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Two-atom dark states in electromagnetic cavities
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The center-of-mass motion of two two-level atoms coupled to a single damped mode of an electromagnetic
resonator is investigated. For the case of one atom being initially excited and the cavity mode in the vacuum
state, it is shown that the atomic time evolution is dominated by the appearance of dark states. These states, in
which the initial excitation is stored in the internal atomic degrees of freedom and the atoms become quantum
mechanically entangled, are almost immune against photon loss from the cavity. Various properties of the dark
states within and beyond the Raman-Nath approximation of atom optics are worked out.
[S1050-294{@9)06105-3

PACS numbgs): 42.50.Ct, 42.50.Fx, 42.50.Vk

I. INTRODUCTION sequently, it experiences a random walk in momentum
space, i.e., heating. Due to photon exchange the atom can
Recent advances in cavity quantum electrodynamics havalso interact with and excite its partner in the cavity. These
significantly expanded our understanding of the interactiorprocesses will cease, of course, as soon as the photon escapes
between matter and the quantized electromagnetic[fieR].  the resonator due to cavity losses.
A central topic in these studies is the theoretical and experi- The analysis of this problem shows that, contrary to what
mental investigation of situations in which a single atomone might expect intuitively, the presence of the second atom
interacts with a small number of modes of the radiation fielddoes not simply lead to some quantitative modifications in
in high-Q optical or microwave resonators. In such a settingthe heating and decay process of the first. Rather, it causes
the dynamical behavior of the atom is evidently very differ- qualitative changes in the dynamical behavior of the system.
ent from the free-space situation and one can observin particular, one observes a tendency of the system to settle
phenomena such as inhibited and enhanced spontaneoimso so-called “dark” or “quasidark” states. These dark
emission[3,4] or Rabi oscillations between two electromag- states consist of superpositions of states in which the initial
netically coupled statef5]. A natural extension of these excitation is stored in either atom 1 or atom 2, i.e., entangled
studies concerns the modification of the interaction betweestates of the atoms-cavity system. Due to destructive quan-
two atoms in a cavity environment. As the interatomic inter-tum interferences, these superpositions are completely—or to
action is ultimately mediated by the electromagnetic field,a large degree—dynamically decoupled from the states in
one can expect drastic effects also in this case. The interest phich the photon is present in the cavity. Thus they are
this problem has recently grown, stimulated in part by themmune—or almost immune—to photon decay. Atoms in
remarkable experiments of Ref&] and[7]. For example, these dark states can be thought of as a new kind of “mol-
several recent articles have examined the mutual coherenegule” largely delocalized and bound by the cavity electro-
of the two atomic dipoles under various circumstancesnagnetic field. The focus of the present paper is on an analy-
[8—11]. sis of these dark states, which can be viewed as a
In a further study the modification of the near-resonantgeneralization of the antisymmetric Dicke state of the theory
dipole-dipole interaction between two atoms confined to af superradiance and subradiard@]. To our knowledge,
cavity was investigated in detdil2]. As a main result it was the persistence of the entangled two-atom dark states under
shown that the familiar concept of the dipole-dipole potentialthe influence of the atomic center-of-mass motion has not
ceases to be meaningful under certain circumstances. Theeen previously discussed in the literature.
purpose of the present paper is to continue and extend this Section Il introduces our model and establishes the nota-
work, the emphasis now being put on the investigation of theion. In order to motivate the subsequent analysis, Sec. Ill
actual dynamical behavior of the atoms. In particular, wediscusses some numerical examples that illustrate the role of
examine the atomic center-of-mass motion under the influthe dark states and demonstrate their long-livedness, even in
ence of their interaction with the cavity field. In order to the case of only approximate darkness. Section IV gives a
work out basic aspects of the problem, we concentrate hergetailed analytical discussion of the dark states. We first con-
on the model of a short and closed optical resonator in whiclider the dynamics of the atomic system in the Raman-Nath
the atoms interact exclusively with a single dampedapproximation(RNA), where the atoms are treated as infi-
standing-wave mode of the electromagnetic radiation fieldnitely massive. This allows for a very simple and transparent
An initially excited atom will then spontaneously emit a pho- description of the effect. We then remove this approximation
ton into the cavity mode and subsequently reabsorb it. Conand demonstrate that certain RNA dark states do remain dark
in the exact analysis. The decay rates of the other RNA dark
states are estimated, and the analytical results compared to
*Permanent address: Department of Physics, Beijing Normal Uninumerical calculations. A central result is that even though
versity, Beijing 100875, China. these states are only approximately dark, they still have ex-
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tremely long lifetimes. This should render the existence ofangle¢ characterizes the relative positioning between cavity
the quasidark states amenable to experimental observation,mbde and atomic trap. The coupling constant between the
least in principle. Finally, further remarks and conclusionscavity mode and theith vacuum mode is denotey], .
are given in Sec. V. In discussing the atomic time evolution, we will mostly be
concerned with situations in which the center-of-mass wave
Il. MODEL function is spread out over a region of extensioxlarge in

o L ) comparison to the cavity mode wavelength/R but small
Our objective consists in studying the center-of-mass moj, comparison to the trap length For small enough times

tion of two atoms confined by a trapping potential and interhe exjstence of the trap walls may thus be neglected. Fur-
acting with the electromagnetic field inside a higheavity.  thermore, it is assumed that the initial wave function can be
In order to work out most clearly some of the basic physicalygcribed a well-defined momentum,Pos) and that the
effects observable in this system, we investigate in the folaffects of the(smal) momentum spread around this initial
lowing an idealized model problem. Questions of experimens,5),e may be disregarded. From the fof# of the atom-

tal realizability will be discussed in Sec. V. field coupling it follows that a single-atom state with mo-
We consider the one-dimensional motion of two two—levelmentump is only coupled to states with momema 7ik. In

atoms of mas$/ trapped inside an infinite square-well pPo- ey of our initial condition, we thus introduce the notation

tential V(x) with bounda}ries ak=0 andx=L. The upper |(i1,my), (i2,my),n¢,{n,}) that denotes a state where atpm
and lower internal atomic stat¢s) and|g) are separated in L35 internal staté, and momentuntj;+m;#k with integer
energy by an amount dfw,. The atoms which are treated as , Thereby, go;= mod(po; 7ik), i.e., 0<qo;<fik. The

distinguishable are also placed inside a short and closed eleﬁdm
tromagnetic cavity that is aligned with the atomic trap along
the x axis. We assume the cavity characteristics to be such |, c55e only one excitation is present in the system and

that the atomic interaction with the cavity field can be de-ihin the realm of validity of the above approximations, the

scribed as a coupling to a single mode. In particular, Spontggenera| expression for the system state vector is thus given
neous photon emission into directions other thanthgis is |

disregarded. On the other hand, the damping of the relevamy

cavity mode due to its coupling to the electromagnetic

vacuum outside the resonator is taken into account. Based on | ¥(t))= E Cl,m,n(t)|(e,m),(g,n),O,{OM}>
this description, the Hamiltonian of the system is mn

ber of photons in the cavity and the vacuum moge'
re denotedh; andn,,, respectively.

H=Ha+H+H,+Heat Her, (1) +Comn(t)(g,m),(e,n),0{0,})

+
whereH,, H., andH, are the free Hamiltonians of the Camn(D)](9:M).(9,1),1{0,})

atoms, the cavity mode, and the vacuum modes, respectively.

They are given by + 2 Camn,u(D](9,M),(9,0),0{1,}){. (6)
I
2 [ 2
Pj ° T We now proceed to eliminate the reservoir degrees of free-
H,= L V(X)) +hwgolo |, 2 P 9
a ,§=:1 oM V() ooy @ dom in the system equations of motion with the help of the

Born-Markov approximation. This introduces an exponential
decay ratex/2=|g,|* and a frequency shifi. in the dy-
w ) namics of the amplitude€;, ,. For the following, we in-
corporate this shift into the detuninly between the atomic
Here,f)j is the center-of-mass momentum éqdhe position ~ resonance and the cavity frequency and work in the interac-
of the jth atom along thex axis. The atomic pseudospin tion picture with respect tay,. The effective Hamiltonian
operatorss; are defined byr;=|g,j)(e,j|. The annihilation time evolution of the system before the photon escapes the
operators for the cavity mode and the vacuum modes ar@@vity is then determined by
denoteda, anda,, , respectively, and the mode frequencies
arew; andw, . The interaction of the cavity mode with the
atoms and with the vacuum modes is described by the terms
H., andH¢,. In the dipole and the rotating-wave approxi-
mation, they read

Ho=fhwala,, H,=2 ho,ala
“

- g
iC 1mn=— wm,ncl,m,n + E ( C3,m+ 1nt C3,mf 1,n) ) (7

- g
’ |C2,m,n:wm,nc2,m,n+ E(C3,m,n+1+c3,m,n—1)a )]
Hea= 121 figcogkx;+ ¢)(o]ac+ojal), (4)

= L . g
|C3,m,n:(wm,n+A_|K/Z)CB,m,n+ E(Cl,m+1,n

He =2, fi(g*ala,+g,a.al), 5
¢ ; (948c2,+ 0,2c2,) ® +Cim-1ntComnr1TComn-1) 9
whereg= (% w/2s0L )" denotes the atom-cavity coupling with

constant withL. the cavity length. For a planar cavity the

mode profile is cosine-shaped with wave vedtofhe phase wmn=[(dor+ Mk K)2+ (Qoo+ nk)?)/(2AM)  (10)
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describing the influence of kinetic energy. From E@3-(9)  can change by an amount of 0 ofiR The change depends
one notices a further selection rule. For example, the set adn whether the photon is emitted into and absorbed from the
coefficientsC, , ,, with m,n both even, are only coupled same running wave mode or not. Successive cycles thus lead

among each other and @, n», m’,n’ odd andCzpyr to an atomic momentum spread, i.e., heating.

m” odd, n” even. Note also that Eqé7)—(9) can be written This is illustrated in Fig. 1, which shows momentum dis-
independently of the phase angje In the following we set tributions Pm(T):lcl,m(T)|2+ |C21m(7')|2 derived from Egs.

A =0 for convenience. (12) and(13) as a function of the discrete momentum index

Another interesting situation arises if one takes the exism and the dimensionless timer=wd, With o
tence of the atomic trap boundaries fully into account. In this=%k?/(2M) being the recoil frequency. These distributions
case it is convenient to expand the center-of-mass wavilustrate the effective Hamiltonian time evolution of the
functions in terms of the eigenfunctions of the atomic Hamil-atom before the photon escapes the cavity, governed by the
tonian (2), i.e., 2 singrgx;/L)sin(arx,/L)/L, q,r=1, which  non-Hermitian Hamiltonian
can be thought of as specific superpositions of momentum
states with opposite wave vectors. In general, the coupling
termH . introduces transitions from a single-particle eigen- _ e Kot
state3® = 2IL sin(mox /L)|g(e)) to an infinite number of Her=Hat Hot Heamlh 52020, (14
other statesng(,g). Simple selection rules follow if one has

k=Nm/L with N a positive integer ané=0. Under these 4 anqH_, referring now to a single two-level atom. The
conditions one obtains couplings only between the singlenjtia conditions for the wave function were chosen as

atom wave functions Cim=68mo» Com=0, andqe=0. Figures 1a) and b) dis-
ogdle el gt yels Lyl play the case of a lossless cavity=£0) and a dimensionless
2N-q N-q" " %q q+N" " ¥g+2N atom-cavity coupling constaf? = g/2w,.=50. In Fig. Xa),

11 A
D the influence of the kinetic energy temp?/2M is neglected

with 1<g<N. The coupling coefficients are all equal be- (the Raman-Nath approximatipand the momentum spread
sides the one betweepy_, and ¢, which is of the same ~grows linearly in time at a rate proportlonal fdr. This
magnitude but of opposite sign. After suitable identificationsshould be compared to Fig(H), which is for the full model

the equations of motion for the probability amplitudes of theincluding the kinetic energy terms. This illustrates the well-
two-atom system can thus be cast into a form identical t&known fact that the RNA is only valid for short enough
Egs. (7)—(9) apart from this sign peculiarity. An important times. Due to the increasing mismatch between the photon
special case in the coupling scheme of expresgidnarises ~ €nergy and the atomic energy increment accompanying a
if g=N. Under these circumstances the sequence terminaté@oton absorption, the width of the momentum distribution
at ¢, the part to the left of it being obsolete. This special €ventually stops growing and begins to oscillate. The effects

case is of particular importance in the discussion of exac®f cavity damping are illustrated in Figs(cl and Xd),
dark states beyond the RNA. which again compare the momentum distributions in the

RNA and the full model, but for a moderate cavity damping
rate «'=«klw,=20, i.e., k'/Q2=0.4. In this case the
excited-state population is damped on a time scale approxi-
In order to set the stage for the two-atom problem, let usnately given by 4’}
first take a brief look at its one-atom counterpart. With the We now turn to the two-atom situation, with the goal of
help of the procedure used to derive E(B&—(9), we can determining how the previous results are modified when we
obtain a similar set of equations for the one-atom system, insert a second atom into the cavity. The dramatic changes
brought about under these circumstances are illustrated in
Figs. 2a)—2(d), which show results of the numerical integra-
tion of Egs.(7)—(9). They depict the momentum distribution
of the first atom before the photon escap!Y(7)
. _ g =3i_123n/Cimn(7)|?, as a function ofm and 7 in both the
ICom=(0m+A—ik/2)Comt 5(Comist Com-1), RNA and the full model, and in the absence or presence of
(13) cavity losses. The initial conditions were chosen such that
both atoms are at rest but atom 1 is in the excited state, atom
where the notations used here are defined in parallel to thogkis in the ground state, and no photon is present in either the
for the two-atom case. In particular, we now havg=(q, Cavity or the vacuum modes, i.e.,
+m#k)2/(22M). The excited and ground state amplitudes
are denoted; andC,, respectively. Equationd.2) and(13)
are very similar in structure to those used in the discussion of
near-resonant scattering of two-level atoms from a standing-
wave laser field 14]. Physically, they describe the atomic
momentum spread during the interaction with the cavity it should be noted that for large cavity dampirgs (/2 the
mode. If we imagine the standing-wave mode as being comdecay rate of the excited state population goes to zero. This stabi-
posed of two counterpropagating running waves, we see th#itation effect, however, is different in nature from the two-atom
during an emission-absorption cycle the atomic momentunalark states discussed below.

IIl. NUMERICAL RESULTS

- g
|C1,m:wmcl,m+ E(CZ,m+1+C2,m—1)a (12

G ,m,n(t =0)=4 ,15m,05n,0 (15
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20

FIG. 1. Time evolution of the single-atom momentum distributiypfor parameter values =0, (2 =50. Initially, the atom is at rest in
the excited state, and no photons are in the cavity and the vadauRNA and«’ =0, (b) full model and«’ =0, (c) RNA but x' =20, (d)
full model andk’=20.

and pg;=pox=0. The atom-cavity coupling is again set to m=0. It also indicates that the RNA is a valuable tool in the
0 =50. As a consequence of the selection rules mentioned iimterpretation of the two-atom behavior.

Sec. Il, one has for these initial conditions The study of the momentum distribution in the presence
of cavity lossegFigs. Zc) and Zd), again withx’ =20] also

P(l)ZE ICymnl? yields a surprising result. One finds again that only a small

mo4 mn number of modes are significantly populated. But in addi-

tion, and in contrast to the one-atom case, after an initial
for m even and transient evolution the total atomic population decays only
very slowly, i.e., the photon escape from the cavity is
strongly inhibited by the presence of a second atbmfact,
the time evolution of the distribution still bears a strong simi-
larity to the lossless case. Furthermore, the RNA yields a
for m odd. Figures @) and 2b) display the case of the good approximation to the full model also in the presence of
lossless cavity. One can recognize two main qualitative diflosses. A further increase of the cavity damping rate only
ferences from the corresponding Figga)land 1b). First, leads to minor changes in the behavior of the momentum
the momentum distribution no longer spreads significantlydistribution.
rather, it remains concentrated in the central méde, m A closer look at the long-time behavior is provided in Fig.
—0) and a small number of side modes. The other mode8. There, the total probabilit == ,,P*) of finding the ex-
remain almost unpopulated. Second, the comparison betweeitation in the cavity(curve 1 is shown for the RNA@& and
the RNA and the full model results shows that the influencehe full model (b). The parameter values are chosen as in
of the kinetic energy terms now is much smaller than in theFigs. 2c) and Zd). After a rapid initial transient, the prob-
one-atom case. Contrary to Figgajland Xb), for the time  ability P reaches a constant value in the RNA, whereas it still
considered they only lead to some quantitative modificationslecays slowly in the full model. The curves 2 and 3 show
but not to a qualitative change. This property is of course dughe time evolution of |Cy¢?+|Cyg=2/?+|Ci22d?
to the concentration of the momentum distribution around+|C2,i1,i1|2 (i.e., the central and the most highly populated

Pﬁnl) = ; |C2,m,n|2+ |C3,m,n|2
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FIG. 2. Time evolution of the momentum distributiaﬁ}) for the first atom in the two-atom problem. Initially, both atoms are at rest and
atom 1 is excited; no photons are in the cavity and the vacuum. Parameter values and use of RiNAdbare the same as in Fig. 1.

side modesand of|Cl,0,0|2 alone, respectively. These curves _ nol a2 g2

again demonstrate that the spread in momentum is strongly iCs=| — Ml o2t 2 +A—-ik/2|C3

suppressed. IxXy  IX3
+g[cogkx;)Cq+cogkx,)C5]. (18

IV. TWO-ATOM DARK STATES

The results of Figs. 2 and 3 indicate that the atomic UM, the first special case discussed in Sedi.d., the atomic

evolution is characterized by the appearance of dark states ve packet well localized inside the tyaese equations

WE!CE havel the t".“t'al exctltatlon_tstgred In thle tai:t_oms ?.ndhave to be solved in the domainsx;,X,<2x/k and the
which are almost immune to cavity damping. In this section_ | -0 e o the form

a detailed analysis of these dark states is given. Before turn-
ing to the full problem, we first work in the RNA, which was
shown to provide a useful approximate description. Ci= explipoX;+ipoX2)Ci (19

A. Two-atom dark states in the Raman-Nath approximation

In order to investigate the dark states, it is convenient towith C, fulfilling periodic boundary conditions. In the second

work also in the position-space representation. The equationcsase(trap conditions taken fully into accoynbne has to

of motion for the position-dependent probability amplitudesconSider solutions with vanishing Dirichlet boundary condi-
Ci(Xy,%,,1) read tions in the domain &x4,X,<L.
i\AL1, A2,

In the RNA, i.e., after discarding the spatial derivatives,

_ w2 2 Egs. (16)—(18) decouple spatially and can be solved imme-
iC,=— W(_Z +—2) C,+gcogkx;)Cs, (16 diately. At a given point X;,X,) they form a homogeneous
IxXy X3 linear 3x 3 system of ordinary differential equations the ei-
genvalues of which are given by
iC h 7 + i C,+gcogkx,)C (17
AT “ \1=0, (20)
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FIG. 3. Time evolution of the total probabilit?(7) to find
the excitation in the cavity(curve 3, of |Cyd?+|Cio-2|?
+]Cp1202+|Corq41]? (curve 2, i.e., the central mode and the
most highly populated side modes, and @f 42 alone(curve 3.
The parameter values afe=0, (=50, ' =20. (a) RNA, (b) full
model.

)\2’3: - K/4_ i A/Z

W

2

% i % — g2 co(kxy) + co2(kxy) .

(21)

[cog(kx,)+co(kxy)] t
A; cog(kx,) — A, cog kx;)cog kXy,)
x| —A;cogkx;)cogkxy)+ A, co(kxs,)
0
(23

Note that this state isot normalized, a result of the fact that
some of the initial excitation has irreversibly escaped from
the cavity into the reservoir.

Expression(23) shows that the asymptotic state does not
have a contribution from the initial amplitud&;, and fur-
thermore the final amplitude in the third channel where the
photon is present in the cavity vanishes. On the other hand, if
a state has nonvanishing contributiofdig or A, it will al-
ways evolve into a dark state unles#\jcoskx,)
=A,coskx). The time scale to reach the dark state is deter-
mined by the eigenvalues, and ;.

From Eqgs.(16)—(18) or Eq. (23) it follows that a given
state is a dark state if and only if it is of the form

cogkX,)
A(Xy,Xp)| —Ccogkxy) (24
0

and, in addition, it fulfills the appropriate boundary condi-
tions. The stat€24) can be viewed as a generalization of the
dark state in the Dicke theory of subradiance and superradi-
ance[13].

In the following discussion we concentrate on the case of
localized atoms in the sense of Sec. Il. If one substitutes for
the function A of expression(24) the set of plane waves
exp(goiX1+iqoxX2) exdimkx +i(n+1)kx,], one obtains a
family of dark stateg|d,,)} which have a simple structure
in momentum space, i.e.,

|dmm = 3[](€,m),(g,n))+|(e,m),(g,n+2))
—[(g,m+1),(e,n+1))—|(g,m—1),(e,n+1))],
(25

where we have omitted the occupation numbers of the pho-
ton modes in the notation of the ket vectors for simplicity.

The existence of the eigenvalidg whose real part vanishes The dark statesdn,,) are truly entangled states. Since all

independently of the values af, x,, andk ensures that an

permissible functiong\ can be expanded onto the indicated

excitation initially present in the system has a finite probabil-Sét of plane waves, the familjd,,,)} forms a basis of the

ity of remaining in it in the limitt—oc. In particular, if the
atomic wave function is given at tinte=0 by

|h(X1,%2,0)) =A1(X1,X5)|€,9,0{0,})
+Ay(X1,%2)|0,6,0{0,})
+As(X1,%2)|9,9,140,.}), (22

then the asymptotic state reached by the “atomsavity

“dark” subspace of the total Hilbert space. However, this is
not an orthogonal basis as a givieh,,) has a nonvanishing
scalar product with four othdd /).

Of particular interest in our context is the question of how
to characterize the asymptotic stéfe?’99'®) associated with
a given initial statg(e/g,m),(g/e,n)). Its coordinate repre-
sentation can be inferred immediately from HG3), but
further insight into the nature of the state can be obtained
from its momentum distribution. Equationd)—(9) show
that it is sufficient to study this question for the stéBeEg),
since the distributions for the other states can be obtained by

mode” system is characterized by the probability amplitudesa suitable shift of indices. In coordinate space the $@a§§)

(arranged as a column vector in a self-evident way

is represented by



4018

[cog(kx;)+ coF(kxy)] 1
X (cog(kx,), — cog kx;)cogkx,),0)". (26)
Its momentum-space amplitudes
Cumn={(elg,m),(g/e,)| DS

are determined by
k 2m/k (ke 4 1k
C"m'“zﬂf jo dx,dx, e~ Mkt nkox)

fi(xq,%2)
cog(kx;) + cog(kxy)

(27)

with f;= cog(kx) andf,= — coskx)coskx,). As discussed
in Sec. Il,C1(2)mn# 0 only form,n both even(odd). Evalu-
ating the integral$27) one finds that the amplitudes o,
m=0, are given by

|
C1,2m,0™~ 5m,0+ E(I mt1 m—1)- (28

where the numberk,, satisfy the recurrence relation

|m:%[(—1)m‘14i —(6m=3)I_1—(M=1)I 5]
(29
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remember that the dark state into which a given initial state
evolves is not normalized—we must have that

ID58)=ID5§)(D58l (€,0),(9,0).
Comparing coefficients one obtains that

(D53lDGgy=0.5, (33
i.e., the system has a 50% probability to be trapped in that
dark state. Using the Gram-Schmidt orthogonalization

scheme to construct frofg, ) a state orthogonal tD&g)
leads to the conclusion that

<Dg1,n| D88>: Ck,m,n

with k=1(2) if c=eg(ge), i.e., the asymptotic dark states

are nonorthogonal, in general. Equatiq@8) and (34) can

be verified by evaluating the scalar product in position space.
From Egs.(28)—(33) it can be inferred that 50% of the

population of the dark state is trapped in the state

|(e,0),(g,0)), while the stateg(i,m),(j,n)) with |m|+|n|

<2 (4) hold 91.3%(96.3% of the population. This observa-

tion explains the localization of the momentum distributions

in Figs. 2 and 3.

(34

B. Exact and approximate dark states in the full model

Turning to the full model described by Eq&)—(9) or
Eqgs.(16)—(18), i.e., taking the kinetic energy terms into ac-

andl,=1_,=im/2. Further relations between the amplitudesCount, it becomes apparent that, in general, the staigs

Ci.mn are given by

CimntCim+znt Com+1n+1 T Comi1n-1=0, (30
CimnTCimn+2~Com+1n+1~Com-1n+1

=m0l On 0t On,—2), (31)

Ci,mn=Ci,xm,=n (32

with m,n both even in Eqs(30) and(31). Equation(30) is a
direct consequence of E() whereas Eq(31) follows from
the relation

|doo)=(|Dgg) + Do) — D35y — DS p)/2.

With the help of Eqs(28)—(32) all amplitudesc; ., , can be

and|D ., are no longer exactly dark. By “exactly dark” we
mean being an eigenstate of the full Hamiltonian with a
purely real eigenvalue. It is therefore natural to ask whether
the full model sustains exact dark states at all. Interestingly,
a complete answer to this question can be given for both
cases discussed in Sec. Il, i.e., for atoms localized well inside
the trap and for atoms experiencing the trap boundaries. In
the first situation there are precisely two exact dark states,
which are given by

|D1)=1dg_1)=(cogkxp),—cogkx;),00" (35
and
|D,)= sin(kx;)sin(kx,)(cogkx,), —cogkx;),0)"
=[d_10—ldyo+[di-2)—[d_1 ). (36)

calculated iteratively. In this way, one obtains, for example,

Cl,O,OZ 1/2,
Coepe1=m—1/2~—0.1817,

Cl,tZ,O: - Cl,O,iZZ 1/2— 2/7~ —0.1366.

Dark states thus appear only if the atomic momenta involved
are integer multiples ofk, i.e., if gg;=0qp,=0. For the sec-
ond case, in which the atomic wave functions extend over
the whole length of the trap, it can be shown that exact dark
states can only exist if in the cavity mode function of E4).
k=aN/L with integerN=1 and¢$=0. Under these condi-
tions there is precisely one such state which, in the coordi-

An interesting way to determine the scalar productsnate representation, is given by the first line of E2f).
(DmnlDod) with o=eg or ge proceeds as followgthe For proof of uniqueness of these dark states one can start
method can also be used to derive E3f)]. The asymptotic  from the observation that also in the full model exact dark
state|Dgg) into which|(e,0),(g,0)) evolves is uniquely de- states have to be of the for24). Additionally, they now
termined. Any state in the “dark subspace” orthogonal tog|so must be eigenfunctions 0p{+ p2)/2M under the ap-
|Dgg) must have vanishing overlap witte,0),(9.0)). If we  propriate boundary conditions. One then expands both
denote by |Dgd) the state |Dgg) after normalization— A(X3,X;) and A(Xi,Xp)coskxy;) onto a suitable set of
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eigenfunctions. The fact that in the expansion of 10 @
A(Xq,X5)coskxy0) there should only appear terms of the

same energy imposes severe restrictions on the possible ®
forms for the expansion oA(x;,X,). These requirements (©

can only be met in the cases indicated. For the situation in 081 .

which the atoms extend over the whole trap, the breakoff of
the coupling scheméll) if g=N (as outlined at the end of
Sec. I) turns out to be crucial for the existence of the dark
state.

These considerations imply that most dark states found in
the RNA become unstable in the full model since they are
orthogonal to the exact dark states, in general. The numerical 04
results of Sec. Ill suggest, however, that the corresponding 0.0 10 20 3.0
lifetimes are still very long so that these states may be re- T
garded as “quasidark.” The examples shown referred to FIG. 4. Total survival probability( ) for initial states|dy,) in
cases in which),«'>1, which is the relevant situation in the full model under various conditions. Parameter val{@sm
practice as discussed in Sec. V. Under these conditions onen=0, «’'=20, 0=50; (b) m=n=0, «'=100, Q=50; (c) m
may treat the kinetic energy terp{+p3)/2M as a small =n=0, x'=20,2=25;(d) m=0, n=2, ' =20, 2=50.
perturbation to the RNA Hamiltonian. Applying standard
perturbation theory, one obtains an imaginary correction tmew kind of “molecule” bound by the quantum of excitation
the RNA dark state eigenenergies only in second ordetthat they share. The state of the compound system can con-
which already indicates that these states will be long-lived. Areniently be described in terms of a superposition of differ-
crude estimate of the second-order imaginary part shows thaint states of well-defined center-of-mass momentum. A re-
the statd D(d),,) acquires a finite decay rate that is of the markable characteristic feature of the dark states is their
order of small momentum spread, as compared, e.g., to the one-atom

o situation. This property makes their description in the

I = wred M+ 1?%)2k" Q2. (37  Raman-Nath approximation quite accurate. While most dark

states become only “quasidark’ when this approximation is

Thereby,m andn have to be understood as typical values ofremoved, their damping rate remains quite long indeed.

m andn appearing in the expansion into center-of-mass mo- When considering the possible practical realization of
mentum states. The estimd®¥7) assumes that’ is not too  these states, an interesting question concerns the influence of

large in comparison t@) so that the square root in expres- a nonconstant atomic trapping potential on the time evolu-

sion (21) is essentially imaginary. tion of the dark states. If the trapping potentials can be ar-

Hence, consistent with the numerical calculations, we findanged to be equal for ground and excited states, then one
that the lifetime of the “quasidark states” is long compared can still obtain dark states in the RN#or the full model it

to wr—eg under the conditio),x’> 1. Furthermore, our esti- can be anticipated that exact dark states will not exist any

mate implies that the decay rate increases rapidly for increadonger, in general If, as is normally the case, these poten-
ing m,n. This is as can be expected, since under these citials differ from each other, even the RNA will not support
cumstances the dephasing between the different momentufidrk states. However, as E4$6)—(18) show, in the vicinity
eigenstates becomes faster. The dependence’mﬂd [9) of the |inex1:X2 the decay will be Significantly decelerated
suggests that the Coup“ng to the decay channel becomé&® that a remnant of the dark-state effect mlght still be visible
more efficient whenx’ is increased an€ decreased. Figure under such circumstances. _ _

4 shows the decay of the dark stales,,) for various values Let us _c_onclude with a brief discussion of the experimen-
of (m,n), «’, andQ. Their evolution qualitatively confirms tal feasibility to observe such two-atom dark states. Recent
curve(a) should be compared to curvés, (c), and(d) asin ~ main are described, e.g., in Ref§,15,14. They typically

each one of these one relevant parameter is changed in cofivolve a low-density atomic beam passed through the elec-
parison to(a). tromagnetic resonator, a situation that can be modeled in

terms of the localized wave packet description of Sec. Il. In
these experiments the residual spontaneous atomic decay rate
v in the cavity (due to coupling to vacuum modes ap-

In this paper we have investigated the dynamics of twgoroximately one order of magnitude smaller than the cavity
two-level atoms coupled to a single damped mode of arRabi frequencyg and damping rat&, which are both com-
electromagnetic resonator, including the effects of photorparable in magnitude. A single-mode description is thus ad-
recoil. We concentrated on the situation where one quanturaquate and our systeffonce prepared in the initial state
of excitation is initially present in the system. A generic would have enough time to coherently evolve into a dark
feature of the atomic evolution is the appearance of darlstate. Furthermore, the recoil frequenay,. is also very
states. These states, in which the excitation is stored in themall in comparison tg and « (typically less than a factor
internal atomic degrees of freedom, are almost immune tof 10~ %) so the RNA should provide a very accurate descrip-
photon decay from the cavity. When in a dark state, the twdion. In an experimental realization a main difficulty would
atoms become quantum mechanically entangled and form eertainly consist in efficiently preparing the initial system

P(z) @

V. SUMMARY AND CONCLUSIONS
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state. From this point of view, the optical regime does notatoms leaving the cavity in the excited state. In order to

appear as promising as the microwave regime: First, due tobtain more information about the nature of the dark state,

the short free-space spontaneous lifetime of optical transiene could, for example, additionally observe the spatial

tions, the atoms probably could not be prepared in the exatomic density distribution.

cited state before they enter the cavity. Second, if they are Note added in prooin a recent publication, M. B. Plenio,

both simultaneously excited inside the cavity, the probabilitys £, Huelga, A. Beige, and P. L. Knight, Phys. Rev5%

of coupling to the dark state is relatively low. 2468(1999 discuss the closely related problem of a cavity-
An experiment involving a microwave cavity might pro- |pss-induced generation of entangled states. However, their

ceed as follows. Diatomic molecules in a low-intensity beampaper ignores the role of the atomic center-of-mass motion.
are dissociated such that the two fragments are of nonvan-

ishing opposite spin. The atoms can thus be separated in an
inhomogeneous magnetic field. One atomic beam is subse-
guently prepared in the Rydberg ground state, the other one
in the excited state. Using atom optical elements, the two We have benefited from numerous discussions with Dr.
beams are guided such that they intersect each other in the V. Goldstein and M. G. Moore. G.J.Y. gratefully ac-
microwave cavity(at a small angle As the molecular disso- knowledges support from the Chinese Scholarship Commit-
ciation creates atom pairs, it should be possible to arrangeee and the National Science Foundation of China under
the setup so that both partners pass the cavity simultaneoudBroject No. 19774013. This work was also supported by the
with high probability. The experimental parameters shouldJ.S. Office of Naval Research under Contract No. 14-91-
be chosen such that a single atom always leaves the cavity 205, by the National Science Foundation under Grant No.
the ground state. The signature of the formation of a darPHY95-07639, by the U.S. Army Research Office, and by
state would consist in detecting an appreciable fraction othe Joint Services Optics Program.
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