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Improved large-N limit for Bose-Einstein condensates from perturbation theory

D. K. Watson and B. A. McKinney
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

~Received 9 September 1998!

We present a perturbation solution of a model Bose-Einstein Hamiltonian derived by Bohn, Esry, and
Greene. In our solution we use 1/N as the perturbation parameter, whereN is the number of particles in the
condensate. Ground-state energies are reported for parameters approximating the Joint Institute for Laboratory
Astrophysics87Rb experiments. We predict the critical number of atoms with negative scattering lengths that
can be trapped using the effective trap frequency of the first-order equation. TheN→` perturbation limit,
which retains a single term beyond the conventional Thomas-Fermi limit, gives ground-state energies that
agree to three digits with converged results, thus providing a much improved limit for largeN.
@S1050-2947~99!00305-4#
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I. INTRODUCTION

Using ordinary Schro¨dinger quantum mechanics, Boh
Esry, and Greene@1# have derived effective potentials fo
dilute Bose-Einstein condensates. The many-atom proble
reduced to a linear Schro¨dinger equation by identifying a
single coordinate,R, the mean condensate radius. Bohnet al.
use hyperspherical coordinates to defineR, expand in hyper-
spherical harmonics, and then retain only a single term
this expansion. They refer to this as the ‘‘K-harmonic’’ ap-
proximation following terminology from nuclear theory. Th
resulting one-dimensional linear Schro¨dinger equation gives
quite good results for ground-state energies in a trap roug
approximating the JILA87Rb experiments@2#, faring slightly
better than other variational approaches. Their effective
tential is also able to predict reasonably well the critic
number of bosons with negative scattering lengths that
be condensed, as well as other characteristics of the con
sate such as low-lying excitation frequencies, peak densi
and decay rates from two- and three-body processes.

We chose this model Hamiltonian to test a perturbat
formalism which uses 1/N as the perturbation paramete
whereN is the number of particles in the condensate. T
formalism is analogous to the dimensional perturbat
methods used successfully in many areas of physics@3–8#.
In particular, we use a matrix method developed for atom
systems to solve the perturbation equation@9#. We find that
this perturbation approach takes advantage of the simpl
of the Thomas-Fermi limit which is valid forN large, but
improves on this limit significantly for the zeroth-order sta
ing point by including a single additional term beyon
Thomas-Fermi.

II. FORMALISM

The derivation of Bohnet al. begins with the fullN-body
Hamiltonian:
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whereU int is the two-body atomic interaction potential. A
three-body and higher interactions are ignored under the
sumption of a dilute gas. The mean condensate radius o
atoms from the trap center is
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where we assume all the particles in the condensate are i
tical. The remaining 3N21 coordinates are then given i
terms of hyperangles collectively denoted byV @10#. Using
the transformation (rW1 , . . . ,rWN)→(R,V) and assuming
U int(rW12rW2)5(4p\2a/m)d(rW12rW2), wherea is thes-wave
scattering length, yields a transformed Schro¨dinger equation:
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where L2 is a ‘‘grand angular momentum operator’’@11#.
Expanding in hyperspherical harmonics and retaining
single term results in the final equation
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z5
G~3N/2!

G„~3N23!/2…N3/2 . ~6!

is the effective potential. Bohn and co-workers solve t
equation numerically using aB-spline approach.

In our solution of this equation we use a perturbati
approach where 1/N is the perturbation parameter. We tran
form the equation using scalings that give a stableN→`
limit:

R5N2R̂, v5N24v̂, a5Nâ, E5N23e,

and then change to scaled oscillator units:R̂

5A(\/mv̂)R̄, ê5\v̂ē, which yields
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whered51/N andv̄51 in scaled oscillator units. To obtai
a zeroth-order starting point we letN→`, i.e.,d→0. In this
limit the derivative term and part of the centrifugal potent
drop out and the problem reduces to finding the minimum
the effective potential,Veff

` :

@Veff
` ~R̄m!2 ē #F̂~R̄m!50, ~8!
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Note that this effective potential retains an addition
term, 9/(8R̄2), compared to the Thomas-Fermi limit of E
~4!. This additional term comes from the centrifugal part
the effective potential which originates in the kinetic energ
The Thomas-Fermi limit of Eq.~4! drops the entire kinetic
energy including the centrifugal potential. Note also that
the terms in Bohn’s effective potential are included at le
in part. The importance of including a term from the ce
trifugal potential is obvious from Fig. 1, where we compa
our N→` effective potential,Veff

` , for a,0 anda.0 to the
Thomas-Fermi limit of Bohn’s potential using the same v
ues ofa. In contrast to the Thomas-Fermi potential, ourVeff

`

retains the correct features for both positive and nega
scattering lengths. Fora.0, Veff

` gains a repulsive contribu
tion from the interaction term increasing the strength of
effective trap, compared to the Thomas-Fermi limit, which
too deep. Fora,0, the competition between the positiv
centrifugal term, 9/8R̄2, and the negative term,l/R̄3, which
contains the negative scattering length, creates a pote
barrier for smallR̄ and a metastable well in ourVeff

` , while
for the Thomas-Fermi potential no metastable region exi
s
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Equation~9! can be solved for theR̄5R̄m which yields
the minimum energyē`5Veff

` (R̄m). The perturbation series
is then generated by defining a scaled displacement coo
nate,r, by R̄5R̄m1d1/2r and expanding,

F̂~r !5(
j 50

`

f̂ j~r !d j /2, ē5 ē`1d(
j 50

`

e2 jd
j . ~11!

The first-order equation ind is harmonic:
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and hn is a harmonic-oscillator solution. This equation d
fines the harmonic basis functions that are used to solve
higher-order equations. Note that the harmonic frequen
veff @Eq. ~16!#, automatically adapts as the trap frequen
and/or scattering length changes, essentially folding these
teractions into an effective trap. Thus this first-order equat
provides basis functions that are sensitive to the interp
between the trap frequency,v and the scattering length,a.
For a,0, veff

2 shows the gradual ‘‘softening’’ of the effec

tive trap, 1
2 veff

2 r 2, due to the attractive potential,l/R̄3,
which increases asN increases@see Eqs.~9! and~10!#. As the

FIG. 1. Comparison ofVeff
` for different values of the scattering

length,a. The solid lines are ourN→` effective potential,Veff
` , for

a.0, a50, and a,0. The short dashed lines are the Thoma
Fermi limit of the Bohn potential fora.0 anda,0.
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metastable well slowly disappears, the minimum and ma
mum of Veff

` coincide in an inflection point where

]2Veff
` /]R̄250. This occurs atRc5(1/5)1/4(3/2)1/2 and cor-

responds toveff
2 50 ~sinceveff

2 5]2Veff
` /]R̄2), i.e., no effec-

tive trap exists. The resulting critical number,Nc , of nega-
tive scattering length atoms that can be trapped is found t

Nc50.671A \

mv

1

uau
, ~17!

which is the sameNc obtained by Bohnet al. from his ef-
fective potential.„This is not unexpected since Bohnet al.
assume thatN@1 in their alternative derivation ofNc @see
Ref. @1#, Eq. ~4.4!#.… This result is also in excellent agree
ment with the results obtained from several variational tre
ments@13–16#. Figure 2 shows the change in ourVeff

` as the
number of particles changes from slightly belowNc to
slightly above this value.~For this graph we use trap param
eters that approximate the7Li experiments at Rice Univer
sity @12#.!

Higher-order terms bring in coupling between the high
order terms in the centrifugal potential and the atomic int
action term. The external harmonic trap is included entir
in the first-order harmonic equation.

The infinite set of differential equations for thef̂ j (r ) and
the e2 j are computed using a linear algebraic method t

expands thef̂ j (r ) in terms of the harmonic-oscillator func
tions hn and represents the displacement coordinater as a
matrix in this basis. A recursion relation yields the wa
function and energy coefficients@9#.

III. RESULTS AND DISCUSSION

Our results for this one-dimensional problem using valu
of a5100 bohr andn5200 Hz, roughly approximating the
JILA 87Rb experiments@2#, are extremely encouraging. Ou
converged results, of course, compare quite well to the

FIG. 2. Plots of ourN→` effective potential,Veff
` , for a5

227.3 bohr andn5144.6 Hz. The solid curve represents the ca
where the number of particles,N, is just less than the critical num
ber, Nc . The dashed curve shows the case whereN.Nc resulting
in no metastable region.
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sults of Bohnet al., agreeing to five digits.~See Table I.!
Table I also compares our zeroth-order results to conver
results. The agreement is striking. Our zeroth-order res
agree to three or four digits with the converged resu
~100.02% of the converged value!. The Thomas-Fermi re-
sults, which are obtained from the effective Hamiltonian
Bohn et al. @see Eq.~4!# by dropping the full kinetic energy
including the centrifugal potential, and finding the minimu
of the remaining potential, are 45% of the converged res
at N5500, improving to 97% agreement atN510 000.
~Bohn et al. compare their results to the results from t
Gross Pitaevskii equation as well as to the Thomas-Fe
limit of the Gross Pitaevskii equation. See Ref.@1#, Fig. 2.!
Our zeroth-order equation retains just a single additio
term beyond the Thomas-Fermi limit of the Schro¨dinger
equation used by Bohnet al., a term from the centrifuga
potential. This is an impressive improvement over Thom
Fermi since the zeroth-order perturbation term is obtain
from a trivial calculation. The first-order term brings in th
interplay between the trap and the interatomic interact
term and adds two more decimal places of accuracy. Tab
shows the extremely rapid convergence to five or six dig
by first order and ten or more digits by sixth order for thr
condensates. This is obtained by a simple summing of

e

TABLE I. Results for ground-state energies in oscillator uni
tabulated in the formE/N2

3
2 \v for a condensate witha5100

bohr andn5200 Hz. We compare our zeroth-order and our co
verged results~10th order! to the results of Bohnet al. We also
compare the Thomas-Fermi limit of the effective Hamiltonian
Bohn et al. to our zeroth-order results.

N TF limit of Eq. ~4! Zero order Converged Bohnet al.

500 0.37509 0.83749 0.83732 0.83732
1000 0.97643 1.33807 1.33784 1.33783
2000 1.76914 2.04852 2.04828 2.04827
3000 2.34534 2.58465 2.58443 2.58441
4000 2.81462 3.02877 3.02857 3.02855
5000 3.21766 3.41402 3.41382 3.41380
6000 3.57472 3.75759 3.75741 3.75738
7000 3.89759 4.06975 4.06958 4.06955
8000 4.19382 4.35719 4.35702 4.35700
9000 4.46857 4.62454 4.62439 4.62436

10000 4.72555 4.87518 4.87503 4.87500

TABLE II. Partial sums for the ground-state energy usinga
5100 bohr andn5200 Hz for condensates with 500 particle
5000 particles, and 10 000 particles in oscillator units, tabulate
the formE/N2

3
2 \v.

Order N5500 N55000 N510 000

0 0.837 487 821 79 3.414 016 707 69 4.875 183 724
1 0.837 324 621 72 3.413 825 082 25 4.875 032 178
2 0.837 323 748 09 3.413 824 807 49 4.875 032 077
3 0.837 323 665 36 3.413 824 805 36 4.875 032 076
4 0.837 323 663 03 3.413 824 805 33 4.875 032 076
5 0.837 323 662 93 3.413 824 805 33 4.875 032 076
6 0.837 323 662 93 3.413 824 805 33 4.875 032 076
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series rather than Pade´ summation reflecting the excellenc
of the zeroth-order starting point. We obtain similar agre
ment with the excitation energies of Bohnet al. ~See Ref.
@1#, Fig. 3.! By first order our results agree to four or mo
digits with the converged results of Bohnet al. @17#.

Our Veff
` potential is quite similar in form to several othe

effective potentials@13–16# in the literature, which have
been obtained using variational approaches. Our met
which is based on a rigorous perturbation analysis of
Hamiltonian with a perturbation parameter of 1/N, offers the
possibility of systematic improvement by including highe
order terms.

IV. CONCLUSIONS

For the model Bose-Einstein Hamiltonian of Bohn, Es
and Greene, this perturbation theory treats the physics
very advantageous way. The zeroth-order term takes ad
tage of the Thomas-Fermi limit to simplify the solution fo
largeN, but improves on this limit by retaining a term from
the centrifugal potential which stabilizes theN→` limit.
The first-order equation is harmonic with a frequency t
reflects not only the trap frequency but also the interato
interaction.

The harmonic-oscillator basis set~obtained from the first-
order equation! is expanded about the pointRm which is the
minimum of theN→` effective potential,Veff

` . This value
of Rm is thus sensitive to the balance between the trap
tential and the interatomic potential@see Eq.~9!#. For ex-
an

nc
-

d,
e

,
a
n-

t
ic

o-

ample, for the case of no interaction between the partic
(a50), R̄m5A3/2 ~in oscillator units!, which is the value of
the uncertainty,DR, for the ground state of a harmonic o
cillator. Veff

` at this minimum is3
2 \v corresponding to an

ideal Bose condensate. Fora.0, R̄m.A3/2, due to the re-
pulsive interaction of the particles with a positive scatteri
length while fora,0, R̄m,A3/2, due to the attractive inter
action of the particles with a negative scattering leng
Thus, the basis set is not only chosen with a frequency th
responsive to both the trap frequency and the scatte
length, but this basis set is also expanded about a point,Rm ,
which adjusts to changes in these two parameters.

The zeroth-order energy,E0 , is quite close to the con
verged result reflecting the excellent starting point provid
by theN→` effective potential which retains terms from a
parts of the full effective potential.

Most importantly, this 1/N perturbation approach sugges
that a newN→` limit, which retains part of the kinetic
energy, will provide a much improved limit over the conve
tional Thomas-Fermi limit. The extension of this approach
the Gross-Pitaevskii equation is planned.
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