the states can be reproducedby U* twirling, i.e., a
randomU®U* operation represented by the integral

f UeU*ocUTeU*TdU, (32
performed on the propgsroduct pure stater (heredU de-
notes uniform probability distribution on unitary group
U(N) proportional to the Haar measuirelrhis can be the
stateoc=P,® P corresponding to the vectois=|1),¢’
=al|1)+b|2) with F=(|{¢|¢')|?)/N. Thus the state£31)
[respectively, (30)] are inseparablef and only if F>1/
N, respectivelyf a>1/(N+1)].

where the maximum is taken over all maximally entangled
P’s. Namely, we then have

1
flo)=g (36

for any separabl@. Suppose now that a stageviolatesthe
condition (34) for a certain vectof ),

|w>=mEn amdm)®|n). (37)

Now, any such vector can be produced from the singlet state
¢, given by Eq.(28) in the following way:

[y =A®l]i.), (39

where (m|Aln)=Nan,. It can be checked thaAA'

=Ng¥X. Then, the new state

. AlzlpAsl

 Tr(eAATl) (39

Y
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resulting from filteringe by means of one-side actiofh’ resulting states on theX22 system can be distilled by, e.g.,
®lpA®| satisfies the inequality hashing protoco([12)]) (if needed, the obtainedX2 singlets
can be changed inttd X N singlets; this will be considered in
more detail elsewhe)e
To summarize, given a large number of pairs of particles
in a state that violates the conditigB) [or (9)], one first
Now, the problem is how to distill states with the property needs to apply the filtering procedure given by operator
(40). For this purpose we need to generalize the protti@®  and then subject the pairs that passed the filter to the recur-
used for the two-qubit case. The first thing we need is thgence protocol described above. Note that operataf it is
generalized twirling procedure, which would leave the stateo describe the process of filterigr a part of generalized
P, UnChanged. This, however, cannot be the application Ofneasurememt should be proper|y normalized, so th”
the random bilateral unitary transformation of the fotln <1,
®U since there is ndJ®U invariant pure state in higher  Thus we have shown that any state violating the reduction
dimensiong/this can be seen directly from the form of the criterion can be distilled. Suppose, conversely, that a state
Werner state$11)]. As we have shown in Sec. V, we obtain can be distilled by a protocol consisting of two stefis:
a suitable generalization by applying at random transformapne-side, single-pair filtering ar(d) a protocol that distills a
tions U®U*, where the asterisk denotes complex conjugastate if and only ifF >1/N. Then after the filtering step the
tion in any chosen basig.g., in the basigi)). From the  new state must satisfy inequalit¢0). Hence, the initial state
results of the preceding section it follows that for amyif must violate the inequality33) for a vectory=I1®Ay, ,
TreP,=F then whereA described the filter. So we obtain that if a state can
be distilled by means of the kind of protocols considered, it
violates the reduction criterion.
f UeU*oUteU*TdU Note that the present results allow for simple, ind_ependent
proof of the fact[39] that the tensor product df pairs of

1
Tro'P,.>

N (40

two spins Bell diagonal statesz g, each with fidelity

2
=QaE(1—a)|—+aP+ with a= N ;:_1' F_s%, cannot be transformed into a state KN system
N N°—1 with F'>1/N by means of separable superoperafdfs39,
which are defined a& (0)=3;A;®B;0Al®B/ . Indeed, ifa
O<F=1, (4D two-spint Bell diagonal state hasF <%, then it is sepa-

rable statg12,17]. On the other hand, any state NfxN

i.e., after twirling we obtain state, with the same fidelityr Ey;tST, t\slva:rlwe,\c‘j t\:)v'ttmg st;/tl:(:lssi)mviﬁk? a;af'le/,\f |n€vehi|(t:hce\1;l1€be

as the initial state. As was shown in the preceding SeCtiorhave shown to be inseparable. Buo separable statéin

the state,, are inseparable if and only > 1/N. articular ® c 0g constructed from separable stags) can

Now, to distill the states cons@ered we need to generaliz e transformed by separable operations into the inseparable
the quantunxor gate[2]. TheN-dimensional counterpart of stateo
N .

the latter we choose to be
UxorvK)[1)=[k)|[l@k), (42

wherek®|=(k+1)modN. The |k) and|l) states describe
the source and target systems, respectively. Now the protoc
is analogous to that in Refl0]. (1) Two input pairs are
twirled, i.e., each of them is subjected to random bilatera
rotation of typeU®U*. (2) The pairs are subjected to the
transformationU ,ogN® UoN. (3) The target pair is mea-
sured in the basiB)®|j). (4) If the outcomes are equal, the
source pair is kept, otherwise it is discarded. liY—li)®]i). (44
If the outcomes are identical, then by twirling the result-
ing source pair we obtain it in state,, wherea' satisfies

VII. EXAMPLES

In this section we will illustrate the reduction criterion
%d the first stage of our distillation protocol. For this pur-
Eose, consider the following unitary embedding of the Hil-

ert spaceC™ into CNe CN [41]

the equation By means of this transformation we can ascribe to any state
o on CN a statep)) acting onCN®CN. For example, iiN
, [N(N+1)—-2]a+2 =3 andg" is given by
(@)= T DT (N-Da?]’ “3
The above function is increasing and continuous in total €11 Q@12 Qi3

rangea e[1/(N+1),1]. Hence, as in Ref.10], the fidelity
F increases if the initial fidelity was greater thariN1/Then
to obtain a nonzero asymptotic yield of distilled pure en- @31 @32 Q33
tanglement, one has to follow the above protocol to obtain

some high-fidelityF and then project locally the resulting

state onto two-dimensional spaces. For high enokghe  then

oN=| @21 Q22 @23 (45)
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[¢; 0 0 0 ¢ 0 0 0 @3] The reductions opY are both equal to the state" with the
0 0 0 0 000 0 off-diagonal set equal to 0. That the st@tﬁis inseparable if
0 0 and only if N is not diagonal can be viewed in different
0 000 0 ways. First, the stat@s with some off-diagonal elements
0 00O 000 different from zero violates thec-entropy inequality as
N_ 0 0 0 0O O 0 0 O 02 ”QZ”:||QNH>ma)S{Q”}:”Q’e\fX”’ WhereX:AorB(Of course
Q. 0 000 0 000 O if N is diagonal thery’g‘ is trivially separablg On the other
hand, we can apply the Peres criteridi8]. However, the
0 000 0 000 two criteria donot say whether and how the state can be
0O 00 0 O 00O O distilled. Then let us apply the reduction criterion. Héeeg.,
o5 0 0 0 @5 0 0 0 o] (49 for N=3) we have
|
0 0 0 0 =-¢5 0 0 0 =~g4]
60 0 ¢y 0 0 0 O 0O O
0 0 0 ¢ O 0O o0 o 0
oV @l-gl=| ~@n 0 0 O 0 0 0 0 -pgpn @7
0 0 o0 0 0 e»n 0 O 0
0 0 0 o0 0 0 o35 O 0
0 0 o0 0 0 0 0 o35 O
_—931 0 0 0 — 03 0 0 0 0 _

Hence, if only the stat@g is inseparable, it violates the criterion. Then we can distill the state calculating the eigenvector
corresponding to the suitable negative eigenvalue, subjecting the state to the appropriate filter and performing then the
recurrence protocol. However, it can be checked thaf\fer3 this state already has fidelity greater thignhence it can be
distilled without the filtering step.

Consider now the second, more explicit, example. P&t denote the singlet stat@8) with N=3 and letP;;=|i)i|
®|j){j|. The state of interest is

o=pP3+(1-p)Py,, p<3. (49)

It can be proved that fully entangled fractibof this state is not greater than For this purpose, consider the overlap of the
U,®Ug transformation of the state . with an arbitrary pure statBy,, d>=2i'\fj:1aij|i)|j>. We obtain that

Tr(PpUa®UgP, UA®UL) =Tr(Pyl @ UgUAP, U UL =|Tr(AxUgU |2, (49)

where, as in Sec. VI, the matrix elements A§f are {A@}ij=\/ﬁa”-. Straightforward computation analogous to the one
performed in Ref[42] leads us to the following formula for a fully entangled fraction of pure state

1 N 2
f(Pa) =[Tr(V(AGAL >]2=N( > ci) , (50

wherec; are Schmidt decompositidihence positivecoefficients of the statd. From the above formula it follows that in our
case the fully entangled fraction of the product pure state cannot be greatey.tBamce we assumed that the probability
is also not greater thah, we obtain immediately that the fully entangled fraction of the state satifigs<3. Now we can
apply the prescription given in Sec. V. According to E48) we have the matrix,®|— o of the form
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__
<
(=]
(]
[==]
|
Wi
[en]
e
=]
|
Wi

Wl

oA®1I— 0= (51)

0 0 0 000’3100
0 0 0 0000’310
2o 0 o0 2000 o
3 3

This matrix has negative eigenvalue\=3(1—4%p  directly. Thus in the process of filtering, the input state with
—\J1—4p+£p?) with the corresponding eigenvectal), a fidelity of less thar has been transformed into the state
with F strictly greater thart. Then the protocol based on
1 generalizedkor operations described in Sec. V can be ap-
|) = ——=(]1)|1) +Y|2)|2) +y|3)|3)), plied. Note that the result of the procedure is independent of
Vi+2y the choice of normalization of the filter. Thus we can multi-
ply the matrix by a constant to obtajfA||=1. Then, since

1 1 i tar is qi
y= E(S_ 10p+3 /1— tp+2p?). (52) for p<3 we havey=1, the optimal filter is given by
According to Sec. V, in order to distill some entanglement } 0 0
from the state, we can apply the local filter y
A= . 56
10 0 010 (56)
0

[ 3 oy o 0
A= y . 53
1+2y? 00y (53

) VIIl. DISCUSSION AND CONCLUSION
Then we obtain the new state . S . )
We have introduced a separability criterigeduction cri-

. 1+2y? 3(1—p) terion) relating thestructuresof the total state of the system
7 T3 2p+2py? PP+ =507 2y? P12 to its reductions. To obtain the criterion, we employed the
connection between positive maps and inseparability. Subse-
=p'P,+(1-p')Py. (54  quently, we have shown that any state violating the reduction

criterion is distillable. Now, in further investigation of the
From the previous results, we know that the new state musiroblem of whether any state violating the Peres condition
have fidelity greater thah. To see it in this particular case it can be distilled, it suffices to restrict oneself to the states that
suffices only to show thap’/(1—p’)>3. This inequality  satisfy the criterion. Moreover, we have determined a limit
can be transformed to the form for use of a class of protocols i.e., those consisting of two

steps: one-side, single-pair filtering and any procedure that

3—14p+22p%+(3—10p)\V1—2p+4p>>0. (55 can only distill the states with a fully entangled fraction

greater than M.
Using the fact thap=<13, the last term in this formula is not It is worth noting that to prove that any state violating the
less thans. This leads to an inequality that can be checkedreduction criterion can be distilled, the main task was to dis-
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till inseparableU® U* invariant states. In a similar way, it Polish Committee for Scientific Research under Contract No.
can be shown that to be able to distill all the states violating2 PO3B 024 12, and by the Foundation for Polish Science.
the partial transpose criterion one needs only to provide a
protocol of distillation of the inseparablg®U invariant APPENDIX
states(Werner states This, combined with filtering, will
produce the desired result. So the problem of whether or not Here we will prove that the positive map given by Eq.
the Peres criterion puts the borderline between bdmod-  (7) is decomposable; i.e., it can be written in the fdi28]
distillable) and free(ditstillable) entanglement is equivalent
to the problem of whether or not all inseparable Werner A=ASP+TASP, (A1)
states can be distilled. Up until now, we have known how to
distill only some of the Werner statéthis can be achieved \yhere AC” are CP maps anil is the transpose. In fact, we
by using the Popescu res{i#3]); however, the rest cannot \yj|| see that the map is trivially decomposable, i.e., it is of
be distilled by known methods. _ _ the formA =TACP. To prove the above we need the lemma

The present criterion may be exploited together with two-gstaplishing one-to-one correspondence between CP maps
side filtering and it cannot be ruled out that it might allow us A .\, — M\, and positive matricegoperators belonging to
to distill states that do not violate it at the beginning. Then ityensor producv @M (this is analogous to the fact that
is interesting to characterize the class of states that i”itia")bositive maps are equivalent to the matricesMp® My,
do not violate the criterion, but do if subjected to a one-sid&ynich are positive in product vectoféd6,19).
filtering. It is remarkable that all the states violating the cri- | ammaA linear mapA:My— M is completely positive
terion, or violating it after local transformations, are nonlo- it 544 only if the operatoD e M ®M  given by
cal. This follows from consideration of the distillation pro-
cess in the context of the sequential hidden variable model _
(43,44, D=(I®A)P, (A2)

The reduction criterion divides the set of inseparable, o S
states into two classes of states: those that violate it and those p05|t|ve[hergP+ is given by Eq.28)]. -

o .~ Proof. If A is CP, then, by the very definition of the CP

that satisfy it. It seems that the former possess properties

analogous to the inseparable two-qubit states. In particuIaFnap’ the operatdD is positive. Conversely, suppose that the

there is a hope that the methods that have been successfumgermorD IS positive. Then it can be written by means of its
; ; . spectral decomposition
applied to the two-qubit statger one-qubit quantum chan-
nely, such as weight enumerator techniqyd$,39, will
also work for the states violating the reduction criteri@n
corresponding noisy channglsThen the latter states could D=2 M| )il (A3)
be called two-qubit-like states. In contrast, the inseparable i
states satisfying the criterion are supposed to exhibit features
that never occur in the two-qubit case. To deal with thesavith nonnegative eigenvalues;. Taking V; such thatl
states, completely new methods must be worked out. A V|, )=|;) (see Sec. V| we obtain
example of such states is Werner states, for which no direct
generalization of two-qubit methods leads to distillation. N
Finally, note that both positive maps applied so far in D=2 MI®ViP 1oV (A4)
investigations of separability have some physical sense. The '

transpose means changing the direction of tir@&]. The dComparing this formula with EA2) and noting that\ is

present positive map if applied to a part of a compound™ . : . . : o
system indicates a nonzero content of pure entanglement 'lg';}r\]/lgrl:etl)z determined by this equation, we obtain that it is

the state of the system. Then we believe that further investi®
gation of inseparability by means of positive maps could
allow us not only to characterize the set of separable states,

but also to reveal a possible physical meaning of maps that A(a)=2 WichT, (A5)
are positive but not completely positive. i
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where P.)a is the reduction of the stat®, so that A=TT, (A8)
(Py)a=(1/N)I. Consider now the partial transposeft
can be checked th& e is of the form which ends the proof. Of cours@, can be also written as

A=T"'T with completely positivel'’. Indeed, ad" is CP,

1 i i = . - T
DTe= N(I®I —V), (A7) then it is of the formI’(o)=2;V 0V, . Hence

whereV is the operatof9] defined byVy® ¢= ¢ ¢ for T(F(U)):zi (Vi‘TViT)T:Z (ViT)T‘TTViTZEi Vie™V!
any vectorseg, e CN®CN. As V2=1®| we obtain thatV

has eigenvalues 1 so thatl®|—V is a positive operator. =I'"(T(o)) (A9)
Thus we see thab e is a positive operator. However, we

have D'e=(I® TA)P, . Then by the lemma the map ~

=TA is CP. Consequently, we obtain with V;=(VN)T. ThusT"’ is completely positive.
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