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Improved large-N limit for Bose-Einstein condensates from perturbation theory
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We present a perturbation solution of a model Bose-Einstein Hamiltonian derived by Bohn, Esry, and
Greene. In our solution we useNLias the perturbation parameter, whétés the number of particles in the
condensate. Ground-state energies are reported for parameters approximating the Joint Institute for Laboratory
Astrophysics®’Rb experiments. We predict the critical number of atoms with negative scattering lengths that
can be trapped using the effective trap frequency of the first-order equatiorNFe perturbation limit,
which retains a single term beyond the conventional Thomas-Fermi limit, gives ground-state energies that
agree to three digits with converged results, thus providing a much improved limit for lHrge
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PACS numbe(s): 03.75.Fi, 31.15.Ja, 03.65.Ge

I. INTRODUCTION whereU;,; is the two-body atomic interaction potential. All
three-body and higher interactions are ignored under the as-
Using ordinary Schrdinger quantum mechanics, Bohn, sumption of a dilute gas. The mean condensate radius of the
Esry, and Greeng¢l] have derived effective potentials for atoms from the trap center is
dilute Bose-Einstein condensates. The many-atom problem is

reduced to a linear Schidinger equation by identifying a 1 N w2 (19 N 12

single coordinateR, the mean condensate radius. Batral. R=|[ — miri2 =|— 2 rlz) , 2
use hyperspherical coordinates to defiyeexpand in hyper- i=1 Ni=1

spherical harmonics, and then retain only a single term in izl m

this expansion. They refer to this as th&-harmonic” ap-
proximation following terminology from nuclear theory. The , ) ,
resulting one-dimensional linear Sétinger equation gives Where we assume all the particles in the condensate are iden-
quite good results for ground-state energies in a trap roughifjcal.- The remaining BI—1 coordinates are then given in
approximating the JILA7Rb experiment§2], faring slightly ~ terms of hyperangles collectively denoted @y[10]. Using
better than other variational approaches. Their effective pothe transformation r(;, ... ,ry)—(R,2) and assuming
tential is also able to predict reasonably well the criticalU,,(r,—r,) = (4mh2a/m) 5(r,—r,), wherea is thes-wave
number of bosons with negative scattering lengths that cagcattering length, yields a transformed Safinger equation:

be condensed, as well as other characteristics of the conden-

sate such as low-lying excitation frequencies, peak densities, { ﬁz( 2 (3N—1)(3N-3) AZ) 1

and decay rates from two- and three-body processes. + _Mw?R?
We chose this model Hamiltonian to test a perturbation 2
formalism which uses N as the perturbation parameter,

- 2MI9R? 4R? R?

N 2
whereN is the number of particles in the condensate. This +E 4t a&(F-—F)—E REGN-D2y(R 0)=0
formalism is analogous to the dimensional perturbation By b ’ ’

methods used successfully in many areas of phydes].

In particular, we use a matrix method developed for atomic
systems to solve the perturbation equati®h We find that
this perturbation approach takes advantage of the simplicit
of the Thomas-Fermi limit which is valid foN large, but
improves on this limit significantly for the zeroth-order start-
ing point by including a single additional term beyond

()

here A2 is a “grand angular momentum operatof11].
xpanding in hyperspherical harmonics and retaining a
single term results in the final equation

Thomas-Fermi. n? &
- — —+VEMR)—E} F(R)=0, 4
oM ﬁRZ eff ( ) ( ) ()
[l. FORMALISM
where
The derivation of Bohret al. begins with the fullN-body
N )
Hamiltonian: VBohn:ﬁ_(3N_1)(3N—3)+3Mw2R2
ef —2M 4R? 2
R N1 N 1 #i2aN%(N—1)
= — — 2 —_ 2 2 i _)-—-)- —_—_—
= gm & Vit 2 5me’i+ 2 Undfi=r). (@ O\ (5
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I'(3N/2) 6 6
T (BN=3) 1IN ®) .| |
2
is the effective potential. Bohn and co-workers solve this § 4| ]
equation numerically using B-spline approach. g
In our solution of this equation we use a perturbation 5 3} .
approach where IV is the perturbation parameter. We trans- %
form the equation using scalings that give a stalle o > er ]
limit: g
g 1°r i
~ ~ ~ =)
R=N?R, o=N"%0, a=Na, E=N3e T ol |
2
- 2
and then change to scaled oscillator unitR o9t i
=V(hImw)R, e=hwe, which yields
20 4
1 52 (9—126+ 352) 1 Radius (oscillator units)
——5ZT+ - +—a)2 2 . - . .
2 HR? 8R2 2 FIG. 1. Comparison of¥ g for different values of the scattering

length,a. The solid lines are ouX— o effective potentialVq, for
a>0, a=0, and a<0. The short dashed lines are the Thomas-
—€ q)(ﬁ)ZO, 7) Fermi limit of the Bohn potential foa>0 anda<0.

Equation(9) can be solved for th&®=R,, which yields
whereé=1/N andw=1 in scaled oscillator units. To obtain the minimum energy..=V«(R,). The perturbation series
a zeroth-order starting point we Ist—», i.e.,6—0. Inthis  is then generated by defining a scaled displacement coordi-
limit the derivative term and part of the centrifugal potential nate r, by R=R,,+ 6¥?r and expanding,
drop out and the problem reduces to finding the minimum of
the effective potentialy/:

[’

Eb(r):_}‘,o b,(r)8"%, ?z?w+520 ;6. (11
i= i=

[Ver(Rm) — €]®(Ry) =0, ®)
The first-order equation i@ is harmonic:
VZ(R) 2 + 1_2§2+ » 9)
= — — = 2
MR 2 R? AP e T O AP, 12
2 arz zweffr Uo ¢O(r) EO¢O(r)1 ( )
a [mew Nia [me )
M e Vi 2z Vi (10 €0=(v+3z)weitvo, (13
y — 1 12
Note that this effective potential retains an additional o) = (e ", (weir), (14
term, 9/(8?), compared to the Thomas-Fermi limit of Eq. \yhere
(4). This additional term comes from the centrifugal part of
the effective potential which originates in the kinetic energy. 3 N
The Thomas-Fermi limit of Eq(4) drops the entire kinetic Vo= T = T = (15
energy including the centrifugal potential. Note also that all 2R, Ry
the terms in Bohn's effective potential are included at least
in part. The importance of including a term from the cen- , 27 12

trifugal potential is obvious from Fig. 1, where we compare Weft = i +R?+w2:
our N— effective potentialVeg, fora<0 anda>0 to the moom
Thomas-Fermi limit of Bohn’s potential using the same val-anqh is a harmonic-oscillator solution. This equation de-
ues ofa. In contrast to the Thomas-Fermi potential, 8§  fines the harmonic basis functions that are used to solve the
retains the correct features for both positive and negativgigher_order equations. Note that the harmonic frequency,
scattering lengths. F@>0, Vg gains a repulsive contribu- _, [Eq. (16)], automatically adapts as the trap frequency
tion from the interaction term increasing the strength of theand/or scattering length changes, essentially folding these in-
effective trap, compared to the Thomas-Fermi limit, which isteractions into an effective trap. Thus this first-order equation
too deep. Fora<O0, the competition between the positive provides basis functions that are sensitive to the interplay
centrifugal term, 9/B?, and the negative termA/R3, which  between the trap frequency, and the scattering lengtla,
contains the negative scattering length, creates a potenti&or a<0, wéﬁ shows the gradual “softening” of the effec-
barrier for smallR and a metastable well in oMy, while  tive trap, 3w%r?, due to the attractive potentiah/R®,

for the Thomas-Fermi potential no metastable region existswhich increases ai increase$see Eqs(9) and(10)]. As the

(16)
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TABLE I. Results for ground-state energies in oscillator units,
tabulated in the forrrE/N—%ﬁw for a condensate witla=100
& 2500 bohr andv=200 Hz. We compare our zeroth-order and our con-
’§ verged resultg10th ordey to the results of Bohret al. We also
s compare the Thomas-Fermi limit of the effective Hamiltonian of
= Bohn et al. to our zeroth-order results.
8 1500 -
g N  TF limit of Eq. (4) Zero order Converged Bolet al.
% 500 0.37509 0.83749 0.83732 0.83732
2 1000 0.97643 1.33807 1.33784 1.33783
’g, 500 - 2000 1.76914 2.04852  2.04828  2.04827
B 3000 2.34534 2.58465 2.58443 2.58441
i 4000 2.81462 3.02877 3.02857 3.02855
5000 3.21766 3.41402 3.41382 3.41380
-500 0 1 P 6000 3.57472 3.75759 3.75741 3.75738
Radius (oscillator units) 7000 3.89759 4.06975 4.06958 4.06955
8000 4.19382 4.35719 4.35702 4.35700
FIG. 2. Plots of ourN—« effective potentiaI,Vzﬁ, for a= 9000 4.46857 4.62454 4.62439 4.62436
—27.3 bohr andv=144.6 Hz. The solid curve represents the case o000 4.72555 4.87518 4.87503 4.87500

where the number of particlehl, is just less than the critical num-
ber,N.. The dashed curve shows the case whéreN, resulting
in no metastable region.

sults of Bohnet al., agreeing to five digits(See Table ).
Table | also compares our zeroth-order results to converged

17

TABLE Il. Partial sums for the ground-state energy using
=100 bohr andy=200 Hz for condensates with 500 particles,
t5000 particles, and 10 000 particles in oscillator units, tabulated in
the formE/N— 3% w.

metastable well slowly disappears, the minimum and maxi its. Th tis striki 0 th-ord it
mum of Vg coincide in an inflection point where resufts. the agreement Is striking. Lur zeroth-order resutts

agree to three or four digits with the converged results
responds tav=0 (since wx= azvﬁﬁ/aﬁz), i.e., no effec-  sults, which are obtained from the effective Hamiltonian of
tive trap exists. The resulting critical numbét,, of nega- Bohnet al. [see Eq(4)] by dropping the full kinetic energy

of the remaining potential, are 45% of the converged results

fi 1 at N=500, improving to 97% agreement &t=10000.
N.=0.671 mm,

Gross Pitaevskii equation as well as to the Thomas-Fermi
which is the saméN. obtained by Bohret al. from his ef-  limit of the Gross Pitaevskii equation. See Rgf], Fig. 2)
assume thaN>1 in their alternative derivation dfl, [see term beyond the Thomas-Fermi limit of the Sctirger
Ref. [1], Eq. (4.4)].) This result is also in excellent agree- equation used by Bohst al., a term from the centrifugal
ments[13-16. Figure 2 shows the change in 0df; as the Fermi since the zeroth-order perturbation term is obtained
number of particles changes from slightly beloM; to  from a trivial calculation. The first-order term brings in the
eters that approximate thé.i experiments at Rice Univer- term and adds two more decimal places of accuracy. Table II
sity [12].) shows the extremely rapid convergence to five or six digits
order terms in the centrifugal potential and the atomic intercondensates. This is obtained by a simple summing of the
action term. The external harmonic trap is included entirely

The infinite set of differential equations for tl&q(r) and

the €,; are computed using a linear algebraic method tha
tions h, and represents the displacement coordimass a
matrix in this basis. A recursion relation yields the wave

Order N=500 N=5000 N=10000

9Vl IR?=0. This occurs aR.= (1/5)4(3/2)Y2 and cor- (100.02% of the converged valueThe Thomas-Fermi re-
tive scattering length atoms that can be trapped is found to biacluding the centrifugal potential, and finding the minimum
(Bohn et al. compare their results to the results from the

fective potential.(This is not unexpected since Bolal.  Our zeroth-order equation retains just a single additional

ment with the results obtained from several variational treatpotential. This is an impressive improvement over Thomas-

slightly above this value(For this graph we use trap param- interplay between the trap and the interatomic interaction
Higher-order terms bring in coupling between the higher-by first order and ten or more digits by sixth order for three

in the first-order harmonic equation.

expands thep;(r) in terms of the harmonic-oscillator func-

function and energy coefficienf9]. 0

Ill. RESULTS AND DISCUSSION

of a=100 bohr andv=200 Hz, roughly approximating the

1
2
3
Our results for this one-dimensional problem using values 4
5
JILA 8Rb experiment$2], are extremely encouraging. Our g

0.837 487 821 79
0.837 324 621 72
0.837 323 748 09
0.837 323 665 36
0.837 323 663 03
0.837 323 662 93
0.837 323 662 93

3.414 016 707 69
3.413 825 082 25
3.413 824 807 49
3.413 824 805 36
3.413 824 805 33
3.413 824 805 33
3.413 824 805 33

4.875 183 724 38
4.875 032 178 85
4.875 032 077 37
4.875 032 076 83
4.875 032 076 83
4.875 032 076 83
4.875 032 076 83

converged results, of course, compare quite well to the re
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series rather than Pagaimmation reflecting the excellence ample, for the case of no interaction between the particles

of the ;eroth-order stgrting poi_nt. We obtain similar agreeqa=0), R,,=/3/2(in oscillator unit3, which is the value of
ment with the excitation energies of Botet al. (See Ref.  the uncertaintyAR, for the ground state of a harmonic os-
[1], Fig. 3) By first order our results agree to four or more qjjjator. V% at this minimum is3%w corresponding to an

dlg(I;SurV\\II/tob thoetecr?tina\fi:rsgel?it:eeziunl"tnﬁa?firl13 ?c})?hmalb[iz]\./eral other ideal Bose condensate. Far-0, Ry>\3/2, due to the re-
eff P q pulsive interaction of the particles with a positive scattering

effective potentialg13—-1§ in the literature, which have ) — L
been obtained using variational approaches. Our method€ndth while fora<0, Ry,< y3/2, due to the attractive inter-

which is based on a rigorous perturbation analysis of th&ction of the particles with a negative scattering length.
Hamiltonian with a perturbation parameter oNl/offers the | hUS: the basis set is not only chosen with a frequency that is

ossibility of systematic improvement by including higher- responsive to both the trap frequency and the scattering
grder ter%s. 4 P y gy length, but this basis set is also expanded about a fRint,

which adjusts to changes in these two parameters.
The zeroth-order energ¥,, is quite close to the con-
verged result reflecting the excellent starting point provided
For the model Bose-Einstein Hamiltonian of Bohn, Esry,by theN— - effective potential which retains terms from all
and Greene, this perturbation theory treats the physics in parts of the full effective potential.
very advantageous way. The zeroth-order term takes advan- Most importantly, this I perturbation approach suggests
tage of the Thomas-Fermi limit to simplify the solution for that a newN—o limit, which retains part of the kinetic
large N, but improves on this limit by retaining a term from energy, will provide a much improved limit over the conven-
the centrifugal potential which stabilizes tid—c [limit. tional Thomas-Fermi limit. The extension of this approach to
The first-order equation is harmonic with a frequency thathe Gross-Pitaevskii equation is planned.
reflects not only the trap frequency but also the interatomic

IV. CONCLUSIONS

interaction.
The harmonic-oscillator basis S@tbtained from the first- ACKNOWLEDGMENTS
order equationis expanded about the poiRY, which is the We are grateful to John Bohn and Chris Greene for help-

minimum of theN— o effective potentialVg. This value  ful comments on the manuscript. This work was suported by
of R, is thus sensitive to the balance between the trap pothe U.S. Office of Naval Research, Grant No. N0O0014-96-1-
tential and the interatomic potentipdee Eq.(9)]. For ex-  1029.
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