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Reduction criterion of separability and limits for a class of distillation protocols
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We analyze the problem of distillation of entanglement of mixed states in higher-dimensional compound
systems. Employing the positive maps method@M. Horodeckiet al., Phys. Lett. A223, 1 ~1996!# we introduce
and analyze a criterion of separability that relates thestructuresof the total density matrix and its reductions.
We show that any state violating the criterion can be distilled by suitable generalization of the two-qubit
protocol that distills any inseparable two-qubit state. In particular, this means that any state% of two N-level
systems witĥ c1u%uc1&.1/N can be distilled (c1 is the singlet state generalized to higher dimension!. The
criterion also singles out all the states that can be distilled by a class of protocols. The proof involves
construction of the family of states that are invariant under transformation%→U ^ U* %U†

^ U* †, whereU is
a unitary transformation and the asterisk denotes complex conjugation. The states are related to the depolar-
izing channel generalized to the nonbinary case.@S1050-2947~99!05904-1#

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

Quantum entanglement@1# produces many rather nonin
tuitive quantum phenomena such as quantum parallelism@2#,
quantum cryptography@3#, quantum dense coding@4,5#,
quantum teleportation@6,7#, and reduction of communicatio
complexity @8#. In practice we usually deal with noisy en
tanglement, due to the fact that the pure states evolve to
mixed states under uncontrolled interaction with enviro
ment. A mixed state is supposed to contain entanglement
cannot be written in the form@9#

%5(
i

pi%A
i

^ %B
i ~1!

~we call such a state entangled or inseparable!. To benefit
from the entanglement contained in an inseparable mi
state, we must convert it to the active singlet form by me
of local quantum operations and classical communica
~LQCC! between the parties sharing the pairs of particles
the mixed state@10–13#. Such a process is called purificatio
or distillation of noisy entanglement.

It is clear that the separable states of the form~1! cannot
be distilled, since LQCC operations cannot change the s
rable states into inseparable ones. Then it is natural to as
this context: Can any inseparable state be distilled? To
swer this question, one had to deal with two problems. Fi
it was necessary to have an operational criterion of sep
bility ~inseparability!. Various necessary conditions of sep
rability in terms of Bell and entropic inequalities@14–17#
were presented. An important step is due to Peres@18#, who
showed that positivity of partial transpose of a state is
necessary condition for separability. Then it has been pro
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that the necessary and sufficient condition for separability
mixed state is its positivity under all the maps of the for
I ^ L, whereL is any positive map@19#. This separability
condition reduces for 232 and 233 systems@20# to posi-
tivity of the state under partial transpose.

Clearly, to answer the above question, apart from
characterization of inseparable states it was necessary t
vestigate protocols of distillation@10–13#. For 232 systems,
it has been shown@13# that a protocol composed of loca
filtering @21,22# and recurrence protocol@10# is capable of
distilling all inseparable states@23#. It seemed to be obvious
that all the inseparable states can be distilled. However,
cent results showed that this is not so. Namely, it turned
@24# that the states that do not violate the Peres condi
cannot be distilled and there are explicit examples of mix
states the entanglement of which cannot be brought into
glet form. Such a nondistillable entanglement is call
bound. Thus the answer to the above-mentioned questio
negative.

In this context a basic problem arises: Can all the sta
violating the Peres condition be distilled? The answer to t
question is at present unknown. To solve the problem,
should analyze distillation in higher dimensions. In this p
per we perform such investigations.

One of the important tools we employ here is positi
maps: we introduce a necessary condition for separab
~we call it reduction criterion! based on positive mapL(A)
5I Tr A2A. The condition is equivalent to separability fo
232 ~and 233) systems. Moreover, it has the property th
any state ofN3N system that violates it can be effective
distilled by suitable generalization of the protocol given
Ref. @13#. The converse also holds: the only states that can
distilled by such protocols necessarily violate the criterio
Thus we obtain limits on the use of the considered class
protocols. One of the essential steps is determining the f
ily of states that is invariant under product unitary transf
mation of the formU ^ U* , where the star denotes comple
conjugation. These are mixtures of completely chao
4206 ©1999 The American Physical Society
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states and the maximally entangled onec1 . We obtain that
for N3N systems such aU ^ U* invariant state can be dis
tilled if and only if ^c1u%uc1&.1/N. The family of states is
closely related to theN-dimensional generalization of th
generalized depolarizing channel.

This paper is organized as follows. In Sec. II we outli
the method of investigation of inseparability by means
positive maps. In Sec. III we present a reduction criterion
separability based on the above-mentioned positive map
particular, we show that it constitutes the necessary and
ficient condition for separability for 232 and 233 systems.
We also show that it is weaker than the Peres criterion
higher dimensions. In Sec. IV we discuss the criterion in
context of the entropic criteria relating the density matrix
the system to its reductions. In Sec. V we derive the fam
of states that are invariant under action of unitaryU ^ U*
transformations. We show how the family is related to t
N-dimensional depolarizing channel. Subsequently, in S
VI, we utilize the results of the previous section to show th
any state violating the reduction criterion can be distilled
the singlet form. It is done via generalizedXOR operation and
U ^ U* twirling operation. We also point out that the crite
rion determines the range of use of a class of distillat
protocols. We mean here the protocols consisting of t
steps:~i! one-side, single-pair filtering,~ii ! the procedure tha
cannot distill the states with a fully entangled fraction le
than 1/N. In Sec. VII the results are illustrated by means
some examples.

II. POSITIVE MAPS, COMPLETELY POSITIVE MAPS,
AND INSEPARABILITY

In quantum mechanics, the state of a physical system
represented by a density matrix, i.e., positive operator of
trace. Positivity means that the matrix is Hermitian and all
eigenvalues are nonnegative~if an operators is positive we
write s>0). This assures that diagonal elements of a den
matrix written in any basis are nonnegative so that they
be interpreted as probabilities of events. Then, to desc
the change of state due to a physical process, we ne
~linear! map that preserves positivity of operators,

s>0⇒L~s!>0. ~2!

Such maps are calledpositivemaps. However, it has bee
recognized@25# that the above condition isnot sufficient for
a given map to describe a physical process. Consider
systemsA andB in some joint state%AB . Suppose the sys
tems are spatially separated, so that each one evolves
rately and the evolution of the subsystems is given by m
LA andLB . Then the total evolution is described by the m
L5LA^ LB . Of course the operator%5L(%AB) describing
the state after evolution must still be positive. It leads us t
very strong condition: the tensor multiplication of the ma
describing the physical processes must still be a posi
map. The maps belonging to the subset of positive m
satisfying this condition are calledcompletely positive. It ap-
pears that a mapL belongs to this family if and only ifL
^ I N is a positive map for each naturalN, where I N :MN
→MN denotes an identity map acting onN3N matrices
~i.e., the matrices withN rows andN columns!. This is com-
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monly regarded as the definition of a completely posit
~CP! map @25#. For finite-dimensional systems an eve
weaker condition is sufficient~see Appendix!. Finally, one
can distinguish an important subfamily of the CP maps t
preserves trace, i.e.,

Tr L~s!5Tr s.

In contrast with such a general and slightly abstract
proach, one can consider the basic processes allowed b
quantum formalism:

~i! %→% ^ %8 ~adding a system in state%8),
~ii ! %→U%U† ~unitary transformation!,
~iii ! %AB→TrB%AB ~discarding the system—partial trace!.

One can argue that any map describing physical proce
should be able to be written by means of the above th
maps@25#. It appears that comparison of the two approach
leads to a satisfactory result: any trace-preserving CP m
can be composed of the above trace-preserving CP m
Supplementing the three basic processes with the proce
selection after measurement, we obtain the family of all
maps. Thus, the most general physical process the quan
state can undergo is described by a CP map. As a result
structure of the family of the CP maps has been extensiv
investigated@26,25# and is at present well known. Howeve
one knows that there exist positive maps that are not
maps. A familiar example is time-reversal operator, wh
acts as a transposition of a matrix in a chosen basis,

~Ts! i j 5s j i . ~3!

To see that it is not CP, hence cannot describe a phys
process@27,28#, consider a two-spin-1

2 system in the singlet
state given by

cs5
1

A2
~ u↑&u↓&2u↓&u↑&). ~4!

Suppose that one of the subsystems is subjected to tran
sition while the other one does not evolve. Then it is easy
see that the resulting operatorA5(I ^ T)(ucs&^csu) is not
positive.

Since the positive maps that are not CP cannot desc
physical evolution, their structure has not been extensiv
investigated and remains still obscure. However, recentl
has been realized that they can be a powerful tool in
investigation of quantum inseparability of mixed states@19#.
To see this, let us discuss in more detail the considera
failing of the positive non-CP maps. The fault is that the
are states of compound systems~like the singlet state! that
are mapped byI ^ L onto operators that are not positive. Th
basic question is, what features of the ‘‘bad’’ states cause
trouble? To answer the question, recall that the singlet s
is entangled, since it cannot be written as a product of tw
state vectors describing the subsystems. As we mentione
the Introduction, the notion of entanglement extends na
rally to cover mixed states@see formula~1!#. Now, let us
note that there is no trouble with positive non-CP maps
long as we deal with separable states only. Indeed, in
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case, if one of the systems is subjected to a positive map
resulting operator remains positive:

~ I ^ L!S (
i

pi%A
i

^ %B
i D 5(

i
pi%A

i
^ L~%B

i !>0 ~5!

sinceL(%B
i )>0 due to positivity ofL. Thus, if a positive

map is not CP, this can be recognized only by means
inseparable states. In other words, it is onlyinseparability
that forces us to remove some positive maps from the fam
of maps describing physical processes. This suggests tha
positive maps can be extremely useful tool for investigat
of inseparability. Indeed, a theorem has been proved@19#
stating thatany state is inseparable if and only if there exis
a positive map such that(I ^ L)(%) is not positive. In par-
ticular, if we have a positive map that is not CP, then
automatically provides a necessary condition for separab
that can be written as

~ I ^ L!~% !>0. ~6!

This means that if a state is separable, the above inequ
holds.

III. REDUCTION CRITERION OF SEPARABILITY

In this section we will utilize the map~acting on matrices
N3N) of the form @29#

L~s!5I Tr s2s, ~7!

where I is an identity matrix. It is easy to see that ifs>0
then alsoI Tr s2s>0, henceL is a positive map. Writing
the condition~6! explicitly for this particular map, we obtain
@30#

%A^ I 2%>0, ~8!

where%A5TrB% is a reduction of the state of interest. Thu
to use the criterion, one should find the reduction%A and
check nonnegativity of the eigenvalues of the operator%A
^ I 2%. Of course, one can also consider the dual criteri

I ^ %B2%>0. ~9!

Since the two conditions involve reduction of the dens
matrix, we will refer to their conjunction as the reductio
criterion.

Let us now consider briefly the reduction criterion in t
context of the Peres partial transpose criterion@18#, which
can be explicitly written as

~ I ^ T!~% ![%TB>0. ~10!

Here %mm,nn
TB [^em^ f mu%TBuen^ f n&5%mn,nm and $ei ^ f j% i j

is any product basis. It is easy to see that both criteria
equivalent for the 232 ~and 233) case. Indeed, the map~7!
is, in this case, of the formL(A)5(syAsy)

T producing then
equivalent criterion. Note that for higher dimensions, t
map ~7! can be composed of a transpose and a comple
positive map~see Appendix!. Hence, according to@19#, if a
given state violates the criterion~8! then it must also violate
the Peres criterion@32#. Indeed, suppose that% satisfies the
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latter. Then we haves[T̃%>0, hence also for any CP ma
LCP the operatorL̃CP„T̃(s)… is positive~hereL̃ denotes the
map I ^ L). Consequently, if a positive, but not CP, mapL
can be written asL5LCPT ~or equivalentlyL5TLCP , see
Appendix! and a state satisfies the condition~10!, then it also
satisfies the conditionL̃%>0 constituted byL. Thus we see
that the reduction criterion is not stronger than the Pe
criterion.

On the other hand, there exist states that satisfy the re
tion criterion but violate the Peres criterion. These are
Werner states@9# WN of N3N system, given by

WN5~N32N!21$~N2f!I 1~Nf21!V%, ~11!

where21<f<1 andV is defined asVc ^ c̃5c̃ ^ c. The
states are inseparable forf,0. For a 232 system the
Werner states take a simple form@33#,

W25~12a!
I

4
1aucs&^csu, 2 1

3 <a<1, ~12!

being mixtures of the maximally chaotic state and the sing
state for a>0. It can be seen that forN>3 inseparable
Werner states violate the partial transpose criterion while
isfying the reduction one. Indeed, they have maxima
mixed reductions and the norm~maximal eigenvalue! is less
than 1/N, hence the inequality~8! cannot be violated~explic-
itly, the reduction criterion for Werner states is written as
2N<f<N, which is satisfied forN>3).

The family of Werner states has an interesting prope
namely, they are the only states invariant under any trans
mation of the form

%→U ^ U%U†
^ U†, ~13!

where U is a unitary transformation. As we will see, ou
criterion will lead in a natural way to distinguishing anoth
family of states that are invariant under any transformat
of the form

%→U ^ U* %U†
^ U* †, ~14!

where the asterisk denotes complex conjugation of ma
elements ofU ~we will call such statesU ^ U* invariant!.
The two families are identical~up to a local unitary transfor-
mation! for the two-qubit case, but become distinct f
higher dimensions.

To summarize, in higher dimensions the reduction cri
rion is weaker than the Peres criterion@34#. The advantage of
the reduction criterion is that, as will be shown, all the sta
violating it can be distilled. The latter result is compatibl
with @13#, where it is shown that the two-qubit states th
violate the Peres criterion can be distilled.

Finally, there is a question of whether one could obtai
stronger criterion by applying the present one to the state
the form% ^ •••^ % rather than to the state% of single pair
~we will call it collective application of the criterion!. Here
the big tensor product divides the full system into the s
tems of single pairs, in contrast to the small one, which
vides the system into Alice and Bob systems. Consider n
the Peres condition~10! and apply it collectively. One can
check that@18#
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T̃~%1^ %2!5T̃~%1! ^ T̃~%2!. ~15!

Hence, if the state% ^ % violates the criterion, then so doe
%, so that the collective application of the Peres criter
does not produce a stronger one. Recently, Rains proved@35#
that in the case of the reduction criterion, too, if the st
%1^ %2 of two pairs violates it, then the state of each p
separately also does. Indeed, denoting the partial trace
states%1 and%2 over the systems B byt1 andt2 , respec-
tively, one obtains

L̃~%1^ %2!5~ I ^ t1! ^ ~ I ^ t2!2%1^ %2 , ~16!

hence

L̃~%1! ^ L̃~%2!5~ I ^ t12%1! ^ ~ I ^ t22%2!

5L̃~%1^ %2!12%1^ %2

2%1^ ~ I ^ t2!2~ I ^ t1! ^ %2 . ~17!

This can be rewritten as

L̃~%1^ %2!5L̃~%1! ^ L̃~%2!1%1^ L̃~%1!1L̃~%2! ^ %2.
~18!

Hence one obtains the desired result, i.e.,

@L̃~%1!>0 and L̃~%2!>0#⇒L̃~%1^ %2!>0. ~19!

IV. REDUCTION CRITERION AND ENTROPIC
CRITERIA

It is interesting to discuss the reduction criterion in t
context of entropic criteria, which also exploit the relatio
between the total system and its subsystems. The first ne
sary condition of separability of this type was constructed
means of von Neumann entropies of the system and
systems@15#. The entropic criteria were then generalized
using the quantum Reny´i entropiesSa @16#. They are given
by the following inequalities for conditional entropie
@16,17#:

Sa~AuB!>0, Sa~BuA!>0 ~20!

with

Sa~AuB!5Sa~% !2Sa~%B!, Sa~BuA!5Sa~% !2Sa~%A!,
~21!

where

Sa5
1

12a
ln Tr %a for 1,a,`, ~22!

S1 is the von Neumann entropy andS`52 lni%i. It has been
shown@15,16,19# that the above inequalities are satisfied
separable states fora51, 2, and`.

The crucial difference is that these arescalar conditions,
while the reduction criterion relates thestructureof the den-
sity matrix to its reductions rather than scalar functions. T
suggests that the entropic inequalities should be weaker
the reduction criterion. In fact, it is the case fora51 ~see
@31#! and a5` ~see below!. Of course, even weak cond
n

e
r
of
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y
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s
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tions are not useless. For instance, the von Neumann co
tional entropy has been recently used for definition of qu
tum coherent information—a very important characteristic
quantum channels@36#. If, however, one is interested in cha
acterization of separable~inseparable! states, the structura
criteria are much more convenient. Let us now show that
reduction criterion is stronger than thè-entropy inequality.
The latter criterion says, in fact, that for a separable state
largest eigenvalue of the density matrix of the total syst
cannot exceed the largest eigenvalue of any of the redu
density matrices:

i%i[lmax~% !<lmax~%X![i%Xi , X5A,B. ~23!

It is seen that the above inequalities are implied by the c
ditions ~8!,~9!. Indeed, suppose that~8! is satisfied, i.e.,
%<%A^ I . Note that if 0<s1<s2 then we have also
0<is1i<is2i . Consequently, since% is positive and
i%Ai5i%A^ -i , we immediately obtain thati%i<i%A^ I i
5i%Ai . Similarly, ~9! implies i%i<i%Bi .

For the states with maximally disordered subsystems
reduction criterion is equivalent to thè-entropy inequality.
Indeed, in this case the smallest eigenvalue of the oper
%A^ I 2% is equal tol5(1/N)2i%i5i%Ai2i%i , hence
both criteria are satisfied or violated simultaneously. Fina
the reduction criterion isessentially stronger than the
`-entropy inequalities, as the latter are not sufficient
separability for two-qubit systems@19# while the reduction
criterion is, as shown in the preceding section.

V. U ^ U* -INVARIANT STATES

In this section, applying the method used by Werner@9#
we derive the family ofU ^ U* invariant states. For this
purpose let us consider a Hermitian operatorA, which we
want to beU ^ U* invariant. Let us write its matrix element
in a product basis

^mnuAupq&[^em^ enuAuep^ eq&. ~24!

Imposing onA the condition ofU ^ U* invariance with uni-
tary operationsU converting someum0& into 2um0& and
leaving the other basis elements unchanged, we obtain
the only nonzero elements are of typ
^mnuAumn&, ^mnuAunm&, and ^mmuAunn&. Now, taking
into account another set of unitary transformations, each
the latter multiplying some single basis element by ima
nary unit i and leaving the remaining elements unchang
we obtain immediately that all̂mnuAunm&,mÞn elements
must vanish. Then, considering all two-element permutati
of basis vectors we obtain that the set of nonvanishing ma
elements can be divided into three groups:^mnuAumn&,m
Þn, ^mmuAunn&,mÞn, and^mmuAumm& with all elements
in each group being equal. Thus, anyU ^ U* invariant Her-
mitian operator can be written asA5bB1cC1dD,
where B5(mÞnumn&^mnu,C5(mÞnumm&^nnu,D
5(mumm&^mmu. Obviously, hermiticity ofA implies that
parametersb,c,d should be real. One can introduce real un
tary transformation of type

U1^ U15~Ũ2% I N22! ^ ~Ũ2% I N22! ~25!

with
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Ũ25F cosf sin f

2sin f cosf G , ~26!

whereŨ2 acts on some two-dimensional subspaceH1 of the
Hilbert spaceH of a subsystem andI N22 is a projection onto
an orthogonal complement ofH1 . It can be easily shown tha
the operatorD is not invariant underU1^ U1 , and hence is
not U ^ U* invariant. Thus parameterd appears to be lin-
early dependent onb andc. Demanding, in addition, Tr(A)
51, we obtain that the set of HermitianU ^ U* invariant
operators with unit trace are described by one real lin
parameter. On the other hand, it can be checked immedia
that the family

%a5~12a!
I

N2 1aP1 ~27!

fulfills the above criteria. HereP15uc1&^c1u with

c15
1

AN
(
i 51

N

u i & ^ u i & ~28!

is the generalized singlet state. Indeed, the identity oper
is obviouslyU ^ U* invariant and forP1 we obtain

U ^ U* P1U†
^ U* †5I ^ U* UTP1I ^ ~U* UT!†5P1 ,

~29!

where the property@37# A^ Ic15I ^ ATc1 was used. Im-
posing now the positivity condition~we are interested in
states!, we obtain the family

%a5~12a!
I

N2 1aP1 , with
21

N221
<a<1. ~30!

Note that%a can be viewed as a generalization of the tw
qubit Werner-Popescu state~12! being a mixture of singlet
and maximally chaotic states. The family can be para
etrized by fidelityF5Tr %aP1 as follows:

%a~F ![%F5
N2

N221F ~12F !
I

N2 1S F2
1

N2D P1G ,
0<F<1. ~31!

The above states are inseparable forF.1/N, since they vio-
late the condition~8!. SinceF is a U ^ U* invariant param-
eter, we obtain that forF<1/N @respectively,a<1/(N
11)] the states can be reproduced byU ^ U* twirling, i.e., a
randomU ^ U* operation represented by the integral

E U ^ U* sU†
^ U* †dU, ~32!

performed on the properproductpure states ~heredU de-
notes uniform probability distribution on unitary grou
U(N) proportional to the Haar measure!. This can be the
states5Pf ^ Pf8 corresponding to the vectorsf5u1&,f8
5au1&1bu2& with F5(u^fuf8&u2)/N. Thus the states~31!
@respectively,~30!# are inseparableif and only if F.1/
N, respectively@a.1/(N11)#.
r
ly

or

-

-

The family presented defines theN-dimensional
a-depolarizing channel, which completely randomizes th
state ofN-level input systems with probabilitya while it
leaves it undisturbed with probability 12a. Such a channel
in the caseN52, has recently been extensively investigat
@12,38#. As will be shown, the corresponding family of stat
~30! resulting from sending half of the stateP1 through the
(N,a)-depolarizing channel can be distilled by means
LQCC operations if and only ifF.1/N, respectively@a
.1/(N11)#. Then by using the results relating quantu
capacities and distillable entanglement@12#, we obtain that
the considered channel supplemented by a two-way clas
channel@12# has nonzero quantum capacity for this range
a. This reproduces the known resultF. 1

2 (a. 1
3 ) for N

52 @12#.

VI. DISTILLATION PROTOCOL

Now our goal is to distill the states that violate the co
dition ~8!. The first stage~filtering! @21,22# will be almost
identical to that of the protocol given in@13#. For this pur-
pose rewrite the condition~8! in the form

^cu%A^ I 2%uc&>0 for any cPCN
^ CN, uucuu51,

~33!

or

Tr %Pc<Tr %A%A
c , ~34!

wherePc5uc&^cu and%A
c is reduced density matrix ofPc .

Note that if we takePc to be maximally entangled states an
maximize the left-hand side of Eq.~34! over them, we will
obtain the condition for fully entangled fraction@10,12# gen-
eralized to higher dimensions,

f ~% ![max
C

Tr~%PC!, ~35!

where the maximum is taken over all maximally entang
C ’s. Namely, we then have

f ~% !<
1

N
~36!

for any separable%. Suppose now that a state% violatesthe
condition ~34! for a certain vectoruc&,

uc&5(
m,n

amnum& ^ un&. ~37!

Now, any such vector can be produced from the singlet s
c1 given by Eq.~28! in the following way:

uc&5A^ I uc1&, ~38!

where ^muAun&5ANamn . It can be checked thatAA†

5N%A
c . Then, the new state

%85
A†

^ I%A^ I

Tr~%AA†
^ I !

~39!
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resulting from filtering% by means of one-side actionA†

^ I%A^ I satisfies the inequality

Tr %8P1.
1

N
. ~40!

Now, the problem is how to distill states with the proper
~40!. For this purpose we need to generalize the protocol@10#
used for the two-qubit case. The first thing we need is
generalized twirling procedure, which would leave the st
P1 unchanged. This, however, cannot be the application
the random bilateral unitary transformation of the formU
^ U since there is noU ^ U invariant pure state in highe
dimensions@this can be seen directly from the form of th
Werner states~11!#. As we have shown in Sec. V, we obta
a suitable generalization by applying at random transform
tions U ^ U* , where the asterisk denotes complex conju
tion in any chosen basis~e.g., in the basisu i &). From the
results of the preceding section it follows that for any% if
Tr %P15F then

E U ^ U* %U†
^ U* †dU

5%a[~12a!
I

N
1aP1 with a5

N2F21

N221
,

0<F<1, ~41!

i.e., after twirling we obtain state%a with the same fidelityF
as the initial state. As was shown in the preceding sect
the states%a are inseparable if and only ifF.1/N.

Now, to distill the states considered we need to genera
the quantumXOR gate@2#. TheN-dimensional counterpart o
the latter we choose to be

UXORNuk&u l &5uk&u l % k&, ~42!

where k% l 5(k1 l )modN. The uk& and u l & states describe
the source and target systems, respectively. Now the prot
is analogous to that in Ref.@10#. ~1! Two input pairs are
twirled, i.e., each of them is subjected to random bilate
rotation of typeU ^ U* . ~2! The pairs are subjected to th
transformationUXORN^ UXORN. ~3! The target pair is mea
sured in the basisu i & ^ u j &. ~4! If the outcomes are equal, th
source pair is kept, otherwise it is discarded.

If the outcomes are identical, then by twirling the resu
ing source pair we obtain it in state%a8 wherea8 satisfies
the equation

a8~a!5a
@N~N11!22#a12

~N11!@11~N21!a2#
. ~43!

The above function is increasing and continuous in to
rangeaP@1/(N11),1#. Hence, as in Ref.@10#, the fidelity
F increases if the initial fidelity was greater than 1/N. Then
to obtain a nonzero asymptotic yield of distilled pure e
tanglement, one has to follow the above protocol to obt
some high-fidelityF and then project locally the resultin
state onto two-dimensional spaces. For high enoughF the
e
e
of

a-
-

n,

e

ol

l

-

l

-
n

resulting states on the 232 system can be distilled by, e.g
hashing protocol~@12#! ~if needed, the obtained 232 singlets
can be changed intoN3N singlets; this will be considered in
more detail elsewhere!.

To summarize, given a large number of pairs of partic
in a state that violates the condition~8! @or ~9!#, one first
needs to apply the filtering procedure given by operatorA,
and then subject the pairs that passed the filter to the re
rence protocol described above. Note that operatorA, if it is
to describe the process of filtering~or a part of generalized
measurement!, should be properly normalized, so thatiAi
<1.

Thus we have shown that any state violating the reduc
criterion can be distilled. Suppose, conversely, that a s
can be distilled by a protocol consisting of two steps:~i!
one-side, single-pair filtering and~ii ! a protocol that distills a
state if and only ifF.1/N. Then after the filtering step the
new state must satisfy inequality~40!. Hence, the initial state
must violate the inequality~33! for a vectorc5I ^ Ac1 ,
whereA described the filter. So we obtain that if a state c
be distilled by means of the kind of protocols considered
violates the reduction criterion.

Note that the present results allow for simple, independ
proof of the fact@39# that the tensor product ofK pairs of
two spin-12 Bell diagonal stateŝ K%B , each with fidelity
F< 1

2 , cannot be transformed into a state ofN3N system
with F8.1/N by means of separable superoperators@40,39#,
which are defined asL(%)5( iAi ^ Bi%Ai

†
^ Bi

† . Indeed, if a
two-spin-12 Bell diagonal state%B hasF< 1

2 , then it is sepa-
rable state@12,17#. On the other hand, any state ofN3N
system, saysN , with F.1/N is inseparable since it can b
U ^ U* twirled to the state~31! with F.1/N, which we
have shown to be inseparable. Butno separable state~in
particular ^ K%B constructed from separable states%B) can
be transformed by separable operations into the insepar
statesN .

VII. EXAMPLES

In this section we will illustrate the reduction criterio
and the first stage of our distillation protocol. For this pu
pose, consider the following unitary embedding of the H
bert spaceCN into CN

^ CN @41#

u i &→u i & ^ u i &. ~44!

By means of this transformation we can ascribe to any s
%N on CN a state%e

N acting onCN
^ CN. For example, ifN

53 and%N is given by

%N5F %11 %12 %13

%21 %22 %23

%31 %32 %33
G ~45!

then
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~46!
The reductions of%e
N are both equal to the state%N with the

off-diagonal set equal to 0. That the state%e
N is inseparable if

and only if %N is not diagonal can be viewed in differen
ways. First, the state%e

N with some off-diagonal element
different from zero violates thè -entropy inequality as
i%e

Ni5i%Ni.maxj$%j j%5i%e,X
N i, whereX5A or B ~of course

if %N is diagonal then%e
N is trivially separable!. On the other

hand, we can apply the Peres criterion@18#. However, the
two criteria donot say whether and how the state can
distilled. Then let us apply the reduction criterion. Here~e.g.,
for N53) we have
vector
then the

he

ne

r

~47!

Hence, if only the state%e
N is inseparable, it violates the criterion. Then we can distill the state calculating the eigen

corresponding to the suitable negative eigenvalue, subjecting the state to the appropriate filter and performing
recurrence protocol. However, it can be checked that forN53 this state already has fidelity greater than1

3 ; hence it can be
distilled without the filtering step.

Consider now the second, more explicit, example. LetP1
3 denote the singlet state~28! with N53 and letPi j 5u i &^ i u

^ u j &^ j u. The state of interest is

s5pP1
3 1~12p!P12, p< 1

3 . ~48!

It can be proved that fully entangled fractionf of this state is not greater than13 . For this purpose, consider the overlap of t
UA^ UB transformation of the stateP1 with an arbitrary pure statePF , F5( i , j 51

N ai j u i &u j &. We obtain that

Tr~PFUA^ UBP1UA
†

^ UB
† !5Tr~PFI ^ UBUA

† P1UAUB
† !5uTr~AFUBUA

† !u2, ~49!

where, as in Sec. VI, the matrix elements ofAF are $AF% i j 5ANai j . Straightforward computation analogous to the o
performed in Ref.@42# leads us to the following formula for a fully entangled fraction of pure stateF:

f ~PF!5@Tr~A~AFAF
† !#25

1

NS (
i 51

N

ci D 2

, ~50!

whereci are Schmidt decomposition~hence positive! coefficients of the stateF. From the above formula it follows that in ou
case the fully entangled fraction of the product pure state cannot be greater than1

3 . Since we assumed that the probabilityp
is also not greater than13 , we obtain immediately that the fully entangled fraction of the state satisfiesf (s)< 1

3 . Now we can
apply the prescription given in Sec. V. According to Eq.~48! we have the matrixsA^ I 2s of the form



PRA 59 4213REDUCTION CRITERION OF SEPARABILITY AND . . .
~51!
n

u
it

t
e

ith
te
n
p-
t of
ti-

he
bse-
tion
e
ion
that

it
wo
that
n

he
is-
This matrix has negative eigenvaluel5 1
2 (12 4

3 p

2A12 4
3 p1 4

3 p2) with the corresponding eigenvectoruc&,

uc&5
1

A112y2
~ u1&u1&1yu2&u2&1yu3&u3&),

y5
1

4p
~3210p13A12 4

3 p1 4
3 p2!. ~52!

According to Sec. V, in order to distill some entangleme
from the state, we can apply the local filter

A5A 3

112y2F 1 0 0

0 y 0

0 0 y
G . ~53!

Then we obtain the new state

s85
112y2

322p12py2S pP11
3~12p!

112y2 P12D
[p8P11~12p8!P12. ~54!

From the previous results, we know that the new state m
have fidelity greater than13 . To see it in this particular case
suffices only to show thatp8/(12p8). 1

2 . This inequality
can be transformed to the form

3214p122p21~3210p!A12 4
3 p1 4

3 p2.0. ~55!

Using the fact thatp< 1
3 , the last term in this formula is no

less than1
3 . This leads to an inequality that can be check
t

st

d

directly. Thus in the process of filtering, the input state w
a fidelity of less than1

3 has been transformed into the sta
with F strictly greater than1

3 . Then the protocol based o
generalizedXOR operations described in Sec. V can be a
plied. Note that the result of the procedure is independen
the choice of normalization of the filter. Thus we can mul
ply the matrix by a constant to obtainuuAuu51. Then, since
for p< 1

3 we havey>1, the optimal filter is given by

A5F 1

y
0 0

0 1 0

0 0 1
G . ~56!

VIII. DISCUSSION AND CONCLUSION

We have introduced a separability criterion~reduction cri-
terion! relating thestructuresof the total state of the system
to its reductions. To obtain the criterion, we employed t
connection between positive maps and inseparability. Su
quently, we have shown that any state violating the reduc
criterion is distillable. Now, in further investigation of th
problem of whether any state violating the Peres condit
can be distilled, it suffices to restrict oneself to the states
satisfy the criterion. Moreover, we have determined a lim
for use of a class of protocols i.e., those consisting of t
steps: one-side, single-pair filtering and any procedure
can only distill the states with a fully entangled fractio
greater than 1/N.

It is worth noting that to prove that any state violating t
reduction criterion can be distilled, the main task was to d
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till inseparableU ^ U* invariant states. In a similar way,
can be shown that to be able to distill all the states violat
the partial transpose criterion one needs only to provid
protocol of distillation of the inseparableU ^ U invariant
states~Werner states!. This, combined with filtering, will
produce the desired result. So the problem of whether or
the Peres criterion puts the borderline between bound~non-
distillable! and free~ditstillable! entanglement is equivalen
to the problem of whether or not all inseparable Wern
states can be distilled. Up until now, we have known how
distill only some of the Werner states~this can be achieved
by using the Popescu result@43#!; however, the rest canno
be distilled by known methods.

The present criterion may be exploited together with tw
side filtering and it cannot be ruled out that it might allow
to distill states that do not violate it at the beginning. Then
is interesting to characterize the class of states that initi
do not violate the criterion, but do if subjected to a one-s
filtering. It is remarkable that all the states violating the c
terion, or violating it after local transformations, are non
cal. This follows from consideration of the distillation pro
cess in the context of the sequential hidden variable mo
@43,44#.

The reduction criterion divides the set of insepara
states into two classes of states: those that violate it and t
that satisfy it. It seems that the former possess prope
analogous to the inseparable two-qubit states. In particu
there is a hope that the methods that have been succes
applied to the two-qubit states~or one-qubit quantum chan
nels!, such as weight enumerator techniques@45,39#, will
also work for the states violating the reduction criterion~or
corresponding noisy channels!. Then the latter states coul
be called two-qubit-like states. In contrast, the insepara
states satisfying the criterion are supposed to exhibit feat
that never occur in the two-qubit case. To deal with the
states, completely new methods must be worked out.
example of such states is Werner states, for which no di
generalization of two-qubit methods leads to distillation.

Finally, note that both positive maps applied so far
investigations of separability have some physical sense.
transpose means changing the direction of time@27#. The
present positive map if applied to a part of a compou
system indicates a nonzero content of pure entangleme
the state of the system. Then we believe that further inve
gation of inseparability by means of positive maps co
allow us not only to characterize the set of separable sta
but also to reveal a possible physical meaning of maps
are positive but not completely positive.
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APPENDIX

Here we will prove that the positive mapL given by Eq.
~7! is decomposable; i.e., it can be written in the form@28#

L5L1
CP1TL2

CP, ~A1!

whereL i
CP are CP maps andT is the transpose. In fact, we

will see that the map is trivially decomposable, i.e., it is o
the formL5TLCP. To prove the above we need the lemm
establishing one-to-one correspondence between CP m
L:MN→MN and positive matrices~operators! belonging to
tensor productMN^ MN ~this is analogous to the fact tha
positive maps are equivalent to the matrices inMN^ MN ,
which are positive in product vectors@46,19#!.

Lemma.A linear mapL:MN→MN is completely positive
if and only if the operatorDPMN^ MN given by

D5~ I ^ L!P1 ~A2!

is positive@hereP1 is given by Eq.~28!#.
Proof. If L is CP, then, by the very definition of the CP

map, the operatorD is positive. Conversely, suppose that th
operatorD is positive. Then it can be written by means of it
spectral decomposition

D5(
i

l i uc i&^c i u ~A3!

with nonnegative eigenvaluesl i . Taking Vi such that I
^ Vi uc1&5uc i& ~see Sec. VI!, we obtain

D5(
i

l i I ^ Vi P1I ^ Vi
† . ~A4!

Comparing this formula with Eq.~A2! and noting thatL is
uniquely determined by this equation, we obtain that it
given by

L~s!5(
i

WisWi
† , ~A5!

where Wi5Al iVi . However, this is the general form of
completely positive maps@26#. This ends the proof of the
lemma.

Remark.The lemma also holds forL:MN→MK with N
5K. Then theP1 belongs toMN^ MN and the operatorD
belongs toMN^ MK .

Consider now the map of interest given byL(s)
5I Tr s2s. The corresponding operatorD @by Eq. ~8!# is
given by

D5~P1!A^ I 2P1 , ~A6!
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where (P1)A is the reduction of the stateP1 so that
(P1)A5(1/N)I . Consider now the partial transpose ofB. It
can be checked thatDTB is of the form

DTB5
1

N
~ I ^ I 2V!, ~A7!

where V is the operator@9# defined byVc ^ f5f ^ c for
any vectorsf,cPCN

^ CN. As V25I ^ I we obtain thatV
has eigenvalues61 so thatI ^ I 2V is a positive operator
Thus we see thatDTB is a positive operator. However, w
have DTB5(I ^ TL)P1 . Then by the lemma the mapG
5TL is CP. Consequently, we obtain
.

, a

-

cu

r,

c

t-

v

A

A

A

m

L5TG, ~A8!

which ends the proof. Of course,L can be also written as
L5G8T with completely positiveG8. Indeed, asG is CP,
then it is of the formG(s)5( iVisVi

† . Hence

T„G~s!…5(
i

~VisVi
†!T5(

i
~Vi

T!†sTVi
T5(

i
Ṽis

TṼi
†

[G8„T~s!… ~A9!

with Ṽi5(Vi
T)†. ThusG8 is completely positive.
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