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In this paper the relativistic quantum mechani€\) is considered in the framework of the nonstandard
synchronization scheme, which preserves the Poincavariance bui(at least formally distinguishes an
inertial frame. This enables one to avoid the problem with a strong formulation of local causality related to the
breaking of Bell's inequalities in QM. Our analysis has been focused mainly on the problem of the existence
of a proper position operator for massive particles. We have proved that in our framework such an operator
exists for particles with arbitrary spin. This operator is Hermitian and covariant, it has commuting components,
and its eigenvectorglocalized statgsare covariant too. We have found an explicit form of the position
operator and demonstrated that it coincides with the Newton-Wigner one in the preferred frame. We have also
defined a covariant spin operator and constructed an invariant spin squared operator. Moreover, full algebra of
observables consisting of position, four-momentum, and spin operators is manifestly Pomeaiant in this
framework. Our results support expectations of other authbrS. Bell, inQuantum Gravity edited by C. J.

Isham, R. Penrose, and D. W. Sciat@ford University Press, Oxford, 1981p. 611; P. H. Eberhard, Nuovo
Cimento B46, 392 (1978] that a consistent formulation of quantum mechanics demands the existence of a
preferred frame[S1050-29479)04706-X]

PACS numbdrs): 03.65.Bz, 03.30:p

I. INTRODUCTION It was shown there that by using a nonstandard synchroniza-
tion procedure for clockécalled the Chang-Tangherlini syn-

In this paper we propose a formulation of the Poineare chronization if9]), it is possible to obtain such a form of the
covariant quantum mechanics for a free particle. Our investransformations of coordinates between inertial observers,
tigations are motivated by two old and still open problems:that while they still are Lorentz transformations, the time
the violation of locality in quantum mechaniésreaking of  coordinate is only rescaled by a positive factor and the space
Bell's inequalities and the nonexistence of a covariant posi-coordinates do not mix with it. A price for this is the exis-
tion operator as well as covariant localized states. It wasence of a preferred frame in the theory and the dependence
recognized long ago that some correlation experiméefts  of the Lorentz group transformations on an additional param-
[3-5]) imply that, “... what happens macroscopically in eter — the four-velocity of a preferred frame. Usually it is
one space-time region must in some cases depend on vatlaimed that the existence of a preferred frame violates the
ables that are controlled by experimenters in far-awayPoincarecovariance. This is really the case if we restrict
space-like-separated regionf3]. This fact can be in conflict ourselves to the Minkowski space-time. But in our approach
with special relativity; even more frustrating is a conflict the additional set of parameteff®ur-velocity) allows us to
with a strong version of local causality. It may be interestingpreserve the Poincamvariance but not necessarily the rela-
to recall in this place the statement by Béll: “ ... Forme tivity principle. We also think that the existence of a pre-
then this is the real problem with quantum theory: the apparferred frame is not a serious problem from the physical point
ently essential conflict between any sharp formulation anaf view. In the realexpanding Universe such a frame really
fundamental relativity.” According to Bel[1l] (see also does exist — it is the so-called comoving frame related to the
Eberhard[2]), a consistent formulation of relativistic quan- matter and the cosmic background radiation frame. Further-
tum mechanics may require a preferred frame at the fundamore, in our framework, an average light velocity over
mental level. Here we follow these suggestions and introducelosed paths is still constant and equalctoso Michelson-
the Poincareovariant formulation of quantum mechanics Morley-like experiments do not distinguish such a possibility
which has a preferred frame built in. from the standard onfel0,9.

It is important to realize that special relativity is in fact ~ The formulation of the Poincareovariant quantum me-
based on two main assumptions: the Poincaneariance and chanics presented here seems to have a number of advan-
the relativity principle. Our aim is to reformulate this theory tages over the standard formulation. First of all, the conflict
in a way which preserves the Poinca@variance but aban- between the causality and the quantum theory disappears.
dons the relativity principle and consequently allows one taSecond, the localization problem is solved. Various aspects
introduce a preferred frame. Such a formulation of the relaof localizability of particles have been studied from the early
tivity theory was given by one of the authai&R) in [8,9].  days of quantum mechanics, but, in the relativistic dase

opposed to the nonrelativistic onthe fully satisfactory po-
sition operator has not been found yet. Let us explain at this

*Electronic address: caban@mwvii.uni.lodz.pl point what we mean by the satisfactory position operator.
"Electronic address: jaremb@mvii.uni.lodz.pl and Such an operator should be Hermitian, have commuting
jaremb@krysia.uni.lodz.pl components(for massive particles fulfill the canonical
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commutation relations with the momentum operators, be coframes is determined by the following requiremerit$:the
variant, and have covariant eigenstaiesalized stateés The  transformation group is isomorphic to the Lorentz grogip;
operator constructed in the framework of the theory prethe average value of the light speed over closed paths is
sented here has all these properties. We also hope that thisnstant and equal to 1jji) transformations are linear with
formulation of quantum mechanics will be very convenientrespect to the coordinatéaffinity); (iv) under the rotations

in the case of the Poincammvariant de Broglie—Bohm ap- the coordinates transform in a standard wWiaptropy):

proach to quantum mechanitsTo make this paper self-

contained we devote the second section to the description of X’C‘}(u') ZXOCT(U),

the Chang-Tangherlini synchronization scheme and the cor-
responding realization of the Lorentz group. More details on
this subject can be found if8]. In Sec. Il we describe

briefly the covariant canonical formalism for a relativistic . . . . .
free particle on the classical level, followi§,16]. Section whereR is a rotation matrix{v) the instant time hyperplane
°T= const is an invariant notion. Notice th@i—(iv) are the

IV contains a description of the quantum theory in theXc

Chang-Tangherlini synchronization and the definition of aStandard requirements, whiltv) is nonstandard. Conse-

position operator. In Sec. V we construct and classify unitanfU€ntly, in this synchronization the transformation of coor-
orbits of the Poincargroup using the introduced position dinates between inertial frames has the following fdifor
operator. We define also a covariant spin operator and corfontravariant coordinatgs

struct the invariant operator of the spin squared. In Sec. VI

we first review briefly the properties of the Newton-Wigner X"(Uu")=D(A,u)x(u), 1)
operator(in the authors’ opinion this is the best position

operator which has been constructed up to now; more inforwhereA is an element of the Lorentz groug is the four-
mation about the history of the localization problem and thevelocity of the preferred frame with respect to the actual one,
full bibliography can be found ifi17,18). Then we find the andD(A,u) is aA- andu-dependent X4 matrix. Equation
explicit form of our position operator in the functional real- (1) is accompanied by

ization and show that in the preferred frame our operator

coincides with the Newton-Wigner one. This section con- u'=D(A,u)u. 2
tains also a discussion of the position operator under the

special choice of the integral measure. In this case the forrmatrices D(A,u) fulfill the following group composition
of the position operator is the same as in the nonrelativistigyle:

guantum mechanics.

X' (u")=Rx(u),

D(A2,D(A1,Wu)D(Ag,u)=D(AzA4,u) Q)
Il. CHANG-TANGHERLINI  (CT)
SYNCHRONIZATION so that

In this section we briefly describe the main features of the
CT synchronization scheme which we shall use in the sequel.

The derivation of these results can be found9h The idea . . . . .
adopted there is that the definition of the time coordinatd-6t T(U) be the intertwining matrix connecting coordinates

depends on the choice of the synchronization scheme fdp the CT and EP synchronizations. It means that for every
clocks and that this choice is a matter of convenfibd,19—  contravariant four-vectoA” we have

22]. Using this freedom one can choose a synchronization

procedure resulting in the desired form of the Lorentz trans- AL=T(U)yAg. )
formations. Performing such a program we have to distin-

guish, at least formally, one inertial frame — the so-calledThereforeD (A ,u) is of the following form:

preferred frame. Thus, at least formally, the relativity prin-

ciple may be broken. We discuss this problem in Sec. Il A. D(A,u)=T(Uu)AT *(u). (6)
Now, each inertial frame is determined by the four-velocity

of this frame with reSpeCt to the diStinguiShed one. We de'One can find the exp"cit form O'f(u) [9]’ namely,

note four-velocity of the preferred frame as seen by an iner-

D YA,u)=D(A LD(A,u)u), D(lL,u=Il. (4

tial observer byu”. Hereafter, quantities in the Einstein- 1 —u"
Poincare(EP) synchronization are denoted by the subscript T(u)= ) (7)
(or superscriptE. Quantities in the CT synchronization usu- 0 '

ally have no index; only the time coordinate in CT synchro- _ o
nization is denoted by2;. We use the natural unitgi&c gonsequently for all rotationRe SO(3), D(A,u) is given
=1). y

According to[8,9] the transformation law between inertial

10
D(R,U)=( ) ®

IAn exhaustive review of the interpretational problems of quan-
tum mechanics can be found ih1-15. while for the boosts it is given by
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S

D(W,u)= WeowT ,
W 4+ ——-u"'Weu
1+V1+(W)?
)

whereW* denotes the four-velocity of the franm@,, with
respect to the fram®,. The four-velocityW* can be ex-
pressed in terms af andu’,

0 0 10 !
vv°=u— We (u”+u"*)(u—=u") (10

T [1+uu’%(1+uu")]’

Instead ofW* we can also use velocity=W/WP. The form
of all the above formulas in terms &f can be found by
using the relation

#: VAW (V)2 (1D

—(u)?=1. 17

u=0 and
_ (U0)2

Hereafter the three-vector part of a covariétntravariant
four-vectora, (a*) will be denoted bya (a).

A. Geometric description of the CT synchronization

A geometric description of the special relativity in the CT
synchronization scheme can be expressed in the language of
frame bundles. For a reader who is not familiar with the
notion of a fiber bundle, we collected all necessary defini-
tions in the Appendix. The review of applications of fiber
bundles in the context of special relativity can be found in
[23]. Let M be the Minkowski space-timé,! the ortochro-
nous Lorentz grougthe group of space-time transforma-
tions), and letF (L) be the set of all frames in the spalde
obtained by action of.l on one particularbut arbitrary
frame. ThusF (L) is isomorphic to the group. and the
element of F(L!) corresponding to an elemegte L, is
denoted bye(g).

Now let us consider the following structure:

The explicit relationship between coordinates in EP and CT

is given by
x2=x2+ulux, xg=x,

1
ut’

Ug= Ug=u. (12

My=[LL,(F(LL)XM,M,pry),my, 4], (18

wherepr, is the canonical projection on the second factor of
the Cartesian product. Therefof&(L)XM,M,pr,] is a
frame bundle with the typical fibeF(L!). =, is a projec-
tion on a fixed timelike four-vectow, while ¢, is the action

of the groupL. on the bundlg F(L')xM,M,pr,] fulfill-

We see that only the time coordinate changes. Note also thit9 the following conditions:

in the same point in space we hate?=Ax2; so the time
lapse is the same in both synchronizations.
One can easily see that the line element

ds?=g,,(u)dx* dx” (13)
is invariant under the transformatiof®) if
g(u)=[T(W) 7T (W], (14

where 7 is the Minkowski metric tensow=diag(+,—,—,
—). The explicit form of the covariant metric tensor reads

1 ulu”
= 1
[g/.w] u0u _| +(U0)2U®UT 1 ( 5)
while the contravariant one has the form
. (UO)2 UOUT
_ _ 1
g ~(u Ou 1 (16)

(e'(9),x")=(e(kg),x), (19
e*(kg,x)=D(k,9)*,e"(g,x), (20)
D" Xk, g)m,D Nk, g)=my, (21)

whereke L], xe M. Itis clear that the Lorentz transforma-
tions are considered as passive transformations — the action
of the Lorentz group changes the observer, not the physical
state. This means that the action of the Lorentz group
changes the framg(g). Condition(19) means that the action

i, is trivial on the manifoldM; the groupL'. acts only on

the fiber. Condition(20) says thaty,, acts linearly on frames.
Now, we associate the time directionwo which means that

the projectorm,,=w®w/w? is equal tomeo,

M= Ty . (22)

After this identification, 7, reads in thee* basis [,

This implies that the space line element is the Euclidean one™ () e ®e’]

dI?=dx?. Notice that the triangular form of the boost matrix

(9) implies that under the Lorentz transformations the time

coordinate is rescaled by a positive factc[rx’cc-’r
= (1MP)x2,]; the space coordinates do not mix with it. One

can also easily check that the following, very useful, rela-

tions hold:

[(7e0) o] =[ (W) w1 = (23

o O O -
o O O o
o O O o
S O O o
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This construction defines a time orientation Mfalong w. w2=g’u,,(u)w'“(u)w”(u)= 1, (29
The matrixD(k,g) can be expressed Hy(A,u) given in
Egs.(8) and(9) as follows. LetA;=k, A,=g; then which implies

D(k,g)=D(A1,AU) (24) wt=x*=0. (29)
andTJ:(l,O). Condition(21) means that the direction of the Using the formula(15) we can derive from Eq(27) the
four-vectorw is invariant under the action of the grouy . Lagrangian

Thus we have a collection of time-oriented space-times

M,,, wherew is an arbitrary timelike four-vector. The ob- L=—my(1+u’uv)®~(v)% (30

jectsM,, andM,,, corresponding to differentv andw’ are

evidently connected by the action of another Lorentz grougNow we can calculate the canonical momenta

L1 (called a synchronization group fi@]). The whole fam- o

ily of time-oriented space-timeldl,, together with the trans- JL  mlv'—u'u’(1+uuv)]

formations¢ of the synchronization group, treated as mor- M= T J 0 2 5 Mo, (3D
phisms, form a category v (1 uuv)*=(v)

A=(My,,0) (25) and the Hamiltonian
W .

The actiong of the synchronization group!,(® is defined in
the most natural way,

1
H :kak—L:—o[U£+ \/(UE)2+(E)2+ m2]= Mg,
u

32
o(My) =My, AL (26) (32

i . . ) .. where &= (m,,m5,m3). SO the covariant four-momentum
From the physical point of view all choices of an object in ¢ pe defined by
the categoryA are equivalent provided the relativity prin-
ciple holds. However, if we want to introduce a covariant K =mw . . (33
canonical formalism for a relativistic free particle on the . .
classical level or to define a proper position operator for sucly js easy to check thak,, fulfills the following dispersion
a particle on the quantum level, we have to give up theelation:
relativity principle. In other words, a consistent description is
possible if and only if we use a fixed element of the category k2=g“”(u)kMk,,= m?2. (34
A. In this case also the causal problems connected with the
breaking of Bell's inequalities in QM disappear. Summariz-Now we introduce the Poisson bracket
ing, although the formulation of special relativity in terms of
the categoryA is equivalent to the standard one, whenever
the notions of localizability or absolute causality are incor- {AB}=—
porated, the group of morphisms is broken, i.e., a time ori-

entation is selected. Using some particutatfamily of CT wherex*, k,, are treated as independent variables; in particu-
synchronizations one can consistently define the position L e per . S In P
lar, kg is nota priori connected withk; via the dispersion

operator, which is impossible within the EP scheme. More ) . L
oeer this constructioﬁ shows that some notions, such as | elation (34). The Poisson brackeB5) satisfies all of the

calizability, are simultaneously compatible with quantum ollowing hecessary co_ndi_tionéi:) itis biIin_ear and a”“SYF"'
mechanics: and Poincamvariance if and only if a privi- metric, satisfies the Leibniz rule, and fulfills the Jacobi iden-

e tity; (i) it is manifestly Poincareovariant in the CT syn-
leged frame is distinguished. chronizationfiii ) it is consistent with the constrai(@4), i.e.,
{k?k,}={k?x*}=0, therefore there is no reason to intro-
duce a Dirac bracketjv) it is consistent with the Hamilton
equationg37). In particular, Eq.(35) implies

k*u,
uk

dA B 9B IA

o, —

IIl. CANONICAL FORMALISM
IN THE CT SYNCHRONIZATION

For a relativistic free particle we postulate the following . 0
action functional: {x#x"1=0, {Xcr.k.}=0,

SlzZ_mJ}\z\/Ey (27) {Xl,kj}:_gl] , {Xl,ko}:kllkoy

. (K, K} =0. (36
whereds?=g,,,(u) (dx*/d\)(dx"/d\)d\? andX is a trajec- _ _ _ .
tory parameter. We define the four-velocity in the standardl he Hamilton equations for a free particle have the desirable
way: o*=dx*/d\=x*. Then the velocity has the form form
=dX/dXOC-|-= w/ w®. Choosing the parametar as the length

i i .
of the trajectoryd\ = \/ds?, we obtain the following condi- il ﬁ K o dki_ — ﬁ:

tion: dt am k0 U0 dt gy 0 37
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whereH is given by Eq.(32) andtzx?;T. In general, the whereu’=D(A,u)u, o'=D(A,u)w. As a result of mea-
equation of motion for an observabf®(x*,k,) in terms of  surement of) the observe©, will receive the valuew,
the Poisson bracke€B5) reads .

Q*(U)|w,u,...)=w* o,u,...). (41

dQ 90
=—+{Q,kg}. (38)  As a result of measurement the obser@gyr should obtain

dt ot the valuew’'=D(A,u)w. Therefore, in the space of states

In Eq. (38) as well as in Eq(35), kg is treated as an inde- Hys the observablé) is represented by an operafdr(u’),
pendent variable. The solution of E@®8) can be reduced to because

the constraint surfaces4). « A
Q)" U, ... )=UA)DA,u)Q(U)|w,u,...)
IV. QUANTUM THEORY IN THE CT SYNCHRONIZATION —U(A)D(A,W)w(u)|w,u, . ..)

The results of the previous sections imply that there is an =o' (U)o’ Uu’,...), (42)
absolute causality in the CT synchronization. Therefore all
the problems with causality, connected with the violation ofwhere we have used Eq&9) and (40). To conclude this
Bell inequalities, disappear. Quantum theory remains nonlosection we provide the interpretation of the operator
cal but it is causal. In our approach we are able, in analogy @)’ (u’)=D(A,u)Q(u). We have
the classical Poisson algebra described in Sec. lll, to intro-

duce a Poincareovariant algebra of momentum and posi- Q'*u)|w,u, ...)=D*A,u1)Q" (W) w,u,...)

tion operators satisfying all fundamental physical require-

ments. This is done in Sec. IVB. The properties of the =D4(Au)w’(u)|w,u,...)
position operator are discussed in detail in Secs. VIB and v

VI C. =w M(U )|w,u,...>. (43)

ThusQ'(u’) is an operator which, when acting on a vector

describing the state of a physical system in the space of the
In the CT synchronization the following point of view is observerO, gives, the same result as seen by the observer

the most natural one: to each inertial obsergrwe asso- O, performing measurement on this system being in the

ciate its own Hilbert spacH, (the space of statgsThe state same physical state.

vectors inH,, are denoted by: |u, .. .). In other words, we

have a bundle of Hilbert spaces corresponding to the bundle B. Algebra of momenta and positions

of frames described in Sec. Il A. In such an interpretation we h & introd the Hermitian f

have to distinguish carefully between active and passive In each spacé, one can infroduce the Hermi |an_ our-

transformations, because active transformations are repr§l0mentum operatorg,(u) (generators of translations

sented by operators acting on one Hilbert space while pasT hesel operators are interpreted as observablgs in the corre-

sive ones are represented by operators acting between diffetPonding reference frame. In the CT synchronization we can

ent Hilbert spaces. So, in particular, the Lorentz groupdo further and introduce Hermitian position operatefgu)

transformations are considered as passive ones. Now, l& each spacél,. According to the Poisson bracket on the

U(A) be an operator representing a Lorentz group elemergilassical level35) we postulate the following commutators

A. We postulate the following, standard, transformation Iavvbetween%#v(u) and fg)\(u);

for a contravariant four-vector operator:

A. Preliminaries

A - A - . u}\fﬂ‘(u)
U(A)AU)HUY(A)=[D XA, u)]*Au")*, (39 [X“(U),px(U)]=l(m— N | (44)
where D(A,u) is given by Egs.(8) and (9) and u’ - - _
=D(A,u)u; for a covariant four-vectoA(u)# we have to [P,.(W),p.(W]=0, (45)
replaceD ~* by DT on the right-hand side of E¢39). Let Q) - NN
be a four-vector observable. In the spatgthe observable [x*(u), x"(w)]=0. (46)
Q is represented by an operaft(u). Now let two inertial | particular,
observersO, and O,, measure independently the value of
the observablg) for a physical system being in the same [QOCT(U),E,A(U)]ZO, (47)
physical staté.Let this state be described by an eigenvector
|w,u, ...) of theQ* in the spacéd, . Then in the spacHl [)‘(i(u) E),(u)]: —is (48)
the same state is described by the vector ™ I
Al
lw",u', .. )=UA)|o,u,...), (40 [)‘(i(u),ﬁo(u)]zif)o(u). (49
p(u)

~o _ _
20f course, we should imagine an ensemble of identical copies of V& S€€ thacy commutes with all the observables. This
a physical system in the same prepared state. allows us to interpre1x°CT as a parameter just like in the
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standard nonrelativistic quantum mechanics. We have tahere on the right-hand side of E¢5) qq is determined by
stress here once again that the commutation relatiéfis- k, g, andu,

(49) are covariantin the CT synchronization. This can be

checked directly; one simply has to use E®, (9), and 1

(39 and to transform Eqs44), (45), and (46) to another do=—5[—ug— J(uk)*+ (k)*+m?

reference frame. One can also check that u -

2 2 2
(W), P2 =0, 50 +ugtuo®+ (ktg?+m’.  (56)
The basis vectors of the spakk, can be generated from a
vector representing a particle at rest with respect to the pre-
. ferred frame. First we act witbl(L,) on such a vector; the
V. UNITARY ORBITS OF THE POINCARE GROUP resulting state has four-momentunu, and belongs té,,.
FOR k?>0 AND SPIN OPERATORS Next, by means of the formulés5), we generate a vector in

According to our interpretation we deal with a bundle of Hu With the four-momentunk,, . Precisely
Hilbert spaced, rather than with a single space of states. .
Therefore the transformations of the Lorentz group induce an UK . _ o ~
orbit in this bundle. In this section we constrt?ct aﬂd classify ku,...)= \Ee MU Lk, -,
unitary orbits of the Poincargroup in the bundle of Hilbert (57)
spaces. As we will see, the unitary orbits are parametrized by
mass and spin, similarly as for the standard unitary represefvhere
tations of the Poincargroup.

which means that localized states have definite masses.

u=(10), k=(m,0), u=D(L,,u)u. (58)
A. Unitary orbits

As in the standard case we assume that the eigenvectofdie orbit induced by the action of the operatdfA) in the

|k,u, . ..) of the four-momentum operators bundle of Hilbert spaces is fixed by the following covariant
A conditions: (i) k?=m?; (ii) (k%) =inv, for physical repre-
p.(Wlku,...)=k,lku,...), (51)  sentationk®>0¢(k°)=1. As a consequence there exists a

positive defined, Lorentz-invariant measure
with k?=m?, form a basis of the Hilbert spadd,. We
adopt the following Lorentz-covariant normalization: du(k,m)=d*k 6(k°) 8(k*—m?). (59)

(K'ou, ko, ) =2K08%(K' k), (521 Now, applying the Wigner method and using Eg9) one

can easily determine the action of the operdiqrA) on a

wherek denotes the space part of a covariant four-vekfor  pocis vector. We find

andk’=g°#k,, is positive. The energ, is the solution of

. . . 2_ 2 . .
the dispersion relatiok“=m< and is given by U(A)|k,u,m;s,a)=D%, YRy )|k’ ,u",m:s,\),

1 (60)
ko=—5[ —uk+y(uk)®+(k)*+m?], (53
u where
Sl u’=D(A,u)u=D(L, ,U)U, (61)
k%= w (k) =u/(uk)®+ (k)*+m?. (54) K'=DT-1(A.u)k, 62

In the construction of the unitary irreducible orbits we use . . _ _
the operatore %" Action of this operator on the basis Ra.u=D(Rpu,u)=D"(Ly,u)D(A,u)D(L,,u)CSA3),

states can be determined by using its unitarity, normalization (63)
of the basis vector&2), and the commutation relatioiié4). ) . ) )
Its final form i< and D}, (R, ) is the standard spirs rotation matrix s
=03,1,...;0,A=—5,—s+1,...5—18. D(R, ,,u) is the
e“q;((”)lk u >:eiq0;((()2T(u) uk K+q,u,...) Wigner rotation belonging to the little group of a vector
N e u(k+q) a.u....) Let us stress that in our approach, contrary to the standard

(55 one, representations of the Poincareup are induced from
the little group of a vectou, notk. Finally, the normalization
(52) takes the form
3There is a freedom in choosing the phase factor on the right-hand
side of Eq.(55); it is determined here by the requirement that no  (k,u,m;s,\|K’,u,m;s’,\"y=2k%8%(k’ —K) 8556y -
phase factor on the right-hand side of E§0) appears. (64
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B. Spin 'Sisj:_'éjsi:('sﬁ)T (75)
Now we describe in some detail the transformation prop-
erties of a second rank covariant tensor operator. These rénd
sults are then used in the discussion of the spin.
Let M(u)=[M,,(u)] be a tensor operator. The transfor-

mation law for this tensor can be deduced from 89) and
can be written in the matrix notation as

[S5.Sul= =i (81Sh+ oSt — S — 5 Si)- - (76)

Consequently, in an arbitrary frame

: : S3u)=—Sj =53’ 7
U(A)M(u)U~Y(A)=DT(A,u)M(u’)D(A,u). (65) i (=85 W (70
d
The lower-triangular form of the matri®(A,u) [see Egs. an
(8) and(9)] implies that the space part o transforms into [S5(W),S(W)I=i[gi(W)S(u)+gj(u)Sii(u)
tself, namely. — G5 (W)~ g (W) ST,
U(A)Mij(u)uil(A):Qki(Aau)Mkl(u’)Qlj(Ayu)y (78

(66)
Therefore, the spin operatogg(u) = — S;(u) are Hermitian

where() (A ,u) denotes the space part of the mafdigA ,u). and satisfy the same algebra

It follows from the triangular form oD (A,u) that
6,(U) =0 A WG AW, (67 [S (W), Sa(WI=i[gi (W Sj(u) + gje(u) S (u)

whereg;; are the space components of the covariant metric ~Gik(WS; () =g (WSi(W)]. (79
tensorg,,, . Therefore, one can easily show that the bilinearyq,y. according to Eq(68) one can define the invariant spin

form square operator
M2= i) %1 (W) M (W) Mg (u), (68) o 1 "
S :EYik(U)Vu(U)Sij(U)Sm(U)
where
_ - 1. ” S ~
yij(W=[g;]1 =~ (5;+u'u), (69 =55 (W)S; (W) +U'WSi(u)Si(w). (80)
is a Poincarénvariant operator. Let us introduce the spin
operatorsS; (u) transforming covariantly according to Eq. Consequently
(66), i.e., S?|k,u,m;s,\)=s(s+1)|k,u,m;s,\). (81)

U(A)S;j(u)UHA)=Qi(A,u)S(u) Qi (A, u), .
(A)S; (WU TA)= (A, WS (U (Au) (7o)  Finally, as follows from Eqs(71), (51), and (55), S;j(u)
. _ _ commute withp,,(u) andx*(u), i.e.,
and defined by the action on the basis vectors
. S (u),p, (WI=[S;(u),x*(u)]=0. 82
&, (Wlkums)=— S (W kums.o). (7D [Sij(u),pu(W)]=[S;j(u),x*(u)] (82)
o Summarizing, the covariant spin operator introduced here
The application of Eq(60) to Eqs.(70) and(71) leads to the  has the properties showing its advantage in comparison with

following consistency condition: the standard one. In particular, the algebra generated by
DS(RA U)S;S(U)DS(RX][J):QKI(A,U) §|(U/)Q|(A’U) pM(U), X“(u), andS,](u)—Eqs (44), (45), (,46), (79), and
' ! ’ : (72) (82—is evidently covariant under the Poincay@up action.
Therefore, using the fact thﬁt,_u =1 and VI. POSITION OPERATOR
0 AND LOCALIZED STATES
u 0
- 0 In Sec. VIA we recall briefly the Newton-Wigner posi-
D(L,,u)= u o+ et (73 tion operator. Section VIB is devoted to localized states and
14+ u° the derivation of a functional form of the position operator
introduced in Sec. IV. Section VIC is devoted to description
[s0Q;i(L,,U)=8; +(u%1+u®)u'ui], one obtains of localized states and position operator in the Hilbert space
J ' with a fully invariant measure, resembling the nonrelativistic
. ~. (u9H? i - one.
Sij(u):Sisj+1+uo(u]5|i_u 5|j)u Sﬁl! (74)

A. The Newton-Wigner operator

wherefSiSj ==S?j(ﬁ) are assumed to be Hermitian matrix gen-  In the nonrelativistic quantum mechanics the situation is
erators of the unitary representati®?(R) of SO(3), i.e., clear, and we can define the position operator which fulfills
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all the conditions stated in the Introducti¢covariance is of With the help of the invariant measur&9), the state
course understood with respect to the Gallilei gjolts con- | £ 7,u,m;s,\) can be expressed in terms of the basis vectors
struction and properties are very well known and we do notk,u,m;s,\),

intend to describe them in this section. In the relativistic case

the situation is much more complicated. One of the earliest 1 d3k .

definitions of the position operator is due to Newton and |& 7,u,m;s,\)= f —\Juké 4k,u,m;s,\).
Wigner [24]. In this approach the authors try first to find (2m)¥2) 20(k)

states of the particle localized at a given poingj and then (86)

to write down the corresponding position operators. gt
the set of stateg, o localized atae R® att=0, be the subset
of the Hilbert spacé+ of the unitary irreducible representa- 1 a3k
tion of the universal covering group of the Poincagmup. |€7,u,m;s,\;t)= _f ———Juke* |k, u,m;s,\)
The Newton-Wigner postulates are as folloWig:the setS, (2m)%2) 20(k)

is a linear subspace 6f; (ii) S, is invariant under rotations (87)
around pointa, reflections ina, and time inversions(jii) S, ) 0 )

is orthogonal to all its space translates, i.e., under the spad¥th £°=7—t. One can easily check that these states are
translations eachy,,e S, transforms to a state fronk normalized as follows:

which is orthogonal to all states fro®,; (iv) certain regu- , BN L

larity conditiongs. As an example, Ie?aus discuss shorgtyly the (¢ 7.ums' At g mums\;t)
Newton-Wigner position operator for a spinless particle. In 1

this caseft is a linear space of solutions to the Klein-Gordon =——8%E—&)bsg b0y - (89
equation with a positive energy. Using the Fourier transform 2u°

one can obtain the states localizedaatR® at t=0 in the . . ) ]
momentum representation, namely It is worthwhile to notice here that the states given by Eqg.

(86) are covariant in the CT synchronization, i.e., a state

Now, after an arbitrary time this state evolves to

1 Vo ik localized at the time= 7 for the observe,, is localized at
Sa=1 Yaok)= 5 Fako & fr. (83)  the timet’' =7’ =DJ(A,u) 7 for the observeD,, too. Let us
(2m) discuss a realization of the position operator in the momen-
) N ) tum representation. Wave functions in momentum represen-
The corresponding position operators are given by tation are defined in the standard way,
. ( P +1 Ki ) . Sk u) = (k,u,m;s,\| ), (89
Q=—i|—+5 ——|.
i 2 (k)?+m? or equivalently,
The main results obtained by Newton and Wigner may be k. _
summarized as follows. For a massive particle with an arbi- |’r”>=; 2w(K) Tk, u,mis,\). (90

trary spin there exists a Hermitian position operator with
commuting components, transforming like a vector under therhe scalar product is given by
rotations and satisfying the canonical commutation relations

with the momentum operator, i.¢g¥ k1= —i 5. However, d3k
(lwy= ;

ko g(ku). o (9D)

neither the position operator nor the localized states are co- 2w(k) P\

variant. Moreover, massless particles with spin are not local-

izable. Of course a lot of trials have been undertaken tqyow we can identify the wave functions related to the local-
remove all the unsatisfactory features of the Newton-Wignefzed stateg86); namely, we have

approach, but to the best of the authors’ knowledge, none of

them has been fully successful. For a review [gEg1§. 1

Xv(E Tk urost) = Juké a5, . (92)

(277)3/2
B. Localized states and momentum representation
of the position operator It follows that in this realization
In this section we briefly describe some properties of the _ _
position operator introduced in Sec. IV B. First we find lo- ~ o0 1iu K
calized states in the Schdimger picture. Equation&0) and =l (9_|<i+ MUk ™ (uk)?/’ (93

(82) imply thatx*(u) commutes wittp? andS;;(u) so these
three operators all have common eigenvectors and cons&vidently, for €°=0 (i.e., for t=7) the functionsy are
quently localized states have definite mass and spin. Leiigenvectors ok'. It can be easily demonstrated that in the
|£&7,u,.m;s,\) denote a state localized at the timan the  preferred framgu=(1,0)] the function(92) reduces to the
space poing, Newton-Wigner localized staté83); also the operato(93)
- coincides with the Newton-Wigner position operatd4) for
X(U)| & 7,u,m;s,\)= & & 7,u,m;s,\). (850  a spinless particle.
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C. Invariant measure and the corresponding position operator takes the extremely
In the previous sections we used the Lorentz-invarianfiMmple form
measureg59) N 9
X'=—i— 102
du(k,m)=d*k 6(k° 8(k?—m?). ki (102

We point out that this measure is not invariant under the2S in the nonrelativistic case.

action of the operatoef‘ﬂx(“) [compare Eq(55)]. Neverthe- VII. CONCLUSIONS
less, it is possible to find a measure which is both Poincare
invariant and invariant under the action of this operator. One Following the suggestions of some authdBell [1],
can easily check that such a measure can be written as  Eberhard 2]) that a consistent formulation of quantum me-
L chanics demands the existence of a preferred frame, we pro-
du(k,m)=uk du(k,m)=uk d* 8(k?>—m?)(k°). posed here the Poincacevariant formulation of quantum
(94) mechanics with a built-in preferred frame. Our construction
o ] is based on the use of a nonstandard realization of the Poin-
The measur¢94) simplifies some of the formulas discussed care group introduced iff9]. In this formulation the boost
hge. It resembles also the nonrelativistic one. Integrating,atrix has the lower-triangular form so the time coordinate
du(k,m) with respect to th&® we find rescales only under Lorentz transformations. Such a realiza-
tion corresponds to a nonstandard synchronization of clocks
— 1 (the CT synchronization different from the standard coor-
J d“(k*m)f(k):ﬁj d°k f(ko.K), (99 dinate time definition. Classically such a scheme is opera-
tionally indistinguishable from the standard one. Our con-
wherek, is given by Eq(53). Now the normalizatiori64) is sFruction shows that some not_ions such as Iocalizak_)ility are
) . . 7iq;(u) S|multapeously compatible with quantum mechanics and
not invariant under the action of the opera®r®™™. To  pgincatecovariance only if a privileged frame is distin-

make it invariant we introduce rescaled basis vectors guished. In this formulation of QM, causal problems con-
nected with the violation of Bell's inequalities disappear:
|k,u,m;s,k}imﬁ:i|k,u,m;s,)\>. (96) quantum the_ory remains nonlocal but it is causal_i_n a strong
Juk sense. In this context we constructed and classified unitary
orbits of the Poincargroup in the appropriate bundle of
The rescaled vectors are normalized as follows: Hilbert spaces. The unitary orbits are parametrized by mass
_ , U a0 ) and spin, sjmilarly to the standard unitary representations of
(K, UM S MK UM N iy = 2u° 8% (K= K') 855 Sy, - the Poincaregroup, although they are induced differently

from SQ(3). We introduced a Poincaovariant algebra of
‘momentum and position operators satisfying all fundamental
, physical requirements. We proved that in our framework the
tor e”'®) and it is simultaneously Lorentz invariant. More- position operator exists for particles with arbitrary spin. It
over, fulfills all the requirements: it is Hermitian and covariant, it
. has commuting components, and moreover its eigenvectors
e 'YWk, u,m;s,\ )jn,= €' k+q,u,m;s,\ )i, (98)  (localized statgsare also covariant. We found the explicit
functional form of the position operator and demonstrated
whereqo=qo(k,q,u) is given by Eq.(56). The action of the  that in the preferred frame our operator coincides with the
operatorU(A) on the rescaled basis vectors has again thélewton-Wigner one. We also defined covariant spin opera-

This normalization is invariant under the action of the opera

form (60), i.e., tors and constructed an invariant spin squared operator.
s 1 o Moreover, full algebra of observables consisting of position,
U(A)[KU,m;s, )iy =D5, " H(Ry,u) K", UM S\ )iny - four-momentum, and spin operators is manifestly Poincare

covariant in this framework. We hope that this formulation
may be useful in the construction of the Poincaowariant

Now let us return to the position operator and localized . ; i
. X version of the de Broglie—Bohm quantum mechanics as well.
states. The localized states can be expressed in the new basis

as follows:
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where&®= r—t. The corresponding wave functions localized
at the timet= r take the form APPENDIX
Here we recall briefly some mathematical definitions. We
XMS(E 7 kU o) = ekuts | (101  follow [23], where one can find more detailed explanation

(2m)%? (including examples
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A category A consists of a class of ses,B,C,..., bundle. More precisely, a fiber bundle is a locally trivial
called the objects ol and a class of mappings between thisbundle, i.e., there exists a manifdfd called the typical fiber,
sets Mor@,B), . .., called the morphisms ofl. If f:A—B such that for eacli e M there exists a neighborhodadl of x
andg:B—C is a pair of morphisms, it is always possible to such that the subbund[a-r‘l(U),U,a-r|,7-1(u)] is isomor-
construct the morphismef: A— C. This composition is nec- phic to the product bundle<(x U,U,pr>).
essarily associative. It is further postulated that MgQK) is An example of a fiber bundle is the bundle of linear
not empty and always contains the identity morphismframes. LetM be ann-dimensional manifold which is at the
ida:A—A. same time a vector space and RtM) be the set of all

A bundle is atriple E,M,w) consisting of two r.nanifollds vector frames at all points dfl. Let (e;) be a basis ak
E andM and a surjective map:E—M. The manifoldEis <M and ¢,) a second basis at Thenr;=e;al with (al)
called a total spaceéV is called a base space, ands called _, GL(n,R) (the general linear group in dimensions

a projecti.on. . . Thus there is an isomorphism—a and GL(n,R) is the
The simplest example is the Cartesian product bundl‘?ypical fiber. So we have constructed the fiber bundle

(FXM,M, ) of two manifoldsF andM with ==pr, (ca- . . ) .
nonical projection on the second factor of the Cartesian proo[—.P('v')i'\/l’77:| with the ‘yp'c"’?' flberGL(n,R)._ The projec
tion 7 is the natural one which maps a basis at a pritd

uct) defined by (x,y)=pr,o(x,y)=y for all xe F, ye M. . . :
In general, the inverse images (x) of points xe M the'pomtx. The fiber bundl¢ P(M),M, 7] is called a bundle
f linear framegor a frame bundle

need not be isomorphic. If they are, one speaks of a fibe?
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