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Using parity kicks for decoherence control
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Dipartimento di Matematica e Fisica, Universita` di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy

and Istituto Nazionale di Fisica della Materia, Camerino, Italy
~Received 9 September 1998; revised manuscript received 6 January 1999!

We show how it is possible to suppress decoherence using tailored external forcing acting as pulses. In the
limit of infinitely frequent pulses decoherence and dissipation are completely frozen; however, a significant
decoherence suppression is already obtained when the frequency of the pulses is of the order of the reservoir
typical frequency scale. This method could be useful in particular to suppress the decoherence of the center-
of-mass motion in ion traps.@S1050-2947~99!03606-9#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Decoherence is the process which limits our ability
maintain pure quantum states, or their linear superpositi
It is the phenomenon by which the classical world appe
from the quantum one@1#. In more physical terms it is de
scribed as the rapid destruction of the phase relation betw
two, or more, quantum states of a system caused by the
tanglement of these states with different states of the e
ronment. The present widespread interest in decoheren
due to the fact that it is the main limiting factor for quantu
information processing. We can store information, indeed
two-level quantum systems, known as quantum bits~qubits!,
which can become entangled with each other, but deco
ence can destroy any quantum superposition, reducing
system to a mixture of states, and the stored informatio
lost. For this reason decoherence control is now becomin
rapidly expanding field of investigation.

In a series of previous papers@2–5# we have faced the
control of decoherence by actively modifying the system
dynamics through a feedback loop. This procedure tur
out to be very effective, in principle@4#, to slow down the
decoherence of the only experiment@6#, up to now, in which
the decoherence of a mesoscopic superposition was dete
The main limiting aspect of this procedure is connected w
the need for a measurement. In order to do the feedbac
the appropriate way, one has first to perform a measurem
and then the result of this measurement can be used to o
ate the feedback. However, any physical measuremen
subject to the limitation associated with a nonunit detect
efficiency. We have shown@5# that with detection efficiency
approaching unity the quantum superposition of states st
in a cavity can be protected against decoherence for m
decoherence timestdec, where tdec is defined as the cavity
relaxation time divided by the average photon number@7#.

We wish now to face the problem of eliminating the me
surement in controlling the decoherence. We show, h
how it is possible to inhibit decoherence through the ap
cation of suitable open-loop control techniques to the sys
of interest, that is, by using appropriately shaped tim
varying control fields. To be more specific, decoherence
be inhibited by subjecting a system to a sequence of v
frequentparity kicks, i.e., pulses designed in such a way th
PRA 591050-2947/99/59~6!/4178~9!/$15.00
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their effect is equivalent to the application of the parity o
erator on the system.

The paper is organized as follows. In Sec. II the par
kick method is presented in its generality and it is sho
how decoherence and dissipation are completely frozen
the limit of infinitely frequent pulses. In Sec. III the metho
is applied to the case of a damped harmonic oscillator, s
as, for example, a given normal mode of a system of trap
ions. In Sec. IV the numerical results corresponding to t
case are presented, showing that a considerable decohe
suppression is obtained when the parity kick repetition r
becomes comparable to the typical time scale of the envir
ment. In Sec. V the possibility of applying this scheme
harness the decoherence of the center-of-mass motion in
traps is discussed.

II. THE GENERAL IDEA

Let us consider a generic open system, described by
Hamiltonian

H5HA1HB1H int , ~1!

whereHA is the bare system Hamiltonian,HB denotes the
reservoir Hamiltonian, andH int is the Hamiltonian describing
the interaction between the system of interest and the re
voir, which is responsible for dissipation and decoheren
We shall now show that if the Hamiltonian~1! possesses
appropriate symmetry properties with respect to parity, i
possible to actively control dissipation~and the ensuing de
coherence! by adding suitably tailored time-dependent exte
nal forcing acting on system variables only. The new Ham
tonian becomes

H tot5H1Hkick~ t !, ~2!

where

Hkick~ t !5Hk(
n50

`

u„t2T2n~T1t0!…u„~n11!~T1t0!2t…

~3!

@u(t) is the usual step function# is a time-dependent, peri
odic,system operatorwith periodT1t0 describing a train of
4178 ©1999 The American Physical Society
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PRA 59 4179USING PARITY KICKS FOR DECOHERENCE CONTROL
pulses of durationt0 separated by the time intervalT. The
stroboscopic time evolution is therefore given by the evo
tion operator

U~NT1Nt0!5@Ukick~t0!U0~T!#N, ~4!

where Ukick(t0)5exp$2it0(H1Hk)/\% describes the evolu
tion during the external pulse andU0(T)5exp$2iTH/\%
gives the standard evolution between the pulses. We
assume that the external pulse is so strong that it is pos
to neglect the standard evolution during the pulse,Hk@H,
and then we assume that the pulse HamiltonianHk and the
pulse widtht0 can be chosen so as to satisfy theparity kick
condition

Ukick~t0!.e2( i /\)Hkt05P, ~5!

whereP is the system parity operator.
It is now possible to see that such a time-dependent m

fication of the system dynamics is able to perfectly prot
the system dynamics and completely inhibit decohere
whenever the following general conditions are satisfied:

PHAP5HA , ~6!

PHintP52H int , ~7!

that is, the system Hamiltonian is parity invariant and t
interaction with the external environment anticommutes w
the system parity operator. To be more specific, one has
in the ideal limit of continuous parity kicks, that is,

T1t0→0,

N→`, ~8!

t5N~T1t0!5const.,

the pulsed perturbation is able to eliminatecompletelythe
interaction with the environment and therefore all the phy
cal phenomena associated with it, i.e., energy dissipat
diffusion, and decoherence. To see this it is sufficient to c
sider the evolution operator during two successive pa
kicks, which, using the parity kick condition of Eq.~5!, can
be written as

U~2T12t0!5Pe2( i /\)HTPe2( i /\)HT. ~9!

Since

Pe2( i /\)HTP5e2( i /\)PHPT5e2( i /\)(HA1HB2H int)T, ~10!

one has that the time evolution after two successive kick
driven by the unitary operator

U~2T12t0!5e2( i /\)(HA1HB2H int)Te2( i /\)(HA1HB1H int)T.
~11!

This expression clearly shows how the pulsed perturbatio
able to ‘‘freeze’’ the dissipative interaction with the enviro
ment: the application of two successive parity kicks alter
tively changes the sign of the interaction Hamiltonian b
tween system and reservoir. Therefore one expects tha
-
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the limit of continuous kicks, this sign inversion becom
infinitely fast and the interaction with the environment ave
ages exactly to zero.

This fact can be easily shown just using the definition
the continuous kick limit. In fact, in this limit

U~ t !5 lim
T1t0→0

@e2( i /\)(HA1HB2H int)T

3e2( i /\)(HA1HB1H int)T# t/(2T12t0), ~12!

which, using just the definition of the exponential operat
yields

U~ t !5e2( i /\)(HA1HB)t. ~13!

This means that in the ideal limit of continuous parity kick
the interaction with the environment is completely elim
nated and only the free uncoupled evolution is left.

Let us briefly discuss the physical interpretation of th
result. The continuous kick limit~8! is formally analogous to
the continuous measurement limit usually considered in
quantum Zeno effect~see, for example,@8,9#! in which a
stimulated two-level transition is inhibited by a sufficient
frequent sequence of laser pulses. However, this is on
mathematical analogy because at the physical level one
two opposite situations. In fact, during the pulses, in t
quantum Zeno effect the interaction with the environme
~i.e., the measurement apparatus! prevails over the interna
dynamics, while in the present situation the interaction w
the reservoir is practically turned off by the externally co
trolled internal dynamics@see Eq.~5!#.

This parity kick idea has instead a strong relationship w
spin echo phenomena@10# in which the application of appro
priate rf pulses is able to eliminate much of the dephasing
nuclear magnetic resonance spectroscopy experiments. T
rf pulses realize a sort of time reversal and a similar situat
takes place here in the case of parity kicks. In fact the
evant evolution operator is given by the unitary opera
governing the time evolution after two pulsesU(2T12t0)
of Eq. ~11!, in which the standard evolution during a tim
interval T is followed by an evolution in which the interac
tion with the environment is time reversed for the timeT. If
the time intervalT is comparable to the time scale at whic
dissipative phenomena take place, this time reversal is
late to yield appreciable effects, while ifT is sufficiently
small the very frequent reversal of the interaction with t
reservoir may give an effective freezing of any dissipat
phenomena.

Two very recent papers@11# have considered a general
zation of this parity kick method and have shown that
complete decoupling between system and environment
be obtained for a generic system if one considers an ap
priate sequence of infinitely frequent kicks, realizing a sy
metrization of the evolution with respect to a given grou
The present parity kick method is, in fact, equivalent to sy
metrizing the time evolution of the open system with resp
to the groupZ2, composed by the identity and the syste
parity operatorP. Here we focus only on this case becau
the experimental realization of the parity kicks of Eq.~5! is
quite easy in many cases and moreover the applicability c



li-
e
on
w
rd
re
to

he
th
th
c

tr

il-

o
. I
fre
e

e
le
-
ar
d

th

o
d

arity

in
st of

tor
ncy

a-
-
the

uch
one
e
ter
xi-
e

the

ing

ed
nce

ken
the

-
ign
n

e of
os-
no

ich

of

lar
r
in-

s are
sive

4180 PRA 59D. VITALI AND P. TOMBESI
ditions of the present method, Eqs.~6! and ~7!, are satisfied
by many interesting physical systems.

The continuous kick limit is only a mathematical idea
zation of no practical interest. However, it shows that ther
in principle no limitation in the decoherence suppression
can achieve using parity kicks. Moreover, it clearly sho
that one has to use the most possible frequent pulses in o
to achieve a significative inhibition of decoherence. The
fore the relevant question from a physical point of view is
determine at which values of the periodT1t0 one begins to
have a significant suppression of dissipation and deco
ence. We shall answer this question by considering in
next section a specific example of experimental interest,
is, a damped harmonic oscillator, representing, for instan
a normal mode of a system of trapped ions, or an elec
magnetic mode in a cavity.

III. PARITY KICKS FOR A DAMPED HARMONIC
OSCILLATOR

Let us consider a harmonic oscillator with bare Ham
tonian

HA5\v0a†a, ~14!

describing, for example, a given normal mode of a system
ions in a Paul trap or an electromagnetic mode in a cavity
these two cases the relevant environmental degrees of
dom can be described in terms of a collection of independ
bosonic modes@12#

HB5(
k

\vkbk
†bk , ~15!

representing the elementary excitations of the environm
~in the cavity mode case they are simply the vacuum e
tromagnetic modes!. Moreover, the interaction with the en
vironment is usually well described by the following biline
term in which the ‘‘counter-rotating’’ terms are droppe
@13,14#:

H int5(
k

\gk~abk
†1a†bk!. ~16!

In these cases time evolution is usually described in
frame rotating at the bare oscillation frequencyv0 in which
the effective total Hamiltonian of Eq.~1! becomes

H5HB81H int , ~17!

where

HB85(
k

\~vk2v0!bk
†bk . ~18!

It is immediately seen that in this example the conditions
Eqs.~6! and~7! for the application of the parity kick metho
are satisfied. More generally, conditions~6! and ~7! are sat-
isfied wheneverHA is an even function ofa anda† andH int
is an odd function ofa and a†. In the harmonic oscillator
is
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case the pulsed perturbation realizing the sequence of p
kicks can be simply obtained as a train ofp-phase shifts, that
is,

Hkick~ t !5E~ t !a†a, ~19!

where E(t)5E0(n50
` u„t2T2n(T1t0)…u„(n11)(T1t0)

2t… and the pulse heightE0 and the pulse widtht0 satisfy
the condition

E0t05~2n11!p\, n integer. ~20!

To see how large the pulse repetition rate has to be
order to achieve a relevant decoherence suppression, fir
all one has to compare the pulsing periodT1t0 with the
relevant time scales of the problem. The harmonic oscilla
dynamics is characterized by the free oscillation freque
v0 and by its energy decay rateg ~which is a function of the
couplingsgk); the bath is instead characterized by its ultr
violet frequency cutoffvc which essentially fixes the re
sponse time of the reservoir and generally depends on
system and bath considered. A reservoir is usually m
faster than the system of interest and this means that
usually hasvc@g. Typically the reduced dynamics of th
system of interest is described in terms of effective mas
equations which are derived using the Markovian appro
mation ~see, for example,@13#! which means assuming th
limit vc→`; however, the existence of a finite cutoffvc is
always demanded on physical grounds@15# and this param-
eter corresponds, for example, to the Debye frequency in
case of a phonon bath.

From the preceding section, it is clear that the puls
periodT1t0 has to be much smaller than 1/g, otherwise the
change of sign of the interaction Hamiltonian is realiz
when a significant transfer of energy and quantum cohere
from the system into the environment has already ta
place. At the same time it is easy to understand that
condition vc(T1t0)!1 is a sufficient condition for a sig
nificant suppression of dissipation, since in this case the s
of the interactionH int changes with a rate much faster tha
every frequency of the bath oscillators; each bath degre
freedom becomes essentially decoupled from the system
cillator and there is no significant energy exchange, i.e.,
dissipation. Therefore the relevant question is, for wh
value of the pulsing periodT1t0 within the range
@1/g,1/vc# does one begin to have a relevant inhibition
dissipation?

We shall answer this question by studying in particu
the time evolution of a Schro¨dinger cat state, that is, a linea
superposition of two coherent states of the oscillator of
terest

ucw&5Nw~ ua0&1eiwu2a0&), ~21!

where

Nw5
1

A212e22ua0u2cosw
.

We consider this particular example because these state
the paradigmatic quantum states in which the progres
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PRA 59 4181USING PARITY KICKS FOR DECOHERENCE CONTROL
effects of decoherence and dissipation caused by the e
ronment are well distinct and clearly visible@6#. From the
general proof of the preceding section it is evident t
whenever one finds a significant suppression of decoher
in the Schro¨dinger cat case, this implies that the syste
reservoir interaction is essentially averaged to zero and
one gets a significant system-environment decoupling in g
eral.

Describing the evolution of such a superposition state
the presence of the dissipative interaction with a reservoi
oscillators which is initially at thermal equilibrium atT50 is
quite simple. In fact, it is possible to use the fact that a ten
product of coherent states retains its form at all times w
the evolution is generated by the Hamiltonian~17!, that is,

ua0& ^)
k

ubk~0!&→ua~ t !& ^)
k

ubk~ t !&, ~22!

where the time-dependent coherent amplitudes satisfy
following set of linear differential equations:

ȧ~ t !52 i(
k

gkbk~ t !,

~23!
ḃk~ t !52 i ~vk2v0!bk~ t !2 igka~ t !.

Therefore, using Eq.~22!, one has the following time evolu
tion for the Schro¨dinger cat state~21!:

ucw& ^)
k

u0k&→NwS ua~ t !& ^)
k

ubk~ t !&

1eiwu2a~ t !& ^)
k

u2bk~ t !& D . ~24!
du
m
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The corresponding reduced density matrix of the oscillato
interest at timet, r(t), is given by

r~ t !5Nw
2$ua~ t !&^a~ t !u1u2a~ t !&^2a~ t !u1D~ t !

3@e2 iwua~ t !&^2a~ t !u1eiwu2a~ t !&^a~ t !u#%,

~25!

i.e., it is completely determined by the coherent amplitu
a(t) which is a decaying function describing dissipation
the oscillator’s energy and by the functionD(t) describing
the suppression of quantum interference terms, whose
plicit expression is

D~ t !5)
k

^bk~ t !u2bk~ t !&5expH 22(
k

ubk~ t !u2J .

~26!

These results for the time evolution of the Schro¨dinger cat
are valid both in the presence and in the absence of
external pulsed driving. In fact, the only difference lies in t
fact that in the absence of kicks one has the standard ev
tion driven by exp$2iHt/\%, whereH is given by Eq.~17!,
while in the presence of parity kicks one has a strobos
piclike evolution driven by a unitary operator analogous
that of Eq.~11!
U~2NT12Nt0!5@e2( i /\)HB8 t0e2( i /\)(HB82HRWA)Te2( i /\)HB8 t0e2( i /\)(HB81HRWA)T#N ~27!
of
@we have neglected only the system-reservoir interaction
ing the parity kick and therefore we have added two ter

e2( i /\)HB8 t0 in Eq. ~27! with respect to Eq.~11!#.
Due to the general result~22!, it is convenient to expres

the state of the whole system in terms of a vec
„a(t), . . . ,bk(t), . . . … whose zeroth component is given b
the amplitudea(t) and whosekth component is given by the
amplitudebk(t), k51,2, . . . . Inthis way the formal solution
of the set of linear equations~23! can be expressed as

S a~ t !

A

bk~ t !

A
D 5A~$gk%,t !S a0

A

0

A
D , ~28!

where A($gk%,t) is a matrix whose first matrix elemen
A($gk%,t)00 is given by the inverse Laplace transform
r-
s

r

A~$gk%,t !005L21F 1

z1K~z!G , ~29!

where

K~z!5(
k

gk
2

z1 i ~vk2v0!
. ~30!

All the other matrix elements can be expressed in terms
this matrix elementA($gk%,t)00 in the following way:

A~$gk%,t !0k5A~$gk%,t !k0

52 igkE
0

t

dse2 i (vk2v0)sA~$gk%,t2s!00,

~31!
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4182 PRA 59D. VITALI AND P. TOMBESI
A~$gk%,t !kk85dkk8e
2 i (vk2v0)t2gkgk8E

0

t

dse2 i (vk2v0)(t2s)

3E
0

s

ds8e2 i (vk82v0)(s2s8)A~$gk%,s8!00.

~32!

In the presence of kicks, the stroboscopic evolution
determined by the consecutive application of the evolut
operator for the elementary cycle lasting the time inter
2T12t0 @see Eq.~27!#, during which one has a standa
evolution for a timeT, followed by an uncoupled evolution
for a time t0, then a ‘‘reversed’’ evolution for a timeT in
which the interaction with the environment has the oppo
sign and another uncoupled evolution for the timet0 at the
end. It is easy to understand that in terms of the vecto
coherent amplitudes, the evolution in the presence of pa
kicks can be described as

S a~2NT12Nt0!

A

bk~2NT12Nt0!

A
D

5@F~t0!A~$2gk%,T!F~t0!A~$gk%,T!#NS a0

A

0

A
D , ~33!

where F(t0) is the diagonal matrix associated to the fr
evolution driven by HB8 and is given by F(t0) i , j

5d i , j exp$2i(vi2v0)t0%. We have seen that the quantities
interest are@see Eq.~25!# a(t) andD(t); for the amplitude
of the two coherent states one has

a~ t !5A~$gk%,t !00a0 ~34!

in the absence of kicks and

a~ t !5ˆ@F~t0!A~$2gk%,T!F~t0!A~$gk%,T!#N
‰00a0

~35!

in the presence of kicks (t52NT12Nt0). As for the func-
tion D(t), it is clear that each amplitudebk(t) in Eq. ~26! is
proportional toa0 and therefore one can write

D~ t !5exp$22ua0u2h~ t !%, ~36!

where

h~ t !5(
k

uA~$gk%,t !k0u2 ~37!

in the absence of kicks and

h~ t !5(
k

uˆ@F~t0!A~$2gk%,T!F~t0!A~$gk%,T!#N
‰k0u2

~38!

in the presence of kicks (t52NT12Nt0).
s
n
l

e

f
ty

IV. NUMERICAL RESULTS

In the description of dissipative phenomena one alw
considers a continuum distribution of oscillator frequenc
in order to obtain an irreversible transfer of energy from t
system of interest into the reservoir. Moreover, most oft
also the Markovian assumption is made which means ass
ing an infinitely fast bath with an infinite frequency cuto
vc . This case of a standard vacuum bath in the Markov
limit is characterized by an infinite, continuous, and flat d
tribution of couplings@13#

g~v!25
g

2p
;v, ~39!

which implies

K~z!5
g

2
. ~40!

Using Eqs.~34!, ~31!, and~37!, we get

aMark~ t !5a0e2gt/2, ~41!

hMark~ t !

5(
k

gk
2~11e2gt2e2 i (vk2v0)t2gt/22ei (vk2v0)t2gt/2!

g2/41~vk2v0!2
.

~42!

The last sum in the expression forhMark(t) has to be evalu-
ated in the continuum limit, that is, replacing the sum with
integral over the whole realv axis and usinggk

2→g/2p. The
result is the standard vacuum bath expression for the d
herence functionh(t) @2#,

hMark~ t !512e2gt. ~43!

From the general expressions of the above section
clear that it is not possible to solve the dynamics in t
presence of parity kicks in simple analytical form. We a
therefore forced to solve numerically the problem, by sim
lating the continuous distribution of bath oscillators with
large but finite number of oscillators with closely spac
frequencies. To be more specific, we have considered a
of 201 oscillators, with equally spaced frequencies, sy
metrically distributed around the resonance frequencyv0,
i.e.,

vk5v01kD, ~44!

D5
v0

100
~45!

kmax5
v0

D
5100⇒vk

max52v0 , ~46!

kmin52kmax52100⇒vk
min50, ~47!

and we have considered a constant distribution of coupli
similar to that associated with the Markovian limit
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gk
25

gD

2p
;k. ~48!

Considering a finite number of bath oscillators has t
main effects with respect to the standard case of a continu
Markovian bath. First of all, the adoption of a discrete fr
quency distribution with a fixed spacingD implies that all
the dynamical quantities are periodic with periodTrev
52p/D @16# which can therefore be considered a sort
‘‘revival time.’’ It is clear that our numerical solution will
correctly describe dissipative phenomena provided that
focus only on not too large times~say t<p/D). Moreover,
the introduction of a finite cutoff (vc52v0 in our case!
implies a modification of the coupling spectrumg(v) at
very high frequency with respect to the infinitely flat dist
bution of the Markovian treatment@see Eq.~39!#. This fact
will manifest itself in a slight modification of the exponenti
behavior shown by Eqs.~41! and ~43! at very short times
(t.vc

21) @16#. We have verified both facts in our simula
tions. However, to facilitate the comparison between the
namics in the presence of parity kicks with the standard c
of a Markovian bath, we have chosen the parameters of
simulation so that, within the time interval of interes
0.1/g,t,3/g say, we found no appreciable difference b
tween the standard Markovian bath expressions~41! and~43!
and the corresponding general expression for a discrete
tribution of oscillators~34! and ~37!.

Let us now see what is the effect of parity kicks on dec
herence, by studying first of all the behavior of the decoh
ence functionh(t) for different values of the pulsing perio
T1t0. As discussed above, we expect an increasing de
herence suppression for decreasing values ofT1t0 and this
is actually confirmed by Fig. 1, showingh(t) for different
values of T ~we have chosent050 for simplicity in the
numerical simulation!. In fact, the increase ofh(t) is mono-
tonically slowed down as the time interval between two s
cessive kicksT becomes smaller and smaller. Moreover, F
1 seems to suggest that decoherence inhibition becomes
efficient @h(t).0# when the kick frequency 1/T becomes
comparable to the cutoff frequencyvc . To better clarify this
important point we have plotted in Fig. 2 the value of t
decoherence function at a fixed time as a function of the t
between two successive kicksT. In Fig. 2~a! the decoherence
function at half relaxation timeh(t50.5/g) is plotted as a
function ofvcT/2p, while in Fig. 2~b! the decoherence func

FIG. 1. Time evolution of the decoherence functionh(t) @see
Eqs.~37! and~38!# for different values of the time interval betwee
two kicks T: n, no kicks; 1, vcT550; 3, vcT525; s, vcT
512.5; d, vcT56.25; L, vcT53.125; full line,vcT51.5625.
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tion at one relaxation timeh(t51/g) is plotted again as a
function of vcT/2p. In both cases one sees a quite sha
transition atvcT/2p51: decoherence is almost complete
inhibited as soon as the kick frequency1/T becomes larger
than the cutoff frequencyvc/2p. Therefore we can conclud
that by forcing the dynamics of a harmonic oscillator wi
appropriate parity kicks one is able to inhibit decoheren
almost completely. This decoherence suppression beco
significant when the kick frequency 1/T becomes of the orde
of the typical reservoir time scale, i.e., the cutoff frequen
vc/2p.

A similar conclusion has been reached by Viola a
Lloyd @17#, who have considered a model for decoheren
suppression in a spin-boson model very similar in spirit
that presented here. In their paper they have considere
single 1/2-spin system coupled to an environment and t
have shown how decoherence can be suppressed by
quence of appropriately shaped pulses. They have shown
the 1/2-spin decoherence can be almost completely s
pressed provided that the pulse repetition rate is at least c
parable with the environment frequency cutoff. Similar r
sults have been obtained in a more recent paper@18# in
which a generalization to more qubits and more general
quences of pulses is considered. However, despite the s
larity of our approach to decoherence control to that of th
papers, there are important differences between the pre
paper and Refs.@17,18#. First of all, we have considered
harmonic oscillator instead of a 1/2-spin system, but ab
all, we have considered adissipativebath, that is, a zero
temperature reservoir inducing not only decoherence~i.e.,
quantum information decay!, but also dissipation~i.e., en-
ergy decay!. In Ref. @17# on the contrary, there is only deco
herence and the 1/2-spin system energy is conserved.
more general nature of the present model helps in clarify
a main point of this impulsive method to combat decoh
ence: parity kicks do not simply suppress decoherence
tend to completely inhibitany interaction between syste

FIG. 2. Decoherence functionh(t) at a fixed timet versus
vcT/2p: ~a! refers tot50.5/g and ~b! refers tot51/g.
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and environment. This means that energy dissipation is al
suppressed; in more intuitive terms, the external pulsed d
ing is perfectly ‘‘phase matched’’ to the system dynamics,
that any transfer of energy and quantum coherence betw
system and bath is inhibited. The fact that decoherence
pression in our model is always associated with the supp
sion of dissipation can be easily shown using the fact that
evolution of the whole system is unitary. In particular, th
implies that the matrixA($gk%,t), driving the evolution in
the absence of kicks@see Eq. ~28!#, and the matrix
@F(t0)A($2gk%,T)F(t0)A($gk%,T)#N, driving the evolu-
tion in the presence of kicks@see Eq.~33!#, are unitary ma-
trices and therefore subject to the condition

uL00u21(
k

uLk0u251, ~49!

whereLi j denotes any of the two above mentioned matric
Now, using the reduced density matrix of Eq.~25!, it is easy
to derive the mean oscillator energy

^HA~ t !&5\v0ua~ t !u2
12coswe22ua0u2

11coswe22ua0u2
. ~50!

From Eqs.~34! and ~35! one therefore derives that the no
malized oscillator mean energy is given by

^HA~ t !&

^HA~0!&
5uA~$gk%,t !00u2 ~51!

in the absence of kicks and

^HA~ t !&

^HA~0!&
5uˆ@F~t0!A~$2gk%,T!F~t0!A~$gk%,T!#N

‰00u2

~52!

in the presence of kicks (t52NT12Nt0). Now, by consid-
ering Eqs.~37! and~38! and the unitarity condition~49!, it is
immediate to get the following simple relation between d
coherence and dissipation:

^HA~ t !&

^HA~0!&
512h~ t !, ~53!

which is valid both in the presence and in the absence
kicks. This equation simply shows that when decoherenc
suppressed@h(t);0# the oscillator energy is conserved.

A qualitative demonstration of the ability of the kic
method to suppress dissipation and decoherence is prov
by Fig. 3.~a! shows the Wigner function of an initial odd ca
state witha05A5, w5p; ~b! shows the Wigner function o
the same cat state evolved for a timet51/g in the presence
of parity kicks withvcT53.125 and~c! the Wigner function
of the same state again after a timet51/g, but evolved in the
absence of kicks. This elapsed time is ten times the deco
ence time of the Schro¨dinger cat state,tdec5(2gua0u2)21

@7#, i.e., the lifetime of the interference terms in the cat st
density matrix in the presence of the usual vacuum damp
As is shown by~c!, the cat state has begun to lose its ene
and has completely lost the oscillating part of the Wign
function associated to quantum interference. This is
v-
o
en
p-
s-
e

s.

-

of
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ed

er-

e
g.
y
r
o

longer true in the presence of parity kicks:~b! shows that,
after t510tdec, the state is almost indistinguishable from th
initial one and that the quantum wiggles of the Wigner fun
tion are still well visible.

V. CONCLUDING REMARKS ON THE POSSIBLE
EXPERIMENTAL APPLICATIONS

The numerical results presented above provides a c
indication that perturbing the dynamics of an oscillator w
an appropriate periodic pulsing can be a highly efficie
method for controlling decoherence. However, we have s
that a significant decoherence suppression is obtained
when the pulsing frequency 1/(T1t0) becomes comparabl
to the cutoff frequency of the reservoir. This fact poses so
limitations on the experimental applicability of the propos
method. For example, the parity kick method is certain
unfeasible, at least with the present technologies, in the c
of optical modes in cavities. In this case, realizing a par
kick is not difficult in principle since impulsive phase shif
can be obtained using electro-optical modulators or a dis
sive interaction between the optical mode and a fast cros
atom @19#. The problem here is that it is practically impo
sible to make these kicks sufficiently frequent. In fact, w
can assume, optimistically, that the frequency cutoffvc ,

FIG. 3. ~a! Wigner function of the initial odd cat state,uc&
5N2(ua0&2u2a0&), a05A5; ~b! Wigner function of the same ca
state evolved for a timet51/g (t510tdec), in the presence of par
ity kicks (vcT53.125);~c! Wigner function of the same state afte
a time t51/g, but evolved in the absence of kicks.
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even though larger, is of the order of the cavity mode f
quencyv0 ~this is reasonable, since the relevant bath mo
are those nearly resonant with the frequencyv0). This
meansvc/2p.101421015 Hz and it is evident such high
values for 1/(T1t0) are unrealistic both for electro-optica
modulators and for dispersive atom-cavity mode interactio
A similar situation holds for an electromagnetic mode in
microwave cavity like that studied in the Schro¨dinger cat
experiment of Bruneet al. @6#. In this experiment the disper
sive interaction between a Rydberg atom and the microw
mode is used for the generation and the detection of the
state and therefore the realization ofp-phase shifts is easy
The problem again is to have sufficiently fast and frequ
p-phase shifts: in this case the mode frequency isv0
551 Ghz and therefore one would have a good decohere
suppression forT1t0.10210 sec. This is practically im-
possible because it implies quasi-relativistic velocities for
crossing Rydberg atom and an unrealistic very high disp
sive interaction in order to have ap-phase shift.

The situation is instead different in the case of io
trapped in harmonic traps. In this case, in fact, the free
cillation frequencyv0, and therefore the cutoff frequencyvc
too, are usually much smaller and it becomes feasible
realize fast and frequentp-phase shifts. Let us consider, fo
example, the case in which the oscillator mode of the p
ceding sections is the center-of-mass motion of a collec
of trapped ions in a Paul trap, like that considered in
experiments at NIST in Boulder@14#. In this case the free
oscillation frequency is of the order ofv0/2p.10 Mhz and
a frequent sequence of parity kicks could be obtained in p
ciple by appropriately pulsing at about 10 Mhz the sta
potential applied to the end segments of the rods confin
the ions along thez axis @14#. The durationt0 and the inten-
sity E0 of the pulses have to be tailored so as to have
parity kick conditionE0t05p\ @see Eq.~20!# and this im-
plies having a very good control of the pulse area.

Controlling the decoherence of the center-of-mass m
is crucial for the realization of quantum imformation pr
cessing with trapped ions. In fact, even though only
higher frequency vibrational modes will be used for quant
gate transitions involving the ion motion~as has already bee
done in @20# where the deterministic entanglement of t
internal states of two ions has been achieved by manipula
the stretching mode!, suppressing decoherence of the cent
A

.
et
-
s

s.

e
at

t

ce

e
r-

s-

to

-
n
e

-

g

e

e

e

ng
r-

of-mass motion is still important because the heating of
center-of-mass motion partially couples also with the ot
vibrational stretching modes@14#.

The parity kick method could be used even in the case
which the center-of-mass mode itself is used as a quan
bus for the realization of quantum gates. However, in t
case, the use of parity kicks cannot be applied to pro
against decoherence of all kinds of quantum gates. In f
the parity kicks tend to average to zero any term in
Hamiltonian which is an odd function of the bosonic ope
tors a and a†, and this means that the parity kicks cou
average to zero just the system dynamics we want to pro
from decoherence, such as, for example, some gate op
tions in an ion-trap quantum computer. For example, it
easy to see that all the gate operations involvingfirst red or
blue sideband transitions, which implies havinglinear terms
in a anda† in the system Hamiltonian, such as, for examp
the Cirac-Zoller controlled-NOT~C-NOT! gate @21# and the
C-NOT gate experimentally realized at NIST by Monroeet al.
@22#, tend to be averaged to zero by frequent parity kicks.
overcome this problem, it is, however, sufficient to restrict
quantum gates based on carrier transitions, which invo
functions ofa†a only, and are not therefore affected by pa
ity kicks, such as, for example, the one-pulse gate propo
by Monroeet al. @23#.

Therefore, the parity kick method presented here could
very useful to achieve a significant decoherence contro
ion traps designed for quantum information processi
However, we have to notice that our considerations are ba
on the model of Sec. III which is the one commonly used
describe dissipation, even though the actual sources of d
herence in ion traps have not been completely identified
@14#. For example, Refs.@24,25# have considered the effec
of fluctuations in the various experimental parameters, yie
ing no appreciable energy dissipation in the center-of-m
motion but only off-diagonal dephasing.
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