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Two-atom dark states in electromagnetic cavities
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Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

~Received 14 November 1998!

The center-of-mass motion of two two-level atoms coupled to a single damped mode of an electromagnetic
resonator is investigated. For the case of one atom being initially excited and the cavity mode in the vacuum
state, it is shown that the atomic time evolution is dominated by the appearance of dark states. These states, in
which the initial excitation is stored in the internal atomic degrees of freedom and the atoms become quantum
mechanically entangled, are almost immune against photon loss from the cavity. Various properties of the dark
states within and beyond the Raman-Nath approximation of atom optics are worked out.
@S1050-2947~99!06105-3#

PACS number~s!: 42.50.Ct, 42.50.Fx, 42.50.Vk
a
io

er
m

el
ng
r-
r
e
g-
e
ee
er
ld
s
th

en
e

an

tia
T
th
th
w
flu
to
e
ic
ed
ld

o-
o

um
can
se

capes

hat
tom
in

uses
em.
ettle
k
itial
led
an-
r to
in

re
in
ol-

ro-
aly-

a
ory

nder
not

ota-
. III
le of
n in
s a
on-
ath
fi-
ent
ion
dark
ark
d to
gh
ex-

n

I. INTRODUCTION

Recent advances in cavity quantum electrodynamics h
significantly expanded our understanding of the interact
between matter and the quantized electromagnetic field@1,2#.
A central topic in these studies is the theoretical and exp
mental investigation of situations in which a single ato
interacts with a small number of modes of the radiation fi
in high-Q optical or microwave resonators. In such a setti
the dynamical behavior of the atom is evidently very diffe
ent from the free-space situation and one can obse
phenomena such as inhibited and enhanced spontan
emission@3,4# or Rabi oscillations between two electroma
netically coupled states@5#. A natural extension of thes
studies concerns the modification of the interaction betw
two atoms in a cavity environment. As the interatomic int
action is ultimately mediated by the electromagnetic fie
one can expect drastic effects also in this case. The intere
this problem has recently grown, stimulated in part by
remarkable experiments of Refs.@6# and @7#. For example,
several recent articles have examined the mutual coher
of the two atomic dipoles under various circumstanc
@8–11#.

In a further study the modification of the near-reson
dipole-dipole interaction between two atoms confined to
cavity was investigated in detail@12#. As a main result it was
shown that the familiar concept of the dipole-dipole poten
ceases to be meaningful under certain circumstances.
purpose of the present paper is to continue and extend
work, the emphasis now being put on the investigation of
actual dynamical behavior of the atoms. In particular,
examine the atomic center-of-mass motion under the in
ence of their interaction with the cavity field. In order
work out basic aspects of the problem, we concentrate h
on the model of a short and closed optical resonator in wh
the atoms interact exclusively with a single damp
standing-wave mode of the electromagnetic radiation fie
An initially excited atom will then spontaneously emit a ph
ton into the cavity mode and subsequently reabsorb it. C

*Permanent address: Department of Physics, Beijing Normal U
versity, Beijing 100875, China.
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sequently, it experiences a random walk in moment
space, i.e., heating. Due to photon exchange the atom
also interact with and excite its partner in the cavity. The
processes will cease, of course, as soon as the photon es
the resonator due to cavity losses.

The analysis of this problem shows that, contrary to w
one might expect intuitively, the presence of the second a
does not simply lead to some quantitative modifications
the heating and decay process of the first. Rather, it ca
qualitative changes in the dynamical behavior of the syst
In particular, one observes a tendency of the system to s
into so-called ‘‘dark’’ or ‘‘quasidark’’ states. These dar
states consist of superpositions of states in which the in
excitation is stored in either atom 1 or atom 2, i.e., entang
states of the atoms-cavity system. Due to destructive qu
tum interferences, these superpositions are completely—o
a large degree—dynamically decoupled from the states
which the photon is present in the cavity. Thus they a
immune—or almost immune—to photon decay. Atoms
these dark states can be thought of as a new kind of ‘‘m
ecule’’ largely delocalized and bound by the cavity elect
magnetic field. The focus of the present paper is on an an
sis of these dark states, which can be viewed as
generalization of the antisymmetric Dicke state of the the
of superradiance and subradiance@13#. To our knowledge,
the persistence of the entangled two-atom dark states u
the influence of the atomic center-of-mass motion has
been previously discussed in the literature.

Section II introduces our model and establishes the n
tion. In order to motivate the subsequent analysis, Sec
discusses some numerical examples that illustrate the ro
the dark states and demonstrate their long-livedness, eve
the case of only approximate darkness. Section IV give
detailed analytical discussion of the dark states. We first c
sider the dynamics of the atomic system in the Raman-N
approximation~RNA!, where the atoms are treated as in
nitely massive. This allows for a very simple and transpar
description of the effect. We then remove this approximat
and demonstrate that certain RNA dark states do remain
in the exact analysis. The decay rates of the other RNA d
states are estimated, and the analytical results compare
numerical calculations. A central result is that even thou
these states are only approximately dark, they still have
i-
4012 ©1999 The American Physical Society
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PRA 59 4013TWO-ATOM DARK STATES IN ELECTROMAGNETIC CAVITIES
tremely long lifetimes. This should render the existence
the quasidark states amenable to experimental observatio
least in principle. Finally, further remarks and conclusio
are given in Sec. V.

II. MODEL

Our objective consists in studying the center-of-mass m
tion of two atoms confined by a trapping potential and int
acting with the electromagnetic field inside a high-Q cavity.
In order to work out most clearly some of the basic physi
effects observable in this system, we investigate in the
lowing an idealized model problem. Questions of experim
tal realizability will be discussed in Sec. V.

We consider the one-dimensional motion of two two-lev
atoms of massM trapped inside an infinite square-well p
tential V(x) with boundaries atx50 andx5L. The upper
and lower internal atomic statesue& and ug& are separated in
energy by an amount of\v0. The atoms which are treated a
distinguishable are also placed inside a short and closed
tromagnetic cavity that is aligned with the atomic trap alo
the x axis. We assume the cavity characteristics to be s
that the atomic interaction with the cavity field can be d
scribed as a coupling to a single mode. In particular, spo
neous photon emission into directions other than thex axis is
disregarded. On the other hand, the damping of the rele
cavity mode due to its coupling to the electromagne
vacuum outside the resonator is taken into account. Base
this description, the Hamiltonian of the system is

H5Ha1Hc1Hr1Hca1Hcr , ~1!

where Ha , Hc , and Hr are the free Hamiltonians of th
atoms, the cavity mode, and the vacuum modes, respecti
They are given by

Ha5(
j 51

2 S p̂ j
2

2M
1V~ x̂ j !1\v0s j

†s j D , ~2!

Hc5\vcac
†ac , Hr5(

m
\vmam

† am . ~3!

Here,p̂ j is the center-of-mass momentum andx̂ j the position
of the j th atom along thex axis. The atomic pseudospi
operatorss j are defined bys j5ug, j &^e, j u. The annihilation
operators for the cavity mode and the vacuum modes
denotedac andam , respectively, and the mode frequenci
arevc andvm . The interaction of the cavity mode with th
atoms and with the vacuum modes is described by the te
Hca and Hcr . In the dipole and the rotating-wave approx
mation, they read

Hca5(
j 51

2

\g cos~kxj1f!~s j
†ac1s jac

†!, ~4!

Hcr5(
m

\~gm* ac
†am1gmacam

† !, ~5!

whereg5(\vc/2«0Lc)
1/2 denotes the atom-cavity couplin

constant withLc the cavity length. For a planar cavity th
mode profile is cosine-shaped with wave vectork. The phase
f
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anglef characterizes the relative positioning between cav
mode and atomic trap. The coupling constant between
cavity mode and themth vacuum mode is denotedgm .

In discussing the atomic time evolution, we will mostly b
concerned with situations in which the center-of-mass w
function is spread out over a region of extensionDx large in
comparison to the cavity mode wavelength 2p/k but small
in comparison to the trap lengthL. For small enough times
the existence of the trap walls may thus be neglected. F
thermore, it is assumed that the initial wave function can
ascribed a well-defined momentum (p01,p02) and that the
effects of the~small! momentum spread around this initia
value may be disregarded. From the form~4! of the atom-
field coupling it follows that a single-atom state with m
mentump is only coupled to states with momentap6\k. In
view of our initial condition, we thus introduce the notatio
u( i 1 ,m1),(i 2 ,m2),nc ,$nm%& that denotes a state where atomj
has internal statei j and momentumq0 j1mj\k with integer
mj . Thereby, q0 j5 mod(p0 j ,\k), i.e., 0<q0 j,\k. The
number of photons in the cavity and the vacuum mode ‘‘m ’’
are denotednc andnm , respectively.

In case only one excitation is present in the system
within the realm of validity of the above approximations, th
general expression for the system state vector is thus g
by

uC~ t !&5(
m,n

H C1,m,n~ t !u~e,m!,~g,n!,0,$0m%&

1C2,m,n~ t !u~g,m!,~e,n!,0,$0m%&

1C3,m,n~ t !u~g,m!,~g,n!,1,$0m%&

1(
m

C4,m,n,m~ t !u~g,m!,~g,n!,0,$1m%&J . ~6!

We now proceed to eliminate the reservoir degrees of fr
dom in the system equations of motion with the help of t
Born-Markov approximation. This introduces an exponen
decay ratek/25pugmu2 and a frequency shiftDc in the dy-
namics of the amplitudesC3,m,n . For the following, we in-
corporate this shift into the detuningD between the atomic
resonance and the cavity frequency and work in the inte
tion picture with respect tov0. The effective Hamiltonian
time evolution of the system before the photon escapes
cavity is then determined by

iĊ1,m,n5vm,nC1,m,n1
g

2
~C3,m11,n1C3,m21,n!, ~7!

iĊ2,m,n5vm,nC2,m,n1
g

2
~C3,m,n111C3,m,n21!, ~8!

iĊ3,m,n5~vm,n1D2 ik/2!C3,m,n1
g

2
~C1,m11,n

1C1,m21,n1C2,m,n111C2,m,n21! ~9!

with

vm,n5@~q011m\k!21~q021n\k!2#/~2\M ! ~10!
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describing the influence of kinetic energy. From Eqs.~7!–~9!
one notices a further selection rule. For example, the se
coefficientsC1,m,n , with m,n both even, are only couple
among each other and toC2,m8,n8 , m8,n8 odd andC3,m9,n9 ,
m9 odd,n9 even. Note also that Eqs.~7!–~9! can be written
independently of the phase anglef. In the following we set
D50 for convenience.

Another interesting situation arises if one takes the e
tence of the atomic trap boundaries fully into account. In t
case it is convenient to expand the center-of-mass w
functions in terms of the eigenfunctions of the atomic Ham
tonian ~2!, i.e., 2 sin(pqx1 /L)sin(prx2 /L)/L, q,r>1, which
can be thought of as specific superpositions of momen
states with opposite wave vectors. In general, the coup
term Hac introduces transitions from a single-particle eige
statecq

g(e)5A2/L sin(pqx1 /L)ug(e)& to an infinite number of
other statescq8

e(g) . Simple selection rules follow if one ha
k5Np/L with N a positive integer andf50. Under these
conditions one obtains couplings only between the sing
atom wave functions

•••↔c2N2q
g/e ↔cN2q

e/g ↔cq
g/e↔cq1N

e/g ↔cq12N
g/e ↔•••

~11!

with 1<q,N. The coupling coefficients are all equal b
sides the one betweencN2q and cq , which is of the same
magnitude but of opposite sign. After suitable identificatio
the equations of motion for the probability amplitudes of t
two-atom system can thus be cast into a form identica
Eqs. ~7!–~9! apart from this sign peculiarity. An importan
special case in the coupling scheme of expression~11! arises
if q5N. Under these circumstances the sequence termin
at cq , the part to the left of it being obsolete. This spec
case is of particular importance in the discussion of ex
dark states beyond the RNA.

III. NUMERICAL RESULTS

In order to set the stage for the two-atom problem, let
first take a brief look at its one-atom counterpart. With t
help of the procedure used to derive Eqs.~7!–~9!, we can
obtain a similar set of equations for the one-atom system

iĊ1,m5vmC1,m1
g

2
~C2,m111C2,m21!, ~12!

iĊ2,m5~vm1D2 ik/2!C2,m1
g

2
~C1,m111C1,m21!,

~13!

where the notations used here are defined in parallel to th
for the two-atom case. In particular, we now havevm5(q0
1m\k)2/(2\M ). The excited and ground state amplitud
are denotedC1 andC2, respectively. Equations~12! and~13!
are very similar in structure to those used in the discussio
near-resonant scattering of two-level atoms from a stand
wave laser field@14#. Physically, they describe the atom
momentum spread during the interaction with the cav
mode. If we imagine the standing-wave mode as being c
posed of two counterpropagating running waves, we see
during an emission-absorption cycle the atomic momen
of
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can change by an amount of 0 or 2\k. The change depend
on whether the photon is emitted into and absorbed from
same running wave mode or not. Successive cycles thus
to an atomic momentum spread, i.e., heating.

This is illustrated in Fig. 1, which shows momentum d
tributionsPm(t)5uC1,m(t)u21uC2,m(t)u2 derived from Eqs.
~12! and ~13! as a function of the discrete momentum ind
m and the dimensionless timet5v rect, with v rec
5\k2/(2M ) being the recoil frequency. These distributio
illustrate the effective Hamiltonian time evolution of th
atom before the photon escapes the cavity, governed by
non-Hermitian Hamiltonian

Heff5Ha1Hc1Hca2 i\
k

2
ac

†ac , ~14!

Ha and Hca referring now to a single two-level atom. Th
initial conditions for the wave function were chosen
C1,m5dm,0 , C2,m50, andq050. Figures 1~a! and 1~b! dis-
play the case of a lossless cavity (k50) and a dimensionles
atom-cavity coupling constantV5g/2v rec550. In Fig. 1~a!,
the influence of the kinetic energy termp̂2/2M is neglected
~the Raman-Nath approximation! and the momentum sprea
grows linearly in time at a rate proportional toVt. This
should be compared to Fig. 1~b!, which is for the full model
including the kinetic energy terms. This illustrates the we
known fact that the RNA is only valid for short enoug
times. Due to the increasing mismatch between the pho
energy and the atomic energy increment accompanyin
photon absorption, the width of the momentum distributi
eventually stops growing and begins to oscillate. The effe
of cavity damping are illustrated in Figs. 1~c! and 1~d!,
which again compare the momentum distributions in
RNA and the full model, but for a moderate cavity dampi
rate k85k/v rec520, i.e., k8/V50.4. In this case the
excited-state population is damped on a time scale appr
mately given by 4/k8.1

We now turn to the two-atom situation, with the goal
determining how the previous results are modified when
insert a second atom into the cavity. The dramatic chan
brought about under these circumstances are illustrate
Figs. 2~a!–2~d!, which show results of the numerical integr
tion of Eqs.~7!–~9!. They depict the momentum distributio
of the first atom before the photon escape,Pm

(1)(t)
5( i 51,2,3;nuCi ,m,n(t)u2, as a function ofm andt in both the
RNA and the full model, and in the absence or presence
cavity losses. The initial conditions were chosen such t
both atoms are at rest but atom 1 is in the excited state, a
2 is in the ground state, and no photon is present in either
cavity or the vacuum modes, i.e.,

Ci ,m,n~ t50!5d i ,1dm,0dn,0 ~15!

1It should be noted that for large cavity dampingk8@V/2 the
decay rate of the excited state population goes to zero. This s
lization effect, however, is different in nature from the two-ato
dark states discussed below.
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FIG. 1. Time evolution of the single-atom momentum distributionPm for parameter valuesD50, V550. Initially, the atom is at rest in
the excited state, and no photons are in the cavity and the vacuum.~a! RNA andk850, ~b! full model andk850, ~c! RNA but k8520, ~d!
full model andk8520.
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and p015p0250. The atom-cavity coupling is again set
V550. As a consequence of the selection rules mentione
Sec. II, one has for these initial conditions

Pm
~1!5(

n
uC1,m,nu2

for m even and

Pm
~1!5(

n
uC2,m,nu21uC3,m,nu2

for m odd. Figures 2~a! and 2~b! display the case of the
lossless cavity. One can recognize two main qualitative
ferences from the corresponding Figs. 1~a! and 1~b!. First,
the momentum distribution no longer spreads significan
rather, it remains concentrated in the central mode~i.e., m
50) and a small number of side modes. The other mo
remain almost unpopulated. Second, the comparison betw
the RNA and the full model results shows that the influen
of the kinetic energy terms now is much smaller than in
one-atom case. Contrary to Figs. 1~a! and 1~b!, for the time
considered they only lead to some quantitative modificati
but not to a qualitative change. This property is of course
to the concentration of the momentum distribution arou
in

f-

:

s
en
e
e

s
e
d

m50. It also indicates that the RNA is a valuable tool in t
interpretation of the two-atom behavior.

The study of the momentum distribution in the presen
of cavity losses@Figs. 2~c! and 2~d!, again withk8520] also
yields a surprising result. One finds again that only a sm
number of modes are significantly populated. But in ad
tion, and in contrast to the one-atom case, after an in
transient evolution the total atomic population decays o
very slowly, i.e., the photon escape from the cavity
strongly inhibited by the presence of a second atom.In fact,
the time evolution of the distribution still bears a strong sim
larity to the lossless case. Furthermore, the RNA yield
good approximation to the full model also in the presence
losses. A further increase of the cavity damping rate o
leads to minor changes in the behavior of the moment
distribution.

A closer look at the long-time behavior is provided in Fi
3. There, the total probabilityP5(mPm

(1) of finding the ex-
citation in the cavity~curve 1! is shown for the RNA~a! and
the full model ~b!. The parameter values are chosen as
Figs. 2~c! and 2~d!. After a rapid initial transient, the prob
ability P reaches a constant value in the RNA, whereas it s
decays slowly in the full model. The curves 2 and 3 sh
the time evolution of uC1,0,0u21uC1,0,62u21uC1,62,0u2
1uC2,61,61u2 ~i.e., the central and the most highly populat
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FIG. 2. Time evolution of the momentum distributionPm
(1) for the first atom in the two-atom problem. Initially, both atoms are at rest

atom 1 is excited; no photons are in the cavity and the vacuum. Parameter values and use of RNA for~a!–~d! are the same as in Fig. 1.
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side modes! and ofuC1,0,0u2 alone, respectively. These curve
again demonstrate that the spread in momentum is stro
suppressed.

IV. TWO-ATOM DARK STATES

The results of Figs. 2 and 3 indicate that the atomic ti
evolution is characterized by the appearance of dark st
which have the initial excitation stored in the atoms a
which are almost immune to cavity damping. In this sect
a detailed analysis of these dark states is given. Before t
ing to the full problem, we first work in the RNA, which wa
shown to provide a useful approximate description.

A. Two-atom dark states in the Raman-Nath approximation

In order to investigate the dark states, it is convenien
work also in the position-space representation. The equat
of motion for the position-dependent probability amplitud
Ci(x1 ,x2 ,t) read

iĊ152
\

2M S ]2

]x1
2

1
]2

]x2
2D C11g cos~kx1!C3, ~16!

iĊ252
\

2M S ]2

]x1
2

1
]2

]x2
2D C21gcos~kx2!C3 , ~17!
ly

e
es

n
n-

o
ns

iĊ35F2
\

2M S ]2

]x1
2

1
]2

]x2
2D 1D2 ik/2GC3

1g@cos~kx1!C11cos~kx2!C2#. ~18!

In the first special case discussed in Sec. II~i.e., the atomic
wave packet well localized inside the trap! these equations
have to be solved in the domain 0<x1 ,x2<2p/k and the
solution must be of the form

Ci5 exp~ ip01x11 ip02x2!C̃i ~19!

with C̃i fulfilling periodic boundary conditions. In the secon
case~trap conditions taken fully into account! one has to
consider solutions with vanishing Dirichlet boundary con
tions in the domain 0<x1 ,x2<L.

In the RNA, i.e., after discarding the spatial derivative
Eqs. ~16!–~18! decouple spatially and can be solved imm
diately. At a given point (x1 ,x2) they form a homogeneou
linear 333 system of ordinary differential equations the e
genvalues of which are given by

l150, ~20!



s

bil

e

t
m

ot

the
d, if

er-

i-
he
adi-

of
for

e

ho-
ty.
ll
d

is

w

ed

d by

e

PRA 59 4017TWO-ATOM DARK STATES IN ELECTROMAGNETIC CAVITIES
l2,352k/42 iD/2

6AS k

4
1 i

D

2 D 2

2g2@cos2~kx1!1cos2~kx2!#.

~21!

The existence of the eigenvaluel1 whose real part vanishe
independently of the values ofx1 , x2, andk ensures that an
excitation initially present in the system has a finite proba
ity of remaining in it in the limitt→`. In particular, if the
atomic wave function is given at timet50 by

uc~x1 ,x2,0!&5A1~x1 ,x2!ue,g,0,$0m%&

1A2~x1 ,x2!ug,e,0,$0m%&

1A3~x1 ,x2!ug,g,1,$0m%&, ~22!

then the asymptotic state reached by the ‘‘atoms1 cavity
mode’’ system is characterized by the probability amplitud
~arranged as a column vector in a self-evident way!

FIG. 3. Time evolution of the total probabilityP(t) to find
the excitation in the cavity~curve 1!, of uC1,0,0u21uC1,0,62u2

1uC1,62,0u21uC2,61,61u2 ~curve 2!, i.e., the central mode and th
most highly populated side modes, and ofuC1,0,0u2 alone~curve 3!.
The parameter values areD50, V550, k8520. ~a! RNA, ~b! full
model.
-

s

@cos2~kx1!1cos2~kx2!#21

3S A1 cos2~kx2!2A2 cos~kx1!cos~kx2!

2A1 cos~kx1!cos~kx2!1A2 cos2~kx2!

0
D .

~23!

Note that this state isnot normalized, a result of the fact tha
some of the initial excitation has irreversibly escaped fro
the cavity into the reservoir.

Expression~23! shows that the asymptotic state does n
have a contribution from the initial amplitudeA3, and fur-
thermore the final amplitude in the third channel where
photon is present in the cavity vanishes. On the other han
a state has nonvanishing contributionsA1 or A2 it will al-
ways evolve into a dark state unlessA1cos(kx2)
5A2cos(kx1). The time scale to reach the dark state is det
mined by the eigenvaluesl2 andl3.

From Eqs.~16!–~18! or Eq. ~23! it follows that a given
state is a dark state if and only if it is of the form

A~x1 ,x2!S cos~kx2!

2cos~kx1!

0
D ~24!

and, in addition, it fulfills the appropriate boundary cond
tions. The state~24! can be viewed as a generalization of t
dark state in the Dicke theory of subradiance and superr
ance@13#.

In the following discussion we concentrate on the case
localized atoms in the sense of Sec. II. If one substitutes
the function A of expression~24! the set of plane waves
exp(iq01x11 iq02x2)exp@imkx11i(n11)kx2#, one obtains a
family of dark states$udmn&% which have a simple structur
in momentum space, i.e.,

udmn&5 1
2 @ u~e,m!,~g,n!&1u~e,m!,~g,n12!&

2u~g,m11!,~e,n11!&2u~g,m21!,~e,n11!&],

~25!

where we have omitted the occupation numbers of the p
ton modes in the notation of the ket vectors for simplici
The dark statesudmn& are truly entangled states. Since a
permissible functionsA can be expanded onto the indicate
set of plane waves, the family$udmn&% forms a basis of the
‘‘dark’’ subspace of the total Hilbert space. However, this
not an orthogonal basis as a givenudmn& has a nonvanishing
scalar product with four otherudm8n8&.

Of particular interest in our context is the question of ho
to characterize the asymptotic stateuDmn

e/g,g/e& associated with
a given initial stateu(e/g,m),(g/e,n)&. Its coordinate repre-
sentation can be inferred immediately from Eq.~23!, but
further insight into the nature of the state can be obtain
from its momentum distribution. Equations~7!–~9! show
that it is sufficient to study this question for the stateuD00

eg&,
since the distributions for the other states can be obtaine
a suitable shift of indices. In coordinate space the stateuD00

eg&
is represented by
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@cos2~kx1!1 cos2~kx2!#21

3„cos2~kx2!,2cos~kx1!cos~kx2!,0…T. ~26!

Its momentum-space amplitudes

c1/2,m,n5^~e/g,m!,~g/e,n!uD00
eg&

are determined by

ci ,m,n5
k

2pE E
0

2p/k

dx1dx2 e2 i ~mkx11nkx2!

3
f i~x1 ,x2!

cos2~kx1!1cos2~kx2!
~27!

with f 15 cos2(kx2) and f 252 cos(kx1)cos(kx2). As discussed
in Sec. II,c1(2),m,nÞ0 only for m,n both even~odd!. Evalu-
ating the integrals~27! one finds that the amplitudesc1,2m,0 ,
m>0, are given by

c1,2m,05dm,01
i

2p
~ I m1I m21!, ~28!

where the numbersI m satisfy the recurrence relation

I m5
1

m
@~21!m214i 2~6m23!I m212~m21!I m22#

~29!

andI 05I 215 ip/2. Further relations between the amplitud
ci ,m,n are given by

c1,m,n1c1,m12,n1c2,m11,n111c2,m11,n2150, ~30!

c1,m,n1c1,m,n122c2,m11,n112c2,m21,n11

5dm,0~dn,01dn,22!, ~31!

ci ,m,n5ci ,6m,6n ~32!

with m,n both even in Eqs.~30! and~31!. Equation~30! is a
direct consequence of Eq.~9! whereas Eq.~31! follows from
the relation

ud00&5~ uD00
eg&1uD02

eg&2uD11
ge&2uD21,1

ge &)/2.

With the help of Eqs.~28!–~32! all amplitudesci ,m,n can be
calculated iteratively. In this way, one obtains, for examp

c1,0,051/2,

c2,61,6151/p21/2'20.1817,

c1,62,052c1,0,6251/222/p'20.1366.

An interesting way to determine the scalar produ
^Dm,n

s uD00
eg& with s5eg or ge proceeds as follows@the

method can also be used to derive Eq.~31!#. The asymptotic
stateuD00

eg& into which u(e,0),(g,0)& evolves is uniquely de-
termined. Any state in the ‘‘dark subspace’’ orthogonal
uD00

eg& must have vanishing overlap withu(e,0),(g,0)&. If we

denote by uD̄00
eg& the state uD00

eg& after normalization—
,

s

remember that the dark state into which a given initial st
evolves is not normalized—we must have that

uD00
eg&5uD̄00

eg&^D̄00
egu~e,0!,~g,0!&.

Comparing coefficients one obtains that

^D00
eguD00

eg&50.5, ~33!

i.e., the system has a 50% probability to be trapped in t
dark state. Using the Gram-Schmidt orthogonalizat
scheme to construct fromuDm,n

s & a state orthogonal touD̄00
eg&

leads to the conclusion that

^Dm,n
s uD00

eg&5ck,m,n ~34!

with k51(2) if s5eg(ge), i.e., the asymptotic dark state
are nonorthogonal, in general. Equations~33! and ~34! can
be verified by evaluating the scalar product in position spa

From Eqs.~28!–~33! it can be inferred that 50% of the
population of the dark state is trapped in the st
u(e,0),(g,0)&, while the statesu( i ,m),( j ,n)& with umu1unu
<2 ~4! hold 91.3%~96.3%! of the population. This observa
tion explains the localization of the momentum distributio
in Figs. 2 and 3.

B. Exact and approximate dark states in the full model

Turning to the full model described by Eqs.~7!–~9! or
Eqs.~16!–~18!, i.e., taking the kinetic energy terms into a
count, it becomes apparent that, in general, the statesudmn&
anduDmn& are no longer exactly dark. By ‘‘exactly dark’’ we
mean being an eigenstate of the full Hamiltonian with
purely real eigenvalue. It is therefore natural to ask whet
the full model sustains exact dark states at all. Interestin
a complete answer to this question can be given for b
cases discussed in Sec. II, i.e., for atoms localized well ins
the trap and for atoms experiencing the trap boundaries
the first situation there are precisely two exact dark sta
which are given by

uD1&5ud0,21&5„cos~kx2!,2cos~kx1!,0…T ~35!

and

uD2&5 sin~kx1!sin~kx2!„cos~kx2!,2cos~kx1!,0…T

5ud21,0&2ud1,0&1ud1,22&2ud21,22&. ~36!

Dark states thus appear only if the atomic momenta invol
are integer multiples of\k, i.e., if q015q0250. For the sec-
ond case, in which the atomic wave functions extend o
the whole length of the trap, it can be shown that exact d
states can only exist if in the cavity mode function of Eq.~4!
k5pN/L with integerN>1 andf50. Under these condi-
tions there is precisely one such state which, in the coo
nate representation, is given by the first line of Eq.~36!.

For proof of uniqueness of these dark states one can
from the observation that also in the full model exact da
states have to be of the form~24!. Additionally, they now
also must be eigenfunctions of (p̂1

21 p̂2
2)/2M under the ap-

propriate boundary conditions. One then expands b
A(x1 ,x2) and A(x1 ,x2)cos(kx1/2) onto a suitable set o
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eigenfunctions. The fact that in the expansion
A(x1 ,x2)cos(kx1/2) there should only appear terms of th
same energy imposes severe restrictions on the pos
forms for the expansion ofA(x1 ,x2). These requirement
can only be met in the cases indicated. For the situatio
which the atoms extend over the whole trap, the breakof
the coupling scheme~11! if q5N ~as outlined at the end o
Sec. II! turns out to be crucial for the existence of the da
state.

These considerations imply that most dark states foun
the RNA become unstable in the full model since they
orthogonal to the exact dark states, in general. The nume
results of Sec. III suggest, however, that the correspond
lifetimes are still very long so that these states may be
garded as ‘‘quasidark.’’ The examples shown referred
cases in whichV,k8@1, which is the relevant situation in
practice as discussed in Sec. V. Under these conditions
may treat the kinetic energy term (p̂1

21 p̂2
2)/2M as a small

perturbation to the RNA Hamiltonian. Applying standa
perturbation theory, one obtains an imaginary correction
the RNA dark state eigenenergies only in second ord
which already indicates that these states will be long-lived
crude estimate of the second-order imaginary part shows
the stateuD(d)mn& acquires a finite decay rate that is of th
order of

Gmn.v rec~m̃21ñ2!2k8/V2. ~37!

Thereby,m̃ andñ have to be understood as typical values
m andn appearing in the expansion into center-of-mass m
mentum states. The estimate~37! assumes thatk8 is not too
large in comparison toV so that the square root in expre
sion ~21! is essentially imaginary.

Hence, consistent with the numerical calculations, we fi
that the lifetime of the ‘‘quasidark states’’ is long compar
to v rec

21 under the conditionV,k8@1. Furthermore, our esti
mate implies that the decay rate increases rapidly for incr
ing m,n. This is as can be expected, since under these
cumstances the dephasing between the different momen
eigenstates becomes faster. The dependence onk8 and V
suggests that the coupling to the decay channel beco
more efficient whenk8 is increased andV decreased. Figure
4 shows the decay of the dark statesudmn& for various values
of (m,n), k8, andV. Their evolution qualitatively confirms
the dependence~37! of Gmn on these parameters. Thereb
curve~a! should be compared to curves~b!, ~c!, and~d! as in
each one of these one relevant parameter is changed in
parison to~a!.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the dynamics of t
two-level atoms coupled to a single damped mode of
electromagnetic resonator, including the effects of pho
recoil. We concentrated on the situation where one quan
of excitation is initially present in the system. A gener
feature of the atomic evolution is the appearance of d
states. These states, in which the excitation is stored in
internal atomic degrees of freedom, are almost immune
photon decay from the cavity. When in a dark state, the
atoms become quantum mechanically entangled and for
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new kind of ‘‘molecule’’ bound by the quantum of excitatio
that they share. The state of the compound system can
veniently be described in terms of a superposition of diff
ent states of well-defined center-of-mass momentum. A
markable characteristic feature of the dark states is t
small momentum spread, as compared, e.g., to the one-a
situation. This property makes their description in t
Raman-Nath approximation quite accurate. While most d
states become only ‘‘quasidark’’ when this approximation
removed, their damping rate remains quite long indeed.

When considering the possible practical realization
these states, an interesting question concerns the influen
a nonconstant atomic trapping potential on the time evo
tion of the dark states. If the trapping potentials can be
ranged to be equal for ground and excited states, then
can still obtain dark states in the RNA~for the full model it
can be anticipated that exact dark states will not exist
longer, in general!. If, as is normally the case, these pote
tials differ from each other, even the RNA will not suppo
dark states. However, as Eqs.~16!–~18! show, in the vicinity
of the linex15x2 the decay will be significantly decelerate
so that a remnant of the dark-state effect might still be visi
under such circumstances.

Let us conclude with a brief discussion of the experime
tal feasibility to observe such two-atom dark states. Rec
cavity QED experiments in the microwave and optical d
main are described, e.g., in Refs.@5,15,16#. They typically
involve a low-density atomic beam passed through the e
tromagnetic resonator, a situation that can be modeled
terms of the localized wave packet description of Sec. II.
these experiments the residual spontaneous atomic decay
g in the cavity ~due to coupling to vacuum modes! is ap-
proximately one order of magnitude smaller than the cav
Rabi frequencyg and damping ratek, which are both com-
parable in magnitude. A single-mode description is thus
equate and our system~once prepared in the initial state!
would have enough time to coherently evolve into a da
state. Furthermore, the recoil frequencyv rec is also very
small in comparison tog andk ~typically less than a factor
of 1023) so the RNA should provide a very accurate descr
tion. In an experimental realization a main difficulty wou
certainly consist in efficiently preparing the initial syste

FIG. 4. Total survival probabilityP(t) for initial statesudmn& in
the full model under various conditions. Parameter values~a! m
5n50, k8520, V550; ~b! m5n50, k85100, V550; ~c! m
5n50, k8520, V525; ~d! m50, n52, k8520, V550.
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state. From this point of view, the optical regime does
appear as promising as the microwave regime: First, du
the short free-space spontaneous lifetime of optical tra
tions, the atoms probably could not be prepared in the
cited state before they enter the cavity. Second, if they
both simultaneously excited inside the cavity, the probabi
of coupling to the dark state is relatively low.

An experiment involving a microwave cavity might pro
ceed as follows. Diatomic molecules in a low-intensity be
are dissociated such that the two fragments are of non
ishing opposite spin. The atoms can thus be separated i
inhomogeneous magnetic field. One atomic beam is su
quently prepared in the Rydberg ground state, the other
in the excited state. Using atom optical elements, the
beams are guided such that they intersect each other in
microwave cavity~at a small angle!. As the molecular disso
ciation creates atom pairs, it should be possible to arra
the setup so that both partners pass the cavity simultaneo
with high probability. The experimental parameters sho
be chosen such that a single atom always leaves the cav
the ground state. The signature of the formation of a d
state would consist in detecting an appreciable fraction
y,

n,
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atoms leaving the cavity in the excited state. In order
obtain more information about the nature of the dark sta
one could, for example, additionally observe the spa
atomic density distribution.

Note added in proof.In a recent publication, M. B. Plenio
S. F. Huelga, A. Beige, and P. L. Knight, Phys. Rev. A59,
2468~1999! discuss the closely related problem of a cavi
loss-induced generation of entangled states. However, t
paper ignores the role of the atomic center-of-mass moti
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