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Lorentz-covariant quantum mechanics and preferred frame

P. Caban* and J. Rembielin´ski†

Department of Theoretical Physics, University of Ło´dź, Pomorska 149/153, 90-236 Ło´dź, Poland
~Received 20 August 1998; revised manuscript received 19 October 1998!

In this paper the relativistic quantum mechanics~QM! is considered in the framework of the nonstandard
synchronization scheme, which preserves the Poincare´ covariance but~at least formally! distinguishes an
inertial frame. This enables one to avoid the problem with a strong formulation of local causality related to the
breaking of Bell’s inequalities in QM. Our analysis has been focused mainly on the problem of the existence
of a proper position operator for massive particles. We have proved that in our framework such an operator
exists for particles with arbitrary spin. This operator is Hermitian and covariant, it has commuting components,
and its eigenvectors~localized states! are covariant too. We have found an explicit form of the position
operator and demonstrated that it coincides with the Newton-Wigner one in the preferred frame. We have also
defined a covariant spin operator and constructed an invariant spin squared operator. Moreover, full algebra of
observables consisting of position, four-momentum, and spin operators is manifestly Poincare´ covariant in this
framework. Our results support expectations of other authors@J. S. Bell, inQuantum Gravity, edited by C. J.
Isham, R. Penrose, and D. W. Sciama~Oxford University Press, Oxford, 1981!, p. 611; P. H. Eberhard, Nuovo
Cimento B46, 392 ~1978!# that a consistent formulation of quantum mechanics demands the existence of a
preferred frame.@S1050-2947~99!04706-X#

PACS number~s!: 03.65.Bz, 03.30.1p
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I. INTRODUCTION

In this paper we propose a formulation of the Poinca´-
covariant quantum mechanics for a free particle. Our inv
tigations are motivated by two old and still open problem
the violation of locality in quantum mechanics~breaking of
Bell’s inequalities! and the nonexistence of a covariant po
tion operator as well as covariant localized states. It w
recognized long ago that some correlation experiments~cf.
@3–5#! imply that, ‘‘ . . . what happens macroscopically
one space-time region must in some cases depend on
ables that are controlled by experimenters in far-aw
space-like-separated regions’’@6#. This fact can be in conflict
with special relativity; even more frustrating is a confli
with a strong version of local causality. It may be interesti
to recall in this place the statement by Bell@7#: ‘‘ . . . For me
then this is the real problem with quantum theory: the app
ently essential conflict between any sharp formulation a
fundamental relativity.’’ According to Bell@1# ~see also
Eberhard@2#!, a consistent formulation of relativistic quan
tum mechanics may require a preferred frame at the fun
mental level. Here we follow these suggestions and introd
the Poincare´-covariant formulation of quantum mechani
which has a preferred frame built in.

It is important to realize that special relativity is in fa
based on two main assumptions: the Poincare´ covariance and
the relativity principle. Our aim is to reformulate this theo
in a way which preserves the Poincare´ covariance but aban
dons the relativity principle and consequently allows one
introduce a preferred frame. Such a formulation of the re
tivity theory was given by one of the authors~J.R.! in @8,9#.

*Electronic address: caban@mvii.uni.lodz.pl
†Electronic address: jaremb@mvii.uni.lodz.pl and
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It was shown there that by using a nonstandard synchron
tion procedure for clocks~called the Chang-Tangherlini syn
chronization in@9#!, it is possible to obtain such a form of th
transformations of coordinates between inertial observ
that while they still are Lorentz transformations, the tim
coordinate is only rescaled by a positive factor and the sp
coordinates do not mix with it. A price for this is the exis
tence of a preferred frame in the theory and the depende
of the Lorentz group transformations on an additional para
eter — the four-velocity of a preferred frame. Usually it
claimed that the existence of a preferred frame violates
Poincare´ covariance. This is really the case if we restr
ourselves to the Minkowski space-time. But in our approa
the additional set of parameters~four-velocity! allows us to
preserve the Poincare´ covariance but not necessarily the rel
tivity principle. We also think that the existence of a pr
ferred frame is not a serious problem from the physical po
of view. In the real~expanding! Universe such a frame reall
does exist — it is the so-called comoving frame related to
matter and the cosmic background radiation frame. Furth
more, in our framework, an average light velocity ov
closed paths is still constant and equal toc, so Michelson-
Morley-like experiments do not distinguish such a possibil
from the standard one@10,9#.

The formulation of the Poincare´-covariant quantum me
chanics presented here seems to have a number of ad
tages over the standard formulation. First of all, the confl
between the causality and the quantum theory disappe
Second, the localization problem is solved. Various aspe
of localizability of particles have been studied from the ea
days of quantum mechanics, but, in the relativistic case~as
opposed to the nonrelativistic one! the fully satisfactory po-
sition operator has not been found yet. Let us explain at
point what we mean by the satisfactory position opera
Such an operator should be Hermitian, have commut
components~for massive particles!, fulfill the canonical
4187 ©1999 The American Physical Society
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4188 PRA 59P. CABAN AND J. REMBIELIŃSKI
commutation relations with the momentum operators, be
variant, and have covariant eigenstates~localized states!. The
operator constructed in the framework of the theory p
sented here has all these properties. We also hope tha
formulation of quantum mechanics will be very convenie
in the case of the Poincare´-covariant de Broglie–Bohm ap
proach to quantum mechanics.1 To make this paper self
contained we devote the second section to the descriptio
the Chang-Tangherlini synchronization scheme and the
responding realization of the Lorentz group. More details
this subject can be found in@9#. In Sec. III we describe
briefly the covariant canonical formalism for a relativist
free particle on the classical level, following@9,16#. Section
IV contains a description of the quantum theory in t
Chang-Tangherlini synchronization and the definition o
position operator. In Sec. V we construct and classify unit
orbits of the Poincare´ group using the introduced positio
operator. We define also a covariant spin operator and c
struct the invariant operator of the spin squared. In Sec.
we first review briefly the properties of the Newton-Wign
operator ~in the authors’ opinion this is the best positio
operator which has been constructed up to now; more in
mation about the history of the localization problem and
full bibliography can be found in@17,18#!. Then we find the
explicit form of our position operator in the functional rea
ization and show that in the preferred frame our opera
coincides with the Newton-Wigner one. This section co
tains also a discussion of the position operator under
special choice of the integral measure. In this case the f
of the position operator is the same as in the nonrelativi
quantum mechanics.

II. CHANG-TANGHERLINI „CT…
SYNCHRONIZATION

In this section we briefly describe the main features of
CT synchronization scheme which we shall use in the seq
The derivation of these results can be found in@9#. The idea
adopted there is that the definition of the time coordin
depends on the choice of the synchronization scheme
clocks and that this choice is a matter of convention@10,19–
22#. Using this freedom one can choose a synchroniza
procedure resulting in the desired form of the Lorentz tra
formations. Performing such a program we have to dis
guish, at least formally, one inertial frame — the so-cal
preferred frame. Thus, at least formally, the relativity pr
ciple may be broken. We discuss this problem in Sec. II
Now, each inertial frame is determined by the four-veloc
of this frame with respect to the distinguished one. We
note four-velocity of the preferred frame as seen by an in
tial observer byum. Hereafter, quantities in the Einstein
Poincare´ ~EP! synchronization are denoted by the subscr
~or superscript! E. Quantities in the CT synchronization us
ally have no index; only the time coordinate in CT synch
nization is denoted byxCT

0 . We use the natural units (\5c
51).

According to@8,9# the transformation law between inerti

1An exhaustive review of the interpretational problems of qu
tum mechanics can be found in@11–15#.
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frames is determined by the following requirements:~i! the
transformation group is isomorphic to the Lorentz group;~ii !
the average value of the light speed over closed path
constant and equal to 1;~iii ! transformations are linear with
respect to the coordinates~affinity!; ~iv! under the rotations
the coordinates transform in a standard way~isotropy!:

xCT80~u8!5xCT
0 ~u!,

x8~u8!5Rx~u!,

whereR is a rotation matrix;~v! the instant time hyperplane
xCT

0 5const is an invariant notion. Notice that~i!–~iv! are the
standard requirements, while~v! is nonstandard. Conse
quently, in this synchronization the transformation of coo
dinates between inertial frames has the following form~for
contravariant coordinates!:

x8~u8!5D~L,u!x~u!, ~1!

whereL is an element of the Lorentz group,um is the four-
velocity of the preferred frame with respect to the actual o
andD(L,u) is aL- andu-dependent 434 matrix. Equation
~1! is accompanied by

u85D~L,u!u. ~2!

Matrices D(L,u) fulfill the following group composition
rule:

D„L2 ,D~L1 ,u!u…D~L1 ,u!5D~L2L1 ,u! ~3!

so that

D21~L,u!5D„L21,D~L,u!u…, D~ I ,u!5I . ~4!

Let T(u) be the intertwining matrix connecting coordinat
in the CT and EP synchronizations. It means that for ev
contravariant four-vectorAm we have

Am5T~u!n
mAE

n . ~5!

ThereforeD(L,u) is of the following form:

D~L,u!5T~u8!LT21~u!. ~6!

One can find the explicit form ofT(u) @9#, namely,

T~u!5S 1 2uTu0

0 I D . ~7!

Consequently for all rotationsRPSO(3), D(L,u) is given
by

D~R,u!5S 1 0

0 RD , ~8!

while for the boosts it is given by
-
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D~W,u!5S 1

W0
0

2W I 1
W ^ WT

11A11~W!2
2u0W ^ uTD ,

~9!

whereWm denotes the four-velocity of the frameOu8 with
respect to the frameOu . The four-velocityWm can be ex-
pressed in terms ofu andu8,

W05
u0

u80
, W5

~u01u80!~u2u8!

@11u0u80~11uu8!#
. ~10!

Instead ofWm we can also use velocityV5W/W0. The form
of all the above formulas in terms ofV can be found by
using the relation

1

W0
5A~11u0uV!22~V!2. ~11!

The explicit relationship between coordinates in EP and
is given by

xE
05xCT

0 1u0ux, xE5x,

uE
05

1

u0
, uE5u. ~12!

We see that only the time coordinate changes. Note also
in the same point in space we haveDxE

05DxCT
0 so the time

lapse is the same in both synchronizations.
One can easily see that the line element

ds25gmn~u!dxm dxn ~13!

is invariant under the transformations~6! if

g~u!5@T~u!hTT~u!#21, ~14!

whereh is the Minkowski metric tensorh5diag(1,2,2,
2). The explicit form of the covariant metric tensor read

@gmn#5S 1 u0uT

u0u 2I 1~u0!2u^ uTD , ~15!

while the contravariant one has the form

g21~u!5S ~u0!2 u0uT

u0u 2I D . ~16!

This implies that the space line element is the Euclidean o
dl25dx2. Notice that the triangular form of the boost matr
~9! implies that under the Lorentz transformations the ti
coordinate is rescaled by a positive factor@xCT80

5(1/W0)xCT
0 #; the space coordinates do not mix with it. On

can also easily check that the following, very useful, re
tions hold:
T

at

e:

e

-

u50 and
1

~u0!2
2~u!251. ~17!

Hereafter the three-vector part of a covariant~contravariant!
four-vectoram (am) will be denoted bya (a).

A. Geometric description of the CT synchronization

A geometric description of the special relativity in the C
synchronization scheme can be expressed in the languag
frame bundles. For a reader who is not familiar with t
notion of a fiber bundle, we collected all necessary defi
tions in the Appendix. The review of applications of fib
bundles in the context of special relativity can be found
@23#. Let M be the Minkowski space-time,L1

↑ the ortochro-
nous Lorentz group~the group of space-time transforma
tions!, and letF(L1

↑ ) be the set of all frames in the spaceM
obtained by action ofL1

↑ on one particular~but arbitrary!
frame. ThusF(L1

↑ ) is isomorphic to the groupL1
↑ and the

element ofF(L1
↑ ) corresponding to an elementgPL1

↑ is
denoted bye(g).

Now let us consider the following structure:

Mw5@L1
↑ ,„F~L1

↑ !3M ,M ,pr2…,pw ,cw#, ~18!

wherepr2 is the canonical projection on the second factor
the Cartesian product. Therefore@F(L1

↑ )3M ,M ,pr2# is a
frame bundle with the typical fiberF(L1

↑ ). pw is a projec-
tion on a fixed timelike four-vectorw, while cw is the action
of the groupL1

↑ on the bundle@F(L1
↑ )3M ,M ,pr2# fulfill-

ing the following conditions:

„e8~g!,x8…5„e~kg!,x…, ~19!

em~kg,x!5D~k,g!m
nen~g,x!, ~20!

DT21~k,g!pwD21~k,g!5pw , ~21!

wherekPL1
↑ , xPM . It is clear that the Lorentz transforma

tions are considered as passive transformations — the ac
of the Lorentz group changes the observer, not the phys
state. This means that the action of the Lorentz gro
changes the framee(g). Condition~19! means that the action
cw is trivial on the manifoldM; the groupL1

↑ acts only on
the fiber. Condition~20! says thatcw acts linearly on frames
Now, we associate the time direction tow, which means that
the projectorpw5w^ w/w2 is equal tope0,

pe05pw . ~22!

After this identification, pw reads in theem basis @pw
5(pw)mnem

^ en#

@~pe0!mn#5@~pw!mn#5S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D . ~23!
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This construction defines a time orientation ofM along w.
The matrixD(k,g) can be expressed byD(L,u) given in
Eqs.~8! and ~9! as follows. LetL15k, L25g; then

D~k,g!5D~L1 ,L2ũ! ~24!

and ũ5(1,0). Condition~21! means that the direction of th
four-vectorw is invariant under the action of the groupL1

↑ .
Thus we have a collection of time-oriented space-tim

Mw , wherew is an arbitrary timelike four-vector. The ob
jects Mw and Mw8 corresponding to differentw andw8 are
evidently connected by the action of another Lorentz gro
L1
↑(S) ~called a synchronization group in@9#!. The whole fam-

ily of time-oriented space-timesMw together with the trans
formationsw of the synchronization group, treated as mo
phisms, form a category

A5~Mw ,w!. ~25!

The actionw of the synchronization groupL1
↑(S) is defined in

the most natural way,

w~Mw!5MLSow , LSPL1
↑(S) . ~26!

From the physical point of view all choices of an object
the categoryA are equivalent provided the relativity prin
ciple holds. However, if we want to introduce a covaria
canonical formalism for a relativistic free particle on th
classical level or to define a proper position operator for s
a particle on the quantum level, we have to give up
relativity principle. In other words, a consistent description
possible if and only if we use a fixed element of the categ
A. In this case also the causal problems connected with
breaking of Bell’s inequalities in QM disappear. Summar
ing, although the formulation of special relativity in terms
the categoryA is equivalent to the standard one, whenev
the notions of localizability or absolute causality are inc
porated, the group of morphisms is broken, i.e., a time
entation is selected. Using some particularA ~family of CT
synchronizations!, one can consistently define the positio
operator, which is impossible within the EP scheme. Mo
over, this construction shows that some notions, such as
calizability, are simultaneously compatible with quantu
mechanics and Poincare´ covariance if and only if a privi-
leged frame is distinguished.

III. CANONICAL FORMALISM
IN THE CT SYNCHRONIZATION

For a relativistic free particle we postulate the followin
action functional:

S1252mE
l1

l2Ads2, ~27!

whereds25gmn(u)(dxm/dl)(dxn/dl)dl2 andl is a trajec-
tory parameter. We define the four-velocity in the stand
way: vm5dxm/dl5 ẋm. Then the velocity has the formv
5dx/dxCT

0 5v/v0. Choosing the parameterl as the length
of the trajectory,dl5Ads2, we obtain the following condi-
tion:
s

p

-

t

h
e

y
he
-

r
-
i-

-
o-

d

v25gmn~u!vm~u!vn~u!51, ~28!

which implies

v̇m5 ẍm50. ~29!

Using the formula~15! we can derive from Eq.~27! the
Lagrangian

L52mA~11u0uv!22~v!2. ~30!

Now we can calculate the canonical momenta

p i5
]L

]v i
5

m@v i2uiu0~11u0uv!#

A~11u0uv!22~v!2
52mv i ~31!

and the Hamiltonian

H5pkv
k2L5

1

u0
@up1A~up!21~p!21m2#5mv0 ,

~32!

where p5(p1 ,p2 ,p3). So the covariant four-momentum
can be defined by

km5mvm . ~33!

It is easy to check thatkm fulfills the following dispersion
relation:

k25gmn~u!kmkn5m2. ~34!

Now we introduce the Poisson bracket

$A,B%52S dm
n2

kmun

uk D S ]A

]xm

]B

]kn
2

]B

]xm

]A

]kn
D , ~35!

wherexm, kn are treated as independent variables; in parti
lar, k0 is not a priori connected withki via the dispersion
relation ~34!. The Poisson bracket~35! satisfies all of the
following necessary conditions:~i! it is bilinear and antisym-
metric, satisfies the Leibniz rule, and fulfills the Jacobi ide
tity; ~ii ! it is manifestly Poincare´ covariant in the CT syn-
chronization;~iii ! it is consistent with the constraint~34!, i.e.,
$k2,kn%5$k2,xm%50, therefore there is no reason to intr
duce a Dirac bracket;~iv! it is consistent with the Hamilton
equations~37!. In particular, Eq.~35! implies

$xm,xn%50, $xCT
0 ,km%50,

$xi ,kj%52d j
i , $xi ,k0%5ki /k0,

$km ,kn%50. ~36!

The Hamilton equations for a free particle have the desira
form

dxi

dt
5

]H

]p i
5

ki

k0
5v i ,

dki

dt
52

]H

]xi
50, ~37!
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where H is given by Eq.~32! and t5xCT
0 . In general, the

equation of motion for an observableV(xm,kn) in terms of
the Poisson bracket~35! reads

dV

dt
5

]V

]t
1$V,k0%. ~38!

In Eq. ~38! as well as in Eq.~35!, k0 is treated as an inde
pendent variable. The solution of Eq.~38! can be reduced to
the constraint surface~34!.

IV. QUANTUM THEORY IN THE CT SYNCHRONIZATION

The results of the previous sections imply that there is
absolute causality in the CT synchronization. Therefore
the problems with causality, connected with the violation
Bell inequalities, disappear. Quantum theory remains no
cal but it is causal. In our approach we are able, in analog
the classical Poisson algebra described in Sec. III, to in
duce a Poincare´-covariant algebra of momentum and po
tion operators satisfying all fundamental physical requi
ments. This is done in Sec. IV B. The properties of t
position operator are discussed in detail in Secs. VI B a
VI C.

A. Preliminaries

In the CT synchronization the following point of view i
the most natural one: to each inertial observerOu we asso-
ciate its own Hilbert spaceHu ~the space of states!. The state
vectors inHu are denoted byu: uu, . . . &. In other words, we
have a bundle of Hilbert spaces corresponding to the bu
of frames described in Sec. II A. In such an interpretation
have to distinguish carefully between active and pass
transformations, because active transformations are re
sented by operators acting on one Hilbert space while p
sive ones are represented by operators acting between d
ent Hilbert spaces. So, in particular, the Lorentz gro
transformations are considered as passive ones. Now
U(L) be an operator representing a Lorentz group elem
L. We postulate the following, standard, transformation l
for a contravariant four-vector operator:

U~L!Â~u!mU21~L!5@D21~L,u!#n
mÂ~u8!n, ~39!

where D(L,u) is given by Eqs. ~8! and ~9! and u8

5D(L,u)u; for a covariant four-vectorÂ(u)m we have to
replaceD21 by DT on the right-hand side of Eq.~39!. Let V
be a four-vector observable. In the spaceHu the observable
V is represented by an operatorV̂m(u). Now let two inertial
observersOu and Ou8 measure independently the value
the observableV for a physical system being in the sam
physical state.2 Let this state be described by an eigenvec
uv,u, . . . & of theVm in the spaceHu . Then in the spaceHu8
the same state is described by the vector

uv8,u8, . . . &5U~L!uv,u, . . . &, ~40!

2Of course, we should imagine an ensemble of identical copie
a physical system in the same prepared state.
n
ll
f
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where u85D(L,u)u, v85D(L,u)v. As a result of mea-
surement ofV the observerOu will receive the valuev,

V̂m~u!uv,u, . . . &5vmuv,u, . . . &. ~41!

As a result of measurement the observerOu8 should obtain
the valuev85D(L,u)v. Therefore, in the space of state
Hu8 the observableV is represented by an operatorV̂m(u8),
because

V̂~u8!uv8,u8, . . . &5U~L!D~L,u!V̂~u!uv,u, . . . &

5U~L!D~L,u!v~u!uv,u, . . . &

5v8~u8!uv8,u8, . . . &, ~42!

where we have used Eqs.~39! and ~40!. To conclude this
section we provide the interpretation of the opera
V̂8(u8)5D(L,u)V̂(u). We have

V̂8m~u8!uv,u, . . . &5Dn
m~L,u!V̂n~u!uv,u, . . . &

5Dn
m~L,u!vn~u!uv,u, . . . &

5v8m~u8!uv,u, . . . &. ~43!

ThusV̂8(u8) is an operator which, when acting on a vect
describing the state of a physical system in the space of
observerOu gives, the same result as seen by the obse
Ou8 performing measurement on this system being in
same physical state.

B. Algebra of momenta and positions

In each spaceHu one can introduce the Hermitian fou
momentum operatorsp̂l(u) ~generators of translations!.
These operators are interpreted as observables in the c
sponding reference frame. In the CT synchronization we
go further and introduce Hermitian position operatorsx̂m(u)
in each spaceHu . According to the Poisson bracket on th
classical level~35! we postulate the following commutator
betweenx̂m(u) and p̂l(u):

@ x̂m~u!,p̂l~u!#5 i S ulp̂m~u!

up̂~u!
2dl

mD , ~44!

@ p̂m~u!,p̂n~u!#50, ~45!

@ x̂m~u!,x̂n~u!#50. ~46!

In particular,

@ x̂CT
0 ~u!,p̂l~u!#50, ~47!

@ x̂i~u!,p̂ j~u!#52 id j
i , ~48!

@ x̂i~u!,p̂0~u!#5 i
p̂i~u!

p̂0~u!
. ~49!

We see thatx̂CT
0 commutes with all the observables. Th

allows us to interpretx̂CT
0 as a parameter just like in th

of
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4192 PRA 59P. CABAN AND J. REMBIELIŃSKI
standard nonrelativistic quantum mechanics. We have
stress here once again that the commutation relations~44!–
~49! are covariant in the CT synchronization. This can b
checked directly; one simply has to use Eqs.~8!, ~9!, and
~39! and to transform Eqs.~44!, ~45!, and ~46! to another
reference frame. One can also check that

@ x̂m~u!,p̂2#50, ~50!

which means that localized states have definite masses.

V. UNITARY ORBITS OF THE POINCARE´ GROUP
FOR k2>0 AND SPIN OPERATORS

According to our interpretation we deal with a bundle
Hilbert spacesHu rather than with a single space of state
Therefore the transformations of the Lorentz group induce
orbit in this bundle. In this section we construct and class
unitary orbits of the Poincare´ group in the bundle of Hilbert
spaces. As we will see, the unitary orbits are parametrized
mass and spin, similarly as for the standard unitary repre
tations of the Poincare´ group.

A. Unitary orbits

As in the standard case we assume that the eigenve
uk,u, . . . & of the four-momentum operators

p̂m~u!uk,u, . . . &5kmuk,u, . . . &, ~51!

with k25m2, form a basis of the Hilbert spaceHu . We
adopt the following Lorentz-covariant normalization:

^k8,u, . . . uk,u, . . . &52k0d3~k82k!, ~52!

wherek denotes the space part of a covariant four-vectorkm
andk05g0mkm is positive. The energyk0 is the solution of
the dispersion relationk25m2 and is given by

k05
1

u0
@2uk1A~uk!21~k!21m2#, ~53!

so

k0[v~k!5u0A~uk!21~k!21m2. ~54!

In the construction of the unitary irreducible orbits we u
the operatore2 iqx̂(u). Action of this operator on the basi
states can be determined by using its unitarity, normaliza
of the basis vectors~52!, and the commutation relations~44!.
Its final form is3

e2 iqx̂(u)uk,u, . . . &5eiq0x̂CT
0 (u)A uk

u~k1q!
uk1q,u, . . . &,

~55!

3There is a freedom in choosing the phase factor on the right-h
side of Eq.~55!; it is determined here by the requirement that
phase factor on the right-hand side of Eq.~60! appears.
to

.
n

y

y
n-

ors

n

where on the right-hand side of Eq.~55! q0 is determined by
k, q, andu,

q05
1

u0
@2uq2A~uk!21~k!21m2

1A~uq1uk!21~k1q!21m2#. ~56!

The basis vectors of the spaceHu can be generated from
vector representing a particle at rest with respect to the
ferred frame. First we act withU(Lu) on such a vector; the
resulting state has four-momentummum and belongs toHu .
Next, by means of the formula~55!, we generate a vector in
Hu with the four-momentumkm . Precisely

uk,u, . . . &5Auk

m
e2 i (km2mum) x̂m(u)U~Lu!uk> ,ũ, . . . &,

~57!

where

ũ5~1,0!, k>5~m,0!, u5D~Lu ,ũ!ũ. ~58!

The orbit induced by the action of the operatorU(L) in the
bundle of Hilbert spaces is fixed by the following covaria
conditions:~i! k25m2; ~ii ! «(k0)5 inv, for physical repre-
sentationsk0.0,«(k0)51. As a consequence there exists
positive defined, Lorentz-invariant measure

dm~k,m!5d4k u~k0!d~k22m2!. ~59!

Now, applying the Wigner method and using Eq.~39! one
can easily determine the action of the operatorU(L) on a
basis vector. We find

U~L!uk,u,m;s,s&5D sl
s 21~RL,u!uk8,u8,m;s,l&,

~60!

where

u85D~L,u!u5D~Lu8 ,ũ!ũ, ~61!

k85DT21~L,u!k, ~62!

RL,u5D~RL,u ,ũ!5D21~Lu8 ,ũ!D~L,u!D~Lu ,ũ!,SO~3!,
~63!

and D sl
s (RL,u) is the standard spins rotation matrix s

50,1
2 ,1, . . . ; s,l52s,2s11, . . . ,s21,s. D(RL,u ,ũ) is the

Wigner rotation belonging to the little group of a vectorũ.
Let us stress that in our approach, contrary to the stand
one, representations of the Poincare´ group are induced from
the little group of a vectorũ, notk>. Finally, the normalization
~52! takes the form

^k,u,m;s,luk8,u,m;s8,l8&52k0d3~k82k!ds8sdl8l .
~64!

nd
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B. Spin

Now we describe in some detail the transformation pr
erties of a second rank covariant tensor operator. These
sults are then used in the discussion of the spin.

Let M̂ (u)5@M̂mn(u)# be a tensor operator. The transfo
mation law for this tensor can be deduced from Eq.~39! and
can be written in the matrix notation as

U~L!M̂ ~u!U21~L!5DT~L,u!M̂ ~u8!D~L,u!. ~65!

The lower-triangular form of the matrixD(L,u) @see Eqs.
~8! and~9!# implies that the space part ofM̂ transforms into
itself, namely,

U~L!M̂ i j ~u!U21~L!5Vki~L,u!M̂ kl~u8!V l j ~L,u!,
~66!

whereV(L,u) denotes the space part of the matrixD(L,u).
It follows from the triangular form ofD(L,u) that

gi j ~u8!5Vki
21~L,u!gkl~u!V l j

21~L,u!, ~67!

wheregi j are the space components of the covariant me
tensorgmn . Therefore, one can easily show that the biline
form

M̂25g ik~u!g j l ~u!M̂ i j ~u!M̂ kl~u!, ~68!

where

g i j ~u!5@gi j #
2152~d i j 1uiuj !, ~69!

is a Poincare´-invariant operator. Let us introduce the sp
operatorsŜi j (u) transforming covariantly according to Eq
~66!, i.e.,

U~L!Ŝi j ~u!U21~L!5Vki~L,u!Ŝkl~u8!V l j ~L,u!,
~70!

and defined by the action on the basis vectors

Ŝi j ~u!uk,u,m;s,l&52S i j
s ~u!lsuk,u,m;s,s&. ~71!

The application of Eq.~60! to Eqs.~70! and~71! leads to the
following consistency condition:

D s~RL,u!S i j
s ~u!D s~RL,u

21 !5Vki~L,u!S kl
s ~u8!V l j ~L,u!.

~72!

Therefore, using the fact thatRLu ,ũ5I and

D~Lu ,ũ!5S u0 0

u I 1
u0

11u0
u^ uTD ~73!

@so V i j (Lu ,ũ)5d i j 1(u0/11u0)uiuj #, one obtains

S i j
s ~u!5S̃i j

s 1
~u0!2

11u0
~ujd l i 2uid l j !u

kS̃kl
s , ~74!

whereS̃i j
s
ªS i j

s (ũ) are assumed to be Hermitian matrix ge
erators of the unitary representationD s(R) of SO(3), i.e.,
-
re-

ic
r

S̃i j
s 52S̃j i

s 5~ S̃i j
s !† ~75!

and

@ S̃i j
s ,S̃kl

s #52 i ~d i l S̃jk
s 1d jkS̃i l

s 2d ikS̃j l
s 2d j l S̃ik

s !. ~76!

Consequently, in an arbitrary frame

S i j
s ~u!52S j i

s ~u!5S i j
s †~u! ~77!

and

@S i j
s ~u!,S kl

s ~u!#5 i @gil ~u!S jk
s ~u!1gjk~u!S i l

s ~u!

2gik~u!S j l
s ~u!2gjl ~u!S ik

s ~u!#.

~78!

Therefore, the spin operatorsŜi j (u)52Ŝj i (u) are Hermitian
and satisfy the same algebra,

@Ŝi j ~u!,Ŝkl~u!#5 i @gil ~u!Ŝjk~u!1gjk~u!Ŝil ~u!

2gik~u!Ŝj l ~u!2gjl ~u!Ŝik~u!#. ~79!

Now, according to Eq.~68! one can define the invariant spi
square operator

Ŝ25
1

2
g ik~u!g j l ~u!Ŝi j ~u!Ŝkl~u!

5
1

2
Ŝi j ~u!Ŝi j ~u!1uiuj Ŝik~u!Ŝjk~u!. ~80!

Consequently

Ŝ2uk,u,m;s,l&5s~s11!uk,u,m;s,l&. ~81!

Finally, as follows from Eqs.~71!, ~51!, and ~55!, Ŝi j (u)
commute withp̂m(u) and x̂m(u), i.e.,

@Ŝi j ~u!,p̂m~u!#5@Ŝi j ~u!,x̂m~u!#50. ~82!

Summarizing, the covariant spin operator introduced h
has the properties showing its advantage in comparison
the standard one. In particular, the algebra generated
p̂m(u), x̂m(u), and Ŝi j (u)—Eqs. ~44!, ~45!, ~46!, ~79!, and
~82!—is evidently covariant under the Poincare´ group action.

VI. POSITION OPERATOR
AND LOCALIZED STATES

In Sec. VI A we recall briefly the Newton-Wigner pos
tion operator. Section VI B is devoted to localized states a
the derivation of a functional form of the position operat
introduced in Sec. IV. Section VI C is devoted to descripti
of localized states and position operator in the Hilbert sp
with a fully invariant measure, resembling the nonrelativis
one.

A. The Newton-Wigner operator

In the nonrelativistic quantum mechanics the situation
clear, and we can define the position operator which fulfi
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all the conditions stated in the Introduction~covariance is of
course understood with respect to the Galilei group!. Its con-
struction and properties are very well known and we do
intend to describe them in this section. In the relativistic c
the situation is much more complicated. One of the earl
definitions of the position operator is due to Newton a
Wigner @24#. In this approach the authors try first to fin
states of the particle localized at a given point (t,a) and then
to write down the corresponding position operators. LetSa ,
the set of statesca,0 localized ataPR3 at t50, be the subse
of the Hilbert spaceH of the unitary irreducible representa
tion of the universal covering group of the Poincare´ group.
The Newton-Wigner postulates are as follows:~i! the setSa
is a linear subspace ofH; ~ii ! Sa is invariant under rotations
around pointa, reflections ina, and time inversions;~iii ! Sa
is orthogonal to all its space translates, i.e., under the sp
translations eachca,0PSa transforms to a state fromH
which is orthogonal to all states fromSa ; ~iv! certain regu-
larity conditions. As an example, let us discuss shortly
Newton-Wigner position operator for a spinless particle.
this caseH is a linear space of solutions to the Klein-Gord
equation with a positive energy. Using the Fourier transfo
one can obtain the states localized ataPR3 at t50 in the
momentum representation, namely

Sa5H ca,0~k!5
1

~2p!3/2
k0

1/2e2 ik¢•aJ . ~83!

The corresponding position operators are given by

q̂k52 i S ]

]ki
1

1

2

ki

~k!21m2D . ~84!

The main results obtained by Newton and Wigner may
summarized as follows. For a massive particle with an a
trary spin there exists a Hermitian position operator w
commuting components, transforming like a vector under
rotations and satisfying the canonical commutation relati
with the momentum operator, i.e.,@ q̂k,k̂i #52 id i

k . However,
neither the position operator nor the localized states are
variant. Moreover, massless particles with spin are not lo
izable. Of course a lot of trials have been undertaken
remove all the unsatisfactory features of the Newton-Wig
approach, but to the best of the authors’ knowledge, non
them has been fully successful. For a review see@17,18#.

B. Localized states and momentum representation
of the position operator

In this section we briefly describe some properties of
position operator introduced in Sec. IV B. First we find l
calized states in the Schro¨dinger picture. Equations~50! and
~82! imply that x̂m(u) commutes withp̂2 andŜi j (u) so these
three operators all have common eigenvectors and co
quently localized states have definite mass and spin.
uj,t,u,m;s,l& denote a state localized at the timet in the
space pointj,

x̂~u!uj,t,u,m;s,l&5juj,t,u,m;s,l&. ~85!
t
e
st

ce

e

e
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e
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With the help of the invariant measure~59!, the state
uj,t,u,m;s,l& can be expressed in terms of the basis vect
uk,u,m;s,l&,

uj,t,u,m;s,l&5
1

~2p!3/2
E d3k

2v~k!
Aukeikjuk,u,m;s,l&.

~86!

Now, after an arbitrary timet this state evolves to

uj,t,u,m;s,l;t&5
1

~2p!3/2E d3k

2v~k!
Aukeikmjm

uk,u,m;s,l&

~87!

with j05t2t. One can easily check that these states
normalized as follows:

^j8,t,u,m;s8,l8;tuj,t,u,m;s,l;t&

5
1

2u0
d3~j2j8!dss8dll8 . ~88!

It is worthwhile to notice here that the states given by E
~86! are covariant in the CT synchronization, i.e., a st
localized at the timet5t for the observerOu is localized at
the timet85t85D0

0(L,u)t for the observerOu8 too. Let us
discuss a realization of the position operator in the mom
tum representation. Wave functions in momentum repres
tation are defined in the standard way,

cl
m,s~k,u!5^k,u,m;s,luc&, ~89!

or equivalently,

uc&5(
l
E d3k

2v~k!
cl

m,suk,u,m;s,l&. ~90!

The scalar product is given by

^wuc&5(
l
E d3k

2v~k!
wl*

m,s~k,u!cl
m,s~k,u!. ~91!

Now we can identify the wave functions related to the loc
ized states~86!; namely, we have

xl
m,s~j,t,k,u;s;t !5

1

~2p!3/2
Aukeikmjm

dsl . ~92!

It follows that in this realization

x̂i52 i
]

]ki
1

1

2
i S ui

uk
2

ki

~uk!2D . ~93!

Evidently, for j050 ~i.e., for t5t) the functionsx are
eigenvectors ofx̂i . It can be easily demonstrated that in th
preferred frame@u5(1,0)# the function~92! reduces to the
Newton-Wigner localized state~83!; also the operator~93!
coincides with the Newton-Wigner position operator~84! for
a spinless particle.
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C. Invariant measure

In the previous sections we used the Lorentz-invari
measure~59!

dm~k,m!5d4k u~k0!d~k22m2!.

We point out that this measure is not invariant under

action of the operatore2 iqx
ˆ
(u) @compare Eq.~55!#. Neverthe-

less, it is possible to find a measure which is both Poinc´
invariant and invariant under the action of this operator. O
can easily check that such a measure can be written as

dm̄~k,m!5uk dm~k,m!5uk d4k d~k22m2!u~k0!.
~94!

The measure~94! simplifies some of the formulas discuss
here. It resembles also the nonrelativistic one. Integra
dm̄(k,m) with respect to thek0 we find

E dm̄~k,m! f ~k!5
1

2u0E d3k f ~k0 ,k!, ~95!

wherek0 is given by Eq.~53!. Now the normalization~64! is

not invariant under the action of the operatore2 iqx
ˆ
(u). To

make it invariant we introduce rescaled basis vectors

uk,u,m;s,l& invª
1

Auk
uk,u,m;s,l&. ~96!

The rescaled vectors are normalized as follows:

inv^k,u,m;s,luk8,u,m;s8,l8& inv52u0d3~k2k8!dss8dll8 .
~97!

This normalization is invariant under the action of the ope

tor e2 iqx
ˆ
(u) and it is simultaneously Lorentz invariant. More

over,

e2 iqx
ˆ
(u)uk,u,m;s,l& inv5eiq0tuk1q,u,m;s,l& inv , ~98!

whereq05q0(k,q,u) is given by Eq.~56!. The action of the
operatorU(L) on the rescaled basis vectors has again
form ~60!, i.e.,

U~L!uk,u,m;s,s& inv5D sl
s 21~RL,u!uk8,u8,m;s,l& inv .

~99!

Now let us return to the position operator and localiz
states. The localized states can be expressed in the new
as follows:

uj,t,u,m;s,l;t&5
1

~2p!3/2

1

2u0E d3k eikmjm
uk,u,m;s,l& inv ,

~100!

wherej05t2t. The corresponding wave functions localize
at the timet5t take the form

x̃l
m,s~j,t,k,u;s;t !5

1

~2p!3/2
eikmjm

dsl , ~101!
t

e

re
e

g
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and the corresponding position operator takes the extrem
simple form

x̂i52 i
]

]ki
~102!

as in the nonrelativistic case.

VII. CONCLUSIONS

Following the suggestions of some authors~Bell @1#,
Eberhard@2#! that a consistent formulation of quantum m
chanics demands the existence of a preferred frame, we
posed here the Poincare´-covariant formulation of quantum
mechanics with a built-in preferred frame. Our constructi
is based on the use of a nonstandard realization of the P
carégroup introduced in@9#. In this formulation the boost
matrix has the lower-triangular form so the time coordina
rescales only under Lorentz transformations. Such a rea
tion corresponds to a nonstandard synchronization of clo
~the CT synchronization!, different from the standard coor
dinate time definition. Classically such a scheme is ope
tionally indistinguishable from the standard one. Our co
struction shows that some notions such as localizability
simultaneously compatible with quantum mechanics a
Poincare´ covariance only if a privileged frame is distin
guished. In this formulation of QM, causal problems co
nected with the violation of Bell’s inequalities disappea
quantum theory remains nonlocal but it is causal in a stro
sense. In this context we constructed and classified uni
orbits of the Poincare´ group in the appropriate bundle o
Hilbert spaces. The unitary orbits are parametrized by m
and spin, similarly to the standard unitary representations
the Poincare´ group, although they are induced different
from SO~3!. We introduced a Poincare´-covariant algebra of
momentum and position operators satisfying all fundame
physical requirements. We proved that in our framework
position operator exists for particles with arbitrary spin.
fulfills all the requirements: it is Hermitian and covariant,
has commuting components, and moreover its eigenvec
~localized states! are also covariant. We found the explic
functional form of the position operator and demonstra
that in the preferred frame our operator coincides with
Newton-Wigner one. We also defined covariant spin ope
tors and constructed an invariant spin squared opera
Moreover, full algebra of observables consisting of positio
four-momentum, and spin operators is manifestly Poinca´-
covariant in this framework. We hope that this formulatio
may be useful in the construction of the Poincare´-covariant
version of the de Broglie–Bohm quantum mechanics as w
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APPENDIX

Here we recall briefly some mathematical definitions. W
follow @23#, where one can find more detailed explanati
~including examples!.
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A categoryA consists of a class of setsA,B,C, . . . ,
called the objects ofA and a class of mappings between th
sets Mor(A,B), . . . , called the morphisms ofA. If f :A→B
andg:B→C is a pair of morphisms, it is always possible
construct the morphismg+ f :A→C. This composition is nec-
essarily associative. It is further postulated that Mor(A,A) is
not empty and always contains the identity morphi
idA :A→A.

A bundle is a triple (E,M ,p) consisting of two manifolds
E andM and a surjective mapp:E→M . The manifoldE is
called a total space,M is called a base space, andp is called
a projection.

The simplest example is the Cartesian product bun
(F3M ,M ,p) of two manifoldsF andM with p5pr2 ~ca-
nonical projection on the second factor of the Cartesian pr
uct! defined byp(x,y)5pr2(x,y)5y for all xPF, yPM .

In general, the inverse imagesp21(x) of points xPM
need not be isomorphic. If they are, one speaks of a fi
-
,

ic

e-

al
y

le

d-

er

bundle. More precisely, a fiber bundle is a locally trivi
bundle, i.e., there exists a manifoldF, called the typical fiber,
such that for eachxPM there exists a neighborhoodU of x
such that the subbundle@p21(U),U,pup21(U)# is isomor-
phic to the product bundle (F3U,U,pr2).

An example of a fiber bundle is the bundle of line
frames. LetM be ann-dimensional manifold which is at the
same time a vector space and letP(M ) be the set of all
vector frames at all points ofM. Let (ei) be a basis atx
PM and (r i) a second basis atx. Then r i5ejai

j with (ai
j )

5aPGL(n,R) ~the general linear group inn dimensions!.
Thus there is an isomorphismr °a and GL(n,R) is the
typical fiber. So we have constructed the fiber bun
@P(M ),M ,p# with the typical fiberGL(n,R). The projec-
tion p is the natural one which maps a basis at a pointx to
the pointx. The fiber bundle@P(M ),M ,p# is called a bundle
of linear frames~or a frame bundle!.
-
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