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Direct determination of the quantum-mechanical density matrix: Parquet theory

Koji Yasuda
Graduate School of Human Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan

~Received 1 October 1998!

The methods used to determine the reduced density matrix~RDM! of the ground and excited states, the
finite-temperature systems, and the large systems without using the wave function by solving the density
equation were discussed. We examined the foundations to reconstruct the higher-order RDMs of the ground
and excited states and the finite-temperature systems in terms of the lower-order RDMs. We presented the
equation to determine the RDMs of the finite-temperature systems directly and showed that only the exact
RDMs satisfy the equation. Our previous approximation for third- and fourth-order RDMs of the ground state
@H. Nakatsuji and K. Yasuda, Phys. Rev. Lett.76, 1039 ~1996!# was reformulated, and the accuracy of this
approximation for the excited states was examined. The structure of thenth order energy density matrix
(n-EDM! was analyzed, and the calculation method which sums up the Parquet diagram of the 2-EDM without
explicitly constructing the third- and fourth-order RDMs was reported. This approximation is more accurate
than the previous second-order approximation and also includes the infinite series of bubble and ladder Green’s
function diagrams. Such a method is necessary to apply the density-equation method to large systems, such as
polymers, metals, and semiconductors. The new approximation together with the density equation was applied
to the ground states of some molecules including CO, C2H2 , C3H8, and C4H10, and the excited states of the
Be atom and Li2 molecule. The calculated energies were as accurate as the exact or coupled-cluster single and
double excitations with triples included noniteratively, and the energy errors of the second-order approximation
were significantly reduced. The calculated 2-RDMs almost satisfied important representability conditions while
the 1-RDMs were exactly ensemble representable. These results demonstrate that the density equation offers a
new quantitative method for treating electron correlations. The relationship between the iterative procedure and
the finite-temperature density-equation method was discussed.@S1050-2947~99!07806-3#

PACS number~s!: 31.15.Ew, 31.25.2v, 03.65.Ge
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I. INTRODUCTION

Although the wave function has all the accessible inf
mation in quantum mechanics, it often tells us more than
need to know. Since all the operators we shall concern o
selves with in quantum mechanics are one- and two-b
ones, essential physical quantities can be calculated from
second-order reduced density matrix~2-RDM!. If we can
determine it without using the wave function, the wave fun
tion can be eliminated from the quantum mechanics and
RDMs take over its role. However, various methods stud
so far to determine the RDM without using the wave fun
tion @1# were successful only for limited systems, because
the N-representability problem@2#. Because the fermion’s
wave function is antisymmetric with respect to the permu
tion of particles ~Pauli principle!, physically acceptable
RDM must satisfy some strong conditions~the
N-representability conditions!, which are not completely
known except for 1-RDM@2#.

The significance of our Hamiltonian is that it contai
only one- and two-body operators. By using this spec
property, are there any methods to solve the quant
mechanical problem more easily than by the traditional
proach? It is clear that the Schro¨dinger equation does not us
this property explicitly, because the Schro¨dinger equation is
PRA 591050-2947/99/59~6!/4133~17!/$15.00
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also applicable to the system with three-body interaction
Recently we and others developed a method which u

the two-body nature of the Hamiltonian explicitly to dete
mine the RDM of general systems@3–5#. We solved the
equation called the ‘‘hierarchy,’’ ‘‘density,’’ or ‘‘contracted
Schrödinger’’ equation@6,7#,

R(n)50. ~1.1!

The nth-order energy density matrix (n-EDM! is given by

R(n)52EG (n)1H(
i

n

v~r i8!1(
i . j

n

w~r i8 ,r j8!J G (n)

1S n11

1 D E H v~r n11!1(
i

n

w~r i8 ,r n11!J
3G (n11)drn111S n12

2 D
3E w~r n11 ,r n12!G (n12)drn11drn12 , ~1.2!

where (k
n) is the binomial coefficient. In the domain of th

physically acceptable RDMs, Eq.~1.1! with n>2 is equiva-
4133 ©1999 The American Physical Society
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4134 PRA 59KOJI YASUDA
lent to the Schro¨dinger equation, and only the exact RDM
of the ground or excited states satisfy it@7#.

This equivalence shows that theN-representable 4-RDM
uniquely determines the nondegenerate wave function. T
one-to-one mapping is true for both the ground and the
cited states, in contrast to the Hohenberg-Kohn theo
@8,9#. Our new method uses the density matrix as the ba
variable and the density equation to determine it, instead
the wave function and the Schro¨dinger equation.

The equilibrium state of the finite-temperature syst
with a fixed number of particles was represented by the
tistical operatorr̂5( i uC i&^C i ue2bEi/Z, where Ei , uC i&,
andZ are the energy, wave function, and the partition fun
tion, respectively. All the thermodynamic quantities and
expectation values of the operators can be calculated f
the partition function and the 2-RDM. Using the two-bod
nature of the Hamiltonian, it is possible to determine the
quantities without calculating the wave function or 2-RD
of each eigenstate. In Sec. II we present the equation to
termine the partition function and the 2-RDM directly, whic
can be seen as the extension of the density equation to
finite-temperature systems.

Since the second-order density equation, which is
lowest-order equation equivalent to the Schro¨dinger equa-
tion, also depends on the 3- and 4-RDMs, it is indetermin
without additional constraint, that is, theN-representability
conditions. Under the current knowledge of th
N-representability conditions, the density equation impos
knownN-representability conditions may have highly dege
erate nonphysical solutions and probably does not yield
isolated exact solution@10#. Hence we and others adopte
the functional approach expressing the (n11)- and the (n
12)-RDMs in terms of then-RDM to remove the indeter
minacy. The existence of such functionals is discussed
Sec. II. The approximate functional also functions as
N-representability conditions:N-representability is one of the
properties to be approximated.

Various approximate functionals to express the high
order RDMs were reported@4,5,11#, and with these function-
als, the second-order density equation was solved for ato
molecules@3,4#, and a model system@5#. These results were
very promising, giving energies and RDMs as accurate as
more accurate than the SDCI~single and double excitation
configuration interaction! method, exactlyN-representable
1-RDMs, and the 2-RDMs almost satisfied some import
N-representability conditions. The density-equation meth
offers an entirely new alternative in quantum mechanics.

Our approximate functionals based on the perturba
theory yield the 3- and 4-RDMs of the exact eigenstate fr
the corresponding 2-RDM for a weakly perturbed syste
Thus the same method may also be applicable to the exc
states. In this paper we reported the determination of
excited-state 2-RDMs by the density-equation method w
these functionals. From a different point of view, Mazzio
expressed the 4-RDM with several parameters and solved
density equation for the excited states of the quasispin m
@5#.

In the functional approach, the quality of the approxima
functional determines the quality of the solution. Based
Green’s-function~GF! theory, we developed the approxima
functionals for higher-order RDMs, whose accuracy is up
is
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the second-order of the electron correlations. This appro
mation gave quantitative results for singly bonded m
ecules, but the errors of the multiply bonded molecules
larger, showing the importance of the higher-order terms.
other density-equation results were reported for these m
ecules.

In addition to the quantitative feature, higher-order pert
bation terms have significant effects in many systems.
example, in the uniform electron gas or interacting ha
spheres, simple perturbation expansion diverges, and th
summation of the infinite series of the physically importa
GF diagrams is necessary. Although the density-equa
method may sum up some infinite series through the itera
calculation of the 2-RDM, the use of the more accura
higher-order approximation is indispensable in solving
general systems including metals and semiconductors. S
the summation of the physically important RDM diagram
by the previous method@4# is difficult, we develop a dia-
grammatic method of EDM to sum up the Parquet diagr
including the infinite series of ladder and bubble diagram

In large systems, explicit construction of the (n11)- and
(n12)-RDMs requires much computational time, and t
direct calculation of the energy density matrix without co
structing the (n11)- and (n12)-RDMs is desirable. Our
new method yields the second-order energy density ma
directly without explicitly constructing the 3- and 4-RDMs
Development of the direct calculation method of 2-EDM w
be a first step in applying the density-equation method
large systems.

The organization of this paper is as follows. In Sec. II, w
review the theoretical foundations to reconstruct the high
order RDMs. The equation for the direct determination of t
density matrix of the finite-temperature canonical ensem
is presented. In Sec. III we reformulate our previous appro
mation for higher-order RDMs in terms of the lower-ord
ones@4#, and the accuracy of the various reconstruction fu
tionals for the excited states is examined. In Sec. IV
examine the general structure of the energy density ma
using the generating functionals. In Sec. V we present
integral equations to sum up the Parquet diagrams of
second-order energy density matrix. In Sec. VI we apply t
new approximation for the ground states and the closed-s
excited states of atoms and molecules and compare the
sults with the previous approximation and the wave-funct
methods.

II. FORMAL THEOREM

In this section we first review the fundamental question
the density-equation approach: what order RDM has eno
information to uniquely determine the wave function.

The RDM is said to be pure-stateN-representable if the
RDM is derivable from an antisymmetric function ofN par-
ticles, and ensembleN representable if it is derivable from
mixed state withN particles.

We will review the theorems about the ground state fir
The Hohenberg-Kohn theorem@8# demonstrates that th
ground-state electron density is sufficient to determine
external potential of the Hamiltonian. Mazziotti pointed o
@5# that the electron density alone cannot determine the w
function without the knowledge of the kinetic and the Co
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lomb repulsion terms. By using the variational principle
the ground-state energy, Rosina proved that
N-representable 2-RDM of the ground state has enough
formation to determine the two-body Hamiltonian@12#. We
can conclude that it is in principle possible to reconstruct
wave function and hence the higher-order RDMs of
ground state of the two-body Hamiltonian in terms of t
2-RDM.

Next we consider the excited states. It is easy to show
the 4-RDM of the nondegenerate state of the two-bo
Hamiltonian has enough information to determine the wa
function. This is a consequence of MacDonald’s variatio
principle: each eigenstate corresponds to the minimum of
expectation value of a four-body operator,^(H2E)2&.
Hence the 4-RDM of the nondegenerate state of the t
body Hamiltonian has a unique preimage in the set of
semble N-representable density matrices. It can also
proved that these 4-RDMs are the extreme elements of
convex set of the 4-RDMs.

If we restrict the two-body interaction in the Hamiltonia
as the Coulomb interaction, two different wave functio
uC& and uC8&, which are the nondegenerate eigenfunctio
of HamiltoniansH5v1w andH85v81w, do not yield the
sameG (3). Assuming thatuC& anduC8& yield the sameG (3),
using MacDonald’s variational principle,

^C8u~H2E!2uC8&1^Cu~H82E8!2uC&.0. ~2.1!

On the other hand, the same formula becomes

^C8u~H2E!22~H82E8!2uC8&

1^Cu~H82E8!22~H2E!2uC&50

becauseuC& and uC8& yield the sameG (3) and (H2E)2

2(H82E8)2 is a three-body operator. This contradiction i
dicates that theN-representableG (3) has enough information
to determine the wave function among all the nondegene
eigenfunctions of the Hamiltonians with fixed two-body i
teraction.

Recently without using the variational principle, Mazz
otti proved the following theorem@5#: if each state of the
two-body Hamiltonian may be distinguished from oth
states by at least one two-body operator, then the 2-RDM
a unique preimage in the set of pure-stateN-representable
density matrices. A corollary of this theorem is that t
p-RDMs of each state are the unique functionals of
2-RDM. Based on this theorem he proposed a new rec
struction method called ensemble representable method
calculated the 2-RDMs of the excited states of the quasi-s
model by solving the density equation.

The density equation for the eigenstate is extended to
finite-temperature, canonical ensemble with a fixed num
of N particles. The necessary and sufficient condition for
n-RDM to be derivable from the statistical operatorr̂
5eb(F2H) is to satisfy the equation
f
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]b
G (n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5R(n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5
1

n!
Tr$f†~r 1!•••f†~r n!f~r n8!•••f~r 18!~H2E!r̂%,

~2.2!

whereb is the inverse temperature,F is the Helmholtz free
energyF52b21logTr exp(2bH), andE is the expectation
value ofH. Tr indicates the sum of the diagonal elements
theN-particle Hilbert space. The right-hand side~rhs! of Eq.
~2.2! is written with then-, (n11)-, and (n12)-RDMs, as
shown in Eq.~1.2!. The necessity for the theorem is trivial
we notice that the true statistical operator satisfies the eq
tion

~]b1H2E!r̂50.

]b is an abbreviation for]/]b. We will prove the sufficiency
for the second-order equation, because if the higher-o
equation is satisfied, the lower order is also satisfied. S
pose that the ensemble representable statistical operator̂8
yields then-, (n11)-, and (n12)-RDMs which satisfy Eq.
~2.2!. Then it follows

2]b Tr$~]b1H2E!r̂8%1Tr$~H2E!~]b1H2E!r̂8%50,

and hence

E
0

1`

Tr$~2]b1H2E!~]b1H2E!r̂8%db

5E
0

1`

(
k

u~]b1H2E!uk~b!&u2db50.

We write theN-particle sector ofr̂8 as(kuk(b)&^k(b)u. The
above equation indicates thatr̂8 satisfies the same equatio
as r̂, and both are equivalent in theN-particle Hilbert space
and yield the same exact RDMs. Other thermodynamic qu
tities including the partition function can be calculated fro
the energy expectation valueE(b).

Equation~2.2! is completely different from the equatio
of motion of the thermal Green’s function@13# and the equa-
tion of quantum Bogolyubov-Born-Green-Kirkwood-Yvo
~BBGKY! hierarchy recently reported@14#. These equations
establish the relationship betweenn- and (n11)-RDMs,
while Eq.~2.2! describes the relationship amongn-, (n11)-,
and (n12)-RDMs. The anti-Hermite part of Eq.~2.2! is
equivalent to the BBGKY hierarchy equation and the eq
tion of motion of the thermal Green’s function at the ze
time interval.

Similar to the 2-RDM of the ground state, the 2-RDM
the finite-temperature canonical ensemble has enough in
mation to determineH, and we can use the 2-RDM to rep
resent the state. There are no two-body HamiltoniansH
ÞH8 which yield the same 2-RDM of the finite-temperatu
systems. It is a consequence of the variational principle
the Helmholtz free energy@9#. Hence the reconstruction o
the higher-order RDMs in terms of the 2-RDM is in princip
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4136 PRA 59KOJI YASUDA
possible, and the decoupling method based on the the
Green’s function provides a systematic way toward the ex
solution. The use of Eq.~2.2! together with the reconstruc
tion functionals offers a new alternative to the tradition
approach for the finite-temperature systems. The simples
proximation of n-RDM in terms of 1-RDM by Lo¨wdin’s
formula together with the first-order equation of Eq.~2.2!
yields the Fermi distribution function for a noninteractin
system. The proof is given in Appendix A. We will repo
the finite-temperature results using a more accurate app
mation and the second-order equation in a future paper.

III. APPROXIMATIONS OF HIGHER-ORDER RDMs

In this section we summarize the approximations repor
so far, and the accuracy of our approximation for the exci
states is examined. In the previous papers@4#, we used the
Green’s-function~GF! method to derive the relationship
among the higher-order RDMs and the lower-order on
Then-RDMs andn-particle many-body GFs (n-GFs! are de-
fined as@9,13#

G (n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5
1

n!
^f†~r 1!, . . . ,f†~r n!f~r n8!, . . . ,f~r 18!&

i nG(n)~x18 , . . . ,xn8ux1 , . . . ,xn!

5^T@f~x18!, . . . ,f~xn8!f†~xn!, . . . ,f†~x1!#&,

wherer i denotes the set of position and spin coordinatesxi
denotes the set of time, position and spin coordinates, of
i th electron,f† and f denote the creation and annihilatio
field operators in the Heisenberg representation, andT de-
notes the time-ordering operator. We define the time ord
ing of the operators at equal times as the normal order:
ation operators are ordered to the left of the annihilat
operators, multiplied by the signum of the permutation. W
will suppress the time variable when it equals zero. T
RDMs are expressed with the GFs as

G (n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5
~2 i !n

n!
G(n)~r 18 , . . . ,r n8ur 1, . . . ,r n!. ~3.1!

Many-particle GFs are represented with Feynman’s diagr
@13#. For example,G(2) is expressed as

~3.2!

The bold line denotes the exact one-particle GF, while
wavy line denotes the exact two-body vertexV @13#. Each
G(n) diagram has a coefficient ofi 2l 1m2k2n, wherel is the
number of the closedG(1) loops, m is the number of the
unperturbedG(1) lines, andk is the order of the perturbation

Since RDMs are a special case of GFs with time variab
equal to zero, the same Feynman diagrams represent RD
al
ct

l
p-

xi-

d
d

s.

he

r-
e-
n
e
e

s

e

s
s.

~3.3a!

~3.3b!

~3.3c!

In Eqs.~3.3b! and ~3.3c! typical diagrams are shown. Sinc
the time variables of the external lines are zero, the isola
bold line represents the exactG (1). We define the vertex par
of 2-RDM, VG , as the third term of Eq.~3.3a!.

Several methods are reported to derive the relations
among RDMs. In the previous paper we derived the relati
by comparing the Feynman diagrams ofn-RDM with those
of k-RDMs of k,n. By using the new generating functiona
of RDMs, which do not involve the time variables, Mazzio
reported a more concise method@5# to derive the relation-
ships amongn-RDMs with n<6. Generating functionals ar
also known to be useful to analyze the structure of the ma
particle GF@13#. In Secs. III and IV we use these technique
We denote the connected piece ofn-GF asGc

(n) which can-
not be expressed as a simple product of lower-order G
Gc

(n) is defined similarly, which correspond to the last term
in Eqs. ~3.3b! and ~3.3c!. By definition, functionalsZG@J#
andWG@J# generateG(n) andGc

(n) as well asG (n) andGc
(n) .

For example,

G (n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5 lim
J→0

~21!n

n!

d2nZG

dJ* ~r 18!•••dJ* ~r n8!dJ~r n!•••dJ~r 1!

in which J and J* are the Grassmann variables@5,13#. In-
stead of using Mazziotti’s generating functional of RDM
we use the generating functional of GFs,

ZG5^CuT@e2 iS1#uC&,
~3.4!

S15E $J* ~x!f~x!1f†~x!J~x!%dx,

to emphasize the similarity between GF and RDM, and
use the diagrammatic analysis.

By differentiating the relation betweenZG andWG ,

ZG5expWG , ~3.5!

and taking the limitJ→0, the relation among GFs@13# or
RDMs @5# is obtained:G (n) is expressed withGc

(n) and the
products of theGc

(k) with k,n. The same result is obtaine
by comparing the Feynman diagrams. This relation amo
RDMs is useful not only to analyze the structure of t
RDMs but also to approximate the higher-order RDMs. F
example, the approximation of Valdemoro and co-work
can be derived by neglecting some connected pieces.
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In the previous paper we used the same approximation
the unconnected 3- and 4-RDMs, and also approximated
connected piece of 3-RDM as follows. ExactG(1) satisfies
an approximate relation whentt8,0,

iG (1)~x8,x!'E dq dq8G0
(1)~x8,q!P0~q,q8!G(1)~q8,x!

'E dq dq8G(1)~x8,q!P~q,q8!G(1)~q8,x!,

~3.6!

P~q,q8!5P0~q,q8!2E P~q,r 8!g~r 8,r !P0~r ,q8!dr dr8,

P0~q,q8!52G0
(1)~q,q8!2d~q2q8!,

~3.7!
g~q,q8!5G (1)~q,q8!2G0

(1)~q,q8!,

in which r andq denote the set of position and spin coord
nates, whilex denotes the set of time, position, and sp
coordinates. UnperturbedG(1) satisfies Eq.~3.6! when P
5P0. It is a consequence of the rules of subsequent even
the path-integral theory@15#. Equation ~3.7!, which looks
like Dyson’s equation, determinesP. We used the approxi
mate relationship of Eq.~3.6! to express the connecte
3-RDM, the last term in Eq.~3.3b!, in terms of 1- and
2-RDMs. We replacedG(1) joining two vertices in theGc

(3)

with the rhs of Eq.~3.6!. The vertex diagram with four ex
ternal legs was next replaced withVG ,

VG~r 18 ,r 28ur 1 ,r 2!52 i E dx1 . . . dx28V~x18 ,x28ux1 ,x2!

3G(1)~r 18ux18!G(1)~r 28ux28!

3G(1)~x1ur 1!G(1)~x2ur 2!, ~3.8!

which was calculated from the given 1- and 2-RDMs by E
~3.3a!. The final formula for the connected 3-RDM,

Gc
(3)5

1

3!E VG~r 18 ,r 38uq,r 3!P~q,q8!

3VG~q8,r 28ur 1 ,r 2!dq dq81•••, ~3.9!

contains no time integration, in contrast to the GF theo
The relationships among the spinlessn-RDMs nD are ob-
tained by summing up the spin variables@4#.

Without using the time-dependent theory, Eq.~3.9! could
be understood in a different way. Suppose we keep the fi
order perturbation terms of the wave function in the clus
expansion form,

uC&5N exp~ T̂11T̂21••• !uHF&

T̂n5T j 1••• jn
(n) i1••• inai1

†
•••ain

† ajn•••aj 1

in which T(n) denotes then-body cluster amplitude anduHF&
denotes the Hartree-Fock Slater determinant. Under this
proximation the only nonzero elements in the cluster am
tude isT j 1 j 2

(2)i1i2, wherej k belongs to the occupied orbitals an
or
he

in

.

.

t-
r

p-
i-

i k belongs to the virtual orbitals, and other cluster amplitud
T(n) (nÞ2) can be neglected@16#. Then the connected piec
of 2-RDM is given by the formula

Gc j1 j 2
(2)i1i25

1

2
$^HFuai1

† ai2
† aj 2aj 1T̂2uHF&

1^HFuT̂2
†ai1

† ai2
† aj 2aj 1uHF&%.

As is seen, thisGc
(2) completely determines the nonzero el

ments of the first-order perturbation terms ofT(2). Once we
get the cluster amplitude, we can calculate the leading t
of the Gc

(3) which is the second order. By using this firs
orderT(2) the only nonzero elements are

Gc j1 j 2 j 3
(3)i1i2i35

1

3!
^HFuT̂2

†ai1
† ai2

† ai3
† aj 3aj 2aj 1T̂2uHF&.

Substituting the amplitude withGc
(2) and evaluating the ex

pectation values of the creation and annihilation operat
we get the leading term of Eq.~3.9!.

We then compare the various approximations reported
date. Valdemoro and co-workers included explicitly the fi
two terms of Eq.~3.3b! for 3-RDM and the first three term
of Eq. ~3.3c! for 4-RDM @3#. This approximation includes
zeroth- and first-order perturbation terms in electron corre
tions in both 3- and 4-RDMs, provided that the 3- a
4-RDMs are constructed from the 1- and 2-RDMs. Th
took into account the connected piece of 3-RDM by corre
ing the approximated 3-RDM with someN-representability
conditions, or by contracting the approximate 4-RDM to t
3-RDM. Their approximation together with the second-ord
density equation gave good results for the four-electron a
and ions, and the six-electron molecule of BeH2.

In the previous papers@4#, we explicitly included the first
three terms of Eq.~3.3b! for 3-RDM and the first four terms
of Eq. ~3.3c! for 4-RDM. This approximation includes th
terms up to the second-order perturbation of the electron
relations for both 3- and 4-RDMs and omits some of t
third- and the higher-order perturbation terms. The fou
term of Eq. ~3.3c! for 4-RDM represents the simultaneou
collisions of two electron pairs. The density-equation meth
with this decoupling approximation gave better results th
the SDCI method for closed-shell atoms and molecules.
second-order perturbation terms are essential for the co
description of electron correlations in atoms and molecul

Based on these studies, Mazziotti proposed a new
proximation scheme for 3-RDM@5#. He contracted the ap
proximated 4-RDM functional to the 3-RDM to generate
system of equations for the 3-RDM. This system of equ
tions yields the 3-RDM which is correct through second
der. His approximation works well for the quasispin mod
giving better results than the SDCI method.

It is interesting to examine whether the density-equat
method with approximate functional can be applied to
excited states. We examine the accuracy of the function
for the excited states. We approximated the 3-RDM us
the first- and second-order functionals, from the exact 1-
2-RDMs of the ground and five singlet excited states of
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TABLE I. Errors of the approximated RDMs calculated by the various approximate functionals fo
ground and excited states of Be atom.G0(2200) indicates the electron occupation in the unperturbed 1-R
used in Eq.~3.7!. Numbers in square brackets indicate powers of 10.

Ground Excited states
Energy 214.582 69 213.202 01 211.762 86 29.198 39 28.206 16 23.056 01
Main 1.00~2200! 0.71~2110! 1.00~2020! 0.70~1210! 0.70~1120! 0.99~0220!

config.a 10.71~2110! 10.70~1210! 10.70~1120!

Method Errors of the approximated 3-RDMb

1st order 1.755@23# 6.257@22# 1.025@23# 5.989@22# 5.822@22# 8.517@24#

2nd order
G0(2200) 2.719@24# 1.462 5.552@23# 1.465 1.442 1.558@23#

G0(2020) 2.800@23# 4.900@21# 5.700@23# 1.092 1.095 1.138@21#

G0(0220) 2.799@23# 1.106 2.279@21# 5.026@21# 1.059 3.808@24#

Errors of the approximated 4-RDMb

1st order 7.601@24# 4.705@22# 5.102@24# 4.565@22# 4.604@22# 3.307@24#

2nd order 3.279@25# 2.573@21# 1.787@25# 2.580@21# 2.589@21# 9.094@26#

3rd order
G0(2200) 1.321@25# 1.291 4.500@24# 1.294 1.300 1.755@24#

G0(2020) 3.231@25# 3.716@21# 1.651@25# 8.258@21# 8.316@21# 1.187@22#

G0(0220) 2.887@25# 8.412@21# 5.144@21# 3.783@21# 7.960@21# 6.815@26#

aCI coefficient and electron occupations in the four Hartree-Fock orbitals.
bErrors of the RDMs measured by the Euclidean norm.
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Be atom. The errors of the approximated 3-RDMs are m
sured by the Euclidean norm. Similarly the 4-RDMs are a
proximated with the first-, second-, and third-order functio
als from the exact 1-, 2-, and 3-RDMs, and the errors of
4-RDMs are calculated. The results are summarized in Ta
I. Because the second-order functionals of the 3-RDM a
the third-order functionals of the 4-RDM contain the unp
turbed 1-RDM, we used three differentG0

(1) in Eq. ~3.7!. In
Table I, G0(2020) indicates that the four electrons occu
the first and the third Hartree-Fock orbitals in the unp
turbed 1-RDM. The main configurations in each excited st
are shown in Table I. The second and the fifth excited sta
are closed-shell, two-electron excited states, while the fi
third, and the fourth excited states are the open-shell exc
states.

As shown in Table I, the errors of the approximat
3-RDMs by the first-order functional are about 1023 for the
closed-shell states and about 1022 for the open-shell states
The first-order functional contains the first and the seco
terms of Eq.~3.3b!. The effect of the second-order perturb
tion term, which is the third term of Eq.~3.3b!, strongly
depends on the nature of the excited states and also on
unperturbed 1-RDM used in Eq.~3.7!. In the open-shell
states, the second-order correction goes in the wrong d
tion and the errors become as large as 1. In the closed-
states, the second-order correction reduces the error
3-RDMs by an order of magnitude, provided that the unp
turbed 1-RDM is the proper approximate 1-RDM. The oth
choice ofG0

(1) gives errors almost the same as, or sligh
greater than, those of the first-order approximation.

A similar tendency is observed for 4-RDM. The errors
the first-order approximation are about 1024 for the closed-
shell states, while they are about 1022 for the open-shell
states. The errors of the first-order functional in the op
shell states are slightly greater than those in the closed-s
a-
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-
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of

r-
r

f

-
ell

states. The fourth term of Eq.~3.3c!, which is the second
order of the electron correlation, improves the 4-RDM by
order of magnitude for the closed-shell states. On the o
hand, the same correction goes in the wrong direction in
open-shell states, although this correction does not use
unperturbed 1-RDM. The third-order perturbation ter
which is the last term of Eq.~3.3c!, works well for the
closed-shell states, if the proper unperturbed 1-RDM is us
Another choice ofG0

(1) does not improve the 4-RDMs. W
conclude that if the proper unperturbed 1-RDM is used,
3- and 4-RDMs of the closed-shell state are accurately
proximated by the second- or third-order functionals. T
unperturbed 1-RDM selects the closed-shell states to be
proximated.

Our functionals based on Green’s-function theory can
curately approximate the closed-shell RDMs of the grou
and excited states. However, the approximation of the op
shell RDMs needs other new functionals. The accuracy
the approximated RDMs of the closed-shell state depend
the order of the perturbation of the functionals and t
strength of the electron correlations. Although our previo
second-order approximation gave satisfactory results for
gly bonded molecules, the errors of the multiply bond
molecules are greater. The effects of the higher-order per
bation terms are not negligible for these molecules. In ad
tion to this quantitative feature, there are many systems
which the higher-order perturbation terms have signific
effects, for example, the uniform electron gas and the in
acting hard spheres. In these systems, simple perturba
expansion may be useless because the bubble and ladde
grams of any orders diverge. Summation of the physica
important diagrams up to any orders is necessary. This is
reason why we develop the more accurate, higher-order
proximations, even if the second-order approximation yie
good results for atoms and molecules. The less accurate
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sults of multiply bonded molecules are understood if we
tice that thep electron is less bounded than thes electron,
and the higher-order ring diagrams become more impor
for these molecules. Since the approximation of higher-or
RDMs also functions as theN-representability conditions, i
is important to use a good approximation not only to obt
a good energy but also to ensure the representability of
calculated RDMs.

In the density-equation approach, we approximate
higher-order RDMs to calculate the EDM. Because the
plicit construction of higher-order RDMs is very expensiv
for example the calculation of the 4-RDM requires aboutM8

computational time, whereM is the number of the basi
functions, the direct calculation method of EDM without e
plicitly constructing the higher-order RDMs is desirable.
Secs. IV and V we explore a direct method which sums
the physically important diagrams of 3- and 4-RDMs, f
example the ladder and bubble diagrams up to any orders
the outset we analyze the general structure of the EDM
the generating functionals.

IV. GENERATING FUNCTIONAL OF THE ENERGY
DENSITY MATRIX

In this section we define the generating functionals of
energy density matrix and the connected piece of EDM,
rive the relationships between these two functionals, and
veal the structure of the higher-order EDMs. Sincen-EDM is
defined by Eq.~1.2! in terms of then-, (n11)-, and (n
12)-RDMs, the generating functional of EDM is

ZE5^CuT@e2 iS1#~H2E!uC&

5E H J* ~r !1
d

dJ~r !J dZG

dJ* ~r 8!
v~r ,r 8!dr dr8

1
1

2E H J* ~r !1
d

dJ~r !J H J* ~r 8!1
d

dJ~r 8!
J

3
d2ZG

dJ* ~r 8!dJ* ~r !
w~r ,r 8!dr dr82EZG , ~4.1!

whereS1 is given by Eq.~3.4!. Then-EDM is given as

R(n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5 lim
J→0

~21!n

n!

d2nZE

dJ* ~r 18!•••dJ* ~r n8!dJ~r n!•••dJ~r 1!
.

~4.2!

The EDM and the generating functionalZE are identically
zero if uC& andE are the eigenfunction and the correspon
ing eigenvalue ofH.

In the interaction representation the generating functio
of GF is
-

nt
er

n
e

e
-

,

p

At
y

e
-

e-

-

al

ZG5
^FuT@e2 i (S11S2)#uF&

^FuT@e2 iS2#uF&
,

S15E $J* ~x!f I~x!1f I
†~x!J~x!%dx,

S25E f I
†~x!ṽ~x,x8!f I~x8!dx dx8

1
1

2E f I
†~x!f I

†~x8!w~x,x8!f I~x8!f I~x!dx dx8,

~4.3!

ṽ~x,x8!5$v~r ,r 8!2h0~r ,r 8!%d~ t2t8!,

w~x,x8!5w~r ,r 8!d~ t2t8!,

wheref I
† andf I are the creation and annihilation field op

erators in the interaction representation,h0 is an unperturbed
Hamiltonian, ṽ and w are the perturbation potentials, an
uF& is the unperturbed state from which the exact eigens
uC& evolves adiabatically.

Using Eq. ~4.3!, the higher-order derivative ofZG with
respect toJ and J* is expressed by the derivative with re
spect toṽ andw,

dZG

d ṽ~x,x8!
5 i

d2ZG

dJ* ~x8!dJ~x!
1ZGG(1)~x8ux!, ~4.4a!

22
dZG

dw~x,x8!
5 i

d4ZG

dJ* ~x!dJ* ~x8!dJ~x8!dJ~x!

1 iZGG(2)~x,x8ux,x8!. ~4.4b!

Using Eqs.~3.5!, ~4.1!, and ~4.4!, the generating functiona
of EDM is

ZE5WE exp WG , ~4.5!

whereWE is given by

WE5WE11WE21WE31WE41WE5 ,

WE15E J* ~r !
dWG

dJ* ~r 8!
v~r ,r 8!dr dr8, ~4.6a!

WE25 i E dWG

d ṽ~x,x8!
v~r ,r 8!d~ t !d~ t8!dx dx8, ~4.6b!

WE35
1

2E J* ~r !J* ~r 8!H dWG

dJ* ~r 8!
1

d

dJ* ~r 8!
J

3
dWG

dJ* ~r !
w~r ,r 8!dr dr8, ~4.6c!
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WE45 i E J* ~r !H dWG

d ṽ~x8,x8!
2 ir~r 8!1

d

d ṽ~x8,x8!
J

3
dWG

dJ* ~r !
w~r ,r 8!d~ t8!dr dx8, ~4.6d!

WE55 i E dWG

dw~x,x8!
w~r ,r 8!d~ t !d~ t8!dx dx8. ~4.6e!

Equation ~4.6b! shows that one perturbation potenti

ṽ(x,x8)5v(r ,r 8)d(t2t8) in WG is replaced with
v(r ,r 8)d(t)d(t8) in WE2, while Eq. ~4.6e! shows that one
interaction linew(x,x8)5w(r ,r 8)d(t2t8) in WG is replaced
with w(r ,r 8)d(t)d(t8) in WE5. HenceWE2 generates the
same Feynman diagrams asGc

(n) , except that one perturba

tion potentialṽ(x,x8) is replaced withv(r ,r 8)d(t)d(t8), and
WE5 generates the same Feynman diagrams asGc

(n) , except
that one interaction line w(x,x8) is replaced with
w(r ,r 8)d(t)d(t8). These generated diagrams ofRc

(n) are al-
most the same as those ofGc

(n) .
In Eq. ~4.1! only the creation and annihilation operators

the Hamiltonian are the Schro¨dinger representation, that is
the Heisenberg representation witht50. Unfamiliar factors
of d(t)d(t8) andd(t8) in Eq. ~4.6! make the time variables
of these operators zero.

Figure 1 shows then-EDM diagrams generated byWE1 ,
WE3, and WE4. Applying v(r ,r 8) to the incoming legs of
Gc

(n) gives theRc
(n) shown in Fig. 1~a! generated byWE1.

Functional WE3 generates two kinds of diagrams: In Fi
1~b! the incoming legs ofGc

(n2k) and Gc
(k) with k,n are

joined with w. In Fig. 1~c!, two incoming legs ofGc
(n) are

joined with w. FunctionalWE4 generates three kinds of dia
grams of Figs. 1~d!–1~f!. Applying the Coulomb potential to
the incoming legs ofGc

(n) gives the diagram of Fig. 1~d!. In
Fig. 1~e!, an incoming leg ofGc

(n2k) is connected to an in
ternal line ofGc

(k) with w, and in Fig. 1~f!, an incoming leg is
connected to an internal line ofGc

(n) with w.
SinceWG is the generating functional of connected GF

n-EDM generated byWE ,

FIG. 1. Typical diagrams of the energy density matrix genera
by Eqs.~4.6!. The dotted line indicates the one-body potential ofv,
while the curly line indicates the Coulomb interaction ofw.
,

Rc
(n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5 lim
J→0

~21!n

n!

d2nWE

dJ* ~r 18!•••dJ* ~r n8!dJ~r n!•••dJ~r 1!
,

~4.7!

is also the connected piece which cannot be written a
product of other connected pieces.

Equation~4.5! shows the relationship between the gen
ating functional of EDM and that of connected EDM, whic
is useful in examining the structure of the EDMs. By diffe
entiating it with respect toJ and settingJ50, higher-order
n-EDM R(n) is expressed with the connectedn-EDM Rc

(n)

and the wedge product ofRc
(k) andG (n2k) with k,n,

R(n)~r 18 , . . . ,r n8ur 1 , . . . ,r n!

5 lim
J→0

~21!n

n!

d2n~WEZG!

dJ* ~r 18!•••dJ* ~r n8!dJ~r n!•••dJ~r 1!

5 (
k50

n S n

kDRc
(k)`G (n2k). ~4.8!

We use the conventions ofG (0)51 andRc
(0)50. The wedge

product is defined as@5#

Rc
(k)`G (n2k)5S 1

n! D
2

(
p,p8

e~p!e~p8!pp8

3Rc
(k)~r 18 , . . . ,r k8ur 1 , . . . ,r k!

3G (n2k)~r k118 , . . . ,r n8ur k11 , . . . ,r n!

in which p andp8 permute the coordinatesr i and r i8 in all
the possible (n!) manners, respectively, ande(p) is the
signum of the permutationp. Equation~4.8! is easily veri-
fied by comparing the number of the terms on each side
by calculating the lower-order derivatives. For example,
ing Rc

(1)5R(1), R(2) is expressed as

R(2)~r 18 ,r 28ur 1 ,r 2!

5Rc
(2)~r 18 ,r 28ur 1 ,r 2!

1
1

2
$G (1)~r 18ur 1!R(1)~r 28ur 2!1G (1)~r 28ur 2!R(1)~r 18ur 1!

2G (1)~r 18ur 2!R(1)~r 28ur 1!2G (1)~r 28ur 1!R(1)~r 18ur 2!%.

~4.9!

The calculation ofn-EDM reduces to the calculation of con
nectedk-EDMs with k<n. Equation~4.8! is also useful to
approximate the higher-order EDMs in terms of the low
order EDMs and RDMs. For example, by neglectingRc

(n) ,
we can approximateR(n) in terms ofR(k) and G (n2k) with
k,n.

d
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The connected 2-EDM can be calculated from the high
order RDMs approximated with the method described in S
III. However, this method which constructs the 3- a
4-RDMs explicitly has two disadvantages.~i! Inclusion of
the higher-order perturbation terms is difficult because
number of the distinct diagrams rapidly increases with
order of the perturbation as well as the order of the RD
increases. In particular, the systematic summation of ph
cally important diagrams up to any orders is hopeless.~ii ! It
requires more computational time and resources than the
rect calculation of EDM. In Sec. V, using the similarity o
the diagrams betweenGc

(n) and Rc
(n) , we construct a dia-

grammatic method to sum up the Parquet diagrams of
connected 1- and 2-EDMs.

V. PARQUET EQUATION OF THE ENERGY DENSITY
MATRIX

In the preceding section, we expressed EDM in terms
the connected EDMs and the RDMs, while the connec
EDM is expressed with diagrams similar to the Feynm
diagrams of the Green’s function. The diagrammatic meth
in the GF theory enables us to sum up the selected, ph
cally important diagrams@13#. Using the similarity of the
diagrams between EDM and GF, we sum up the Parq
diagrams. The Parquet sum is one of the most powe
methods in GF theory and includes diagrams critical to a
reasonable description of the many-body systems, for
ample, the particle-hole ring for Coulomb interaction in
extended system and the particle-particle ladder which ta
hard-core interaction.

In the GF theory, the two-body Parquet sum constru
the two-body vertexV, which gives the connected piece
G(2), from the bare interaction and irreducible diagrams.
irreducible diagram is defined as the vertex diagram wh
cannot be separated into two disjointed vertex diagrams
breaking two internal lines. Any other diagrams can be c
structed by joining the bare interaction and irreducible d
grams with five connecting operations, s, u, c, r, and l.
the diagrams generated from the given irreducible diagra
constitute the Parquet sum. The Parquet equation in the
theory was studied by Lande and Smith@17#. The five con-

FIG. 2. Five connecting operations ofs, u, c, r , and l chan-
nels in Ref.@17#. a and b are the generic vertex diagrams. Th
operations ofsi , ui , ci , r i , andl i with i 51,2 are given by replac-
ing one of the two internalG(1) lines in the figures with theG5

(1)

line.
r-
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necting operations are shown in Fig. 2, in which the inco
ing legs of the diagrams are bottoms and the arrows giv
the direction of the propagator lines are suppressed. The
act G(1) is used as a propagator, and the self-energy in
tions are not included explicitly in the diagrams. Th
s, u, c, r , and l connecting operations satisfy the ass
ciativity relationships in Table II. Using these relationship
Lande and Smith derived the integral equation for the tw
body vertex ofG(2). We use these relationships to derive t
integral equations for the connected 2-EDM. We also use
approximation Eq.~3.6! to write the 2-EDM in terms of
2-RDM. The integral equations derived give the connec
EDMs directly without explicitly constructing 3- and
4-RDMs.

We first consider the connected 2-EDM generated
WE5. It is given by replacing an interaction line in the co
nectedG(2) with w(r ,r 8)d(t)d(t8) and then setting the time
variables of the external lines to zero. We refer to theS5 as
the self-energyS in which one interaction line is replace
with w(r ,r 8)d(t)d(t8). G5

(1) is similarly defined, which is
also generated byWE5. Using Dyson’s equation,G5

(1) is ex-
pressed as

G5
(1)~x18ux1!5E G(1)~x18uy1!S5~y1uy18!G(1)~y18ux1!dy1dy18 .

~5.1!

Each term in the connected 2-EDM under consideration
approximated by joining several two-body verticesV and the
sum of the irreducible diagramsI with five operations. The
lowest-order term ofI is the two-body interactionw while
the next order is the fourth-order of the electron correlatio
@13#. Since G(1) contains interaction lines, the connecte
2-EDM also contains the diagrams in which several verti
V are joined by severalG(1) lines and oneG5

(1) line. We
calculate the direct diagram in which an internal chain
propagators connects the left incoming leg to the left out
ing leg. The third term of Eq.~3.3a! is an example of a direc
diagram, while the fourth is an exchange diagram. The
change diagram is constructed by crossing the outgoing l

We will pay attention to the diagrammatic structure of t
equation and use the shorthand notation of s, u, c, r, a
operations. The solutionX of the integral equation

TABLE II. Associativity relations ofs, u, c, r, and l operations
given in Ref.@17#. These connecting operations are shown in Fig
a, b, andg are the generic vertex diagrams. The first row sho
the relationship ofas(bsg)5(asb)sg.

X bsg bug bcg brg b lg

asX (asb)sg
Xsa bs(gsa)
auX (aub)ug
Xua bu(gua)
acX (acb)cg (acb)rg (arb)cg
Xca bc(gca) bc(g la) b l(gca)
arX (arb)rg
Xra bc(gra) br(gua) b l(gra)
a lX (a lb)cg (a lb)rg (aub)lg
Xla b l(g la)
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S5~X2S!sV1Vs~X2S!1Vs~X2S!sV1S1,

U5~X2U !uV1Vu~X2U !1Vu~X2U !uV1U1,
~5.2!

T5~X2T!cV1Vc~X2T!1Vc~X2T!cV1T1

1~X2T!rV1Vr~X2U !1Vc~X2T!rV

1~X2U !lV1Vl~X2T!1Vl~X2T!cV

1@Vl~X2T!#rV1@Vr~X2T!#cV1@Vr~X2T!#rV

1@Vu~X2T!# lV,

X5I 1S1U1T

gives the Parquet sum of the direct diagrams of the c
nected 2-EDM generated byWE5, in terms ofV, I, G(1), and
G5

(1) . The quantitiesS1 , U1, andT1 are given by

S15V~s11s2!V,

U15V~u11u2!V,

T15V~c11c2!V1V~r 11r 2!V1V~ l 11 l 2!V,

where s1 and s2 indicate two connecting methods of tw
vertices withG(1) and G5

(1) lines. The proof of Eq.~5.2! is
given in Appendix B. The shorthand notationVsV represents
the formula

VsV5E V~x18 ,x28uy1 ,y2!G(1)~y1uy18!G(1)~y2uy28!

3V~y18 ,y28ux1 ,x2!dy1 . . . dy28 ~5.3!

in which x and y denote the set of time, position, and sp
coordinates. Note that thes, u, c, r , and l operations re-
quire the time integration.

We then rewrite Eq.~5.2! in terms of 1- and 2-RDMs. We
first attach four externalG(1) legs to each term inX and set
the time variables of the external legs to zero. Next, e
G(1) connecting two vertices is replaced with the rhs of E
~3.6!, and theG5

(1) is replaced with

G5
(1)~x18ux1!'2 i E G(1)~x18uq!P~qur 8!R5

(1)~r 8ur !

3P~r uq8!G(1)~q8ux1!dq•••dr8. ~5.4!

R5
(1)(r 8ur )52 iG5

(1)(r 8ur ) is a 1-EDM generated byWE5.
The diagram of vertexV with four G(1) legs is replaced with
VG of Eq. ~3.8!. Through this procedure,VsVbecomes

VsV5E VG~r 18 ,r 28uq1 ,q2!P~q1uq18!P~q2uq28!

3VG~q18 ,q28ur 1 ,r 2!dq1 . . . dq28 ~5.38!

which contains no time integration, in contrast to Eq.~5.3!.
In short, changeV in Eq. ~5.2! with VG , G5

(1) with PR5
(1)P,

and the definition of the five connecting operations from E
~5.3! to Eq. ~5.38!. SolutionX of Eq. ~5.2! gives the Parque
sum of the direct diagrams of the 2-EDM generated byWE5,
-

h
.

.

in terms of 1- and 2-RDMs. This rewriting procedure is ge
eral and applicable to other EDM diagrams.

Connected 2-EDM generated byWE2 is given by replac-
ing one perturbation potentialṽ in the connectedG(2) with
v(r ,r 8)d(t)d(t8). We refer toG2

(1) as G(1) in which one

perturbation potentialṽ is replaced withv(r ,r 8)d(t)d(t8).
Each term in the direct diagrams of this connected 2-EDM
approximated by joining the several vertices with seve
G(1) lines and oneG2

(1) line with s, u, c, r , and l opera-
tions. Addition of theR2

(1)52 iG2
(1) to the R5

(1) yields this
sum.

We then consider the 2-EDM generated byWE4. Typical
examples of theRc

(n) diagrams generated byWE4 are shown
in Figs. 1~d!–1~f!. In Figs. 1~e! and 1~f!, an incoming leg and
an arbitrary internal positionx8 are connected with the line
w(r ,r 8)d(t8). Any Rc

(2) diagrams are classified into tw
kinds. Each diagram in the first kind is separated into the t
diagrams containingw(r ,r 8)d(t8) and the vertexV by
breaking oneG(1) line, such as Fig. 1~d! and some diagrams
in Fig. 1~f!. The sum of these direct diagrams is given as

E G(1)~r 18ux18!G(1)~r 28ux28!V~x18 ,x28ux1 ,x2!

3G4
(1)~x1ur 1!G(1)~x2ur 2!dx1•••dx28 ~5.5!

and the corresponding term in which the left and right le
are changed.G4

(1) denotes the 1-GF generated byWE4,

iG4
(1)~x18ux1!5 lim

J→0

d2WE4

dJ* ~x18!dJ~x1!
. ~5.6!

Each diagram in the second kind cannot be separated
two diagrams withw(r ,r 8)d(t8) and without it by breaking
oneG(1) line, such as Fig. 1~e! with k51 and the rest dia-
grams of Fig. 1~f!. In these diagrams, an incoming leg and
internal positionx8 are connected with the interaction lin
w(r ,r 8)d(t8). We approximated these diagrams by joiningV
and I with the s, u, c, r , and l operations. We conside
the direct diagram whose left incoming legr 1 is connected to
the internal line withw(r 1 ,r 8)d(t8). Other terms are ob-
tained by changing the left and right legs and by crossing
outgoing legs.

SolutionX of the equation

S5~X2S!sV,

U5~X2U !uV,
~5.7!

T5~X2T!cV1~X2T!rV1~X2U !lV,

X5I 1S1U1T,

gives the Parquet sum of these direct diagrams of the c
nected 2-EDM generated byWE4, in terms ofV, I, andG(1).
The proof is given in Appendix C. We then rewrite Eq
~5.5! and ~5.7! in terms of 1- and 2-RDMs with almost th
same procedure as in Eq.~5.2!. We first attach three externa
G(1) legs to each term inX and set the time variables of thes
external legs to zero. EachG(1) connecting two vertices is
then replaced with the rhs of Eq.~3.6!, and theG4

(1) is re-
placed with
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G4
(1)~x18ur 1!'E G(1)~x18uq1!P~q1uq18!R4

(1)~q18ur 1!dq1dq18 .

~5.8!

R4
(1) denotes the 1-EDM generated byWE4. The diagram of

vertexV with four G(1) legs is replaced withVG of Eq. ~3.8!.
In short, changeV in Eq. ~5.7! with VG , and the definition of
the five connecting operations from Eq.~5.3! to Eq. ~5.38!,
and solve Eq.~5.7!. The sum of the solutionX and the cor-
responding terms of changing the left and right legs, a
crossing the outgoing legs, gives the Parquet sum of
2-EDM generated byWE4.

Finally, we consider the 1-EDM generated byWE5, be-
cause other 1- and 2-EDMs are written with 1- and 2-RDM
The 1-EDM

3E w~r 2 ,r 3!G (3)~r 18 ,r 2 ,r 3ur 1 ,r 2 ,r 3!dr2dr3

52 lim
J→0

d2WE5

dJ* ~r 18!dJ~r 1!
1G (1)~r 18ur 1!Tr$wG (2)%

can be calculated from the second term of the lhs of
equation,

3E $w~r 18 ,r 3!1w~r 28 ,r 3!%G (3)~r 18 ,r 28 ,r 3ur 1 ,r 2 ,r 3!dr3

5
1

2
lim
J→0

d4~WE4 expWG!

dJ* ~r 18!dJ* ~r 28!dJ~r 2!dJ~r 1!
,

by settingr 285r 2 and integrating this variable. By comparin
these equations, we found the relationship

R5
(1)~r 18ur 1!5E H R42

(2)~r 18 ,r 2ur 1 ,r 2!

2
1

2
R4

(1)~r 18ur 2!G (1)~r 2 ,r 1!J dr2, ~5.9!

whereR4
(1) and R5

(1) denote the 1-EDMs generated byWE4

andWE5, respectively.R42
(2) denotes the 2-EDM generated b

WE4 and in which the right incoming legr 2 is connected to
the internal line withw(r 2 ,r 8)d(t8). This term is already
calculated with Eq.~5.7!.

We summarize the calculation method of the Parquet s
of the 2-EDM in terms of the 1- and 2-RDMs. The 1-ED
generated byWE1 . . . WE4 and the connected 2-EDM gene
ated byWE1 and WE3 are calculated from 1- and 2-RDM
directly. Direct diagrams of the connected 2-EDM genera
by WE4 are given with the sum of Eq.~5.5! and the solution
of Eq. ~5.7!. Other direct diagrams are obtained by chang
the left and right legs. The 1-EDMR5

(1) generated byWE5 is
calculated with Eq.~5.9!. The connected 2-EDM generate
by WE5 is calculated with Eq.~5.2! from G (1), VG , andR5

(1) .
Finally 2-EDM is calculated from the 1-EDM, the connect
2-EDM, and the 1-RDM by Eq.~4.9!.

In the present Parquet sum of 2-EDM, we introduced
approximation of Eq.~3.6!. The lowest-order missing term
due to this approximation is the second-order one, wh
represents the three-body cluster effect@4#. In the next sec-
d
e

.

e

m

d

g

e

h

tion, we approximate the irreducible diagram asw and omit
the higher-order irreducible diagrams. Order analysis imp
that the missing term due to Eq.~3.6! is more important than
the higher-order irreducible diagrams. We can calculate
higher-order irreducible diagrams by the approximation
Eq. ~3.6!, and the missing term due to this approximation
the original GF method, as was discussed in Ref.@4#.

VI. DIRECT DETERMINATION OF THE DENSITY
MATRIX

In Sec. V, we derived the integral equations for the P
quet sum of the 2-EDM. This infinite sum includes not on
all the second-order perturbation terms of 3- and 4-RD
already reported@4#, but also many other higher-order term
such as the infinite sum of the ladder and bubble diagra
In this section we examine the quality of the Parquet-s
method through the numerical calculations of atoms a
molecules.

We first summarize our calculational method which is
most the same as the previous one@4#, except that the
2-EDM is directly calculated without constructing the 3- a
4-RDMs explicitly. We solved the Hermite part of th
second-order density equation@Eq. ~1.1! with n52# in ma-
trix form,

Rj 1 j 2

i 1i 2 1Ri 1i 2

j 1 j 250, ~6.1!

to calculate the spinless 2-RDM, imposing the normalizati
Hermiticity, and the symmetry (D j 1 j 2

i 1i 2 5D j 2 j 1

i 2i 1 ) conditions on

the 2-RDM. The subscriptj k and the superscripti k are asso-
ciated with the annihilation and creation operators, resp
tively. Because of the Hermiticity of the Hamiltonian, E
~6.1! is also equivalent to the Schro¨dinger equation, and we
did not use the anti-Hermite part of the density equation. T
spinless 2-RDM and the Hamiltonian were represented
matrices whose one-electron base are the HF orbitals.
generalized two-electron integrals were used for simplic
We calculated the zeroth- and first-order terms of 2-ED
separately and summed the second- and higher-order t
with the integral equations of Eqs.~5.2! and ~5.7!, which
were solved by the iterative method. We approximate
irreducible diagram asw and omit the higher-order irreduc
ible diagrams. The multidimensional nonlinear equati
~6.1! was solved by the same Newton’s method as the p
vious one@4#.

We applied the density-equation method to the followi
atom and molecules: Be, NH3, CH4, N2, CO, and C2H2 with
the double-z basis@18# and Li2 , CH3OH, C2H6 , C3H8, and
C4H10 with the minimal Slater-type orbital STO-6G bas
@19#. We compared the accuracy of the present new appr
mation with the previous second-order one and the SD
@20#, full-CI @21# ~in the case of relatively small basis sets!,
and the coupled-cluster single and double excitations w
triple excitations included noniteratively@CCSD~T! for
larger cases# @22#. Experimental molecular geometries@23#
were used and some 1s core orbitals of C and O were frozen

Tables III and IV show the summary of the ground-sta
results. In Table III we compared the energies and the er
of the RDMs calculated by the Parquet-sum method with
second-order approximation, SDCI, and full-CI method
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TABLE III. Energies and errors of the RDMs calculated by the density-equation methods and the
function methods. Parquet sum indicates the present new approximation, while some results of the
order approximation are also presented in Ref.@4#. Errors of the RDMs are measured by the infinity nor
Numbers in square brackets indicate powers of 10.

Method Density equation Wave function
2nd order Parquet sum SDCI Full-CI

Molecule Energy~a.u.!
Active Correlation energy error~%!

Electronsa 1-RDM error
2-RDM error

NH3 256.298 88 256.303 14 256.297 17 256.304 33
4310 4.24 0.92 5.58 0

8 4.72@23# 4.67@23# 9.86@23# 0
2.44@22# 1.79@22# 6.00@22# 0

CH4 240.295 82 240.299 02 240.294 05 240.300 09
4312 3.73 0.93 5.27 0

8 2.27@23# 2.67@23# 7.82@23# 0
1.79@22# 1.24@22# 4.78@22# 0

CH3OH 2114.711 44 2114.715 84 2114.710 82 2114.718 16
735 5.24 1.81 5.72 0
14 5.12@23# 4.03@23# 1.42@22# 0

2.50@22# 2.04@22# 5.13@22# 0
N2 2109.079 09 2109.096 36 2109.082 19 2109.106 05

5311 11.84 4.26 10.48 0
10 9.85@23# 2.87@22# 2.79@22# 0

6.70@22# 1.16@21# 1.16@21# 0
CO 2112.872 93 2112.885 25 2112.873 82 2112.895 09

5311 10.55 4.68 10.13 0
10 1.87@22# 1.47@22# 4.14@22# 0

1.09@21# 5.43@22# 1.39@21# 0

aThe number of electrons in the active space.
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The full-CI dimension of the CO molecule is about 4
3106, which is the largest in Table III, while the number
the free parameters in the 2-RDM is about 4.83103. In Table
IV we compared the results with the CCSD~T! energies and
CCD moments, because the full-CI calculations are curre
difficult for these molecules.

As seen in these tables, the energies of the second-o
approximation are comparable with the SDCI results, a
those of the Parquet sum are comparable with the CCSD~T!
or the exact results. The Parquet-sum method significa
improves the energies of all the molecules. Energy error
the Parquet sum are about one-half to one-third of thos
the second-order approximation for both singly bonded
triply bonded molecules. The correlation energy errors of
density-equation method are improved as the system
comes large, which is seen by comparing the results of
homologous series of alkanes, C2H6 , C3H8, and C4H10. The
fact that the energy errors from the full-CI or CCSD~T! en-
ergies are almost constant irrespective of the molecular
shows the size-consistent nature of the present den
equation method, because CCSD~T! is a good approximation
of CCSDT, which is size-consistent.

In Table III we also compared the errors of the 1- a
2-RDMs measured by the infinity norm, which is the ma
mum row sum of the error matrix, while the row sum
calculated by adding the magnitudes of the elements
ly

der
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tly
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a

given row. The second-order approximation gives be
RDMs than the SDCI method, while the Parquet sum gi
the RDMs of accuracy similar to or better than the seco
order approximation, except for the N2 molecule. The Par-
quet sum may overcorrect the errors of the RDMs of the2
molecule, although it significantly reduces the energy er
The dipole moment of the CO molecule is a good test,
cause the Hartree-Fock method predicts the opposite d
tion @24#. The Parquet-sum method gives the dipole mom
of 0.0691 a.u., which is slightly larger than the exact value
0.0417 a.u. The second-order approximation and the S
give the dipole moments of 0.0344 and 0.0586 a.u., res
tively. The Parquet-sum method yields a less accurate di
moment than the second-order approximation, althoug
yields the 1-RDM of smaller error measured by the infin
norm.

In Table IV we compared the accuracy of the dipole
quadruple moment. For the singly bonded molecules,
Parquet sum gives moments almost the same as, or slig
better than, those by the second-order method, and the re
of both methods agree well with the exact one. For the C2H2
molecule, the Parquet sum gives a slightly worse mom
than the second-order method, although it significantly
duces the energy error.

We next applied the density-equation method to the
cited states. Currently our program is applicable to
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TABLE IV. Energies and multiple moments calculated by the density-equation methods and the
function methods. Parquet sum indicates the present new approximation. Results are compar
CCSD~T! energies and CCD moments. Numbers in square brackets indicate powers of 10.

Method Density equation Wave function
2nd order Parquet sum SDCI CCSD~T!

Molecule Energy~a.u.!
Active Correlation energy error~%!

Electronsa Dipole or quadrupole moment~a.u.!b

C2H6 279.209 24 279.213 18 279.204 48 279.214 49
737 3.45 0.858 6.58 0
14 0.4279 0.4290 0.4307 0.4298c

C3H8 2118.228 68 2118.234 10 2118.215 59 2118.235 79
10310 3.21 0.764 9.12 0

20 9.126@23# 9.107@23# 9.048@23# 9.010@23# c

C4H10 2157.249 73 2157.256 74 2157.224 69 2157.258 72
13313 3.09 0.680 11.69 0

26 0.8021 0.8022 0.8130 0.8022c

C2H2 276.980 06 276.987 08 276.975 59 276.994 97
5315 7.61 4.03 9.89 0

10 4.642 4.486 4.817 4.628c

aThe number of electrons in the active space.
bQuadrupole moment is given in the case of the zero dipole moment.
cCCD moment.
tw

W
l
-
d
an

th
iva
th

by

cu
ho
s
h
th
tio
n

he
th

t,

e

rr

m
ug
t

is
the
ns
c-

the

the

cal-
but

con-
arge,

he
l-
han
ded

all
-

e
ity-
con-

the
is

M,
n
ion
closed-shell state, and we focused on the closed-shell,
electron excited states of the Be atom and Li2 molecule. The
calculation method is the same as for the ground state.
used the double-z basis@25# for the Be atom and the minima
STO-6G basis@19# for the Li2 molecule, and the experimen
tal molecular geometry@23#. Table V shows the calculate
results of two closed-shell excited states of the Be atom,
one closed-shell excited state of the Li2 molecule. Because
Be has four electrons, 4-RDM is essentially equivalent to
wave function, and the density-equation method is equ
lent to the wave-function approach. On the other hand,
results of the six-electron system of the Li2 molecule indicate
the possibility of determining the excited-state 2-RDM
the functional approach.

As shown in Table V, the Parquet sum gives more ac
rate energies and 2-RDMs than the second-order met
Both methods give almost the same energies and den
matrices as those of the SDCI method. Since the closed-s
two-electron excited state is often higher in energy than
open-shell one-electron excited state, the wave func
cannot be approximated well with one Slater determina
and the approximation of the RDMs is more difficult than t
ground state. This explains why we could not calculate
RDMs of the excited states of other molecules. Li2 with
STO-6G basis is an exception: both the 11Sg

1 and 81Sg
1

states are well approximated with each Slater determinan
which two valence electrons occupys(2s) bonding and
s* (2p) antibonding orbitals, respectively. If we write th
Hamiltonian asH5 f 1wint , where f and wint are the Fock
operator and the correlation potential, and reduce the co
lation potential to half,H5 f 1wint/2, we can calculate the
2-RDMs of both the ground and excited states with the sa
symmetry by the density-equation method. This result s
gests that the density-equation method can be applied to
o-
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excited states if the proper functional for the excited state
used. In this approach, the orthogonalization condition of
wave functions is never explicitly imposed. These conditio
will be satisfied automatically if we use the accurate fun
tional, because our Hamiltonian is a Hermitian operator.

We examine some necessary conditions of
N-representability, theP, Q, andG conditions@2#, which are
the non-negativities of the 2-RDM, 2-hole RDM, and theg
matrix. Table VI shows the percentage of the sum of
negative eigenvalues of theP, Q, andg matrices compared to
the sums of their eigenvalues. This table shows that the
culated 2-RDMs contain nonrepresentable components,
the impurity fraction is small and around 1023% for both the
ground and excited states. These fractions are almost
stant or even become smaller as the molecule becomes l
which is seen by comparing the results of C2H6 , C3H8, and
C4H10 molecules. The Parquet sum improves t
N-representability of the 2-RDMs for singly bonded mo
ecules, and their deviations are almost always smaller t
the corresponding second-order results. For the triply bon
molecules, some are improved and others are not. A sm
deviation from the exactN-representability is due to an in
accuracy of the decoupling approximation of the RDMs. W
also point out that all the 1-RDMs calculated by the dens
equation method satisfied the ensemble representability
dition: all the eigenvalues lie in the range of zero to two@2#.

We then discuss various iterative methods used in
density-equation method. Since the ground-state 2-RDM
the zero-temperature limit of the finite-temperature 2-RD
the limit b→1` of the solution of the differential equatio
~2.2! gives the ground-state 2-RDM. Hence the discretizat
of the differential equation of Eq.~2.2!,

G (2)~b1Db!'G (2)~b!2DbR(2)~b!, ~6.2!
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TABLE V. Energies and errors of 2-RDMs of the ground and excited states calculated by the de
equation method. Parquet sum indicates the present new approximation.

Method Density equation Wave function
2nd order Parquet sum SDCI Full-CI

State Energy~a.u.!
Main Energy error~a.u.!

config.a 2-RDM error ~Euclidean norm!

Be atom
Ground 214.582 70 214.582 69 214.582 69 214.582 69

1.00~2200! 21.54@25# 2.53@26# 4.06@26# 0
4.68@25# 4.06@25# 1.14@24# 0

3 1S 211.762 90 211.762 86 211.754 00 211.762 86
1.00~2020! 23.54@25# 21.92@27# 8.86@23# 0

1.47@24# 1.25@24# 2.14@22# 0
6 1S 23.056 04 23.056 04 23.053 47 23.056 01

0.99~0220! 24.29@25# 22.81@26# 2.54@23# 0
2.74@24# 2.19@24# 3.87@22# 0

Li2 molecule
8 1Sg

1 214.032 29 214.033 48 214.035 02 214.036 25
1.00 3.97@23# 2.78@23# 1.23@23# 0

(220•••02) 7.77@22# 2.95@22# 7.15@22# 0
Li2 ~1/2 correlation potentialb!

1 1Sg
1 211.396 81 211.399 18 211.399 28 211.399 28

1.00 2.47@23# 1.08@24# 3.58@26# 0
(2220•••0) 3.58@22# 2.49@23# 2.97@24# 0

8 1Sg
1 210.393 39 210.393 66 210.393 44 210.393 70

1.00 3.03@24# 3.79@25# 2.58@24# 0
(220•••02) 2.16@23# 2.97@24# 3.12@22# 0

aCI coefficient and electron occupations in the Hartree-Fock orbitals.
bCorrelation potential of Li2 molecule is reduced to half.
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in which Db is a small ‘‘time’’ step, yields the iterative
method for the ground state. Valdemoro and co-workers
Mazziotti used similar methods@3,5#, and Mazziotti analyzed
the iterative method in connection with the power meth
The structure of the statistical operator implies that the wa
function component with energyEi in 2-RDM grows at the
rate of e2Db(Ei2E0) by propagating a single time stepDb,
whereE0 is the ground-state energy of the fermion system
the approximate functional does not yield the compone
with energies lower thanE0 in the 3- and 4-RDMs, the it-
erative method of Eq.~6.2! converges. On the other hand,
the approximate functional yields the non-N-representable
components of lower energies, and does not decrease
fractions of the components at a rate less thaneDb(Ei2E0),
this iterative method diverges. According to our experien
the simple iterative method of Eq.~6.2! is unstable and dif-
ficult to converge, even for the small-enoughDb. Hence we
used Newton’s method which is stable and behaves well,
requires more computational time. Since it may be an
stacle to apply the density-equation method to large syste
a more efficient iterative method must be devised.

Recently, Mazziotti applied the density-equation meth
to the quasispin model which is a nice benchmark for tes
many-body theory, with as many as 40 particles by using
original approximation@5#. While the special symmetry o
the model makes it possible to calculate the exact solution
diagonalizing the matrix of dimension (N11), the model
d

.
-

f
ts

the

,

ut
-
s,

d
g
is

y

has a nontrivial solution and reproduces the difficulty of t
correlation problem. Mazziotti contracted Valdemoro
4-RDM functional with our previous second-order correcti
for the 4-RDM @the fourth term of Eq.~3.3c!# to generate a
system of equations for the 3-RDM. From a given 2-RD
this system of equations yields the 3-RDM which is corre
through second order. It significantly improves the accura
of Valdemoro’s 3-RDM functional. In his scheme, the a
proximated 4-RDM automatically contracts to the 2-RD
from which it was made.

Mazziotti also proposed the ‘‘ensemble representabi
method’’ ~ERM! to reconstruct thep-RDM from the 2-RDM
without an explicit functional. The ERM requires that th
p-RDM contracts to the 2-RDM, and also it satisfies t
p-ensemble representability restriction that thep-RDM be
Hermitian, antisymmetric, and positive semidefinite. Sin
these conditions are only necessary forN-representability
whenp is less than the number of the electrons, the solut
is not unique and a family of solutions including the exa
p-RDM results. He compared the accuracy of the 4-RD
reconstructed by the ERM with his functional approach. T
ERM is less accurate for the ground state than his reconst
tion functional, but more accurate for the excited states.

These two reconstruction methods together with
second-order density equation were applied to the quasi
model @5#. These methods yield the ground-state energ
and the 2-RDMs comparable to or better than those of SD
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The ERM also yields the energy of the excited state with
same symmetry as the ground state. The energy was c
lated somewhat lower than the exact energy. He also app
the third-order density equation with his functionals of the
and 5-RDMs to the quasispin model.

The ERM with the second-order density equation may
viewed as the density-equation method which uses
4-RDM as a basic variable. Harriman suggested that su
method yields highly degenerated incorrect solutions at
most all the energies, unless enoughN-representability re-
strictions are imposed@10# because of the indeterminacy o
the equation. It is surprising that the ERM yields the energ
and the 2-RDMs comparable to or better than SDCI by
posing very few conditions. There are some questions
must be clarified in the ERM, for example the dependenc
the solution on the calculation algorithm, the extent of t
nonuniqness of the solution, and the applicability to oth
systems such as atoms and molecules. However, the ER
possibility to yield the exact solution without any comp
cated functional is very attractive. Judging from the resu
of the quasispin model, we feel that his method seems to
very hopeful, and we anticipate the results of other syste
such as atoms and molecules.

VII. CONCLUSIONS

In this paper we discussed methods to determine
second-order reduced density matrix~2-RDM! of the ground
and excited states, finite-temperature systems, and large
tems without using the wave function by solving the dens

TABLE VI. Percentage of the sums of the negative eigenval
of the 2-RDM, 2-HRDM, andg matrix compared to the sums o
their eigenvalues. Parquet sum indicates the present approxima
Numbers in square brackets indicate powers of 10.

Molecule Method 2-RDM 2-HRDM g matrix
Activea

Ground state
CH4 2nd order 9.67@23# 2.45@24# 1.07@23#

4312 Parquet 1.66@23# 0 9.52@24#

C2H6 2nd order 3.52@23# 2.34@23# 1.46@23#

737 Parquet 1.40@25# 1.17@22# 1.90@24#

C3H8 2nd order 1.59@23# 1.13@23# 1.00@23#

10310 Parquet 2.60@26# 3.67@26# 1.40@24#

C4H10 2nd order 1.16@23# 8.70@24# 1.05@23#

13313 Parquet 2.48@27# 2.06@26# 1.01@24#

N2 2nd order 7.75@23# 7.22@24# 2.83@23#

5311 Parquet 4.05@24# 1.24@22# 3.61@22#

CO 2nd order 5.85@23# 5.28@24# 7.21@23#

5311 Parquet 8.07@25# 1.04@23# 7.25@23#

C2H2 2nd order 1.36@22# 4.10@24# 2.26@23#

5315 Parquet 4.65@24# 1.45@23# 1.04@22#

Excited state
Be (31S) 2nd order 6.39@25# 9.70@25# 1.89@25#

232 Parquet 7.12@25# 1.07@24# 2.06@25#

Li2 (8 1Sg
1) 2nd order 1.69@21# 3.97@23# 1.93@21#

337 Parquet 7.57@22# 4.61@24# 7.34@22#

aActive space used in the calculation.
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equation. We discussed the foundations to reconstruct
higher-order RDMs in terms of the lower-order ones. W
presented a new equation for the direct determination of
RDMs of the finite-temperature canonical ensemble a
showed that only the exact RDMs satisfy this equation. W
reformulated our previous approximation method for 3- a
4-RDMs and examined the accuracy of the approximat
for the excited states. The structure of the energy den
matrix was analyzed by the generating-functional techniq
Using the similarity of the diagrams between the Gree
function and EDM, we derived the integral equations whi
sum up the Parquet diagram of the 2-EDM without explici
constructing the 3- and 4-RDMs. This new approximati
together with the second-order density equation was app
to the ground states of some molecules. The energy erro
the previous approximation were significantly reduced, g
ing almost the same energy as the exact or CCSD~T! one.
We also calculated the closed-shell excited states of the
atom and Li2 molecule. The present density-equation meth
gave more accurate results than the SDCI method. We
cussed the relationship between the iterative method and
finite-temperature density-equation method.

This paper reported the direct calculational method of
Parquet sum of 2-EDM, which is the first step in applyin
the density-equation method to large systems such as p
mers and metals. The method based on the density m
can be applied to large systems more easily than the w
function approach. In large systems the off-diagonal e
ments of 1-RDM and the vertex part of 2-RDM can be a
proximated as zero, if we use the localized one-electron
sis. Hence we can calculate the 2-EDM with th
computational time which scales linearly to the system s
by only skipping the calculation of the negligible of
diagonal elements. Although the calculational method of
2-EDM with linear system-size scaling is trivial, a ne
stable iterative method whose computational time also sc
linearly must be devised to apply the density-equat
method to large systems. In this paper we also discus
methods to determine the RDMs of the excited states and
finite-temperature systems. To make these methods pr
cable, new approximate functionals for the 3- and 4-RD
are necessary which are accurate enough for these syst
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APPENDIX A: DERIVATION OF THE FERMI
DISTRIBUTION FUNCTION

We will show that Löwdin’s formula forn-RDM @9#,

G (n)5
1

n!UG~r 18ur 1! ••• G~r 18ur n!

A A

G~r n8ur 1! ••• G~r n8ur n!
U , ~A1!

together with the first-order equation of Eq.~2.2! yields the
Fermi distribution function for the noninteracting system

s

on.
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We denote 1-RDM asG in this appendix. After a short cal
culation, we obtain the equation in matrix form,

2]bG j
i 5v j

kGk
i 2G j

kvk
l G l

i . ~A2!

Using the Hermiticity ofG and v, we obtain the following
equation:

v j
kGk

i 2G j
kvk

i 5@v,G# j
i 50 ~A3!

which indicatesv andG have coeigenfunctions for eachb.
We representv and G as the diagonal matrices and the
eigenvaluese i andg i . Therefore

g i5~11ebe i2c!21, ~A4!

where c is a constant, satisfies Eq.~A2!. If we write the
constantc5bm, we get a Fermi distribution function. Al
though Löwdin’s formula is valid only for the Slater deter
minant wave function, and the approximated RDMs do
give the original 1-RDM of finite temperature, we obtain t
correct solution.

APPENDIX B: PROOF OF EQ. „5.2…

We want to sum up two kinds of diagrams.
~1a! The diagrams in which several two-body verticesV

and one irreducible diagramI are connected with
s, u, c, r , and l operations.

~1b! The diagrams in which several two-body verticesV
are connected withs, u, c, r , and l operations, and also
in each diagram, one of theG(1) lines linking two vertices is
replaced withG5

(1) .
SinceV is the sum of all the direct vertex diagrams,V has

any diagrams inVxV where x represents one of the fiv
connecting operations. Hence any diagrams having a fa
of VxV can be thrown away.

Consider the diagram in which an irreducible diagram a
two or more vertices are connected with the five operatio
Because this diagram is reducible, we can separate a v
by breaking twoG(1) lines. However, we cannot separate t
irreducible diagram, because if we could, the diagram
which the vertices are connected with five operations are
and by assumption there are no such diagrams.

Next we consider the diagrams with three or more ve
ces in the set~1b!. Because this diagram is reducible, we c
separate a vertex by breaking twoG(1) lines, but we cannot
separate a vertex by breaking theG(1) andG5

(1) lines for the
same reason.

We then analyze thes-channel equation. Similar proo
holds for theu-channel equation. The following two se
contain all thes-reducible diagrams we want to sum up mo
than once, together with the forbidden diagrams with a fac
of VxV.

~2a! Diagrams ofasV andVsa in which we can separat
a vertex by breaking twoG(1) lines. a is either the irreduc-
ible, or the reducible diagram in sets~1a! and ~1b!.

~2b! Diagrams ofVs1V andVs2V, wheres1 ands2 denote
two connecting methods of two vertices byG(1) and G5

(1)

lines.
t

or

d
s.
tex

n
ft,

-

r

Since the set~2b! is added to the equation explicitly, w
will show that all the distinct diagrams we want to sum up
~2a! are contained in (X2S)sV, Vs(X2S), and Vs(X
2S)sV. X denotes the Parquet sum which contains irred
ible and reducible diagrams.S denotes the sum of the
s-reducible diagrams inX. We first note that no diagram
appears more than once in these three sets, because Ta
shows that there is no way to rewrite them. These three
contain anys-reducible diagrams ofasV andVsa. Consider
the diagramasV. If a is irreducible, or reducible in one o
the u, c, r , and l operations,asV is contained in (X
2S)sV. If a is s-reducible,a5Vsb and b must not be
s-reducible, because in other cases,asV has a factor ofVxV.
HenceasV is contained inVs(X2S)sV. DiagramVsa is
similarly treated. We demonstrated that the sum ofX
2S)sV, Vs(X2S), Vs(X2S)sV, andV(s11s2)V gives all
the s-reducible diagrams.

Next we analyze thet-channel equation. The following
two sets contain all thec, r , and l -reducible diagrams we
have to sum up.

~3a! Diagrams ofaxV andVxa (x5c, r , l ) wherea is
either the irreducible diagram, or the reducible diagrams
sets~1a! and ~1b!.

~3b! Diagrams ofVxiV, wherexi5$ci ,r i ,l i ; i 51,2% con-
nects two vertices byG(1) andG5

(1) lines.
Since the set~3b! is added to the equation explicitly, w

will consider set~3a!. Thirteen kinds of diagrams in Eq
~5.2!, (X2T)cV, . . . ,@Vu(X2U)# lV, are disjointed, since
Table II shows that no diagrams can be transformed i
each other. These thirteen kinds of diagrams contain
c-, r -, and l -reducible diagrams. Consider the diagra
acV. If a is irreducible, or reducible ins- or u-channel,acV
is contained in (X2T)cV. If a is r-reducible,a5Vrb and
b must not beu-reducible, and henceacV is contained in
@Vr(X2U)#cV. If a is l-reducible,a5Vlb andb must not
be reducible in thec, r , and l channels; henceacV is con-
tained in @Vl(X2T)#cV. Other diagrams ofVca, arV,
Vra, a lV, andVla are similarly treated. This completes th
proof of Eq.~5.2!.

APPENDIX C: PROOF OF EQ. „5.7…

We want to sum up the distinct diagrams in which seve
verticesV and one irreducible diagramI are connected with
s, u, c, r , and l operations, and also the left incomin
leg of the composite diagram is directly connected to
irreducible diagram. For the same reason as in Appendix
we do not have to sum up any diagrams having a facto
VxV. Hence we can remove a vertex from the compos
diagram by breaking twoG(1) lines, but we cannot remove
the irreducible diagram. The diagram we want to sum has
form of axV, because in the diagram ofVxa, the left incom-
ing leg is not directly connected to the irreducible diagra
Consider the diagram (X2S)sV, whereX denotes the sum
of the Parquet diagrams andS denotes the sum of the
s-reducible diagrams inX. No diagram appears more tha
once in this set, because Table II shows that there is no
to rewrite it. Hence we conclude that the sum of t
s-reducible diagrams under consideration equals (X2S)sV.
The same proof holds foru- and t-channel equations.
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