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Using parity kicks for decoherence control
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We show how it is possible to suppress decoherence using tailored external forcing acting as pulses. In the
limit of infinitely frequent pulses decoherence and dissipation are completely frozen; however, a significant
decoherence suppression is already obtained when the frequency of the pulses is of the order of the reservoir
typical frequency scale. This method could be useful in particular to suppress the decoherence of the center-
of-mass motion in ion trap$S1050-2947@9)03606-9

PACS numbegs): 03.65.Bz

I. INTRODUCTION their effect is equivalent to the application of the parity op-
erator on the system.

Decoherence is the process which limits our ability to The paper is organized as follows. In Sec. Il the parity
maintain pure quantum states, or their linear superpositionkick method is presented in its generality and it is shown
It is the phenomenon by which the classical world appear§iow decoherence and dissipation are completely frozen in
from the quantum ongl]. In more physical terms it is de- the limit of infinitely frequent pulses. In Sec. Il the method
scribed as the rapid destruction of the phase relation betwedf applied to the case of a damped harmonic oscillator, such

two, or more, quantum states of a system caused by the e@S: for example, a given normal mode of a system of trapped

tanglement of these states with different states of the enviONS- In Sec. IV the numerical results corresponding to this

ronment. The present widespread interest in decoherence Ggse are .pregented,_ showing that a co.nsid.erable dgc;oherence
due to the fact that it is the main limiting factor for quantum suppression is obtained when the parity kick repetition rate

information processing. We can store information, indeed, inbecomes comparable to the typical time scale of the environ-

. ment. In Sec. V the possibility of applying this scheme to
twq-level quantum systems, knoyvn as quantum (jtits, harness the decoherence of the center-of-mass motion in ion
which can become entangled with each other, but decohe

o _ fraps is discussed.
ence can destroy any quantum superposition, reducing the

system to a mixture of states, and the stored information is
lost. For this reason decoherence control is now becoming a
rapidly expanding field of investigation. Let us consider a generic open system, described by the

In a series of previous papef&-5] we have faced the Hamiltonian
control of decoherence by actively modifying the system’s
dynamics through a feedback loop. This procedure turned H=Ha+Hg+Hjy, (D)
out to be very effective, in principlg4], to slow down the
decoherence of the only experiméti, up to now, in which whereH, is the bare system Hamiltoniahlg denotes the
the decoherence of a mesoscopic superposition was detectégservoir Hamiltonian, anl; is the Hamiltonian describing
The main ||m|t|ng aspect of this procedure is connected WitHhe interaction between the system of interest and the reser-
the need for a measurement. In order to do the feedback i¥Pir, which is responsible for dissipation and decoherence.
the appropriate way, one has first to perform a measuremeNY€ shall now show that if the Hamiltoniafl) possesses
and then the result of this measurement can be used to opétPPropriate symmetry properties with respect to parity, it is
ate the feedback. However, any physical measurement ROSsible to actively control dissipatidand the ensuing de-
subject to the limitation associated with a nonunit detectiorfoherenceby adding suitably tailored time-dependent exter-
efficiency. We have showfs] that with detection efficiency nal _forcmg acting on system variables only. The new Hamil-
approaching unity the quantum superposition of states stord@nian becomes
in a cavity can be protected against decoherence for many
decoherence timek,., Wheretg.. is defined as the cavity
relaxation time divided by the average photon nunibgr

We wish now to face the problem of eliminating the mea-
surement in controlling the decoherence. We show, here, "
how it is possible to inhibit decoherence through the appli- _
cation of suitable open-loop control techniques to the systemH ok 1) = H"ngo O(t=T=n(T+70))0((n+1)(T+70) ~1)
of interest, that is, by using appropriately shaped time- 3)
varying control fields. To be more specific, decoherence can
be inhibited by subjecting a system to a sequence of verj6(t) is the usual step functigris a time-dependent, peri-
frequentparity kicks i.e., pulses designed in such a way thatodic, system operatowith period T + 7, describing a train of

Il. THE GENERAL IDEA

Hior=H + Hyge(1), 2

where
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pulses of durationr, separated by the time interva@l The the limit of continuous kicks, this sign inversion becomes
Stroboscopic time evolution is therefore given by the evo|ujnfinite|y fast and the interaction with the environment aver-

tion operator ages exactly to zero.
This fact can be easily shown just using the definition of
U(NT+N7p)=[Uyiek(T0)Uo(TIN, (4)  the continuous kick limit. In fact, in this limit
where U, (70) =exp{—iro(H+Hy/%} describes the evolu- U(t)= lim [e (/M Ha+Hg=Hin)T
tion during the external pulse andq(T)=exp{—iTH/A} T+79—0

gives the standard evolution between the pulses. We now
assume that the external pulse is so strong that it is possible
to neglect the standard evolution during the puldgs>>H,

and then we assume that the pulse Hamiltorgnand the  which, using just the definition of the exponential operator,
pulse width7, can be chosen so as to satisfy fhaity kick ~ Yields

condition

X @~ (i) (Hat He + Hin) T)U/(2T +270) (12)

_ U(t)=e (M)(HaA+HBIL (13
Uyiek( mo) =€~ (/MHk0=p, 5

whereP is the system parity operator. This means that in the ideal limit of continuous parity kicks,

It is now possible to see that such a time-dependent mogihe interaction with the environment is pompletely elimi-
fication of the system dynamics is able to perfectly protecf@ted and only the free uncoupled evolution is left.

the system dynamics and completely inhibit decoherence L€t us briefly discuss the physical interpretation of this
whenever the following general conditions are satisfied: ~ 'eSult: The continuous kick limi®) is formally analogous to
the continuous measurement limit usually considered in the

PHAP=H,4, (6) quantum Zeno effectsee, for example[8,9]) in which a
stimulated two-level transition is inhibited by a sufficiently
PHiP=—Hiy, (7)  frequent sequence of laser pulses. However, this is only a

mathematical analogy because at the physical level one has
that is, the system Hamiltonian is parity invariant and thetwo opposite situations. In fact, during the pulses, in the
interaction with the external environment anticommutes withquantum Zeno effect the interaction with the environment
the system parity operator. To be more specific, one has théite., the measurement apparatpsevails over the internal

in the ideal limit of continuous parity kicks, that is, dynamics, while in the present situation the interaction with
the reservoir is practically turned off by the externally con-
T+7—0, trolled internal dynamicgsee Eq(5)].
This parity kick idea has instead a strong relationship with
N—oo, (8 spin echo phenomerja0] in which the application of appro-
priate rf pulses is able to eliminate much of the dephasing in
t=N(T+ 7p) =const., nuclear magnetic resonance spectroscopy experiments. These

o o rf pulses realize a sort of time reversal and a similar situation
the pulsed perturbation is able to eliminatempletelythe  takes place here in the case of parity kicks. In fact the rel-
interaction with the environment and therefore all the physiwyant evolution operator is given by the unitary operator
cal phenomena associated with it, i.e., energy dissipatiorg‘:,o\,eming the time evolution after two pulseg2T + 27,)
diffusion, and decoherence. To see this it is sufficient to congy Eq. (11), in which the standard evolution during a time
sider the evolution operator during two successive paritynpterval T is followed by an evolution in which the interac-
kicks, which, using the parity kick condition of E(6), can  tjon with the environment is time reversed for the tifelf
be written as the time intervalT is comparable to the time scale at which

. . dissipative phenomena take place, this time reversal is too
U(2T+270) =Pe (/MHTpe (AT, ©  ate ?0 yielg appreciable effeF():ts, while T is sufficiently
small the very frequent reversal of the interaction with the
reservoir may give an effective freezing of any dissipative
—(/MHTp _ a—(i/h)PHPT_ o= (i/h)(Ha+Hg—Hip) T phenomena.
Pe P=e € AreTe, (10 Two very recent papersll] have considered a generali-

one has that the time evolution after two successive kicks igation of this parity kick method and have shown that a

Since

driven by the unitary operator complete decoupling between system and environment can
be obtained for a generic system if one considers an appro-
U(2T+27y)=e (/M (HaTHe=Hin) Tg= (i/A)(HatHg + Hind T, priate sequence of infinitely frequent kicks, realizing a sym-

(11 metrization of the evolution with respect to a given group.
The present parity kick method is, in fact, equivalent to sym-
This expression clearly shows how the pulsed perturbation imetrizing the time evolution of the open system with respect
able to “freeze” the dissipative interaction with the environ- to the groupZ,, composed by the identity and the system
ment: the application of two successive parity kicks alternaparity operatoP. Here we focus only on this case because
tively changes the sign of the interaction Hamiltonian be-the experimental realization of the parity kicks of Ef) is
tween system and reservoir. Therefore one expects that, ifuite easy in many cases and moreover the applicability con-
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ditions of the present method, Ed$) and(7), are satisfied case the pulsed perturbation realizing the sequence of parity
by many interesting physical systems. kicks can be simply obtained as a trainmfphase shifts, that
The continuous kick limit is only a mathematical ideali- is,

zation of no practical interest. However, it shows that there is

in principle no limitation in the decoherence suppression one Hi(H) =E(t)a'a, 19

can achieve using parity kicks. Moreover, it clearly shows "

that one has to use the most possible frequent pulses in ordéhere E(t)=EoZ _o60(t—T—n(T+ 7)) 6((n+1)(T+ 7o)

to achieve a significative inhibition of decoherence. There-—1t) and the pulse heigtg, and the pulse width, satisfy

fore the relevant question from a physical point of view is tothe condition

determine at which values of the peridd- 7, one begins to

have a significant suppression of dissipation and decoher-

ence. We shall answer this question by considering in the T how | th | it te has to be |

next section a specific example of experimental interest, that 0 see how large the pu'se repetition rate nhas to be in

is, a damped harmonic oscillator, representing, for instanceOrder to achieve a relevant decoherence. suppression, first of

a normal mode of a system of trapped ions, or an electro§i|| one h?‘S to compare the pulsing peribe g W.'th th_e

magnetic mode in a cavity. relevant time scales of_ the problem. The hz_irm_onlc oscillator
dynamics is characterized by the free oscillation frequency

wq and by its energy decay rage(which is a function of the

Ego=(2n+1)wA, n integer. (20

IIl. PARITY KICKS FOR A DAMPED HARMONIC couplingsy,); the bath is instead characterized by its ultra-
OSCILLATOR violet frequency cutoffw, which essentially fixes the re-
Let us consider a harmonic oscillator with bare Hamil- SPOnse time of the reservoir and generally depends on the
tonian system and bath considered. A reservoir is usually much
faster than the system of interest and this means that one
Ha=hwoa'a, (14) usually hasw.>vy. Typically the reduced dynamics of the

system of interest is described in terms of effective master

describing, for example, a given normal mode of a system ofduations which are derived using the Markovian approxi-
ions in a Paul trap or an electromagnetic mode in a cavity. Ifnation (see, for example]13]) which means assuming the

these two cases the relevant environmental degrees of frelfMit @c—2; however, the existence of a finite cutait is

dom can be described in terms of a collection of independeri!Ways demanded on physical grouridS] and this param-
bosonic mode§12] eter corresponds, for example, to the Debye frequency in the

case of a phonon bath.
From the preceding section, it is clear that the pulsing
Hg=>. ﬁwkbf:bk, (15  periodT+ 7y has to be much smaller thaml/otherwise the
K change of sign of the interaction Hamiltonian is realized

) o ) when a significant transfer of energy and quantum coherence
representing the elementary excitations of the environmentom the system into the environment has already taken

(in the cavity mode case they are simply the vacuum elecpjace. At the same time it is easy to understand that the
tr_omagnetip modegs Moreover, 'the interaction Wi_th th_e. eN- condition w.(T+ m5)<1 is a sufficient condition for a sig-
vironment is usually “‘Ne” described b}’, the following bilinear nificant suppression of dissipation, since in this case the sign
term in which the “counter-rotating” terms are dropped of {he interactiorH;, changes with a rate much faster than
[13,14: every frequency of the bath oscillators; each bath degree of
freedom becomes essentially decoupled from the system os-
_ Tt cillator and there is no significant energy exchange, i.e., no
Hint_zk: fivdabiratby). 1 dissipation. Therefore thg relevant qu%){stion is, g:‘or which
value of the pulsing periodT+ 7, within the range
In these cases time evolution is usually described in thél/y,1/w.] does one begin to have a relevant inhibition of
frame rotating at the bare oscillation frequengy in which  dissipation?

the effective total Hamiltonian of Eq1l) becomes We shall answer this question by studying in particular
the time evolution of a Schdinger cat state, that is, a linear
H=Hg+Hiy, (17)  superposition of two coherent states of the oscillator of in-
terest
where )
|ho)=Ny(|ag) +€'¢|— ap)), (21
Ha=2 fi(wx— wo)biby. (18 ~ where
k
1
It is immediately seen that in this example the conditions of N,= .
Egs.(6) and(7) for the application of the parity kick method \/2+2e*2|ao\zcos(p

are satisfied. More generally, conditio(® and(7) are sat-
isfied wheneveH, is an even function o anda’ andH;,,  We consider this particular example because these states are
is an odd function ofa anda’. In the harmonic oscillator the paradigmatic quantum states in which the progressive
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effects of decoherence and dissipation caused by the envi-he corresponding reduced density matrix of the oscillator of
ronment are well distinct and clearly visibl[€]. From the interest at time, p(t), is given by

general proof of the preceding section it is evident that

whenever one finds a significant suppression of decoherence

in the Schrdinger cat case, this implies that the system- )

reservoir interaction is essentially averaged to zero and that p(1)=NLf|a(®))(a(t)]+]—a(®))(~a(®)[+D(1)

one gets a significant system-environment decoupling in gen- —ig _ il
eral. x[e¥a(t))(~ a(t)|+e"*| = a(t){ab)]]},
Describing the evolution of such a superposition state in (25

the presence of the dissipative interaction with a reservoir of
oscillators which is initially at thermal equilibrium &@t=0 is
quite simple. In fact, it is possible to use the fact that a tensor

product of coherent states retains its form at all times wheri € it is completely determined by the coherent amplitude

h lution i he Hamiltoni hat | a(t) which is a decaying function describing dissipation of
the evolution is generated by the Hamiltonid), that is, the oscillator's energy and by the functi@(t) describing

the suppression of quantum interference terms, whose ex-
|ao>®1;[ |Bk(0)>—>|a(t)>®l_k[ 1B(D), (220 piicit expression is

where the time-dependent coherent amplitudes satisfy the
following set of linear differential equations:

_ D(t)=1§ <Bk(t)l—ﬂk(t>>=exp{ —22 IBk(t)lz}-
a<t>=—i; YeBi(t), (26)

(23

Bi(t) = =i (o= wo) Bi(t) =1 yra(t).
) o These results for the time evolution of the Salinger cat
Therefore, using E¢22), one has the following time evolu- 5re yajid both in the presence and in the absence of the
tion for the Schrdinger cat stat¢21): external pulsed driving. In fact, the only difference lies in the
fact that in the absence of kicks one has the standard evolu-
lpy@ 1 100—N| [a®) ] |Bu(t)) tion driven by exgp—iHt/4}, whereH is given by Eq.(17),
g . while in the presence of parity kicks one has a strobosco-

_ piclike evolution driven by a unitary operator analogous to
+e¢—a)e]l [-BdV)|. 29 that of Eq.(11

U(2NT+2N7p) = [e—(i/ﬁ)Héfc,e—(i/h)(Hé—HRWA)Te—(i/ﬁ)HéTOe—(i/h)(Hé+HRWA)T]N 27)

[we have neglected only the system-reservoir interaction dur-
ing the parity kick and therefore we have added two terms Ay Doo=L7*
e~ (/MHg70 in Eq. (27) with respect to Eq(11)].

Due to the general resulR2), it is convenient to express
the state of the whole system in terms of a vecto
(a(t), ... ,Bk(), ...) whose zeroth component is given by
the amplitudex(t) and whose&th component is given by the ve
amplitudeg,(t), k=1,2, . ... Inthis way the formal solution K(z)=2 T (o—wg)
of the set of linear equation®3) can be expressed as K k0

z+K(z)|' (29)

rwhere
(30)

¢ All the other matrix elements can be expressed in terms of
a(t) @o this matrix elemenA({y,},t)qo in the following way:
(28)

=A 't : )
vt 0 A{yd Do=AU Do

Bi(t)

t
. . . . =—| dse @k wa)sp t—5)00,
where A({y},t) is a matrix whose first matrix element 7kfo (tnd Joo

A({yd.t) oo is given by the inverse Laplace transform (31
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Ay D = S (k™ @0t — kaﬁj dse i(ek—wo)(t=9)
0

S . ,
xf ds'e (e =@ (SSHA(Ly,),8" ) go.
0

(32
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IV. NUMERICAL RESULTS

In the description of dissipative phenomena one always
considers a continuum distribution of oscillator frequencies
in order to obtain an irreversible transfer of energy from the
system of interest into the reservoir. Moreover, most often,
also the Markovian assumption is made which means assum-
ing an infinitely fast bath with an infinite frequency cutoff

In the presence of kicks, the stroboscopic evolution iswc- This case of a standard vacuum bath in the Markovian
determined by the consecutive application of the evolutiordimit is characterized by an infinite, continuous, and flat dis-
operator for the elementary cycle lasting the time intervaftribution of couplingg13]

2T+27, [see EQ.(27)], during which one has a standard
evolution for a timeT, followed by an uncoupled evolution

for a time 7y, then a “reversed” evolution for a timé& in

which the interaction with the environment has the opposite

sign and another uncoupled evolution for the timeat the

end. It is easy to understand that in terms of the vector of

coherent amplitudes, the evolution in the presence of parity

kicks can be described as

@(2NT+2N7)
Br(2NT+2N7g)

@o
=[F(rA(- W DF (A DI | @3

where F(7p) is the diagonal matrix associated to the free

evolution driven by H; and is given by F(7);;

=6 j exp{—i(w;—wg) To}. We have seen that the quantities of
interest argsee Eq.(25] «(t) andD(t); for the amplitude

of the two coherent states one has
a(t)=A{ vt ooo
in the absence of kicks and

a(t)={[F(ro) A{~ n. T)F( TO)A({Yk}vT)]N}00a0(35

(34

in the presence of kicke € 2NT+2N 7). As for the func-
tion D(t), it is clear that each amplitud@.(t) in Eq. (26) is
proportional toa and therefore one can write

D(t)=exp{—2|ao|*7(1)}, (36)

where

n<t>=2k |A{ 7 Dkol? (37)

in the absence of kicks and

n<t>=2k HIF (o) A{ = 1 TF () A% T 1Mol ?
(39)
in the presence of kicks € 2NT+ 2N ).

Y
2__7
which implies
Y
K(z)= > (40)
Using Eqgs.(34), (31), and(37), we get
Apar() = @€ yt/2, (41)

mar(t)

~%

,yi(l_’_ e yt_ e*i(wkf wo)t—yt/2__ ei(wkfwo)tf 7t/2)

VI4+ (0= wo)?
(42)

The last sum in the expression fg,,(t) has to be evalu-
ated in the continuum limit, that is, replacing the sum with an
integral over the whole rea axis and usingyﬁ—> vl27. The
result is the standard vacuum bath expression for the deco-
herence functiomy(t) [2],
Dvar(t) =1—€” " (43

From the general expressions of the above section it is
clear that it is not possible to solve the dynamics in the
presence of parity kicks in simple analytical form. We are
therefore forced to solve numerically the problem, by simu-
lating the continuous distribution of bath oscillators with a
large but finite number of oscillators with closely spaced
frequencies. To be more specific, we have considered a bath
of 201 oscillators, with equally spaced frequencies, sym-
metrically distributed around the resonance frequetgy
ie.,

wi=wgt+ KA, (44)
A= 20 45
=100 (45
w
Kmax= - = 100= 0 =20, (46)
Kmin=— Kmax= — 100= 0""=0, (47)

and we have considered a constant distribution of couplings
similar to that associated with the Markovian limit
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FIG. 1. Time evolution of the decoherence functig(t) [see 064 b . N
Eqgs.(37) and(38)] for different values of the time interval between ’ ) . ¢
two kicks T: A, no kicks; +, w.T=50; X, w.T=25; O, w,T 0.59
=125;@, 0. T=6.25; ¢, 0, T=3.125; full line, v, T=1.5625. & 041
I 0.3 .
A < 0.2
> Y
=— Vk. 48
Yk - (48) 0.1
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Considering a finite number of bath oscillators has two 22 P e 7

main effects with respect to the standard case of a continuous

Markovian bath. First of all, the adoption of a discrete fre- FIG. 2. Decoherence functiom(t) at a fixed timet versus
guency distribution with a fixed spacing implies that all ~ «.T/27: (a) refers tot=0.5/y and(b) refers tot=1/y.

the dynamical quantities are periodic with peridde,

=2m/A [16] which can therefore be considered a sort oftion at one relaxation timey(t=1/y) is plotted again as a
“revival time.” It is clear that our numerical solution will  fynction of w,T/27. In both cases one sees a quite sharp
correctly describe dissipative phenomena provided that Wgansition atw,T/27=1: decoherence is almost completely
focus only on not too large timesay t<m/A). Moreover,  jnhibited as soon as the kick frequentfl becomes larger
the introduction of a finite cutoff ¢.=2w in our cas¢  than the cutoff frequency. /2. Therefore we can conclude
implies a modification of the coupling spectru{w) at  that by forcing the dynamics of a harmonic oscillator with
very high frequency with respect to the infinitely flat distri- appropriate parity kicks one is able to inhibit decoherence
bution of the Markovian treatmerisee Eq.(39)]. This fact  aimost completely. This decoherence suppression becomes
will manifest itself in a slight modification of the exponential sjgnificant when the kick frequencyTLbecomes of the order

behavior shown by Eqg41) and (43) at very short times  of the typical reservoir time scale, i.e., the cutoff frequency
(t=w_ ') [16]. We have verified both facts in our simula- w27

tions. However, to facilitate the comparison between the dy- A similar conclusion has been reached by Viola and
namics in the presence of parity kicks with the standard casgloyd [17], who have considered a model for decoherence
of a Markovian bath, we have chosen the parameters of oWuppression in a spin-boson model very similar in spirit to
simulation so that, within the time interval of interest, that presented here. In their paper they have considered a
0.1/y<t<3ly say, we found no appreciable difference be-single 1/2-spin system coupled to an environment and they
tween the standard Markovian bath expressididsand(43)  have shown how decoherence can be suppressed by a se-
and the corresponding general expression for a discrete diguence of appropriately shaped pulses. They have shown that
tribution of oscillators(34) and (37). the 1/2-spin decoherence can be almost completely sup-
Let us now see what is the effect of parity kicks on deco-pressed provided that the pulse repetition rate is at least com-
herence, by studying first of all the behavior of the decoherparable with the environment frequency cutoff. Similar re-
ence functiony(t) for different values of the pulsing period sults have been obtained in a more recent pdfét in
T+ 7o. As discussed above, we expect an increasing decayhich a generalization to more qubits and more general se-
herence suppression for decreasing values-bf, and this  quences of pulses is considered. However, despite the simi-
is actually confirmed by Fig. 1, showing(t) for different  larity of our approach to decoherence control to that of these
values of T (we have chosemy=0 for simplicity in the papers, there are important differences between the present
numerical simulatioh In fact, the increase of(t) is mono-  paper and Refd.17,18. First of all, we have considered a
tonically slowed down as the time interval between two sucharmonic oscillator instead of a 1/2-spin system, but above
cessive kicksI becomes smaller and smaller. Moreover, Fig.all, we have considered dissipativebath, that is, a zero
1 seems to suggest that decoherence inhibition becomes vemperature reservoir inducing not only decoherefice,
efficient [ »(t)=0] when the kick frequency T/ becomes quantum information decaybut also dissipatior(i.e., en-
comparable to the cutoff frequenay. . To better clarify this  ergy decay. In Ref.[17] on the contrary, there is only deco-
important point we have plotted in Fig. 2 the value of theherence and the 1/2-spin system energy is conserved. The
decoherence function at a fixed time as a function of the timenore general nature of the present model helps in clarifying
between two successive kicksIn Fig. 2a) the decoherence a main point of this impulsive method to combat decoher-
function at half relaxation timey(t=0.5/y) is plotted as a ence: parity kicks do not simply suppress decoherence but
function of . T/27, while in Fig. 2b) the decoherence func- tend to completely inhibilany interaction between system
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and environmentThis means that energy dissipation is also
suppressed; in more intuitive terms, the external pulsed driv-
ing is perfectly “phase matched” to the system dynamics, so

that any transfer of energy and quantum coherence between ) ey
.. A SRR
system and bath is inhibited. The fact that decoherence sup- W I
pression in our model is always associated with the suppres- etk .,::;:Z:E:Z:Z'Z:,,'.,,t..
W ELLILLLIL

sion of dissipation can be easily shown using the fact that the
evolution of the whole system is unitary. In particular, this
implies that the matrixA({ y,},t), driving the evolution in
the absence of kickdsee Eq. (28], and the matrix
[F(ro) A= v}, T)F(70) Ay, T)IN, driving the evolu-
tion in the presence of kicKsee Eq.(33)], are unitary ma-
trices and therefore subject to the condition

||—oo|2+§k: ILol?=1, (49

whereL;; denotes any of the two above mentioned matrices.
Now, using the reduced density matrix of Eg5), it is easy
to derive the mean oscillator energy

1— cospe2l@l’®
(HA(D)=fiogla(D]? . (50)
1+ cospe 2l

From Eqgs.(34) and (35) one therefore derives that the nor-
malized oscillator mean energy is given by

<HA(t)> _ 2
m—|A({7k},t)oo| (51)
in the absence of kicks and FIG. 3. (a) Wigner function of the initial odd cat statéy)

< > =N_(lag)—|—ag)), ag=/5; (b) Wigner function of the same cat

Ha(t) N 12 state evolved for a time=1/y (t=10t4J, in the presence of par-

(HA0)) HIF(ro) A= nd, TIF (7o) Al{ vid, T ] ool ity kicks (w.T=3.125);(c) Wigner function of the same state after
(52 a timet=1/y, but evolved in the absence of kicks.

in the presence of kicke € 2NT+2N 7). Now, by consid-  |onger true in the presence of parity kick&) shows that,
ering Eqs(37) and(38) and the unitarity conditiof49), itis  aftert=10tye., the state is almost indistinguishable from the
immediate to get the following simple relation between de-initial one and that the quantum wiggles of the Wigner func-

coherence and dissipation: tion are still well visible.
(Ha(1))
H—O)>: — (1), (53 V. CONCLUDING REMARKS ON THE POSSIBLE
< Al EXPERIMENTAL APPLICATIONS

which is valid both in the presence and in the absence of The numerical results presented above provides a clear
kicks. This equation simply shows that when decoherence ifhdication that perturbing the dynamics of an oscillator with
suppressefln(t) ~0] the oscillator energy is conserved.  an appropriate periodic pulsing can be a highly efficient
A qualitative demonstration of the ability of the kick method for controlling decoherence. However, we have seen
method to suppress dissipation and decoherence is providedat a significant decoherence suppression is obtained only
by Fig. 3.(a) shows the Wigner function of an initial odd cat when the pulsing frequency ¢ r,) becomes comparable
state withay= /5, o= ; (b) shows the Wigner function of to the cutoff frequency of the reservoir. This fact poses some
the same cat state evolved for a titve1/y in the presence limitations on the experimental applicability of the proposed
of parity kicks withw . T=3.125 andc) the Wigner function method. For example, the parity kick method is certainly
of the same state again after a titnel/vy, but evolved in the unfeasible, at least with the present technologies, in the case
absence of kicks. This elapsed time is ten times the decoheof optical modes in cavities. In this case, realizing a parity
ence time of the Schdinger cat statetg.=(27y|ag|?) ! kick is not difficult in principle since impulsive phase shifts
[7], i.e., the lifetime of the interference terms in the cat statecan be obtained using electro-optical modulators or a disper-
density matrix in the presence of the usual vacuum dampingsive interaction between the optical mode and a fast crossing
As is shown by(c), the cat state has begun to lose its energyatom[19]. The problem here is that it is practically impos-
and has completely lost the oscillating part of the Wignersible to make these kicks sufficiently frequent. In fact, we
function associated to quantum interference. This is n@an assume, optimistically, that the frequency cuioff,
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even though larger, is of the order of the cavity mode fre-of-mass motion is still important because the heating of the
guencyw, (this is reasonable, since the relevant bath modesenter-of-mass motion partially couples also with the other
are those nearly resonant with the frequensy). This  vibrational stretching modgd4].

meansw/27=10"—10' Hz and it is evident such high '_I'he parity kick method could be used even in the case in
values for 1/T + 7,) are unrealistic both for electro-optical Which the center-of-mass mode itself is used as a quantum
modulators and for dispersive atom-cavity mode interactions?us for the realization of quantum gates. However, in this
A similar situation holds for an electromagnetic mode in ac2S€, the use of parity kicks cannot be applied to protect
microwave cavity like that studied in the Scbinger cat agalnst_decpherence of all kinds of quantum gates. In fact,
experiment of Brunet al.[6]. In this experiment the disper- N Parity kicks tend to average to zero any term in the
sive interaction between a Rydberg atom and the microwavEfamiltonian TWh'Ch is an odd function of the bosonic opera-
mode is used for the generation and the detection of the c4prs @ anda’, and this means that the parity kicks could
state and therefore the realization sfphase shifts is easy. 2Verage to zero just the system dynamics we want to protect
The problem again is to have sufficiently fast and frequenfrom decoherence, such as, for example, some gate opera-
m-phase shifts: in this case the mode frequencywis HONS in an ion-trap quantum computer. For example, it is

=51 Ghz and therefore one would have a good decoheren@?SY [0 see that all the gate operations involviing red or
suppression foff + 7o=10"10 sec. This is practically im- Plue sideband transitions, which implies haviirgear terms

: : i S
possible because it implies quasi-relativistic velocities for thd? @ @nda’ in the system Hamiltonian, such as, for example,

crossing Rydberg atom and an unrealistic very high disperth® Cirac-Zoller controlled-NOTc-Non gate[21] and the
sive interaction in order to have a-phase shift. C-NOT gate experimentally realized at NIST by Monreteal.

The situation is instead different in the case of ions[22): tend to be averaged to zero by frequent parity kicks. To

trapped in harmonic traps. In this case, in fact, the free os@Vercome this problem, it is, however, sufficient to restrict to

cillation frequencywo, and therefore the cutoff frequenay, quan.tum gatTes based on carrier transitions, which involve
too, are usually much smaller and it becomes feasible tg!nctions ofa a only, and are not therefore affected by par-

realize fast and frequent-phase shifts. Let us consider, for 'Y Kicks, such as, for example, the one-pulse gate proposed
example, the case in which the oscillator mode of the prepy Monroeet al. [23]

ceding sections is the center-of-mass motion of a collection | "erefore, the parity kick method presented here could be

of trapped ions in a Paul trap, like that considered in theVery useful to achieve a significant decoherence control in

experiments at NIST in Boulddi4]. In this case the free 10N raps designed for quantum information processing.
oscillation frequency is of the order afy/2r=10 Mhz and However, we have to notice that our considerations are based

a frequent sequence of parity kicks could be obtained in prin9n the_: moc_jel_of Sec- Il which is the one commonly used to
ciple by appropriately pulsing at about 10 Mhz the staticdescr'be dissipation, even though the actual sources of deco-

X . L in ion traps have not been completely identified yet
potential applied to the end segments of the rods confining€r€Nce 1N 1on h

the ions along the axis[14]. The durationry and the inten- 14]. For gxample, Refi:24,25 ha\{e considered the effgct
sity E, of the pulses have to be tailored so as to have th(—?f fluctuatlons_ln the various ?‘XPe”me”Fa' parameters, yield-
parity kick conditionEqro= % [see Eq(20)] and this im- N9 1O appreciable energy dissipation in the center-of-mass

plies having a very good control of the pulse area. motion but only off-diagonal dephasing.
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