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The methods used to determine the reduced density m@M) of the ground and excited states, the
finite-temperature systems, and the large systems without using the wave function by solving the density
equation were discussed. We examined the foundations to reconstruct the higher-order RDMs of the ground
and excited states and the finite-temperature systems in terms of the lower-order RDMs. We presented the
equation to determine the RDMs of the finite-temperature systems directly and showed that only the exact
RDMs satisfy the equation. Our previous approximation for third- and fourth-order RDMs of the ground state
[H. Nakatsuji and K. Yasuda, Phys. Rev. Lét6, 1039(1996] was reformulated, and the accuracy of this
approximation for the excited states was examined. The structure dfittherder energy density matrix
(n-EDM) was analyzed, and the calculation method which sums up the Parquet diagram of the 2-EDM without
explicitly constructing the third- and fourth-order RDMs was reported. This approximation is more accurate
than the previous second-order approximation and also includes the infinite series of bubble and ladder Green’s
function diagrams. Such a method is necessary to apply the density-equation method to large systems, such as
polymers, metals, and semiconductors. The new approximation together with the density equation was applied
to the ground states of some molecules including C&H.C C;Hg, and GH;,, and the excited states of the
Be atom and Li molecule. The calculated energies were as accurate as the exact or coupled-cluster single and
double excitations with triples included noniteratively, and the energy errors of the second-order approximation
were significantly reduced. The calculated 2-RDMs almost satisfied important representability conditions while
the 1-RDMs were exactly ensemble representable. These results demonstrate that the density equation offers a
new guantitative method for treating electron correlations. The relationship between the iterative procedure and
the finite-temperature density-equation method was discupS&650-29479)07806-3

PACS numbsgps): 31.15.Ew, 31.25:v, 03.65.Ge

[. INTRODUCTION also applicable to the system with three-body interaction.
Recently we and others developed a method which uses
Although the wave function has all the accessible infor-the two-body nature of the Hamiltonian explicitly to deter-

mation in quantum mechanics, it often tells us more than wénine the RDM of general systeni8-5. We solved the
need to know. Since all the operators we shall concern ourequation called the “hierarchy,” “density,” or “contracted
selves with in quantum mechanics are one- and two-bodychralinger” equation[6, 7],
ones, essential physical quantities can be calculated from the
second-order reduced density mat(&RDM). If we can
determine it without using the wave function, the wave func-
tion can be eliminated from the quantum mechanics and th
RDMs take over its role. However, various methods studied n n
so far to determine the RDM without using the wave func- RM=_grm4 | > U(ri')+2 w(r/ ,rj’)} rm
tion [1] were successful only for limited systems, because of i i>]
the N-representability probleni2]. Because the fermion’s
wave function is antisymmetric with respect to the permuta- n

RMW=0. (1.1

'é’he nth-order energy density matrixn{EDM) is given by

n+1

f |v(rn+1)+2i W(ri, yrn+1)]

tion of particles (Pauli principlg, physically acceptable 1

RDM must satisfy some strong conditiongthe

N-representability conditions which are not completely < g 4 n+2
known except for 1-RDM2]. n+1 2

The significance of our Hamiltonian is that it contains
only one- and two-body operators. By using this special XJ (n+2)
property, are there any methods to solve the quantum- WMy, M) D7 2drgqdry o, (1.2
mechanical problem more easily than by the traditional ap-
proach? It is clear that the Scliinger equation does not use Where §) is the binomial coefficient. In the domain of the
this property explicitly, because the Schimger equation is physically acceptable RDMs, E¢l.1) with n=2 is equiva-
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lent to the Schrdinger equation, and only the exact RDMs the second-order of the electron correlations. This approxi-
of the ground or excited states satisfy 7. mation gave quantitative results for singly bonded mol-
This equivalence shows that tierepresentable 4-RDM ecules, but the errors of the multiply bonded molecules are
uniquely determines the nondegenerate wave function. Thirger, showing the importance of the higher-order terms. No
one-to-one mapping is true for both the ground and the exother density-equation results were reported for these mol-
cited states, in contrast to the Hohenberg-Kohn theorerfcules.
[8,9] Our new method uses the density matrix as the basic In addition to the quantitative feature, higher-order pertur-
variable and the density equation to determine it, instead dpation terms have significant effects in many systems. For
the wave function and the Schfinger equation. example, in the uniform electron gas or interacting hard
The equilibrium state of the finite-temperature systemspheres, simple perturbation expansion diverges, and the re-
with a fixed number of particles was represented by the staSummation of the infinite series of the physically important
tistical operator;)=Eil\I’i)<‘I’i|e_BEi/Z, where E;, |¥,), GF diagrams is necessary. _A_Ithoug_h the densﬂy-e_quatl_on
andZ are the energy, wave function, and the partition func_method may sum up some infinite series through the iterative

tion, respectively. Al the thermodynamic quantities and thec@/culation of the 2-RDM, the use of the more accurate,

expectation values of the operators can be calculated frortaigher-order approxime}tion is indispensab'le in solving the
the partition function and the 2-RDM. Using the two-body general systems including metals and semiconductors. Since

nature of the Hamiltonian, it is possible to determine thesd® ﬁummat_ion of thﬁ phys_icz(ajl_lf;;_ imlportan(tj RDIM diagfams
guantities without calculating the wave function or 2-RDM y the pfe"'oui rgetf ofl] is difficult, Wﬁ evelop ad' 1a-

of each eigenstate. In Sec. Il we present the equation to d@rammat'c mgt 0d 0 EPM to sum up the Parque; 'agram
termine the partition function and the 2-RDM directly, which including the infinite series of ladder and bubble diagrams.

can be seen as the extension of the density equation to the I large systems, explicit construction of the1)- and
finite-temperature systems. (n+2)-RDMs requires much computational time, and the

Since the second-order density equation, which is th&lirect calculation of the energy density matrix without con-
lowest-order equation equivalent to the Salinger equa- Stucting the (+1)- and f+2)-RDMs is desirable. Our
tion, also depends on the 3- and 4-RDMs, it is indeterminat&€W method yields the second-order energy density matrix
without additional constraint, that is, tHé-representability ~directly without explicitly constructing the 3- and 4-RDMs.
conditons. Under the current knowledge of the Develo_pment of_the d|rept calculation _method (_)f 2-EDM will
N-representability conditions, the density equation imposingf)e a first step in applying the density-equation method to
known N-representability conditions may have highly degen-'2r9€ systems. _ _
erate nonphysical solutions and probably does not yield the 1he organization of this paper is as follows. In Sec. Il, we
isolated exact solutiofil0]. Hence we and others adopted "€VieW the theoretical foundations to reconstruct the higher-
the functional approach expressing the+1)- and the f order RDMs. The equation for the direct determination of the
+2)-RDMs in terms of thex-RDM to remove the indeter- density matrix of the finite-temperature canonical ensemble

minacy. The existence of such functionals is discussed iff Presented. In Sec. Il we reformulate our previous approxi-
Sec. Il. The approximate functional also functions as th@nation for 2|ghher—order RDerS] in terms of the Iowgr-o][der
N-representability conditions-representability is one of the °N€S4], and the accuracy of the various reconstruction func-
properties to be approximated tionals for the excited states is examined. In Sec. IV we
Various approximate functionals to express the higher&Xxamine the general structure of the energy density matrix

order RDMs were reporteid,5,11], and with these function- ysing the gen_erating functionals. In Sec. V we present the
als, the second-order density equation was solved for atomilt€gral equations to sum up the Parquet diagrams of the
moleculeg3,4], and a model systeii§]. These results were second-ordgr energy density matrix. In Sec. VI we apply this
very promising, giving energies and RDMs as accurate as, di€W approximation for the ground states and the closed-shell
more accurate than the SD@ingle and double excitation ©€XCited states of atoms and molecules and compare the re-
configuration interaction method, exactlyN-representable sults with the previous approximation and the wave-function
1-RDMs, and the 2-RDMs almost satisfied some importanfnéthods.
N-representability conditions. The density-equation method
offers an entirely new alternative in quantum mechanics.

Our approximate functionals based on the perturbation
theory yield the 3- and 4-RDMs of the exact eigenstate from In this section we first review the fundamental question in
the corresponding 2-RDM for a weakly perturbed systemthe density-equation approach: what order RDM has enough
Thus the same method may also be applicable to the excitadformation to uniquely determine the wave function.
states. In this paper we reported the determination of the The RDM is said to be pure-staté-representable if the
excited-state 2-RDMs by the density-equation method witrRDM is derivable from an antisymmetric function fpar-
these functionals. From a different point of view, Mazziotti ticles, and ensembld representable if it is derivable from a
expressed the 4-RDM with several parameters and solved thaixed state withN particles.
density equation for the excited states of the quasispin model We will review the theorems about the ground state first.
[5]. The Hohenberg-Kohn theoreri8] demonstrates that the

In the functional approach, the quality of the approximateground-state electron density is sufficient to determine the
functional determines the quality of the solution. Based orexternal potential of the Hamiltonian. Mazziotti pointed out
Green's-functior{GF) theory, we developed the approximate [5] that the electron density alone cannot determine the wave
functionals for higher-order RDMs, whose accuracy is up tofunction without the knowledge of the kinetic and the Cou-

Il. FORMAL THEOREM
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lomb repulsion terms. By using the variational principle of 9
the ground-state energy, Rosina proved that the — &—r(n)(fL colalra, )
N-representable 2-RDM of the ground state has enough in-
formation to determine the two-body Hamiltonigt2]. We =RM(ry, ... rllre, ..o
can conclude that it is in principle possible to reconstruct the
wave function and hence the higher-order RDMs of the _ t oot "o, / B\
ground state of the two-body Hamiltonian in terms of the n!Tr{¢ (1) @) ¢lrn) -~ Sra)(H=E)pj,
2-RDM. (2.2
Next we consider the excited states. It is easy to show that
the 4-RDM of the nondegenerate state of the two-bodyvhereg is the inverse temperaturg,is the Helmholtz free
Hamiltonian has enough information to determine the waveenergyF=— B~ *logTrexp(-8H), andE is the expectation
function. This is a consequence of MacDonald’s variationaialue ofH. Tr indicates the sum of the diagonal elements in
principle: each eigenstate corresponds to the minimum of thé€ N-particle Hilbert space. The right-hand sitas) of Eq.
expectation value of a four-body operato(r(H—E)2>. (2.2 is _wrltten with then-, (n+_1)-, and (1+2)-R[_)Ms_, as.
Hence the 4-RDM of the nondegenerate state of the twoshown in Eq(1.2. The necessity for the theore_m_ is trivial if
body Hamiltonian has a unique preimage in the set of en'/e notice that the true statistical operator satisfies the equa-
semble N-representable density matrices. It can also pd'on
proved that these 4-RDMs are the extreme elements of the
convex set of the 4-RDMs.
If we restrict the tWO-bOdy interaction in the Hamiltonian (9,8 is an abbreviation foﬁ/alg_ We will prove the Sufficiency
as the Coulomb interaction, two different wave functionsfor the second-order equation, because if the higher-order
|¥) and|¥'), which are the nondegenerate eigenfunctionsequation is satisfied, the lower order is also satisfied. Sup-

of HamiltoniansH=v +w andH’=v'+w, do not yield the  pose that the ensemble representable statistical opgrator

(3) i " vi (3) . : .
samel®). Assuming that¥) and| W) yield the samd&®),  yijelds then-, (n+1)-, and fi+2)-RDMs which satisfy Eq.
using MacDonald’s variational principle, (2.2). Then it follows

(dg+H—E)p=0.

— 35 TrH{(9g+H—E)p'}+Tr{(H—E)(dg+H—E)p'}=0,
(V'|[(H-E))|¥")+(¥|(H'—E")?¥)>0. (2.0
and hence

+ o R
On the other hand, the same formula becomes f Tr{(—dg+H—E)(dgt+tH—-E)p'}dB
0

+oo
(W'[(H=E)*—(H'—E")?|¥") :jo Ek: [(9g+H—E)[k(B))|?dB=0.

+(W|(H'—E")2=(H-E)}¥)=0 .
We write theN-particle sector op’ as=|k(8)){k(B)|. The
above equation indicates that satisfies the same equation

becausg¥) and |¥') yield the samel'® and H-E)*>  as), and both are equivalent in theparticle Hilbert space
—(H’—E’)?is a three-body operator. This contradiction in- and yield the same exact RDMs. Other thermodynamic quan-
dicates that thé\-representablé&® has enough information tities including the partition function can be calculated from
to determine the wave function among all the nondegeneratge energy expectation valig3).
eigenfunctions of the Hamiltonians with fixed tWO-bOdy in- Equation(zlz) is completely different from the equation
teraction. of motion of the thermal Green’s functigt 3] and the equa-
Recently without using the variational principle, Mazzi- tion of quantum Bogolyubov-Born-Green-Kirkwood-Yvon
otti proved the following theoremS]: if each state of the (BBGKY) hierarchy recently reportefd4]. These equations
two-body Hamiltonian may be distinguished from otherestablish the relationship between and (+1)-RDMs,
states by at least one two-body operator, then the 2-RDM haghile Eq.(2.2) describes the relationship among (n+1)-,
a unique preimage in the set of pure-stdteepresentable and (+2)-RDMs. The anti-Hermite part of Eq2.2) is
density matrices. A corollary of this theorem is that theequivalent to the BBGKY hierarchy equation and the equa-

p-RDMs of each state are the unique functionals of thejon of motion of the thermal Green’s function at the zero
2-RDM. Based on this theorem he proposed a new reconime interval.

struction method called ensemble representable method, and gijmilar to the 2-RDM of the ground state, the 2-RDM of
calculated the 2-RDMs of the excited states of the quasi-spithe finite-temperature canonical ensemble has enough infor-
model by solving the density equation. mation to determind4, and we can use the 2-RDM to rep-
The density equation for the eigenstate is extended to thgasent the state. There are no two-body Hamiltonibihs
finite-temperature, canonical ensemble with a fixed numbet: 4’ \which yield the same 2-RDM of the finite-temperature
of N particles. The necessary and sufficient condition fE)r thesystems. It is a consequence of the variational principle of
n-RDM to be derivable from the statistical operatpr the Helmholtz free energf9]. Hence the reconstruction of
=ePf(F~H) is to satisfy the equation the higher-order RDMs in terms of the 2-RDM is in principle
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(3.3a

(3.3b

| O A A T SR

solution. The use of E¢2.2) together with the reconstruc- @ — ‘ _
tion functionals offers a new alternative to the traditional 2! - - +
system. The proof is given in Appendix A. We will report
In this section we summarize the approximations reporte%
Then-RDMs andn-particle many-body GFS¥XGFS are de- among RDMs. In the previous paper we derived the relations
ships among-RDMs with n=<6. Generating functionals are
iI"GM(X], ... XAXg, e Xn)
=(T[b(X}), ... ¢(Xﬁ)¢T(Xn) o ¢)T(X1)]> I’(C”) is defined similarly, which correspond to the last terms

possible, and the decoupling method based on the thermal
Green'’s function provides a systematic way toward the exact
approach for the finite-temperature systems. The simplest ap-
proximation of n-RDM in terms of 1-RDM by Levdin's
formula together with the first-order equation of HG.2) ()
yields the Fermi distribution function for a noninteracting I = + +
the finite-temperature results using a more accurate approxi-
mation and the second-order equation in a future paper. AT — I | I |+H l ‘+ H-I |+H H+LH—~'
lll. APPROXIMATIONS OF HIGHER-ORDER RDMs (3.39
In Egs.(3.3b and(3.30 typical diagrams are shown. Since
so far. and the accuracy of our aporoximation for the excite he time variables of the external lines are zero, the isolated
. . y PP old line represents the exdet?). We define the vertex part
states is examined. In the previous papéis we used the of 2-RDM, Vy., as the third term of Eq(3.33
Green’s-function(GF) method to derive the relationships Severai rrfe’thods are reported to d.e.rive. the relationshi
among the higher-order RDMs and the lower-order ones, P P
fined as[9,13 by comparing the Feynman diagramsreRDM with those
’ of k-RDMs of k<<n. By using the new generating functionals
of RDMs, which do not involve the time variables, Mazziotti
reported a more concise methfsl] to derive the relation-
1
= n—|(¢T(r1), T () @), () also known to be useful to analyze the structure of the many-
' particle GH13]. In Secs. Il and IV we use these techniques.
We denote the connected piecersGF asG{™ which can-
not be expressed as a simple product of lower-order GFs.
in Egs. (3.3b and (3.39. By definition, functionalsZg[J]
. . . (n (n)
wherer; denotes the set of position and spin coordinates, 2ndWelJ] generateG(™ andG¢” as well as"(™ andTI'¢" .
denotes the set of time, position and spin coordinates, of thEC €xample,
ith electron,¢' and ¢ denote the creation and annihilation

n ’ !
field operators in the Heisenberg representation, Brubb- PO, orlrn, )
notes the time-ordering operator. We define the time order- (—1)" 527
ing of the operators at equal times as the normal order: cre- =lim G
ation operators are ordered to the left of the annihilation 3o M SIR(ry) - 83 (rp)83(ry) - - 83(ry)

operators, multiplied by the signum of the permutation. We

will suppress the time variable when it equals zero. Thén Which J andJ* are the Grassmann variablg513]. In-
RDMs are expressed with the GFs as stead of using Mazziotti's generating functional of RDMs,

we use the generating functional of GFs,

F(n)(ri, . ,I’r'1|r1, e ,I’n) ZG:<,\P|T[e7isl]|\P>’

:(_i)ne(m(r' rlr . (3.0 o4
Lo ' sl=f{J*<x>¢(x>+¢*<x>J(x)}dx,

n!

Many-particle GFs are represented with Feynman’s diagra

A M® emphasize the similarity between GF and RDM, and to
[13]. For exampleG(?) is expressed as

use the diagrammatic analysis.
By differentiating the relation betweefy, andWg,

G(2): | | - >< + |~/\»' - X (32) ZG:eXpWG; (35)

and taking the limitJ— 0, the relation among GH43] or

The bold line denotes the exact one-particle GF, while théRDMs [5] is obtained:'"™ is expressed with' (" and the
wavy line denotes the exact two-body vertéX13]. Each  products of thd™() with k<n. The same result is obtained
G diagram has a coefficient of' *M~X~" wherel is the by comparing the Feynman diagrams. This relation among
number of the close®™) loops, m is the number of the RDMs is useful not only to analyze the structure of the
unperturbeds® lines, andk is the order of the perturbation. RDMs but also to approximate the higher-order RDMs. For

Since RDMs are a special case of GFs with time variableexample, the approximation of Valdemoro and co-workers
equal to zero, the same Feynman diagrams represent RDMsan be derived by neglecting some connected pieces.
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In the previous paper we used the same approximation far, belongs to the virtual orbitals, and other cluster amplitudes
the unconnected 3- and 4-RDMs, and also approximated th&(™ (n+2) can be neglectefd 6]. Then the connected piece
connected piece of 3-RDM as follows. Exa@t!) satisfies of 2-RDM is given by the formula
an approximate relation when’' <0,

Lo 1
2)iti2 _ ot <
iG(l)(x’,x)%f dg dq G§P(x’,q)Po(9,q" )G (g’ ,x) r )}1}2—§{<HF|ailaizajzale2|HF>

+(HFTlal ala,,a;,|HF)!.
~qu dgcM(x’,q)P(q,9 )GV (q’,x), (HF|Tyaf,a5a;,8;1| HF)}

(3.6) Asis seen, thig"(¥) completely determines the nonzero ele-
ments of the first-order perturbation termsTf). Once we
, , . , ) get the cluster amplitude, we can calculate the leading term
P(a,9")=Po(a,q )_J P(a,r’)y(r',r)Po(r,q")drdr’, of the I'® which is the second order. By using this first-
order T®) the only nonzero elements are
Po(,a")=2I'¢"(q,9") — 8(a—a"),
N —1(1) ’ (1) ' (3.7 (3)ili2i3 _ 1 Tt ot 4T oF >
y(q,9")=I""(q,9")—-T's"(q,q"), Ie j1;2j3—5<HF|TzailaizaisajsajzalezlHF>-

in which r andq denote the set of position and spin coordi-

nates, whilex denotes the set of time, position, and spinSuybstituting the amplitude Witﬁ(c2) and evaluating the ex-
coordinates. Unperturbe@(®) satisfies Eq.(3.6) when P pectation values of the creation and annihilation operators,
= Po. Itis a consequence of the rules of subsequent events ige get the leading term of E¢3.9).

the path-integral theory15]. Equation(3.7), which looks We then compare the various approximations reported to
like Dyson’s equation, determings We used the approxi- date. Valdemoro and co-workers included explicitly the first
mate relationship of Eq(3.6) to express the connected two terms of Eq(3.3b) for 3-RDM and the first three terms
3-RDM, the last term in Eq(3.3b), in terms of 1- and of Eq. (3.39 for 4-RDM [3]. This approximation includes
2-RDMs. We replace@® joining two vertices in thd’®)  zeroth- and first-order perturbation terms in electron correla-
with the rhs of Eq.(3.6). The vertex diagram with four ex- tions in both 3- and 4-RDMs, provided that the 3- and

ternal legs was next replaced with-, 4-RDMs are constructed from the 1- and 2-RDMs. They
took into account the connected piece of 3-RDM by correct-

Vet o) =—i | dxq ... dxiV(x! x5lx; .x ing th(_a approximated 3—F_2DM with son&representabmty
r(ryrelrore) f ! V(X3 X5l X0. %) conditions, or by contracting the approximate 4-RDM to the

GO X)) GD(rx}) geliglt\/l Their' approximation together with the second-order
y equation gave good results for the four-electron atom
X G (x| r1)GD (x| 1), (3.9 andions, and the six-electron molecule of BeH
In the previous papeiligl], we explicitly included the first
which was calculated from the given 1- and 2-RDMs by Eq.three terms of Eq(3.3b for 3-RDM and the first four terms

(3.39. The final formula for the connected 3-RDM, of Eq. (3.39 for 4-RDM. This approximation includes the
terms up to the second-order perturbation of the electron cor-
@ L ., , relations for both 3- and 4-RDMs and omits some of the
L&=37] Vr(ri.ralars)P(a.q) third- and the higher-order perturbation terms. The fourth
term of Eq.(3.30 for 4-RDM represents the simultaneous
XVr(q',rylry,rp)dgdg +- - -, (3.9  collisions of two electron pairs. The density-equation method

with this decoupling approximation gave better results than
contains no time integration, in contrast to the GF theorythe SDCI method for closed-shell atoms and molecules. The
The relationships among the spinlas®RDMs "D are ob-  second-order perturbation terms are essential for the correct
tained by summing up the spin variables. description of electron correlations in atoms and molecules.
Without using the time-dependent theory, E8,.9) could Based on these studies, Mazziotti proposed a new ap-
be understood in a different way. Suppose we keep the firsproximation scheme for 3-RDNI5]. He contracted the ap-
order perturbation terms of the wave function in the clusteproximated 4-RDM functional to the 3-RDM to generate a

expansion form, system of equations for the 3-RDM. This system of equa-
o tions yields the 3-RDM which is correct through second or-
|W)=NexpT,+To+---)|HF) der. His approximation works well for the quasispin model,

A o giving better results than the SDCI method.
To=TM1 - -alaj, - -ay It is interesting to examine whether the density-equation

method with approximate functional can be applied to the
in which T(" denotes the-body cluster amplitude an¢iF) excited states. We examine the accuracy of the functionals
denotes the Hartree-Fock Slater determinant. Under this afer the excited states. We approximated the 3-RDM using
proximation the only nonzero elements in the cluster amplithe first- and second-order functionals, from the exact 1- and
tude isT®1112, wherej belongs to the occupied orbitals and 2-RDMs of the ground and five singlet excited states of the
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TABLE |. Errors of the approximated RDMs calculated by the various approximate functionals for the
ground and excited states of Be atdig(2200) indicates the electron occupation in the unperturbed 1-RDM
used in Eq(3.7). Numbers in square brackets indicate powers of 10.

Ground Excited states
Energy —1458269 —13.20201 —-11.76286 —9.198 39 —8.206 16 —3.056 01
Main 1.002200 0.71(2110 1.002020 0.701210 0.701120 0.990220

config? +0.71(2110 +0.701210 +0.701120

Method Errors of the approximated 3-RIBM

1storder 1.755-3] 6.257-2] 1.02§-3] 5989-2] 5827-2] 8.517-4]
2nd order
Io(2200)  2.719—4] 1.462 5.55p—3] 1.465 1.442 1.598-3]
Iy(2020) 2.80p—3] 4.900—1]  5.700—3] 1.092 1.095 1.138-1]
o(0220)  2.799—3] 1.106 227p-1]  5.026-1] 1.059 3.80B— 4]

Errors of the approximated 4-RDM
1st order  7.60[1—4] 4.70§ — 2] 5.107 —4] 4.565 —2] 4.604 —2] 3.307—4]
2nd order  3.279-5] 2573 1] 1.787—-5] 2,580 —1] 2589 —1] 9.094 —6]
3rd order
I'(2200)  1.32[-5] 1.291 4.50p—4] 1.294 1.300 1.795-4]
I'0(2020)  3.23[L-5] 3.716 — 1] 1.651-5] 8.25§ —1] 8.316 — 1] 1.187—2]
I'y(0220) 2.887—5] 8.412 1] 5.144 -1] 3.783 —1] 7.96Q —1] 6.8159 — 6]

&ClI coefficient and electron occupations in the four Hartree-Fock orbitals.
®Errors of the RDMs measured by the Euclidean norm.

Be atom. The errors of the approximated 3-RDMs are meastates. The fourth term of Eq3.39, which is the second
sured by the Euclidean norm. Similarly the 4-RDMs are ap-order of the electron correlation, improves the 4-RDM by an
proximated with the first-, second-, and third-order function-order of magnitude for the closed-shell states. On the other
als from the exact 1-, 2-, and 3-RDMs, and the errors of théhand, the same correction goes in the wrong direction in the
4-RDMs are calculated. The results are summarized in Tablepen-shell states, although this correction does not use the
|. Because the second-order functionals of the 3-RDM and@inperturbed 1-RDM. The third-order perturbation term,
the third-order functionals of the 4-RDM contain the unper-which is the last term of Eq(3.39, works well for the
turbed 1-RDM, we used three differefi§” in Eq. (3.7). In  closed-shell states, if the proper unperturbed 1-RDM is used.
Table I, T'5(2020) indicates that the four electrons occupyAnother choice ofl'{" does not improve the 4-RDMs. We
the first and the third Hartree-Fock orbitals in the unper-conclude that if the proper unperturbed 1-RDM is used, the
turbed 1-RDM. The main configurations in each excited stat®- and 4-RDMs of the closed-shell state are accurately ap-
are shown in Table I. The second and the fifth excited stategroximated by the second- or third-order functionals. This
are closed-shell, two-electron excited states, while the firstynperturbed 1-RDM selects the closed-shell states to be ap-
third, and the fourth excited states are the open-shell excitegroximated.
states. Our functionals based on Green’s-function theory can ac-
As shown in Table I, the errors of the approximatedcurately approximate the closed-shell RDMs of the ground
3-RDMs by the first-order functional are about £0for the  and excited states. However, the approximation of the open-
closed-shell states and about f(for the open-shell states. shell RDMs needs other new functionals. The accuracy of
The first-order functional contains the first and the secondhe approximated RDMs of the closed-shell state depends on
terms of Eq.(3.3b). The effect of the second-order perturba- the order of the perturbation of the functionals and the
tion term, which is the third term of Eq3.3b), strongly  strength of the electron correlations. Although our previous
depends on the nature of the excited states and also on tRecond-order approximation gave satisfactory results for sin-
unperturbed 1-RDM used in E3.7). In the open-shell gly bonded molecules, the errors of the multiply bonded
states, the second-order correction goes in the wrong diregnolecules are greater. The effects of the higher-order pertur-
tion and the errors become as large as 1. In the closed-shejhtion terms are not negligible for these molecules. In addi-
states, the second-order correction reduces the errors @én to this guantitative feature, there are many systems in
3-RDMs by an order of magnitude, provided that the unperwhich the higher-order perturbation terms have significant
turbed 1-RDM is the proper approximate 1-RDM. The othereffects, for example, the uniform electron gas and the inter-
choice of I'§") gives errors almost the same as, or slightlyacting hard spheres. In these systems, simple perturbation
greater than, those of the first-order approximation. expansion may be useless because the bubble and ladder dia-
A similar tendency is observed for 4-RDM. The errors of grams of any orders diverge. Summation of the physically
the first-order approximation are about Z0for the closed- important diagrams up to any orders is necessary. This is the
shell states, while they are about FOfor the open-shell reason why we develop the more accurate, higher-order ap-
states. The errors of the first-order functional in the openproximations, even if the second-order approximation yields
shell states are slightly greater than those in the closed-sheajbod results for atoms and molecules. The less accurate re-
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sults of multiply bonded molecules are understood if we no-
tice that ther electron is less bounded than theelectron,
and the higher-order ring diagrams become more important
for these molecules. Since the approximation of higher-order
RDMs also functions as thi-representability conditions, it
is important to use a good approximation not only to obtain
a good energy but also to ensure the representability of the
calculated RDMs. _
In the density-equation approach, we approximate the S;= | ¢! (X)v(X,x")¢(x")dx dX
higher-order RDMs to calculate the EDM. Because the ex-
plicit construction of higher-order RDMs is very expensive,
for example the calculation of the 4-RDM requires abft
computational time, wherd/ is the number of the basis
functions, the direct calculation method of EDM without ex-
plicitly constructing the higher-order RDMs is desirable. In
Secs. IV and V we explore a direct method which sums up
the physically important diagrams of 3- and 4-RDMs, for
example the ladder and bubble diagrams up to any orders. At
the outset we analyze the general structure of the EDM by

(D|T[e(®179)|p)
© (@|T[e %] |D)

S, = J {I* ()10 + B () I }dx,

+3f AT () Bl (X )W(X,X") B (X") (x)dx dX
2 | | ’ | | y

(4.3
v(x,x")={v(r,r"y—ho(r,r")}s(t—t"),

w(x,x")=w(r,r’')s(t—t"),

the generating functionals.

IV. GENERATING FUNCTIONAL OF THE ENERGY
DENSITY MATRIX

In this section we define the generating functionals of th

energy density matrix and the connected piece of EDM, de

rive the relationships between these two functionals, and r
veal the structure of the higher-order EDMs. SineEDM is

where ¢>|T and ¢, are the creation and annihilation field op-
erators in the interaction representatibg,is an unperturbed

Hamiltonian,v and w are the perturbation potentials, and
|®) is the unperturbed state from which the exact eigenstate
4‘1’) evolves adiabatically.

Using Eg.(4.3), the higher-order derivative dg with
eF_espect toJ and J* is expressed by the derivative with re-
spect tov andw,

defined by Eq.(1.2) in terms of then-, (n+1)-, and f

+2)-RDMs, the generating functional of EDM is 0Lg 6°Zs

o) 83 (x') 83X

+2sGW(x'|x), (4.43

Ze=(V|T[e "St](H-E)|¥)

8Zs 5Zs
_ i
. SW(X,X") 8% (X)8I* (x")8I(x")8I(x)
:f {J (= 5J(r)]5\1*(r')v(r’r drar +iZ5GP(x, X" [x,x"). (4.4b

Using Egs.(3.5), (4.1), and (4.4), the generating functional

1 ;
+5 | {3 (r)+ J*(r")+ of EDM is
2f ( o 5J(r)]{ ) 5J(r’)]
ZE:WE eXpWG, (45)
8°Zg .
X—————w(r,r’)drdr'—EZg, (4.1) whereWg is given by
8I*(r')83* (r)
We=Wgy+Weg+Wez+Weg + Wes,
whereS; is given by Eq.(3.4). Then-EDM is given as
W, :fJ*(r) We o(r,rdrdr’,  (4.69
ROy, orplre, ooor) &t sI*(r'y ' '
-1 n 52nz
“im ¢ ,) £ . [ AWe
=0 M 83 (ry)- - 83%(r))83(ry)- - - 83(rq) Weo=i | ————v(r,r")8(t)8(t")dx dx, (4.6b
Sv(Xx,x")
4.2
) . ] ) 1 SWg S
The EDM and the generating functional are identically WE3=§f J*(r)J*(r’) P —
zero if ') andE are the eigenfunction and the correspond- 6J*(r") & (r')
ing eigenvalue oH. SW
In the interaction representation the generating functional 6 w(r,r")dr dr’, (4.60

X
of GF is 8J* (1)
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= I RO, e, o)
G crbl | aw | G (—1)" S2MWi
=lim )
| ~~L_@__ |~'LQ_3)9J~-~I g smo NE o SIF(r]) 8% (1) 8I(ry) - - 8I(ry)
(a) (b) (c) 4.7

is also the connected piece which cannot be written as a
product of other connected pieces.

- et © o Equation(4.5 shows the relationship between the gener-
Ge Ge Ge Ge ating functional of EDM and that of connected EDM, which
[~ b‘Q‘Q‘O [ %) ] 0 is useful in examining the structure of the EDMs. By differ-
w entiating it with respect td and settingJ=0, higher-order
(d) (e) (f) n-EDM R™ is expressed with the connecteeEDM R("
(k) (n=K) i
FIG. 1. Typical diagrams of the energy density matrix generatedand the wedge product 6t;" and T with k<n,
by Egs.(4.6). The dotted line indicates the one-body potentiab pf )y ,
while the curly line indicates the Coulomb interactionvaf R™W(ry, .orplra,..rn)
i (-1)" §°"(WeZg)
SW, S =lim
WE4=if (O ————ip(r) + ——— gm0 N 8I*(ry) - - 8% (r})8d(rp) - -+ 8I(ry)
Sv(x',x") Sv(x',x")
" In
SW, => ( )R(k>/\r(“—k>. (4.9
X—w(r,r')8(t")dr dx’, (4.60 Eo k) e
8J* (1)

We use the conventions #¥®=1 andR{”’=0. The wedge
SWg product is defined a5]
WE5=if—W(r,r’)é(t)é(t’)dx dx. (4.6e
SW(X,Xx")

1 2
ng)/\r(nk)=<m) > e(me(w)mn!

’
T, T

Equation (4.6b shows that one perturbation potential

u(x,x,’)zv(r,r,’)é(t—t’) in Wg is replaced with XROOMTL, o, )
v(r,r')8(t)8(t") in We,, while Eq. (4.68 shows that one

interaction linew(x,x’)=w(r,r')8(t—t’) in Wg is replaced RS U € PR AT SHPIR

with w(r,r’)8(t)8(t’) in Wgs. HenceWg, generates the
same Feynman diagrams &, except that one perturba- in which 7 and 7' permute the coordinates andr; in all
tion potentialv (x,x’) is replaced with (r,r')8(t)8(t’), and  the possible 1§!) manners, respectively, ané() is the
Wes generates the same Feynman diagram@(éﬂg, except signum of the permutatiomr. Equation(4.8) is easily veri-
that one interaction linew(x,x’) is replaced with fied by comparing the number of the terms on each side, or
w(r,r')8(t)8(t"). These generated diagramsRif” are al- by calculating the lower-order derivatives. For example, us-
most the same as those Gf" . ing R{Y=RW, R® is expressed as

In Eq. (4.1) only the creation and annihilation operators in
the Hamiltonian are the Schdimger representation, that is, RA(r{,rlry,r)
the Heisenberg representation with 0. Unfamiliar factors
of &(t)4(t') and &(t’) in Eq. (4.6) make the time variables =R(c2)(ri'f§|f1,rz)
of these operators zero.

Figure 1 shows th@-EDM diagrams generated Biyg,, L
We3, and We,. Applying v(r,r’) to the incoming legs of @)y )1 @)t (1) y?
GV gives theR{™ shown in Fig. 1a) generated byWe;. AT )R ralr) F T ralr ) Ry
Functional Wg5; generates two kinds of diagrams: In Fig.

1(b) the incoming legs ofG{""® and GI¥ with k<n are — T r ) RO(r]r ) = TO(r ] r ) RD(r 1)}
joined with w. In Fig. 1(c), two incoming legs ofG{" are
joined withw. FunctionalWg, generates three kinds of dia- (4.9

grams of Figs. (d)—1(f). Applying the Coulomb potential to

the incoming legs oG{"” gives the diagram of Fig.(@). In  The calculation oh-EDM reduces to the calculation of con-
Fig. 1(e), an incoming leg ofG{"™ is connected to an in- nectedk-EDMs with k<n. Equation(4.8) is also useful to
ternal line ofG( with w, and in Fig. 1f), an incoming leg is  approximate the higher-order EDMs in terms of the lower-
connected to an internal line G{" with w. order EDMs and RDMs. For example, by neglectiRff’

SinceWg is the generating functional of connected GFs,we can approximat®™ in terms of R and '™~ ¥ with
n-EDM generated byVg, k<n.
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TABLE Il. Associativity relations ofs, u, c, r, andl operations

- N given in Ref[17]. These connecting operations are shown in Fig. 2.
nx“ lﬂ)'(lﬂ “} a, B, andy are the generic vertex diagrams. The first row shows
auf acf

the relationship ofxs(Bsy) = (asB)sy.

asp
X Bsy Buy Bey Bry Bly
P < ‘ asX (asB)sy
(o IX[E]  [alX[E] Xsa  ps(ysa)
auX (auB)uy
- ] Xua Bu(yua)
. ol acX (acB)cy (acB)ry (arB)cy
Xca c(yca c(yla I(yca
FIG. 2. Five connecting operationssf u, ¢, r, and | chan- arX (arB)ry felyca)  pe(la) - p(yca)
nels in Ref.[17]. « and B are the generic vertex diagrams. The Xra Be(via)  Br(yua)  Bl(yra)
operations of; , u;, ¢;, r;, andl; with i=1,2 are given by replac- IX | 4 Iy Y |
ing one of the two internaG® lines in the figures with th&{ ;I Bi(yla) (alg)cy  (alB)ry  (aup)ly
a Yla

line.

necting operations are shown in Fig. 2, in which the incom-
The connected 2-EDM can be calculated from the highering legs of the diagrams are bottoms and the arrows giving
order RDMs approximated with the method described in Secthe direction of the propagator lines are suppressed. The ex-
. However, this method which constructs the 3- andactG® is used as a propagator, and the self-energy inser-
4-RDMs explicitly has two disadvantage§) Inclusion of  tions are not included explicitly in the diagrams. The
the higher-order perturbation terms is difficult because thé&, U, C, I, and | connecting operations satisfy the asso-
number of the distinct diagrams rapidly increases with theciativity relationships in Table II. Using these relationships,
order of the perturbation as well as the order of the RDMLande and Smith derived the integral equation for the two-
increases. In particular, the systematic summation of physibody vertex ofG). We use these relationships to derive the
cally important diagrams up to any orders is hopeléssit integral equations for the connected 2-EDM. We also use the
requires more computational time and resources than the d@Pproximation Eq.(3.6) to write the 2-EDM in terms of
rect calculation of EDM. In Sec. V, using the similarity of 2-RDM. The integral equations derived give the connected
the diagrams betwee6™ and R(Y, we construct a dia- EDMs directly without explicitly constructing 3- and

grammatic method to sum up the Parquet diagrams of thé‘RDMS_- )
connected 1- and 2-EDMs. We first consider the connected 2-EDM generated by

WEes. It is given by replacing an interaction line in the con-
nectedG® with w(r,r’) 5(t) 5(t") and then setting the time
V. PARQUET EQUATION OF THE ENERGY DENSITY variables of the external lines to zero. We refer to heas
MATRIX the self-energy® in which one interaction line is replaced

In the preceding section, we expressed EDM in terms ofVith w(r,r’) 8(t) 5(t"). Gfr_,l) is similarly defined, 1w.h|ch is
the connected EDMs and the RDMs, while the connecte@!SO generated bWes. Using Dyson's equatiorG{" is ex-
EDM is expressed with diagrams similar to the FeynmarPressed as
diagrams of the Green'’s function. The diagrammatic method
in the GF theory enables us to sum up the selected, physi= (1), _ 1y, 1 N (L)) /
cally important diagram$13]. Using the similarity of the e )(X1|X1)_f GM(xqly1)Zs(yaly1) GM(yi[xy)dydy; .
diagrams between EDM and GF, we sum up the Parquet (5.9
diagrams. The Parquet sum is one of the most powerful
methods in GF theory and includes diagrams critical to anyEach term in the connected 2-EDM under consideration is
reasonable description of the many-body systems, for exapproximated by joining several two-body vertidéand the
ample, the particle-hole ring for Coulomb interaction in ansum of the irreducible diagramswith five operations. The
extended system and the particle-particle ladder which tame®west-order term of is the two-body interactionv while
hard-core interaction. the next order is the fourth-order of the electron correlations

In the GF theory, the two-body Parquet sum construct$13]. Since G contains interaction lines, the connected
the two-body vertex/, which gives the connected piece of 2-EDM also contains the diagrams in which several vertices
G, from the bare interaction and irreducible diagrams. AnV are joined by severaG® lines and oneG{" line. We
irreducible diagram is defined as the vertex diagram whictcalculate the direct diagram in which an internal chain of
cannot be separated into two disjointed vertex diagrams bgropagators connects the left incoming leg to the left outgo-
breaking two internal lines. Any other diagrams can be coning leg. The third term of Eq3.33 is an example of a direct
structed by joining the bare interaction and irreducible dia-diagram, while the fourth is an exchange diagram. The ex-
grams with five connecting operations, s, u, c, r, and I. Allchange diagram is constructed by crossing the outgoing legs.
the diagrams generated from the given irreducible diagrams We will pay attention to the diagrammatic structure of the
constitute the Parquet sum. The Parquet equation in the Géquation and use the shorthand notation of s, u, c, r, and |
theory was studied by Lande and Smft¥]. The five con- operations. The solutio of the integral equation
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S=(X=S)sV+VS(X—S)+Vs(X-5)sV+§S,, in terms of 1- and 2-RDMs. This rewriting procedure is gen-
eral and applicable to other EDM diagrams.
U=(X-U)uV+Vu(X—-U)+Vu(X—U)uV+U;y, Connected 2-EDM generated bYg, is given by replac-
(5.2 ing one perturbation potential in the connecteds® with
T=(X-T)cV+Ve(X—T)+Ve(X—T)cV+T, v(r,r')8(t)8(t'). We refer toGSY as G in which one

perturbation potentiad is replaced withv (r,r’)8(t) 8(t').

FXEDIVHVIX=U)HVe(X=T)rv Each term in the direct diagrams of this connected 2-EDM is

+(X=WIV+VI(X=T)+VI(X—T)cV approximated by joining the several vertices with several
GWY lines and ones{Y line with s, u, ¢, r, and | opera-
HIVIX=DI'VAVI(X=T)JeV+H[VI(X=T)]rV tions. Addition of theR$)= —iG{ to the RY yields this
+[VuX-T)]lv, sum. ) )
We then consider the 2-EDM generated\By,. Typical
X=1+S+U+T examples of th&k{" diagrams generated by, are shown

in Figs. 1d)—1(f). In Figs. Xe) and Xf), an incoming leg and
gives the Parquet sum of the direct diagrams of the conan arbitrary internal positior’ are connected with the line
nected 2-EDM generated Byes, in terms ofV, I, G, and  w(r,r’)s(t’). Any R diagrams are classified into two

G, The quantitiesS;, U,, andT, are given by kinds. Each diagram in the first kind is separated into the two
diagrams containingw(r,r')4(t’) and the vertexV by
Si=V(s1tsp)V, breaking oneG™) line, such as Fig. (H) and some diagrams

in Fig. 1(f). The sum of these direct diagrams is given as
U1:V(U1+ UZ)V’

T,=V(Cy+C)VAHV(r 1+ )V+ V(1 +15)V, fG‘l’(rilXi)G(”(réIXé)V(X£,Xélxl,x2)

where § and s indicate two connecting methods of two X G (xq]r 1) GP (X1 ) dXg - - - dXh (5.9
vertices withG(® and G{") lines. The proof of Eq(5.2) is . o _
given in Appendix B. The shorthand notativsV represents and the corresponding term in which the left and right legs

the formula are changedG{" denotes the 1-GF generated W,
st—f V(X x5 )Gy, |y GD(y,|ys) iG(l)(X'|X )=lim & (5.6
1:X21Y1,Y2 YilY1 YalY2 4 (X11Xq 0 8% (x]) 8J(xy) . .

XV(Y1,Y2lX1,X2)dys . . . dy; (5.3 Each diagram in the second kind cannot be separated into
two diagrams withw(r,r’)8(t’) and without it by breaking
oneGW line, such as Fig. (B) with k=1 and the rest dia-
grams of Fig. If). In these diagrams, an incoming leg and an
internal positionx’ are connected with the interaction line
w(r,r')é(t"). We approximated these diagrams by joining
and| with thes, u, c, r, and | operations. We consider
I?he direct diagram whose left incoming legis connected to
‘the internal line withw(r,,r")8(t’). Other terms are ob-
tained by changing the left and right legs and by crossing the
outgoing legs.

in which x andy denote the set of time, position, and spin
coordinates. Note that tt& u, c, r, and | operations re-
quire the time integration.

We then rewrite Eq(5.2) in terms of 1- and 2-RDMs. We
first attach four externaB*) legs to each term iXX and set
the time variables of the external legs to zero. Next, eac
G® connecting two vertices is replaced with the rhs of Eq
(3.6), and theGL is replaced with

G (x}|xq)~ — if GO (x}|a)P(alr HYRE(r’|r) Solution X of the equation
xP(rlg)GM(q’[x))dg---dr'. (5.4 SS9V
_ , U=(X-U)uV,
RO/ ==iGM(r'|r) is a 1-EDM generated byVes. 5.7
The diagram of verteX with four G legs is replaced with T=(X-=T)cV+(X=T)rV+(X—U)IV, '
Vr of Eq. (3.8). Through this procedurd/sVbecomes
X=1+S+U+T,
VsV=f Vr(r1,r5d:,92)P(g4]91) P(g2]g5) gives the Parquet sum of these direct diagrams of the con-
nected 2-EDM generated BWg,, in terms ofV, |, andG(1).
XVr(dy,95/r1,rp)da; . . .da; (5.3)  The proof is given in Appendix C. We then rewrite Egs.

(5.5 and(5.7) in terms of 1- and 2-RDMs with almost the
which contains no time integration, in contrast to E81.3).  same procedure as in E.2). We first attach three external
In short, chang®/ in Eq. (5.2 with V-, G with PRVP, G legs to each term iX and set the time variables of these
and the definition of the five connecting operations from Eqexternal legs to zero. EadB® connecting two vertices is
(5.3 to Eq.(5.3). SolutionX of Eq. (5.2 gives the Parquet then replaced with the rhs of E¢3.6), and theGEll) is re-
sum of the direct diagrams of the 2-EDM generatedNj, placed with
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tion, we approximate the irreducible diagramvasind omit
Gﬁll)(xilrl)%j GW(xilay)P(qs]ay) R (qs|ry)dada;. the higher-order irreducible diagrams. Order analysis implies
(5.8) that the missing term due to E(B.6) is more important than
the higher-order irreducible diagrams. We can calculate the
Rgl) denotes the 1-EDM generated Wy:,. The diagram of higher-order irreducible diagrams by the approximation of
vertexV with four G legs is replaced witVy of Eq. (3.8). Eq. (3.6), and the missing term due to this approximation by
In short, chang& in Eq. (5.7) with V-, and the definition of the original GF method, as was discussed in R&f.
the five connecting operations from E®.3) to Eq. (5.3),

and solve Eq(5.7). The sum of the solutioiX and the cor- VI. DIRECT DETERMINATION OF THE DENSITY
responding terms of changing the left and right legs, and MATRIX

crossing the outgoing legs, gives the Parquet sum of the ) ) )

2-EDM generated byVe,. In Sec. V, we derived the integral equations for the Par-

Finally, we consider the 1-EDM generated Wjs, be- guet sum of the 2-EDM. This infinite sum includes not only

cause other 1- and 2-EDMs are written with 1- and 2-RDMs ll the second-order perturbation terms of 3- and 4-RDMs
The 1-EDM already reporte@4], but also many other higher-order terms

such as the infinite sum of the ladder and bubble diagrams.

3) 01 In this section we examine the quality of the Parquet-sum
3 [ W(ra,ra) (g ra,rsfry,rp,ra)drodrg method through the numerical calculations of atoms and
molecules.
2Wes PO e ) THWE®) We first summarize our calculational method which is al-
=—Ilm —+ rir)Tr{w i
10 8 (r1)83(ry) 1l most the same as the previous opH, except that the

2-EDM is directly calculated without constructing the 3- and

can be calculated from the second term of the Ihs of thé-RDMs explicitly. We solved the Hermite part of the

second-order density equatifqg. (1.1) with n=2] in ma-

equation, trix form
3f {w(ry,ra)+w(rp,raT&(ri,ry,rglry,ry,ra)drs Rz +RIY2=0, 6.0
1 5H(Weq expWg) to calculate the spinless 2-RDM, imposing the normalization,
=— |im - - , e i1i2= iolq .
2 10 83 (r])83* (1) 83(r,) 83(ry) Hermiticity, and the symmetryl:(jljz Djzjl) conditions on

o . . . . ~ the 2-RDM. The subscrigl and the superscripf are asso-
by settingr,=r, and integrating this variable. By comparing ciated with the annihilation and creation operators, respec-

these equations, we found the relationship tively. Because of the Hermiticity of the Hamiltonian, Eq.
(6.1) is also equivalent to the Schiimger equation, and we
Rg)(r“rl) — f ‘ Rﬁé)(ri Tolre.rs) diq not use the anti-Hermite parﬁ of t_he density equation. The
spinless 2-RDM and the Hamiltonian were represented in

1 matrices whose one-electron base are the HF orbitals. The
— RO r)ID(r,,r)tdr,, (5.9 generalized two-electron integrals were used for simplicity.
2 We calculated the zeroth- and first-order terms of 2-EDM

) 1) separately and summed the second- and higher-order terms
whereR;” andRs™ denote the 1-EDMs generated Wes  with the integral equations of Eq¢5.2) and (5.7), which

andWes, respectivelyR() denotes the 2-EDM generated by were solved by the iterative method. We approximate the
WEe,4 and in which the right incoming leg, is connected to  jrreducible diagram as/ and omit the higher-order irreduc-
the internal line withw(r,,r")5(t"). This term is already iple diagrams. The multidimensional nonlinear equation
calculated with Eq(5.7). (6.1) was solved by the same Newton’s method as the pre-
We summarize the calculation method of the Parquet sunjious one[4].

of the 2-EDM in terms of the 1- and 2-RDMs. The 1-EDM  we applied the density-equation method to the following
generated bV, . .. Wg4 and the connected 2-EDM gener- atom and molecules: Be, NHCH,, N,, CO, and GH, with

ated byWeg; and Wgs are calculated from 1- and 2-RDMs  the double¢ basis[18] and Li,, CHsOH, C,Hg, C3Hg, and
directly. Direct diagrams of the connected 2-EDM generatett4H10 with the minimal Slater-type orbital STO-6G basis
by We, are given with the sum of E¢5.5) and the solution  [19]. We compared the accuracy of the present new approxi-
of Eg. (5.7). Other direct diagrams are obtained by changingmation with the previous second-order one and the SDCI
the left and right legs. The 1-EDRLY generated byVgs is [20], full-CI [21] (in the case of relatively small basis gets
calculated with Eq(5.9). The connected 2-EDM generated and the coupled-cluster single and double excitations with

by Wes is calculated with Eq(5.2) from T, Vi, andR{Y.  triple excitations included noniterativelfCCSD(T) for
Finally 2-EDM is calculated from the 1-EDM, the connected larger casels[22]. Experimental molecular geometriga3]
2-EDM, and the 1-RDM by Eq4.9. were used and somestore orbitals of C and O were frozen.

In the present Parquet sum of 2-EDM, we introduced the Tables Il and IV show the summary of the ground-state
approximation of Eq(3.6). The lowest-order missing term results. In Table Il we compared the energies and the errors
due to this approximation is the second-order one, whiclof the RDMs calculated by the Parquet-sum method with the
represents the three-body cluster effeit In the next sec- second-order approximation, SDCI, and full-CI methods.
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TABLE lll. Energies and errors of the RDMs calculated by the density-equation methods and the wave-
function methods. Parquet sum indicates the present new approximation, while some results of the second-
order approximation are also presented in R&f. Errors of the RDMs are measured by the infinity norm.
Numbers in square brackets indicate powers of 10.

Method Density equation Wave function
2nd order Parquet sum SDCI Full-Cl
Molecule Energy(a.u)
Active Correlation energy errgfo)
Electron§ 1-RDM error
2-RDM error
NH; —56.298 88 —56.303 14 —56.297 17 —56.304 33
4x10 4.24 0.92 5.58 0
8 4.72-3] 4.67 3] 9.84 — 3] 0
2.44 -2] 1.79 -2] 6.00 — 2] 0
CH, —40.295 82 —40.299 02 —40.294 05 —40.300 09
4x12 3.73 0.93 5.27 0
8 2.27-3] 2.67—-3] 7.87 3] 0
1.79-2] 1.24-2] 4.7 - 2]
CH;0OH —114.711 44 —114.715 84 —114.710 82 —114.718 16
7X5 5.24 1.81 5.72 0
14 5.12-3] 4.03 - 3] 1.47 2]
2.50 -2] 2.04 2] 5.13 - 2]
N, —109.079 09 —109.096 36 —109.082 19 —109.106 05
5x11 11.84 4.26 10.48 0
10 9.85—-3] 2.81—-2] 2.79 -2]
6.70 — 2] 1.1 -1] 1.1 -1]
CO —112.872 93 —112.885 25 —112.873 82 —112.895 09
5x11 10.55 4.68 10.13 0
10 1.87—-2] 1.47-2] 4.14 -2]
1.09-1] 5.43 - 2] 1.39-1]

&The number of electrons in the active space.

The full-Cl dimension of the CO molecule is about 4.8 given row. The second-order approximation gives better
X 10°, which is the largest in Table IlI, while the number of RDMs than the SDCI method, while the Parquet sum gives
the free parameters in the 2-RDM is about4 3. In Table  the RDMs of accuracy similar to or better than the second-
IV we compared the results with the CCAD energies and order approximation, except for the,Nnolecule. The Par-
CCD moments, because the full-Cl calculations are currentlguet sum may overcorrect the errors of the RDMs of the N
difficult for these molecules. molecule, although it significantly reduces the energy error.
As seen in these tables, the energies of the second-ord&he dipole moment of the CO molecule is a good test, be-
approximation are comparable with the SDCI results, andause the Hartree-Fock method predicts the opposite direc-
those of the Parquet sum are comparable with the QTBED tion [24]. The Parquet-sum method gives the dipole moment
or the exact results. The Parquet-sum method significantlpf 0.0691 a.u., which is slightly larger than the exact value of
improves the energies of all the molecules. Energy errors 08.0417 a.u. The second-order approximation and the SDCI
the Parquet sum are about one-half to one-third of those dfive the dipole moments of 0.0344 and 0.0586 a.u., respec-
the second-order approximation for both singly bonded andively. The Parquet-sum method yields a less accurate dipole
triply bonded molecules. The correlation energy errors of thanoment than the second-order approximation, although it
density-equation method are improved as the system bedelds the 1-RDM of smaller error measured by the infinity
comes large, which is seen by comparing the results of thaorm.
homologous series of alkanes;Hg, C;Hg, and GH,o. The In Table IV we compared the accuracy of the dipole or
fact that the energy errors from the full-Cl or CC8Den- quadruple moment. For the singly bonded molecules, the
ergies are almost constant irrespective of the molecular sizZR@arquet sum gives moments almost the same as, or slightly
shows the size-consistent nature of the present densityetter than, those by the second-order method, and the results
equation method, because CQ$Dis a good approximation of both methods agree well with the exact one. For the.C
of CCSDT, which is size-consistent. molecule, the Parquet sum gives a slightly worse moment
In Table Il we also compared the errors of the 1- andthan the second-order method, although it significantly re-
2-RDMs measured by the infinity norm, which is the maxi- duces the energy error.
mum row sum of the error matrix, while the row sum is  We next applied the density-equation method to the ex-
calculated by adding the magnitudes of the elements in aited states. Currently our program is applicable to the



PRA 59

DIRECT DETERMINATION OF THE QUANTUM . ..

4145

TABLE IV. Energies and multiple moments calculated by the density-equation methods and the wave-
function methods. Parquet sum indicates the present new approximation. Results are compared with
CCSDOT) energies and CCD moments. Numbers in square brackets indicate powers of 10.

Method Density equation Wave function
2nd order Parquet sum SDCI ccap
Molecule Energy(a.u)
Active Correlation energy errdfo)
Electron§ Dipole or quadrupole momeia.u)®
CyHg —79.209 24 —79.213 18 —79.204 48 —79.214 49
X7 3.45 0.858 6.58 0
14 0.4279 0.4290 0.4307 0.4298
C3Hg —118.228 68 —118.234 10 —118.215 59 —118.235 79
10x10 3.21 0.764 9.12 0
20 9.126— 3] 9.107 —3] 9.048 —3] 9.010-3]°¢
C4Hyo —157.249 73 —157.256 74 —157.224 69 —157.258 72
13x13 3.09 0.680 11.69 0
26 0.8021 0.8022 0.8130 0.8022
CyH, —76.980 06 —76.987 08 —76.975 59 —76.994 97
5x15 7.61 4.03 9.89 0
10 4.642 4.486 4.817 4.628

&The number of electrons in the active space.
®Quadrupole moment is given in the case of the zero dipole moment.
‘CCD moment.

closed-shell state, and we focused on the closed-shell, tw@xcited states if the proper functional for the excited state is
electron excited states of the Be atom anglriiblecule. The used. In this approach, the orthogonalization condition of the
calculation method is the same as for the ground state. Wwave functions is never explicitly imposed. These conditions
used the doublé-basis[25] for the Be atom and the minimal Wwill be satisfied automatically if we use the accurate func-
STO-6G basi§19] for the Li, molecule, and the experimen- tional, because our Hamiltonian is a Hermitian operator.

tal molecular geometry23]. Table V shows the calculated = We examine some necessary conditions of the
results of two closed-shell excited states of the Be atom, ant-representability, th®, Q, andG conditions[2], which are

one closed-shell excited state of the Imolecule. Because the non-negativities of the 2-RDM, 2-hole RDM, and the

Be has four electrons, 4-RDM is essentially equivalent to thenatrix. Table VI shows the percentage of the sum of the
wave function, and the density-equation method is equivanegative eigenvalues of tg Q, andg matrices compared to
lent to the wave-function approach. On the other hand, théhe sums of their eigenvalues. This table shows that the cal-
results of the six-electron system of the biolecule indicate ~ culated 2-RDMs contain nonrepresentable components, but

the possibility of determining the excited-state 2-RDM by the impurity fraction is small and around 1% for both the
the functional approach. ground and excited states. These fractions are almost con-

As shown in Table V, the Parquet sum gives more accustant or even become smaller as the molecule becomes large,
rate energies and 2-RDMs than the second-order methothich is seen by comparing the results ofHg, CsHg, and
Both methods give almost the same energies and densifysHio molecules. The Parquet sum improves the
matrices as those of the SDCI method. Since the closed-shé¥-representability of the 2-RDMs for singly bonded mol-
two-electron excited state is often higher in energy than th&cules, and their deviations are almost always smaller than
open-shell one-electron excited state, the wave functioithe corresponding second-order results. For the triply bonded
cannot be approximated well with one Slater determinantmolecules, some are improved and others are not. A small
and the approximation of the RDMSs is more difficult than thedeviation from the exad-representability is due to an in-
ground state. This explains why we could not calculate theiccuracy of the decoupling approximation of the RDMs. We
RDMs of the excited states of other molecules, With also point out that all the 1-RDMs calculated by the density-
STO-6G basis is an exception: both théz]; and 8125 equation method satisfied the ensemble representability con-
states are well approximated with each Slater determinant, iflition: all the eigenvalues lie in the range of zero to @
which two valence electrons occupy(2s) bonding and Wg then d_|scuss various iterative methods used in th_e
o*(2p) antibonding orbitals, respectively. If we write the density-equation method. Since the ground-state 2-RDM is
Hamiltonian asH =f +w,,, wheref andw;, are the Fock the zero-temperature limit 01_‘ the fmne-t_empergture 2—R_DM,
operator and the correlation potential, and reduce the corrdb€ limit 8— + oo of the solution of the differential equation
lation potential to halfH=f +w;,/2, we can calculate the (2.2 gives the ground-sj[ate 2-RDM. Hence the discretization
2-RDMs of both the ground and excited states with the samgf the differential equation of Eq2.2),
symmetry by the density-equation method. This result sug-

gests that the density-equation method can be applied to the I@(B+AB)~TP(B)—ABRB(B), (6.2
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TABLE V. Energies and errors of 2-RDMs of the ground and excited states calculated by the density-
equation method. Parquet sum indicates the present new approximation.

Method Density equation Wave function
2nd order Parquet sum SDCI Full-Cl
State Energya.u)
Main Energy errona.u)
config? 2-RDM error (Euclidean norm
Be atom
Ground —14.582 70 —14.582 69 —14.582 69 —14.582 69
1.002200 —1.54-5] 2.53 6] 4.0 — 6] 0
4.64 —5] 4.0 —5] 1.14-4] 0
31s —11.762 90 —11.762 86 —11.754 00 —11.762 86
1.002020 —3.54 -5] —-1.97-7] 8.8 — 3] 0
1.47-4] 1.2 4] 2.14 - 2] 0
61s —3.056 04 —3.056 04 —3.053 47 —3.056 01
0.990220 —4.29-5] —2.81-6] 2.54 -3] 0
2.74 - 4] 2.19 —4] 3.81—2] 0
Li, molecule
813y —14.032 29 —14.033 48 —14.035 02 —14.036 25
1.00 3.97-3] 2.79 - 3] 1.23-3] 0
(220---02) 7.77-2] 2.9 - 2] 7.1 - 2] 0
Li, (1/2 correlation potenti&)
1123 —11.396 81 —11.399 18 —11.399 28 —11.399 28
1.00 2.47-3] 1.04 —4] 3.54 —6] 0
(2220 --0) 3.5 -2] 2.49 - 3] 2.971—-4] 0
8 1Eg —10.393 39 —10.393 66 —10.393 44 —10.393 70
1.00 3.08—4] 3.79-5] 2,59 —4] 0
(220 - -02) 2.16-3] 2.91—-4] 3.17 2] 0

&CI coefficient and electron occupations in the Hartree-Fock orbitals.
®Correlation potential of Li molecule is reduced to half.

in which AgB is a small “time” step, yields the iterative has a nontrivial solution and reproduces the difficulty of the
method for the ground state. Valdemoro and co-workers andorrelation problem. Mazziotti contracted Valdemoro's
Mazziotti used similar method8,5], and Mazziotti analyzed 4-RDM functional with our previous second-order correction
the iterative method in connection with the power methodfor the 4-RDM|[the fourth term of Eq(3.39] to generate a
The structure of the statistical operator implies that the wavesystem of equations for the 3-RDM. From a given 2-RDM,
function component with enerdy; in 2-RDM grows at the  this system of equations yields the 3-RDM which is correct
rate of e"2A(Ei~Eo) py propagating a single time steypg, through second order. It significantly improves the accuracy
whereE, is the ground-state energy of the fermion system. Ifof Valdemoro’s 3-RDM functional. In his scheme, the ap-
the approximate functional does not yield the componentgroximated 4-RDM automatically contracts to the 2-RDM
with energies lower thaik, in the 3- and 4-RDMs, the it- from which it was made.
erative method of Eq6.2) converges. On the other hand, if = Mazziotti also proposed the “ensemble representability
the approximate functional yields the nbhrepresentable method” (ERM) to reconstruct the-RDM from the 2-RDM
components of lower energies, and does not decrease thdthout an explicit functional. The ERM requires that the
fractions of the components at a rate less tRaA(Fi~Fo), p-RDM contracts to the 2-RDM, and also it satisfies the
this iterative method diverges. According to our experiencep-ensemble representability restriction that kDM be
the simple iterative method of E¢6.2) is unstable and dif- Hermitian, antisymmetric, and positive semidefinite. Since
ficult to converge, even for the small-enougjl. Hence we these conditions are only necessary férrepresentability
used Newton’'s method which is stable and behaves well, buvhenp is less than the number of the electrons, the solution
requires more computational time. Since it may be an obis not unique and a family of solutions including the exact
stacle to apply the density-equation method to large systems;RDM results. He compared the accuracy of the 4-RDMs
a more efficient iterative method must be devised. reconstructed by the ERM with his functional approach. The
Recently, Mazziotti applied the density-equation methodERM is less accurate for the ground state than his reconstruc-
to the quasispin model which is a nice benchmark for testingion functional, but more accurate for the excited states.
many-body theory, with as many as 40 particles by using his These two reconstruction methods together with the
original approximation5]. While the special symmetry of second-order density equation were applied to the quasispin
the model makes it possible to calculate the exact solution bynodel [5]. These methods yield the ground-state energies
diagonalizing the matrix of dimensiorN@#1), the model and the 2-RDMs comparable to or better than those of SDCI.
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TABLE VI. Percentage of the sums of the negative eigenvaluessquation. We discussed the foundations to reconstruct the
of the 2-RDM, 2-HRDM, andy matrix compared to the sums of higher-order RDMs in terms of the lower-order ones. We
their eigenvalues. Parquet sum indicates the present approximatiopresented a new equation for the direct determination of the

Numbers in square brackets indicate powers of 10. RDMs of the finite-temperature canonical ensemble and
showed that only the exact RDMs satisfy this equation. We

Molecule Method 2-RDM  2-HRDM g matrix reformulated our previous approximation method for 3- and
Active? 4-RDMs and examined the accuracy of the approximation

for the excited states. The structure of the energy density

Ground state matrix was analyzed by the generating-functional technique.

CH, 2nd order  9.67-3] 249-4] 101-3]  ysing the similarity of the diagrams between the Green's
4x12 Parquet  1.66-3] 0 952-4]  function and EDM, we derived the integral equations which
C,Hs 2nd order  3.5p-3] 2.34-3] 1.46-3] sum up the Parquet diagram of the 2-EDM without explicitly
X7 Parquet  1.40-5] 1.11-2] 1.90-4] constructing the 3- and 4-RDMs. This new approximation
CsHg 2nd order  1.5p-3] 1.13-3] 1.00-3] together with the second-order density equation was applied
10x10 Parquet  2.60-6] 3.671-6] 1.40-4] to the ground states of some molecules. The energy errors of
C4Hqo 2nd order 1.16—-3] 8.70—4] 1.09-3] the previous approximation were significantly reduced, giv-
13x13 Parquet 2.48-7] 2.04-6] 1.01—4] ing almost the same energy as the exact or CO$Dne.

N, 2nd order 7.76—-3] 7.24-4] 2.89-3] We also calculated the closed-shell excited states of the Be
5x11 Parquet 4.05-4] 1.24-2] 3.61-2] atom and Lj molecule. The present density-equation method

co 2nd order 5.85-3] 5.2§-4] 7.21-3] gave more accurate results than the SDCI method. We dis-
5% 11 Parquet 8.J7~5] 1.04-3] 7.29-3] cussed the relationship between the iterative method and the
C,H, 2nd order 1.35-2] 4.10-4] 2.2-3] finite-temperature density-equation method.
5% 15 Parquet 4.65-4] 145-3] 1.04-2] This paper reported the direct calculational method of the

Excited state Parquet sum of 2-EDM, which is the first step in applying
Be (3'S)  2nd order 6.39-5] 9.70-5] 1.89-5] the density-equation method to large systems such_ as poly-

2% 2 Parquet  7.02-5] 1.07-4] 2.0§-5] mers and metals. The method based on the density matrix

can be applied to large systems more easily than the wave
function approach. In large systems the off-diagonal ele-
ments of 1-RDM and the vertex part of 2-RDM can be ap-
3Active space used in the calculation. proximated as zero, if we use the localized one-electron ba-
sis. Hence we can calculate the 2-EDM with the

The ERM also yields the energy of the excited state with th&omputational time which scales linearly to the system size,
same symmetry as the ground state. The energy was calcgy Only skipping the calculation of the negligible oft-
lated somewhat lower than the exact energy. He also appliegf2gonal elements. Although the calculational method of the
the third-order density equation with his functionals of the 4-2"EDM with linear system-size scaling is trivial, a new
and 5-RDMs to the quasispin model. §table iterative method_whose computational time also sc_ales
The ERM with the second-order density equation may bdin€arly must be devised to apply the density-equation
viewed as the density-equation method which uses thahethod to large systems. In this paper we also discussed

4-RDM as a basic variable. Harriman suggested that such methods to determine the RDMs of the excited states and the
method yields highly degenerated incorrect solutions at alfiNite-temperature systems. To make these methods practi-

most all the energies, unless enouitepresentability re- ¢able, new approximate functionals for the 3- and 4-RDMs
strictions are imposefL0] because of the indeterminacy of '€ necessary which are accurate enough for these systems.

the equation. It is surprising that the ERM vyields the energies
and the 2-RDMs comparable to or better than SDCI by im-
posing very few conditions. There are some questions that The author acknowledges Professor H. Nakatsuiji for his
must be clarified in the ERM, for example the dependence ofontinuous encouragement and helpful comments. The En-
the solution on the calculation algorithm, the extent of theglish correction was made at the ITE technical English divi-
nonunigness of the solution, and the applicability to othersion. Some preliminary work in Tables | and V was carried
systems such as atoms and molecules. However, the ERMgut for the doctoral thesis at Kyoto University.

possibility to yield the exact solution without any compli-

cated functional is very attractive. Judging from the results =~ APPENDIX A: DERIVATION OF THE FERMI

of the quasispin model, we feel that his method seems to be DISTRIBUTION FUNCTION

very hopeful, and we anticipate the results of other systems, . . i
such as atoms and molecules. We will show that Lavdin’s formula forn-RDM [9],
C(rylry) - T(rqfro)

Li, (8'¥y) 2ndorder 1.6P-1] 3.97-3] 1.93-1]
3X7 Parquet 79~2] 4.61-4] 7.34-2]
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VII. CONCLUSIONS F(n)zi
. . . n! T(r! T(r!
In this paper we discussed methods to determine the (ralr) - T(rplrn)

second-order reduced density matf2RDM) of the ground
and excited states, finite-temperature systems, and large syegether with the first-order equation of EQ.2) yields the
tems without using the wave function by solving the densityFermi distribution function for the noninteracting system.

: (A1)



4148 KOJI YASUDA PRA 59

We denote 1-RDM a$' in this appendix. After a short cal- Since the sef2b) is added to the equation explicitly, we
culation, we obtain the equation in matrix form, will show that all the distinct diagrams we want to sum up in
' . ‘ (2a) are contained in X—S)sV, Vs(X—-S), and Vs(X
— gl :UTFL—F}(ULF: . (A2)  —9)sV. X denotes the Parquet sum which contains irreduc-

ible and reducible diagramsS denotes the sum of the
Using the Hermiticity ofl’ andv, we obtain the following S-reducible diagrams iX. We first note that no diagram
equation: appears more than once in these three sets, because Table Il
shows that there is no way to rewrite them. These three sets
kpi _ ki i contain anys-reducible diagrams aksV andVsa. Consider
vl Tjoe=lv. I=0 (A3 the diagramasV. If « is irreducible, or reducible in one of
the u, ¢, r, and | operations,asV is contained in X
—S)sV. If « is sreducible,a=VsB and 8 must not be
s-reducible, because in other casesy has a factor o/ xV.
HenceasV is contained invVs(X—S)sV. DiagramVsa is
similarly treated. We demonstrated that the sum #f (

which indicatesv andI” have coeigenfunctions for eagh
We represent andI' as the diagonal matrices and their
eigenvalues; and ;. Therefore

— e—C\—1
yi=(1+efi )1, (Ad)  _g)sV, Vs(X—9), VS(X—9)sV, andV(s, +s,)V gives all
. L . the s-reducible diagrams.
wherec is a constant, satisfies E¢A2). If we write the Next we analyze the-channel equation. The following

constantc=pu, we get a Fermi distribution function. Al- two sets contain all the, r, and |-reducible diagrams we
though Lavdin’s formula is valid only for the Slater deter- have to sum up.

minant wave function, and the approximated RDMs do not (3a Diagrams ofaxV andVxa (x=c, r, |) wherea is
give the original 1-RDM of finite temperature, we obtain the ejther the irreducible diagram, or the reducible diagrams in

correct solution. sets(1a) and (1b).
(3b) Diagrams ofVx;V, wherex;={c; ,r;,l;;i=1,2 con-
APPENDIX B: PROOF OF EQ. (5.2 nects two vertices b™ and G lines.

Since the set3b) is added to the equation explicitly, we
will consider set(3a). Thirteen kinds of diagrams in Eq.
(5.2, (X=T)cV, ... [Vu(X=U)]IV, are disjointed, since
Table Il shows that no diagrams can be transformed into
each other. These thirteen kinds of diagrams contain any
c-, r-, and l-reducible diagrams. Consider the diagram
acV. If a isirreducible, or reducible is- or u-channelacV

We want to sum up two kinds of diagrams.

(1@ The diagrams in which several two-body vertidés
and one irreducible diagraml are connected with
s, u, ¢, r, and | operations.

(1b) The diagrams in which several two-body vertidés
are connected wits, u, ¢, r, and | operations, and also
in each diagram, one of ti@® lines linking two vertices is is contained in X—T)cV. If « is r-reducible,a=\Vr 3 and
replgced V‘.”thGgl)' . ) B must not beu-reducible, and hencecV is contained in

SinceV is the sum of all the direct vertex diagranvshas [Vr(X—U)]cV. If a is I-reducible,a=VI8 and 8 must not
any diagrams inVxV where x represents one of the five q raqucible in the, r, and | channels: hencecV is con-
connecting operations. Hence any diagrams having a factQLinaq in [VI(X—T)]cV. Other diagrams oNca, arV,

of VxV can be thrown away. _ L Vra, alV, andVla are similarly treated. This completes the
Consider the diagram in which an irreducible diagram a”dproof of Eq.(5.2).

two or more vertices are connected with the five operations.
Because this dia%r;';lm is reducible, we can separate a vertex
by breaking twoG'*’ lines. However, we cannot separate the ]
irreducible diagram, because if we could, the diagram in APPENDIX C: PROOF OF EQ. (5.7
which the vertices are connected with five operations are left, We want to sum up the distinct diagrams in which several
and by assumption there are no such diagrams. verticesV and one irreducible diagrainare connected with
Next we consider the diagrams with three or more verti-s u, ¢, r, and | operations, and also the left incoming
ces in the setlb). Because this diagram is reducible, we canjeg of the composite diagram is directly connected to the
separate a vertex by breaking t@* lines, but we cannot jrreducible diagram. For the same reason as in Appendix B,
separate a vertex by breaking 166" andG{" lines for the  we do not have to sum up any diagrams having a factor of
same reason. VxV. Hence we can remove a vertex from the composite
We then analyze the-channel equation. Similar proof diagram by breaking tw&(") lines, but we cannot remove
holds for theu-channel equation. The following two sets the irreducible diagram. The diagram we want to sum has the
contain all thes-reducible diagrams we want to sum up more form of axV, because in the diagram ¥ia, the left incom-
than once, together with the forbidden diagrams with a factoing leg is not directly connected to the irreducible diagram.
of VxV. Consider the diagramX— S)sV, where X denotes the sum
(2a) Diagrams ofasV andVsa in which we can separate of the Parquet diagrams anfl denotes the sum of the
a vertex by breaking tw& ™) lines. « is either the irreduc-  s-reducible diagrams iX. No diagram appears more than
ible, or the reducible diagram in seika) and (1b). once in this set, because Table Il shows that there is no way
(2b) Diagrams ofVs,V andVs,V, wheres; ands, denote  to rewrite it. Hence we conclude that the sum of the
two connecting methods of two vertices B/ and G  sreducible diagrams under consideration equs- €)sV.
lines. The same proof holds far- andt-channel equations.



PRA 59

[1] C. Garrod, M. V. Mihailovic, and M. Rosina, J. Math. Phys.
16, 868 (1975; M. Rosina, B. Golli, and R. M. Erdahl, in
Density Matrices and Density Functionakdited by E. Erdahl
and V. H. Smith, Jr(Reidel, Dordrecht, 1987

[2] A. J. Coleman, Rev. Mod. Phy35, 668(1963; C. Garrod and
J. Percus, J. Math. Phys, 1756(1964); H. Kummer,ibid. 8,
2063(1967; R. McWeeny, Rev. Mod. Phy82, 335(1960;
W. B. McRae and E. R. Davidson, J. Math. Ph{8, 1527
(1972; E. R. Davidson, Chem. Phys. Le®46 209(1999; F.
Sasaki, Phys. Re\l.38 B1338(1965; F. Weinhold and E. B.
Wilson, J. Chem. Phys17, 2298(1967); T. L. Gilbert, Phys.
Rev. B12, 2111(1975.

[3] F. Colmenero and C. Valdemoro, Int. J. Quantum ChBf.
369 (1994: C. Valdemoro, L. M. Tel, and E. Pez-Romero,
Adv. Quantum Chem28, 33(1997.

[4] H. Nakatsuji and K. Yasuda, Phys. Rev. Lét, 1039(1996);
K. Yasuda and H. Nakatsuji, Phys. Rev.58, 2648(1997).
[5] D. A. Mazziotti, Phys. Rev. A7, 4219(1998; Chem. Phys.
Lett. 289 419(1998; Int. J. Quantum Chen¥0, 557 (1998.
[6] S. Cho, Ann. Rep. Gumma Unitl, 1 (1962; L. Cohen and

C. Frishberg, Phys. Rev. A3, 927 (1976.

[7] H. Nakatsuji, Phys. Rev. A4, 41 (1976.

[8] P. Hohenberg and W. Kohn, Phys. R&86 B864(1964); W.
Kohn and L. J. Sham, Phys. Rel40, A1133(1965.

[9] R. G. Parr and W. Yand)ensity-Functional Theory of Atoms
and MoleculegOxford University Press, New York, 1989

[10] J. E. Harriman, Phys. Rev. A9, 1893 (1979. However,

Mazziotti showed that such a method yields accurate result for

the quasispin model. See Rg5).

[11] C. Valdemoro, Phys. Rev. A5, 4462(1992; F. Colmenero,
C. Perez del Valle, and C. Valdemoibid. 47, 971(1993; F.
Colmenero and C. Valdemordid. 47, 979 (1993.

DIRECT DETERMINATION OF THE QUANTUM . ..

4149

ods of Quantum Field Theory in Statistical Phys{Esentice-
Hall, Englewood Cliffs, NJ, 1963 J. W. Negele and H. Or-
land, Quantum Many-Particle Systerfsddison Wesley, New
York, 1988.

[14] V. A. Golovko, Physica A230, 658(1996.

[15] R. P. Feynman and A. R. Hibbfuantum Mechanics and
Path Integrals(McGraw-Hill, New York, 1963.

[16] J. Hubbard, Proc. R. Soc. London, Ser2A0 539(195%; C.
Bloch, Nucl. Phys7, 451(1958; Y. S. Lee, S. A. Kucharski,
and R. J. Bartlett, J. Chem. Phy&l, 5906(1984; K. Ragha-
vachari,ibid. 82, 4607(1985.

[17] A. Lande and R. A. Smith, Phys. Rev. 45, 913 (1992.

[28] T. H. Dunning, J. Chem. Phy§3, 2823(1970.

[19] W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Piiys.
2657(1969.

[20] M. Dupuis, A. Farazdel, S. P. Karna, and S. A. Maluendes,
HONDOS8.1, IBM Corporation.

[21] P. J. Knowles and N. C. Handy, Chem. Phys. L&ftl, 315
(1984.

[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B.

G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A.

Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-

Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J.

Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe,

C.Y.Peng, P.Y. Ayala, W. Chen, M. W. Wong, J. L. Andres,

E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S.

Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-

Gordon, C. Gonzalez, and J. A. Poplgaussian 94Gaussian

Inc., Pittsburgh, PA, 1995

[23] L. E. Sutton, D. G. Jenkin, and A. D. MitchellTables of
Interatomic Distance$Chemical Society, London, 1958

[12] M. Rosina, inReduced Density Operators with Application to [24] A. Szabo and N. S. Ostlundlodern Quantum Chemistry:

Physical and Chemical Systen3ueen’s Papers in Pure and

Applied Mathematics No. 11, edited by A. J. Coleman and R.

M. Erdahl(Queen’s University, Kingston, Ontario, 1968
[13] A. A. Abrikosov, L. P. Gor'kov, and E. Dzyaloshinskii/eth-

Introduction to Advanced Electronic Structure Thed©ac-
millan, New York, 1982.

[25] E. Clementi and C. Roetti, At. Data Nucl. Data Tablels 428
(1974.



