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Reconstruction of a wave function from theQ function using a phase-retrieval method
in quantum-state measurements of light
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A method of reconstructing a wave function from part of @éunction in a pure state of light is proposed.
This method involves the use of a noniterative phase-retrieval method based on Gaussian filtering, which
allows one to determine a convolution of the wave function with a known Gaussian function for the vacuum
state from measured data of tQefunction along only two parallel lines in phase space. By using a deconvo-
lution process, the wave function is reconstructed from the convolution, provided that the resolution of the
reconstructed wave function is limited by the extent of the Fourier transform of the Gaussian function. Nu-
merical simulations demonstrate the applicability of this method to the reconstruction of the wave function
from the Q function obtained from the photoelectric counting statistics in unbalanced homodyne detection.
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PACS numbd(s): 03.65—w

[. INTRODUCTION two quadrature amplitude distributions measured in homo-
dyne detection by using the iterative phase-retrieval algo-
There has been a good deal of interest recently irithm (the Gerchberg-Saxton algorithiil1] that was devel-
quantum-state reconstruction. Quantum states can be fulgped in the area of image reconstruction. This fact implies
characterized by the Wigner function defined in phase spacéhat there exists a mathematically analogous description be-
Vogel and Riskerf1] theoretically pointed out that quadra- tween the quantum-state reconstruction and the image recon-
ture amplitude distributions measured in homodyne detectioftruction using phase-retrieval methods. The determination

provide enough data to perform a complete reconstruction off the phase of a complex function from its moddile.,
amplitude informatiop is referred to as a phase-retrieval

the Wigner function. This method is called optical homodyne i
tomography. The pioneering experimental demonstration Oproblem. The study of the phase-retrieval problem has been

this method was done by Smithey al. [2,3]. The idea of actively done in the area of image reconstruction for about

guantum tomography has been applied to the quantum-sta e0 years. Several methos2-19 have been developed to

reconstruction of molecular vibratiod]. Alternatively to solve this problem. Iterative phase-retrieval algorithms are
. " y widely used. The use of iterative phase-retrieval algorithms,
the tomographic methods, more complicatbdmodyne de-

) . . however, is accompanied by convergence problems, and
tection schemes such as eight-pg8] and six-port[6] ho- ~ pepce the algorithms sometimes stagnate in a local minimum

modyne detection techniques were used for determining theq) tion diferent from a true one. In particular, Huisral.
quantum state of light in terms of ti@ function. [16] pointed out that in the Gerchberg-Saxton algorithm
Recently, a more simple measurement scheme has begfere is a possibility of the solution converging to an incor-
proposed7,8], in which various quasiprobability functions, rect nonanalytic solution for one-dimensional cases. Van
including the Wigner and th@ functions, can be determined Toorn and Ferwerdpl7] also verified this fact in a computer
by unbalanced homodyne detection of the number statistic§imulation. On the other hand, an analyticoniterative
of the quantum state of interest, after introducing appropriatphase-retrieval method by use of Gaussian filtering has been
coherent displacements. This scheme is based upon an idpeoposed recently18]. This method is based on the math-
[9] that the complete Wigner function can be scanned byematical properties of analytic functions, and ensures the
shifting the system or equivalently the frame of reference inuniqueness of the solutidr9].
the phase space. In this scheme, we can reconstruct a qua-In this paper, a method for reconstructing a wave function
siprobability function in each point of the phase space indefrom part of theQ function in a pure state by using the
pendently, whereas in the tomographic and the multiport hoanalytic phase-retrieval method is proposed. It is well known
modyning techniques the chosen grid of measured datthat theQ function can be expressed as a convolution of the
essentially determines the quality of reconstruction. AWigner function with the function that corresponds to the
method of this type has recently been used to reconstruct th&/igner function of the vacuum state. As we shall see, such a
motional state of a trapped atdrh0]. convolution can be regarded as the square modulus of a con-
In the measurement of quantum states, there is an intexolution of the wave function in the pure state with a known
esting point that if the quantum state being measured i$aussian function for the vacuum state. Then, by applying
knowna priori to be in a pure state, it may be unnecessary tahe phase-retrieval method to the data of the square modulus
obtain the Wigner function in a whole phase space in ordealong two parallel lines in phase space, the convolution of
to reconstruct the pure density matfixave function. In the  the wave function with the Gaussian function can be deter-
tomographic method, Smithest al. [3] pointed out that the mined. The wave function can be reconstructed by the de-
wave function of a pure state may be determined from onlyconvolution of the known Gaussian function from the con-
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volution, provided that the resolution of the reconstructedthe (¢,7) plane, where is assumed to be a constant. Th€se

wave function is limited by the extent of the Fourier trans-functions can be written from E¢5) as

form of the Gaussian function. In order to apply the present

reconstruction method to th@ function in a pure state, the 1 2

scheme of unbalanced homodyne detecfibg] is the most (&)= ;IF(S)I @)

efficient for the measurement of tiggfunction, because the

Q function in each point of the phase space can be obtaineand

independently by using that scheme. By using the present

method with that detection scheme, the procedure of the

measurement with the control of a local oscillator field can

be reduced extremely, because the present method does not

require the measurement of the wh&efunction in phase If the complex functionF (&) is reconstructed from data of

space in contrast with the conventional ways of reconstructhe Q function along these lines in Eqg) and(8), the wave

tion. function (x) can be obtained by eliminating the known
This paper is organized as follows. In Sec. Il, the recon-Gaussian functior(i.e., the wave function for the vacuum

struction method of a wave function from i€ function is  state¢ from the complex functior=(&). In order to recon-

formulated. In Sec. lll, the reconstruction method is testedstruct the complex functiok (&), we have to solve the prob-

by computer simulation of the measurement of odd cohererlem that the phase df(¢) is retrieved from the information

states with the unbalanced homodyne detection. Concludingf the moduli|F(¢£)| and |F(é—ic)|. This problem can be

1 j
Qe+ic)=—exp—2cd|F(e-ic)2  (®)

remarks are given in Sec. IV. solved by the analytic phase-retrieval methdd)]. In this
method the estimation of the phase is based on use of the
II. FORMULATION OF RECONSTRUCTING A WAVE logarithmic Hilbert transfornf21] and a Fourier series ex-
FUNCTION BY PHASE RETRIEVAL pansion[19,22 as shown in the following way.

. _ _ Let F(&) be written as
It is well known that theQ function of a quantum state is

defined by the diagonal matrix elements of a density operator F(&)=|F(&|exdip(6)], 9
p in a pure coherent state):
where |F(&)| and ¢(&) are the modulus and the phase of
F(&), respectively. If we assume that the functiBfé) is
given by the Fourier transform of a complex function with a
finite extent, then the functioR(«) becomes an entire func-
TheQ function for a pure statgy) of a single-mode field is  tion from a theorem formulated by Paley and Wiefi23].
given by This assumption is appropriate for the case in Ej.be-
1 cause the inverse Fourier transform of Es).for »=0 (i.e.,
Q(a)=—=|(a| )] (2)  the product of the inverse Fourier transforms of the wave
™ function and the Gaussian functjoocan be regarded as ap-
proximately band limited in practice. The entire function is
analytic in the whole finite complex plane with the remark-
2 able properties. One of them is the fact that the real and

1
Q(a)=—(alp|a). M

In the x representation, Eq2) can be written a$20]

1 1
Qla)=— f w(x)ex;{—z(x—fzg)z—ifznx dx| , imaginary parts of- (&) are related by the well-known Hil-
i bert transforms or dispersion relatiof],
where #(x) =(x|#), and we have set ReF (&)= ipfx ”2':(; )df'. (10)
ar — o0 -
a=§&+in. 4
. . . . . . 1 [~ ReF(¢)
Combining the imaginary term with the quadratic term in the ImF(&)=— _pf —d¢, (12)
exponent of Eq(3), we obtain —w €&
1 o o where Re and Im indicate taking the real and imaginary
Q)= —[exp(— 7"~ 2in&)F(&~in)|*, (5 parts, respectively, and P denotes that the Cauchy principal
value is to be taken. These relationships can be obtained
where from the calculation of a contour integral in the complex

lower half-plane. If either the real or imaginary partfefé)
) 1 s is obtained, the functior-(£¢) can be calculated from the
F(f_'”)zj p(x)ex _E[X_ﬁ(é_'”)] dx. (6 relation of Eq.(10) or (11). In actual situations, however,
only the modulus of(¢) is directly obtained from the mea-
Equation(6) shows that the functioR (¢—i7) corresponds surement of theQ function. Therefore, the relationship be-
to a convolution integral of the wave function with the tween the modulus and the phaserd&) is more desirable
Gaussian function for the complex varialdle-i . Thus we than that between the real and imaginary parts ¢f). For
consider the properties of th@ function along two lines this purposeF(¢) is modified by taking its logarithm as
described by the equationg=0 and n=c, respectively, in  follows:
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INF(&)=In[F(&[+id(é). (12) [F(&)]exdign(é)]
The Hilbert transform relationship between the real and =[F(&)lexdid(8)]
imaginary parts of If-(¢) can be obtained from the calcula- M
tion of a contour integral in the complex lower half plane by Xexp{ _ZiEl [argz;— &) —argz)]|, (18
& (= In[F(EN . o
d(&)=— ;P mdg + ¢(0), (13)  where the modulus of the product term in Ed7) is unity

and the symbol arg denotes the argument of the complex

function (z,— £). The phase terms in E@L8) are given b
where ¢(0) is the constant phase dt=0. Equation(13) is @-9 P s g y

called the logarithmic Hilbert transform for the function M

InF(&), which was formulated by Burget al. [21]. Since ¢h(§)=¢(§)—22 [argzj—¢)—argz)]. (19
In F(«) has the same region of analyticity B§«) except at =1

the points wherdé-(a)=0, the relation of Eq(13) can be
established only in the case thatHfwx) does not have any oo T
singularities in the complex lower half-plane. Unfortunately,from the modulus of(¢), the general logarithmic Hilbert

the actual situation is not so simple, because many functiont§anSform involving the influence of zeros &i({) in the

generally have zeros in the complex lower half-plane. Con_complex lower hali-plane can be finally obtained from Eqgs.

sequently, Eq(13) cannot always be used to calculate the(15) and(19) as

Since the Hilbert phase,(¢) is calculated by using E@15)

phased(§) from the modulus of (&), and the logarithmic £ (= In|F(&)

Hilbert transform should be considered by taking into ac- P& =——= —————dé’

count the influence of zeros in the complex lower half-plane T J-E(E-¢)

on the derivation process of the actual phase. M

In cons_,idera_ltion of this point, we now introduce the Hil- +22 [argz— &) —argz)]+ $(0).  (20)
bert function given by i=1
Fr(&)=|F(&)|exdidn(é)], (14)  The first term on the right-hand side of EQO) correspond-

ing to the Hilbert phase implies the fundamental minimum

where ¢,(€) is the Hilbert phase: condition of the phase. The second term in Ef)) supple-
ments the information corresponding to the effect of the ze-

& (= In|F(&H| ros of F(«) in the complex lower half-plane, which does not

bn(§)=—_P LEGE—E) dé'+¢(0). (15  appear in the moduluf=(£)| and is only contained in the
phase ¢(¢). The rest term represents the constant phase,
. . _which does not appear in the positions of zero$ () and
In other words, the Hilbert function corresponds to a func the moduludE(£)|. The ambiguity concerned with the con-

tion whose all zeros in the complex lower half-plane are NS X .
reflected onto the upper half-plane. It is well known that anStant phase is situated outside the phase retrieval from abso-

entire function may be described everywhere by its zeroéute magnitude distributionsi.e., modul) and will be re-

. : : arded here as an unimportant component. The pi&das
\[’\gg]] the expression being known as a Hadamard prOducgvaluated from Eq(20) except for a constant phase. Unfor-

tunately, the zeros in the complex lower half-plane cannot be
determined from only the moduly& (¢)|. However, the in-
1— ﬁ) , (16)  fluence of zeros in the complex lower half-plane can be taken
Zj into account from two moduliF(¢)| and|F(&—ic)] in the
following procedure.
whereq is of the order of zero at the origin of the complex  Equation(20) is rewritten as
plane,Bis a scaling constant, argl is the vector notation of
the jth zero in the complex plarfée., F(z;)=0]. Using the H(€)=Pn(&) + P,(), (21
Hadamard product, we may represent the relation between ] . . )
the Hilbert functionFp,(£) with zeros only in the complex Wheredn(&) is the Hilbert phase and,(£) is the phase with
upper half-plane and the actual complex functiefg) with  the influence of the zeros in the complex lower half-plane:
zeros in both upper and lower planes as

F(a)=a'B]]
i=1

N
( ¢ ¢z(§>=2j§1 [argz;— &) —argz)]. (22)
Mo 1=
Fr(&)=F& 1 —Zgj (17)  Substitution of Eq(21) into Eq. (9) gives
=1 _ s
(1 zj) F(&)=Fn(&exidé)], 23

whereM is the number of zeros in the complex lower half- whereF(§) is the Hilbert function given by Eq14). When
plane, and the asterisk denotes the complex conjugate.  the real variablg of F(£) is expanded into the complex one,
Substitution of Eqs(9) and(14) into Eq. (17) yields &—ic, Eq.(23) becomes
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F(é—ic)=Fp({—ic)exdig,(§—ic)]. (24)
Thus the modulus of the functidr(é—ic) is given by
|F(é—ic)|=|Fn(é—ic)|lexd —Im ¢ (£—ic)], (25

where Im denotes the imaginary part of a complex function.
If the values of the moduliF(é—ic)| and|Fn(é—ic)| are
not zero, Eq(25) can be rewritten as

IF(e=io)] _
|FL(é—ic)| FIG. 1. Unbalanced homodyne detection scheme for the mea-
surement of the&) function of light; BS denotes the beam splitter,
On the left-hand side of Eq26) the function|F(£é—ic)| can  pD is the photodetector, and the annihilation operators of the modes
be derived from the& function of Eqg.(8) and the function are indicated.
|FL(é—ic)| is related to the Hilbert functiofr,(£) by the

>

f}

a<7 ut D

PD

I —Im ¢ (&—ic). (26)

relationship ian function from the functiorF(¢£) consisting of the re-
. . trieved phase and the modulus that is derived from Ghe
Fh(f—ic)=f f Fr(&)exp2miug’)dé’ functhn in Eq.(?). Because contam|_nat|on'of data is inevi-
—w| J o table in practice, here we use a Wiener filf@6] for sup-

. _ pressing the amplification of noise due to the deconvolution.
Xexp—2meu)exp(—2miu)du;  (27)  The inverse Fourier transforfi{u) of F(£) is seen from Eq.

that is, Eq.(27) indicates that the functioR(é—ic) is the (6) to be

Fourier transform of the product of the inverse Fourier-

transformed function of the Hilbert functiok,(¢) and the f(u):f F(&)exp2miué)dé,

exponential function exp{2wcu). The Hilbert function can

be calculated from th€ function in Eq.(7) by using Egs. =W (uv2)g(u), (30)

(14) and (15).

~ Next we consider a method of computing the phase funcyhere the function® (u) andg(u) indicate the inverse Fou-
tion ¢,(¢) from Eq. (26). One approach to retrieving the rier transforms of the wave functiof(£) and the Gaussian
phase is to represert,(£) in terms of an appropriate basis function exp(-£?), respectively. Using a Wiener filter, we

function, e.g., a Fourier-series bafi®,22, can obtain
N
na nw f(u)g(u)
= —&+b —¢], 28 ! ==
$)=2, | ancos-E+bysin =], (28) VUV = o (31

where the observational region of tig function is desig- \yhere ¢ is some small constant. Although should be a
nated —1<¢<I, andN is sufficiently large to enable the fynctionu, experience with conventional deconvolution sug-
phase distribution to be reconstructed. Thus the unknowgests that a constant term is usually sufficient. Then we can
function ¢,(£) is represented by the unknown coefficieats  gptain an estimate of the wave function by Fourier trans-
and evaluating the imaginary part ¢f(¢—ic), we obtain

n na nm ) . COMPUTER SIMULATION

N
. 71- .
D(§)=2, | ~an Sin-j= &+ by cosy §)smr<|—c The present reconstruction method has been tested by
(299  computer simulation of the reconstruction of a wave function
from part of theQ function in a pure state. There are some

where D(¢) =In[|F(é—ic)|/|Fy(¢é—ic)|] is a known function.  schemes for measuring quasiprobability distributions of a

n=1

By calculatingD(£) at 2N values of& we obtain N simul-  jight field, such as the function. The unbalanced homo-
taneous equations from which the unknown coefficiemis dyne detection schemg7,8] is the most suitable for the
andb, (n=1,... N) can be determined. The phage({)  present reconstruction method, because this scheme allows

with the influence of zeros in the complex lower half-plane isone to measure the value of a quasiprobability distribution in
derived by substituting the results of the solutiam, (b,, each point of the phase space independently. Thus, by apply-
n=1,... N)into Eq.(28). Consequently, the phagé) of  ing the present method to the data measured with the unbal-
the functionF (£) can be obtained by adding the phasg¢) anced homodyne detection scheme, the wave function of a
to the Hilbert phase,(£). Note that, even if the relationship light field in a pure state can be reconstructed from part of
of Eq. (26) breaks down when the modulU§(£é—ic)| the Q function of the field without measuring the whole of
and/or|Fn(é—ic)| have zeros, the unknown coefficierts  the Q function. We consider the unbalanced homodyne de-
andb, can be determined from the values of the modulus atection scheme shown in Fig. 1, according to the treatment
the points except at the zeros. Finally, we reconstruct thgiven by Wallentowitz and Vogél7]. The detected field is a
wave function by eliminating the effect of the known Gauss-superposition of the signal and the local oscillator fields.



4168 NOBUHARU NAKAJIMA PRA 59

Such a combination is easily realized by means of a beam 0.20
splitter. The superimposed light can be described by the
beam splitter transformation 0.15
8= Ta+Rb; (32)

a, b, anda,; are photon annihilation operators of the signal
field, the local oscillator field, and the superimposed field,
respectively. T andR are the complex amplitude transmis-
sion and reflection coefficients of the beam splitter, respec-
tively, which are assumed to have the relationships

0.05

Coss section of Q (o)
[wn]
=

0.00

00—
TI>+|RI?=1, (33 50 25 00 25 50
_ S
argT)—argR)= iE' (39 (a)
If the local oscillator field is prepared in a coherent stgbe 0.20

b|3)=pB|B), the probabilityp, of recordingn counts with a =
photodetector of quantum efficiendyis written as X
[T

o

[uN(a)]" =

Pa(a@ip)= < — e -ulN(a)]), (39 g

2

where the notation :: indicates normal ordering, 7
]

O

a=—RpIT, wuis the overall quantum efficiency

n={TI% (36)

_0 05 N 1 L 1 N ] N
-5.0 -2.5 0.0 25 5.0

S
N(a)=D(a)a’ab(a), 37 (b)

andN(«) is the displacedsignal-field number operator

in which D(«) is the coherent displacement operator. With ~ FIG. 2. Cross-sectional profiles of th@ function evaluated
the homodyne counting distributionsp,(a;u), the  from the data of the unbalanced homodyne detection for an odd
s-parametrized quasiprobability distributioR§«;s) for the coherent state withrg=2.4 in the simulation with & 10° events

quantum state of the signal field can be represefiteg] by ~ for €ach point of 64 sampling pointsa) and (b) are the cross-
sectional profiles of th& function along lines described by the

equationsy=0 and »=10/64, respectively, in th&, ») plane.

_ o[ 2-p-9"
P(a;s)= (1 S Z T T a(l=s) Pnla;u),
(39 P(x)= J—[exr{— S(X—=V2&0)*+i1V2 7%
wheres denotes the parameter of quasiprobability distribu- 1
tions with s<<1, including the Wigner functions=0) and —exp{——(xﬂ/?go)z—iﬁnox ] (40
the Q function (s=—1). This equation indicates that the 2

quasiprobabilityP(«;s) is evaluated as a weighted sum over where ay= &,+i75,. By evaluating Eq(35) with Eq. (39)

the counting distributionp,(a; 1). When thesvalues fulfill  we can obtain the probability, (a;«) for the odd coherent
the conditions<1—1/u, the weighting factors improve the state in the unbalanced homodyne scheme of Fig. 1. In
convergence of the series in E§8). Hence it is found that the present simulation, the photon-counting distributions
the Q function can be obtained from the full photoelectron detected with an efficiency oft=0.5 were obtained by
statistics measured by means of a realistic photodetector withlonte Carlo calculations. Using E@38), the Q function

overall quantum efficiency OSu<1. P(a;—1) was evaluated from the simulated photon-
We demonstrate the present method for an odd coheregpunting distribution®,(«;0.5). Figures £&a) and 2b) show
state, the cross-sectional profiles of tiggfunction P(«a; — 1) along
lines described by the equations=0 and »=10/64, respec-
la_Y=A(|ag)—|— ayp)), (390 tively, in the (&%) plane for an odd coherent state with

=2.4, where the photon-counting statistics were simulated
where|ag) is a coherent state anlis a normalization con- with a sample of & 10° events for each of 64 sampling
stant {2[ 1—exp(—2lag) ]} Y2 The wave function of the points in the extent—5<&<5) of the & coordinate. The ab-
odd coherent state is written in tlxerepresentation as solute value ofy in Fig. 2(b) was set to be the unit length of
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0.20
2 B
E o
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FIG. 3. Reconstruction of the wave function from the data of the ~ FIG. 4. Same as in Fig. 2 except that the state of light was an
Q function shown in Fig. 2(a) normalized moduli andb) phases 0dd coherent state with,=1.3.
of the reconstructed wave functigsolid curve$ and the true wave
function (dotted curvep result of the deconvolution of the known Gaussian function

from the complex function consisting of the moduli®.,

the sampling points. Although there is not such a large difthe square root of th@ function shown in Fig. @)] and the
ference between the absolute magnitude values of data ietrieved phase. For comparison, the modulus and the phase
Figs. 4a) and 2b), the data in Figs. @ and 2b) have of the true wave function scaled wit¥x in Eq. (40) are
enough difference between these distributions for the extracshown by the dotted curves in FigstaBand 3b), respec-
tion of phase information by the present phase-retrievatively. Note that the constant phase of a wave function is the
method. The solid curves in Figs(aé® and 3b) show the inevitable ambiguity in the reconstruction from the absolute
modulus and the phase, respectively, of the reconstructetiagnitude data by using the phase-retrieval method.
wave function from the data of th@ function in Figs. 2a) Figures 4 and 5 show the example of reconstruction of the
and Zb) by using the method described in Sec. Il. Note thatwave function for an odd coherent state with=1.3. Fig-
the principle value integral over the logarithm of the mea-ures 4a) and 4b) show the cross-sectional profiles of Qe
sured modulus in Eq20) [i.e., the convolution integral of function along lines described by the equatiops 0 and
the function IfF(&)|/¢ with the function 1£] can easily be 10/64, respectively, in thé& ») plane, where the photon-
evaluated by taking a numerical inverse Fourier transform ofounting statistics were simulated with the same conditions
the product of two Fourier transforms of the function as those in Fig. 2. The solid curves in Figga)5and 3b)
In|F(&)|/¢ and the function ¥ Then the accuracy in calcu- show the modulus and the phase, respectively, of the recon-
lating the convolution integral can be increa$2€l] by using  structed wave function from the data of tig function in
the analytic result for the Fourier transform of1i.e., the Figs. 4a) and 4b). The dotted curves in Fig. 5 mean the true
signum function with the coefficient i) and by calculat- wave function that is scaled with®2x. It is found from Figs.
ing the Fourier transform of |R(£)|/& via the convolution of 3 and 5 that ther phase difference between two Gaussian
the signum function with the numerical Fourier transform offunctions of the wave function with a real value g4 in Eq.
In|F(&)|. The reconstructed wave function in Fig. 3 corre- (40) is almost faithfully retrieved. Note that the order of the
sponds to the functions(v2x) that is linearly scaled as a sampling events (8 10%) in the present simulation is com-
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1.0

IV. CONCLUSIONS

A reconstruction method of a wave function from part of
the Q function in a pure state of light has been presented. In
the first step of this method, the phase of the convolution of
the wave function with the known Gaussian function for the
vacuum state is retrieved from measured data ofQHenc-
tion along two parallel lines in phase space by using the
analytic phase-retrieval method based on use of the logarith-
mic Hilbert transform and a Fourier series expansion. In its
second step, the wave function is reconstructed by a decon-

volution of the known Gaussian function from the complex
0'_05.0 . ' . ' ] function consisting of the modulu@.e., the square root of
' the measure® function) and the retrieved phase along one
line that passes through the center in the phase space. Espe-
cially it should be emphasized that the distributions of ghe
function along only two lines contain enough information for
3.14 the determination of wave functions in a pure state, provided
that the resolution of the reconstructed wave functions is
limited by the extent of the Fourier transform of the Gauss-
ian function for the vacuum state. Computer-simulated ex-
amples of reconstructing the wave functions of odd coherent
states demonstrated the applicability of the present method to
the measurement of thH@ function by using the unbalanced
homodyne detection scheme. Since the present method em-
ploys the noniterative and analytic phase-retrieval algorithm,
we can obviate the convergence problem that is usually en-
countered in iterative phase-retrieval algorithms such as the
Gerchberg-Saxton algorithpd 1], in which there is a possi-

Normalized Modulus
(]
&

1.57

Phase (radians)
(=)

-1.57

'3'1_45.0 ' 25 ' 0.0 ' 25 ' 5.0 bility of the solution converging to a local minimum or a
X nonanalytic solution different from a true one. Besides, the
present method does not have a twofold ambigliiy., a
(b) problem that the wave functiogi(x) and its complex conju-

gate ¢* (x) cannot be distinguishédwhich is the inevitable
FIG. 5. Reconstruction of the wave function from the data of theagmbiguity in the Gerchberg-Saxton algorithm.

Q function shown in Fig. 4(a) ngrma}lized moduli andb) phases So far, some schemes have been developed for the re-
of thg reconstructed wave functigsolid curve$ and the true wave construction of quantum states of light. In the optical homo-
function (dotted curves dyne tomography{2,3], a four-port homodyne detection

scheme is used to reconstruct the Wigner function from the
parable to that of the simulation shown by Wallentowitz andmeasurement of the statistics of difference events in the two
Vogel [7], in which the samples of £0and 5<10° events output channels of the detector for various values of the
were used for simulating the reconstruction of quasiprobabilPhase difference between local oscillator and signal field.
ity functions from the photon counting in the same unbal-Alternatively to the tomographic method, there are more
anced homodyne detection scheme as utilized in this sectiofomplicated homodyne detection schemes used for determin-
Therefore, the results of the reconstruction in Figs. 3 and "9 the quantum state of light in terms of ti¢ function,

mean that the present reconstruction method is compargUCh as six-porf6] and eight-por{S] detection schemes.
tively stable to noise. On the other hand, the unbalanced homodyne detection

scheme, which is utilized in the present method, is the sim-
plest scheme presently knowiee., a three-port schemeBy
sing the present method together with the unbalanced
omodyne detection scheme, one can further simplify the

It can be seen from Ed6) that the resolution of a recon-
structed wave function is limited by the extent of the Fourier
transform of the Gaussian function for the vacuum state. |

the extent Of. the .Founer-transfgrmed function for. theprocedure of the measurement with the control of a local
vacuum state is defined by full width atelvalues of its  ,qgjjjator field, because the present method allows one to
maximum, the minimum resolvable separation of two pointSgconstruct arbitrary wave functions from measured data
at thex coordinate ism/2. This separation corresponds to the along only two parallel lines without measuring the data
distance between two peaks of the wave function for the od¢, whole phase space in contrast with the conventional ways
coherent state ofo= m/4. In practice, however, the resolu- of reconstruction. In addition, it is another advantage in
tion of a reconstructed wave function is also limited by thethe present method that one can reconstruct wave functions
noise level of measured data. In the present simulation with aven for overall quantum efficiency GZ5u<1, since the
sample of 8 10° events for each point, the limit of the sepa- present method is based on the reconstruction fromQhe
ration of two peaks was about 2(6e., ag=1.3). function instead of the Wigner function. This makes it
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possible to use a realistic detector of quantum efficiencytions become broader than tRefunction. Consequently, the
smaller than 1 for the measurement of quantum states in present method has the advantage of making the measure-
pure state. In the measurement using the optical homodyrmaent of quantum states easier to do. In view of the resolution
tomography, a high overall detection efficiendpearly of the reconstruction, however, the applicability of the
100% efficiency is required, because the measured distribupresent method may be limited to the reconstruction of the
tions are used to reconstruct the Wigner functions, whichwave functions of which the Fourier transforms have a nar-
always have higher frequency components thanQhfenc-  rower bandwidth than the extent of the Fourier transform of
tions. In the six-port and eight-port detection schemes, théhe Gaussian function for the vacuum state. Hence the im-
recorded distributions for nonideal detectors are furtheprovement of the resolution in the present method is a re-
smoothed, so that the reconstructed quasiprobability distribumaining issue.
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