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Reconstruction of a wave function from theQ function using a phase-retrieval method
in quantum-state measurements of light

Nobuharu Nakajima
College of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan

~Received 18 August 1998!

A method of reconstructing a wave function from part of theQ function in a pure state of light is proposed.
This method involves the use of a noniterative phase-retrieval method based on Gaussian filtering, which
allows one to determine a convolution of the wave function with a known Gaussian function for the vacuum
state from measured data of theQ function along only two parallel lines in phase space. By using a deconvo-
lution process, the wave function is reconstructed from the convolution, provided that the resolution of the
reconstructed wave function is limited by the extent of the Fourier transform of the Gaussian function. Nu-
merical simulations demonstrate the applicability of this method to the reconstruction of the wave function
from the Q function obtained from the photoelectric counting statistics in unbalanced homodyne detection.
@S1050-2947~99!01706-0#

PACS number~s!: 03.65.2w
fu
ac
-
tio
n
n

sta

t

be
,
d
ti

ia
id
b
i
q

de
ho
a
A

t t

te

t
de

nl

o-
go-

ies
be-

con-
tion

al
een
out
o
are

s,
and
um

m
r-
an
r

een
h-
the

ion
e
wn
the
he
h a
con-
n

ing
ulus
of

ter-
de-
n-
I. INTRODUCTION

There has been a good deal of interest recently
quantum-state reconstruction. Quantum states can be
characterized by the Wigner function defined in phase sp
Vogel and Risken@1# theoretically pointed out that quadra
ture amplitude distributions measured in homodyne detec
provide enough data to perform a complete reconstructio
the Wigner function. This method is called optical homody
tomography. The pioneering experimental demonstration
this method was done by Smitheyet al. @2,3#. The idea of
quantum tomography has been applied to the quantum-
reconstruction of molecular vibrations@4#. Alternatively to
the tomographic methods, more complicated~homodyne de-
tection! schemes such as eight-port@5# and six-port@6# ho-
modyne detection techniques were used for determining
quantum state of light in terms of theQ function.

Recently, a more simple measurement scheme has
proposed@7,8#, in which various quasiprobability functions
including the Wigner and theQ functions, can be determine
by unbalanced homodyne detection of the number statis
of the quantum state of interest, after introducing appropr
coherent displacements. This scheme is based upon an
@9# that the complete Wigner function can be scanned
shifting the system or equivalently the frame of reference
the phase space. In this scheme, we can reconstruct a
siprobability function in each point of the phase space in
pendently, whereas in the tomographic and the multiport
modyning techniques the chosen grid of measured d
essentially determines the quality of reconstruction.
method of this type has recently been used to reconstruc
motional state of a trapped atom@10#.

In the measurement of quantum states, there is an in
esting point that if the quantum state being measured
knowna priori to be in a pure state, it may be unnecessary
obtain the Wigner function in a whole phase space in or
to reconstruct the pure density matrix~wave function!. In the
tomographic method, Smitheyet al. @3# pointed out that the
wave function of a pure state may be determined from o
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two quadrature amplitude distributions measured in hom
dyne detection by using the iterative phase-retrieval al
rithm ~the Gerchberg-Saxton algorithm! @11# that was devel-
oped in the area of image reconstruction. This fact impl
that there exists a mathematically analogous description
tween the quantum-state reconstruction and the image re
struction using phase-retrieval methods. The determina
of the phase of a complex function from its moduli~i.e.,
amplitude information! is referred to as a phase-retriev
problem. The study of the phase-retrieval problem has b
actively done in the area of image reconstruction for ab
20 years. Several methods@12–15# have been developed t
solve this problem. Iterative phase-retrieval algorithms
widely used. The use of iterative phase-retrieval algorithm
however, is accompanied by convergence problems,
hence the algorithms sometimes stagnate in a local minim
solution different from a true one. In particular, Huiseret al.
@16# pointed out that in the Gerchberg-Saxton algorith
there is a possibility of the solution converging to an inco
rect nonanalytic solution for one-dimensional cases. V
Toorn and Ferwerda@17# also verified this fact in a compute
simulation. On the other hand, an analytic~noniterative!
phase-retrieval method by use of Gaussian filtering has b
proposed recently@18#. This method is based on the mat
ematical properties of analytic functions, and ensures
uniqueness of the solution@19#.

In this paper, a method for reconstructing a wave funct
from part of theQ function in a pure state by using th
analytic phase-retrieval method is proposed. It is well kno
that theQ function can be expressed as a convolution of
Wigner function with the function that corresponds to t
Wigner function of the vacuum state. As we shall see, suc
convolution can be regarded as the square modulus of a
volution of the wave function in the pure state with a know
Gaussian function for the vacuum state. Then, by apply
the phase-retrieval method to the data of the square mod
along two parallel lines in phase space, the convolution
the wave function with the Gaussian function can be de
mined. The wave function can be reconstructed by the
convolution of the known Gaussian function from the co
4164 ©1999 The American Physical Society
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volution, provided that the resolution of the reconstruc
wave function is limited by the extent of the Fourier tran
form of the Gaussian function. In order to apply the pres
reconstruction method to theQ function in a pure state, the
scheme of unbalanced homodyne detection@7,8# is the most
efficient for the measurement of theQ function, because the
Q function in each point of the phase space can be obta
independently by using that scheme. By using the pres
method with that detection scheme, the procedure of
measurement with the control of a local oscillator field c
be reduced extremely, because the present method doe
require the measurement of the wholeQ function in phase
space in contrast with the conventional ways of reconstr
tion.

This paper is organized as follows. In Sec. II, the reco
struction method of a wave function from itsQ function is
formulated. In Sec. III, the reconstruction method is tes
by computer simulation of the measurement of odd cohe
states with the unbalanced homodyne detection. Conclu
remarks are given in Sec. IV.

II. FORMULATION OF RECONSTRUCTING A WAVE
FUNCTION BY PHASE RETRIEVAL

It is well known that theQ function of a quantum state i
defined by the diagonal matrix elements of a density oper
r̂ in a pure coherent stateua&:

Q~a!5
1

p
^aur̂ua&. ~1!

The Q function for a pure stateuc& of a single-mode field is
given by

Q~a!5
1

p
z^auc& z2. ~2!

In the x representation, Eq.~2! can be written as@20#

Q~a!5
1

p U E c~x!expF2
1

2
~x2&j!22 i&hxGdxU2

,

~3!

wherec(x)5^xuc&, and we have set

a5j1 ih. ~4!

Combining the imaginary term with the quadratic term in t
exponent of Eq.~3!, we obtain

Q~a!5
1

p
uexp~2h222ihj!F~j2 ih!u2, ~5!

where

F~j2 ih!5E c~x!expH 2
1

2
@x2&~j2 ih!#2J dx. ~6!

Equation~6! shows that the functionF(j2 ih) corresponds
to a convolution integral of the wave function with th
Gaussian function for the complex variablej2 ih. Thus we
consider the properties of theQ function along two lines
described by the equationsh50 andh5c, respectively, in
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the~j,h! plane, wherec is assumed to be a constant. TheseQ
functions can be written from Eq.~5! as

Q~j!5
1

p
uF~j!u2 ~7!

and

Q~j1 ic !5
1

p
exp~22c2!uF~j2 ic !u2. ~8!

If the complex functionF(j) is reconstructed from data o
theQ function along these lines in Eqs.~7! and~8!, the wave
function c(x) can be obtained by eliminating the know
Gaussian function~i.e., the wave function for the vacuum
state! from the complex functionF(j). In order to recon-
struct the complex functionF(j), we have to solve the prob
lem that the phase ofF(j) is retrieved from the information
of the moduli uF(j)u and uF(j2 ic)u. This problem can be
solved by the analytic phase-retrieval method@18#. In this
method the estimation of the phase is based on use of
logarithmic Hilbert transform@21# and a Fourier series ex
pansion@19,22# as shown in the following way.

Let F(j) be written as

F~j!5uF~j!uexp@ if~j!#, ~9!

where uF(j)u and f~j! are the modulus and the phase
F(j), respectively. If we assume that the functionF(j) is
given by the Fourier transform of a complex function with
finite extent, then the functionF(a) becomes an entire func
tion from a theorem formulated by Paley and Wiener@23#.
This assumption is appropriate for the case in Eq.~6! be-
cause the inverse Fourier transform of Eq.~6! for h50 ~i.e.,
the product of the inverse Fourier transforms of the wa
function and the Gaussian function! can be regarded as ap
proximately band limited in practice. The entire function
analytic in the whole finite complex plane with the remar
able properties. One of them is the fact that the real a
imaginary parts ofF(j) are related by the well-known Hil-
bert transforms or dispersion relations@24#,

ReF~j!5
1

p
PE

2`

` Im F~j8!

j2j8
dj8, ~10!

Im F~j!52
1

p
PE

2`

` ReF~j8!

j2j8
dj8, ~11!

where Re and Im indicate taking the real and imagin
parts, respectively, and P denotes that the Cauchy princ
value is to be taken. These relationships can be obta
from the calculation of a contour integral in the compl
lower half-plane. If either the real or imaginary part ofF(j)
is obtained, the functionF(j) can be calculated from the
relation of Eq.~10! or ~11!. In actual situations, however
only the modulus ofF(j) is directly obtained from the mea
surement of theQ function. Therefore, the relationship be
tween the modulus and the phase ofF(j) is more desirable
than that between the real and imaginary parts ofF(j). For
this purpose,F(j) is modified by taking its logarithm as
follows:
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ln F~j!5 lnuF~j!u1 if~j!. ~12!

The Hilbert transform relationship between the real a
imaginary parts of lnF(j) can be obtained from the calcula
tion of a contour integral in the complex lower half plane

f~j!52
j

p
PE

2`

` lnuF~j8!u
j8~j2j8!

dj81f~0!, ~13!

wheref~0! is the constant phase atj50. Equation~13! is
called the logarithmic Hilbert transform for the functio
ln F(j), which was formulated by Burgeet al. @21#. Since
ln F(a) has the same region of analyticity asF(a) except at
the points whereF(a)50, the relation of Eq.~13! can be
established only in the case that lnF(a) does not have any
singularities in the complex lower half-plane. Unfortunate
the actual situation is not so simple, because many funct
generally have zeros in the complex lower half-plane. C
sequently, Eq.~13! cannot always be used to calculate t
phasef~j! from the modulus ofF(j), and the logarithmic
Hilbert transform should be considered by taking into a
count the influence of zeros in the complex lower half-pla
on the derivation process of the actual phase.

In consideration of this point, we now introduce the H
bert function given by

Fh~j!5uF~j!uexp@ ifh~j!#, ~14!

wherefh(j) is the Hilbert phase:

fh~j!52
j

p
PE

2`

` lnuF~j8!u
j8~j2j8!

dj81f~0!. ~15!

In other words, the Hilbert function corresponds to a fun
tion whose all zeros in the complex lower half-plane a
reflected onto the upper half-plane. It is well known that
entire function may be described everywhere by its ze
with the expression being known as a Hadamard prod
@24#:

F~a!5aqB)
j 51

` S 12
a

zj
D , ~16!

whereq is of the order of zero at the origin of the comple
plane,B is a scaling constant, andzj is the vector notation of
the j th zero in the complex plane@i.e., F(zj )50#. Using the
Hadamard product, we may represent the relation betw
the Hilbert functionFh(j) with zeros only in the complex
upper half-plane and the actual complex functionF(j) with
zeros in both upper and lower planes as

Fh~j!5F~j!)
j 51

M S 12
j

zj*
D

S 12
j

zj
D , ~17!

whereM is the number of zeros in the complex lower ha
plane, and the asterisk denotes the complex conjugate.

Substitution of Eqs.~9! and ~14! into Eq. ~17! yields
d
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uF~j!uexp@ ifh~j!#

5uF~j!uexp@ if~j!#

3expH 22i (
j 51

M

@arg~zj2j!2arg~zj !#J , ~18!

where the modulus of the product term in Eq.~17! is unity
and the symbol arg denotes the argument of the comp
function (zj2j). The phase terms in Eq.~18! are given by

fh~j!5f~j!22(
j 51

M

@arg~zj2j!2arg~zj !#. ~19!

Since the Hilbert phasefh(j) is calculated by using Eq.~15!
from the modulus ofF(j), the general logarithmic Hilber
transform involving the influence of zeros ofF(j) in the
complex lower half-plane can be finally obtained from Eq
~15! and ~19! as

f~j!52
j

p
PE

2`

` lnuF~j8!u
j8~j2j8!

dj8

12(
j 51

M

@arg~zj2j!2arg~zj !#1f~0!. ~20!

The first term on the right-hand side of Eq.~20! correspond-
ing to the Hilbert phase implies the fundamental minimu
condition of the phase. The second term in Eq.~20! supple-
ments the information corresponding to the effect of the
ros ofF(a) in the complex lower half-plane, which does n
appear in the modulusuF(j)u and is only contained in the
phasef~j!. The rest term represents the constant pha
which does not appear in the positions of zeros ofF(a) and
the modulusuF(j)u. The ambiguity concerned with the con
stant phase is situated outside the phase retrieval from a
lute magnitude distributions~i.e., moduli! and will be re-
garded here as an unimportant component. The phasef~j! is
evaluated from Eq.~20! except for a constant phase. Unfo
tunately, the zeros in the complex lower half-plane cannot
determined from only the modulusuF(j)u. However, the in-
fluence of zeros in the complex lower half-plane can be ta
into account from two moduliuF(j)u and uF(j2 ic)u in the
following procedure.

Equation~20! is rewritten as

f~j!5fh~j!1fz~j!, ~21!

wherefh(j) is the Hilbert phase andfz(j) is the phase with
the influence of the zeros in the complex lower half-plan

fz~j!52(
j 51

N

@arg~zj2j!2arg~zj !#. ~22!

Substitution of Eq.~21! into Eq. ~9! gives

F~j!5Fh~j!exp@ ifz~j!#, ~23!

whereFh(j) is the Hilbert function given by Eq.~14!. When
the real variablej of F(j) is expanded into the complex one
j2 ic, Eq. ~23! becomes
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F~j2 ic !5Fh~j2 ic !exp@ ifz~j2 ic !#. ~24!

Thus the modulus of the functionF(j2 ic) is given by

uF~j2 ic !u5uFh~j2 ic !uexp@2Im fz~j2 ic !#, ~25!

where Im denotes the imaginary part of a complex functi
If the values of the moduliuF(j2 ic)u and uFh(j2 ic)u are
not zero, Eq.~25! can be rewritten as

ln
uF~j2 ic !u
uFh~j2 ic !u

52Im fz~j2 ic !. ~26!

On the left-hand side of Eq.~26! the functionuF(j2 ic)u can
be derived from theQ function of Eq.~8! and the function
uFh(j2 ic)u is related to the Hilbert functionFh(j) by the
relationship

Fh~j2 ic !5E
2`

` F E
2`

`

Fh~j8!exp~2p iuj8!dj8G
3exp~22pcu!exp~22p i ju!du; ~27!

that is, Eq.~27! indicates that the functionFh(j2 ic) is the
Fourier transform of the product of the inverse Fouri
transformed function of the Hilbert functionFh(j) and the
exponential function exp(22pcu). The Hilbert function can
be calculated from theQ function in Eq.~7! by using Eqs.
~14! and ~15!.

Next we consider a method of computing the phase fu
tion fz(j) from Eq. ~26!. One approach to retrieving th
phase is to representfz(j) in terms of an appropriate bas
function, e.g., a Fourier-series basis@19,22#,

fz~j!> (
n51

N S an cos
np

l
j1bn sin

np

l
j D , ~28!

where the observational region of theQ function is desig-
nated 2 l ,j, l , and N is sufficiently large to enable th
phase distribution to be reconstructed. Thus the unkno
functionfz(j) is represented by the unknown coefficientsan
and bn (n51, . . . ,N). Substituting Eq.~28! into Eq. ~26!
and evaluating the imaginary part offz(j2 ic), we obtain

D~j!> (
n51

N S 2an sin
np

l
j1bn cos

np

l
j D sinhS np

l
cD ,

~29!

where D(j)5 ln@uF(j2ic)u/uFh(j2ic)u# is a known function.
By calculatingD(j) at 2N values ofj we obtain 2N simul-
taneous equations from which the unknown coefficientsan
and bn (n51, . . . ,N) can be determined. The phasefz(j)
with the influence of zeros in the complex lower half-plane
derived by substituting the results of the solution (an ,bn ,
n51, . . . ,N! into Eq. ~28!. Consequently, the phasef~j! of
the functionF(j) can be obtained by adding the phasefz(j)
to the Hilbert phasefh(j). Note that, even if the relationshi
of Eq. ~26! breaks down when the modulusuF(j2 ic)u
and/oruFh(j2 ic)u have zeros, the unknown coefficientsan
andbn can be determined from the values of the modulus
the points except at the zeros. Finally, we reconstruct
wave function by eliminating the effect of the known Gaus
.
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n
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ian function from the functionF(j) consisting of the re-
trieved phase and the modulus that is derived from theQ
function in Eq.~7!. Because contamination of data is inev
table in practice, here we use a Wiener filter@25# for sup-
pressing the amplification of noise due to the deconvoluti
The inverse Fourier transformf (u) of F(j) is seen from Eq.
~6! to be

f ~u!5E F~j!exp~2p iuj!dj,

5C~u/& !g~u!, ~30!

where the functionsC(u) andg(u) indicate the inverse Fou
rier transforms of the wave functionc~j! and the Gaussian
function exp(2j2), respectively. Using a Wiener filter, w
can obtain

C8~u/& !5
f ~u!g~u!

g2~u!1e
, ~31!

where e is some small constant. Althoughe should be a
functionu, experience with conventional deconvolution su
gests that a constant term is usually sufficient. Then we
obtain an estimate of the wave function by Fourier tra
forming the result of Eq.~31!.

III. COMPUTER SIMULATION

The present reconstruction method has been tested
computer simulation of the reconstruction of a wave funct
from part of theQ function in a pure state. There are som
schemes for measuring quasiprobability distributions o
light field, such as theQ function. The unbalanced homo
dyne detection scheme@7,8# is the most suitable for the
present reconstruction method, because this scheme al
one to measure the value of a quasiprobability distribution
each point of the phase space independently. Thus, by ap
ing the present method to the data measured with the un
anced homodyne detection scheme, the wave function
light field in a pure state can be reconstructed from part
the Q function of the field without measuring the whole o
the Q function. We consider the unbalanced homodyne
tection scheme shown in Fig. 1, according to the treatm
given by Wallentowitz and Vogel@7#. The detected field is a
superposition of the signal and the local oscillator field

FIG. 1. Unbalanced homodyne detection scheme for the m
surement of theQ function of light; BS denotes the beam splitte
PD is the photodetector, and the annihilation operators of the mo
are indicated.
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Such a combination is easily realized by means of a be
splitter. The superimposed light can be described by
beam splitter transformation

âout5Tâ1Rb̂; ~32!

â, b̂, andâout are photon annihilation operators of the sign
field, the local oscillator field, and the superimposed fie
respectively. T andR are the complex amplitude transmi
sion and reflection coefficients of the beam splitter, resp
tively, which are assumed to have the relationships

uTu21uRu251, ~33!

arg~T!2arg~R!56
p

2
. ~34!

If the local oscillator field is prepared in a coherent stateub&,
b̂ub&5bub&, the probabilitypn of recordingn counts with a
photodetector of quantum efficiencyz is written as

pn~a;m!5K :
@mN̂~a!#n

n!
exp@2mN̂~a!#:L , ~35!

where the notation : : indicates normal orderin
a52Rb/T, m is the overall quantum efficiency

m5zuTu2, ~36!

and N̂(a) is the displaced~signal-field! number operator

N̂~a!5D̂~a!â†âD̂~a!†, ~37!

in which D̂(a) is the coherent displacement operator. W
the homodyne counting distributionspn(a;m), the
s-parametrized quasiprobability distributionsP(a;s) for the
quantum state of the signal field can be represented@7,8# by

P~a;s!5
2

p~12s! (
n50

` F2
22m~12s!

m~12s! Gn

pn~a;m!,

~38!

wheres denotes the parameter of quasiprobability distrib
tions with s,1, including the Wigner function (s50) and
the Q function (s521). This equation indicates that th
quasiprobabilityP(a;s) is evaluated as a weighted sum ov
the counting distributionspn(a;m). When thes values fulfill
the conditions<121/m, the weighting factors improve th
convergence of the series in Eq.~38!. Hence it is found that
the Q function can be obtained from the full photoelectr
statistics measured by means of a realistic photodetector
overall quantum efficiency 0.5<m,1.

We demonstrate the present method for an odd cohe
state,

ua2&5A~ ua0&2u2a0&), ~39!

whereua0& is a coherent state andA is a normalization con-
stant $2@12exp(22ua0u2)#%21/2. The wave function of the
odd coherent state is written in thex representation as
m
e

l
,

c-

,

-

ith

nt

c~x!5
A

A4 p
H expF2

1

2
~x2&j0!21 i&h0xG

2expF2
1

2
~x1&j0!22 i&h0xG J , ~40!

wherea05j01 ih0 . By evaluating Eq.~35! with Eq. ~39!
we can obtain the probabilitypn(a;m) for the odd coherent
state in the unbalanced homodyne scheme of Fig. 1
the present simulation, the photon-counting distributio
detected with an efficiency ofm50.5 were obtained by
Monte Carlo calculations. Using Eq.~38!, the Q function
P(a;21) was evaluated from the simulated photo
counting distributionspn(a;0.5). Figures 2~a! and 2~b! show
the cross-sectional profiles of theQ functionP(a;21) along
lines described by the equationsh50 andh510/64, respec-
tively, in the ~j,h! plane for an odd coherent state witha0
52.4, where the photon-counting statistics were simula
with a sample of 83103 events for each of 64 samplin
points in the extent~25<j<5! of the j coordinate. The ab-
solute value ofh in Fig. 2~b! was set to be the unit length o

FIG. 2. Cross-sectional profiles of theQ function evaluated
from the data of the unbalanced homodyne detection for an
coherent state witha052.4 in the simulation with 83103 events
for each point of 64 sampling points.~a! and ~b! are the cross-
sectional profiles of theQ function along lines described by th
equationsh50 andh510/64, respectively, in the~j, h! plane.
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the sampling points. Although there is not such a large
ference between the absolute magnitude values of dat
Figs. 2~a! and 2~b!, the data in Figs. 2~a! and 2~b! have
enough difference between these distributions for the ext
tion of phase information by the present phase-retrie
method. The solid curves in Figs. 3~a! and 3~b! show the
modulus and the phase, respectively, of the reconstru
wave function from the data of theQ function in Figs. 2~a!
and 2~b! by using the method described in Sec. II. Note th
the principle value integral over the logarithm of the me
sured modulus in Eq.~20! @i.e., the convolution integral o
the function lnuF(j)u/j with the function 1/j# can easily be
evaluated by taking a numerical inverse Fourier transform
the product of two Fourier transforms of the functio
lnuF(j)u/j and the function 1/j. Then the accuracy in calcu
lating the convolution integral can be increased@26# by using
the analytic result for the Fourier transform of 1/j ~i.e., the
signum function with the coefficient2p i ! and by calculat-
ing the Fourier transform of lnuF(j)u/j via the convolution of
the signum function with the numerical Fourier transform
lnuF(j)u. The reconstructed wave function in Fig. 3 corr
sponds to the functionc(&x) that is linearly scaled as

FIG. 3. Reconstruction of the wave function from the data of
Q function shown in Fig. 2:~a! normalized moduli and~b! phases
of the reconstructed wave function~solid curves! and the true wave
function ~dotted curves!.
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result of the deconvolution of the known Gaussian funct
from the complex function consisting of the modulus@i.e.,
the square root of theQ function shown in Fig. 2~a!# and the
retrieved phase. For comparison, the modulus and the p
of the true wave function scaled with&x in Eq. ~40! are
shown by the dotted curves in Figs. 3~a! and 3~b!, respec-
tively. Note that the constant phase of a wave function is
inevitable ambiguity in the reconstruction from the absolu
magnitude data by using the phase-retrieval method.

Figures 4 and 5 show the example of reconstruction of
wave function for an odd coherent state witha051.3. Fig-
ures 4~a! and 4~b! show the cross-sectional profiles of theQ
function along lines described by the equationsh50 and
10/64, respectively, in the~j,h! plane, where the photon
counting statistics were simulated with the same conditi
as those in Fig. 2. The solid curves in Figs. 5~a! and 5~b!
show the modulus and the phase, respectively, of the re
structed wave function from the data of theQ function in
Figs. 4~a! and 4~b!. The dotted curves in Fig. 5 mean the tru
wave function that is scaled with&x. It is found from Figs.
3 and 5 that thep phase difference between two Gaussi
functions of the wave function with a real value fora0 in Eq.
~40! is almost faithfully retrieved. Note that the order of th
sampling events (83103) in the present simulation is com

e FIG. 4. Same as in Fig. 2 except that the state of light was
odd coherent state witha051.3.
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parable to that of the simulation shown by Wallentowitz a
Vogel @7#, in which the samples of 103 and 53103 events
were used for simulating the reconstruction of quasiproba
ity functions from the photon counting in the same unb
anced homodyne detection scheme as utilized in this sec
Therefore, the results of the reconstruction in Figs. 3 an
mean that the present reconstruction method is comp
tively stable to noise.

It can be seen from Eq.~6! that the resolution of a recon
structed wave function is limited by the extent of the Four
transform of the Gaussian function for the vacuum state
the extent of the Fourier-transformed function for t
vacuum state is defined by full width at 1/e values of its
maximum, the minimum resolvable separation of two poi
at thex coordinate isp/2. This separation corresponds to t
distance between two peaks of the wave function for the
coherent state ofa05p/4. In practice, however, the resolu
tion of a reconstructed wave function is also limited by t
noise level of measured data. In the present simulation wi
sample of 83103 events for each point, the limit of the sep
ration of two peaks was about 2.6~i.e., a0>1.3!.

FIG. 5. Reconstruction of the wave function from the data of
Q function shown in Fig. 4:~a! normalized moduli and~b! phases
of the reconstructed wave function~solid curves! and the true wave
function ~dotted curves!.
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IV. CONCLUSIONS

A reconstruction method of a wave function from part
theQ function in a pure state of light has been presented
the first step of this method, the phase of the convolution
the wave function with the known Gaussian function for t
vacuum state is retrieved from measured data of theQ func-
tion along two parallel lines in phase space by using
analytic phase-retrieval method based on use of the loga
mic Hilbert transform and a Fourier series expansion. In
second step, the wave function is reconstructed by a de
volution of the known Gaussian function from the compl
function consisting of the modulus~i.e., the square root o
the measuredQ function! and the retrieved phase along on
line that passes through the center in the phase space. E
cially it should be emphasized that the distributions of theQ
function along only two lines contain enough information f
the determination of wave functions in a pure state, provid
that the resolution of the reconstructed wave functions
limited by the extent of the Fourier transform of the Gau
ian function for the vacuum state. Computer-simulated
amples of reconstructing the wave functions of odd coher
states demonstrated the applicability of the present metho
the measurement of theQ function by using the unbalance
homodyne detection scheme. Since the present method
ploys the noniterative and analytic phase-retrieval algorith
we can obviate the convergence problem that is usually
countered in iterative phase-retrieval algorithms such as
Gerchberg-Saxton algorithm@11#, in which there is a possi-
bility of the solution converging to a local minimum or
nonanalytic solution different from a true one. Besides,
present method does not have a twofold ambiguity@i.e., a
problem that the wave functionc(x) and its complex conju-
gatec* (x) cannot be distinguished#, which is the inevitable
ambiguity in the Gerchberg-Saxton algorithm.

So far, some schemes have been developed for the
construction of quantum states of light. In the optical hom
dyne tomography@2,3#, a four-port homodyne detectio
scheme is used to reconstruct the Wigner function from
measurement of the statistics of difference events in the
output channels of the detector for various values of
phase difference between local oscillator and signal fie
Alternatively to the tomographic method, there are mo
complicated homodyne detection schemes used for deter
ing the quantum state of light in terms of theQ function,
such as six-port@6# and eight-port@5# detection schemes
On the other hand, the unbalanced homodyne detec
scheme, which is utilized in the present method, is the s
plest scheme presently known~i.e., a three-port scheme!. By
using the present method together with the unbalan
homodyne detection scheme, one can further simplify
procedure of the measurement with the control of a lo
oscillator field, because the present method allows one
reconstruct arbitrary wave functions from measured d
along only two parallel lines without measuring the da
in whole phase space in contrast with the conventional w
of reconstruction. In addition, it is another advantage
the present method that one can reconstruct wave funct
even for overall quantum efficiency 0.5<m,1, since the
present method is based on the reconstruction from thQ
function instead of the Wigner function. This makes
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possible to use a realistic detector of quantum efficie
smaller than 1 for the measurement of quantum states
pure state. In the measurement using the optical homod
tomography, a high overall detection efficiency~nearly
100% efficiency! is required, because the measured distri
tions are used to reconstruct the Wigner functions, wh
always have higher frequency components than theQ func-
tions. In the six-port and eight-port detection schemes,
recorded distributions for nonideal detectors are furt
smoothed, so that the reconstructed quasiprobability distr
s
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tions become broader than theQ function. Consequently, the
present method has the advantage of making the meas
ment of quantum states easier to do. In view of the resolu
of the reconstruction, however, the applicability of th
present method may be limited to the reconstruction of
wave functions of which the Fourier transforms have a n
rower bandwidth than the extent of the Fourier transform
the Gaussian function for the vacuum state. Hence the
provement of the resolution in the present method is a
maining issue.
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