
PHYSICAL REVIEW A MAY 1999VOLUME 59, NUMBER 5
Squeezed few-photon states of the field generated from squeezed atoms
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This paper develops a method of manipulating the squeezed atom state to generate a few-photon state whose
phase or photon-number fluctuations are prescribed at our disposal. The squeezed-atom state is a collective
atomic state whose quantum fluctuations in population difference or collective dipole are smaller than those of
the coherent atom state. It is shown that the squeezed-atom state can be generated by the interaction of atoms
with a coherent state of the electromagnetic field, and that it can be used as a tunable source of squeezed
radiation. A variety of squeezed states, including the photon-number squeezed state and the phase squeezed
state, can be produced by manipulating the atomic state. This is owing to the fact that quantum-statistical
information of the atomic state is faithfully transferred to that of the photon state. Possible experimental
situations to implement our theory are discussed.@S1050-2947~99!02905-4#

PACS number~s!: 42.50.Dv, 03.65.Bz, 42.50.Gy, 42.50.Lc
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I. INTRODUCTION

Nonclassical properties and manipulation of the quanti
electromagnetic~EM! field have been a center of interest
quantum optics@1#. A variety of methods have been pro
posed for the generation of squeezed states of the EM fi
and several of them have been realized experimentally@2#.
The quadrature-amplitude squeezed state in which fluc
tions of the in-phase or out-of-phase component are s
pressed to below those of the coherent state can be gene
via nonlinear optical processes@3,4#. The photon-number
squeezed state exhibiting sub-Poissonian photon stati
can be generated using semiconductor lasers@5#, light-
emitting diodes@6,7#, and tailor-made semiconductor heter
structures@8#.

A coherent state with average photon numbern̄ has the

relative photon-number fluctuation ofDn/n̄51/An̄ and the

phase fluctuation ofDf.1/(2An̄). Hence, ifn̄@1, there is
practically no need of squeezing. In a few-photon regim
however,Dn becomes comparable ton̄ andDf becomes of
the order of 1. It is thus within the few-photon regime th
the manipulation of quantum fluctuations becomes cruci
important. Such quantum-controlled few-photon states m
be useful, e.g., for optical interconnections in semiconduc
microstructures and spectroscopic diagnostics in biology

In the present paper, we develop a method of manipu
ing a collective atomic state to generate quantum-contro
few-photon states@9#. Radiation from atoms has been exte
sively studied in quantum optics@10#, e.g., superradianc
@11#, resonance fluorescence@12#, photon emission in the
cavity @13#, etc. As regards nonclassical properties of rad
tion, it is known that resonant fluorescence exhibits pho
antibunching and sub-Poissonian photon statistics@14,15#. It
was pointed out in Ref.@16# that squeezing in the resona
fluorescence is related to quantum fluctuations in the ato
state. However, the relation between quantum fluctuation
the collective atomic state and those of the emitted pho
state has yet to be fully explored from the standpoint of
control of few-photon states. The aim of the present pape
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to show that we can generate quantum-controlled few-pho
states by preparing the atoms in asqueezed-atom stat
~SAS!, which is a collective state of quantum mechanica
correlated atoms whose quantum fluctuations in popula
difference or collective dipole are suppressed to below th
of the coherent atom state~CAS! @17#. The SAS can be gen
erated via the interaction of atoms with a coherent state
photons in the cavity having a high quality factor@18#. It will
be shown in Sec. V that the SAS can be used as a tun
source of squeezed radiation. This is owing to the fact t
quantum fluctuations of the atomic state are rather faithfu
transferred to those of the emitted photon state. It will
shown that the number-phase uncertainty relation of phot
can be manipulated only if the atoms are in the SAS.

It is well known that the state of a two-level atom can
mapped onto that of a spin1/2. A collection ofN two-level
atoms can be described with a system of spins whose m
nitudes are at mostN/2. In particular, if all atoms are in the
same pure state, the collective atomic state can be desc
by a single spinN/2. The concept of squeezing in the spin
SU~2! algebra@16,19–26# provides a mathematical definitio
of squeezed states in a system of two-level atoms and
other systems that can be described by the spin alge
Yurke et al. @21# pointed out that the Mach-Zehnder interfe
ometer is described by spin, and that its phase sensitivity
reach the fundamental limit of 2/N using an N particle
squeezed state. Kitagawa and Ueda@25# showed that such a
squeezed state can be realized using the Coulomb intera
between charged particles. Winelandet al. @26# applied the
SAS to Ramsey spectroscopy and showed that its sensit
can surpass that of uncorrelated atoms.

This paper is organized as follows. Section II briefly r
views the interaction between two-level atoms and phot
in the cavity. Section III defines the SAS in terms of the sp
representation of two-level atoms and discusses its phys
meaning. Section IV analyzes dynamical processes to ge
ate the SAS. Section V describes how quantum-contro
radiation is generated from squeezed atoms. Section VI
cusses possible experimental schemes to implement
theory. Some complicated algebraic manipulations are
3959 ©1999 The American Physical Society
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egated to the Appendixes to avoid digressing from the m
subjects.

II. INTERACTION BETWEEN PHOTONS
AND TWO-LEVEL ATOMS IN THE LOSSLESS CAVITY

The EM-field operator in a lossless cavity can be writt
as

Ê~r !5 i(
n
A\vn

2«0
@ fn~r !ân2fn* ~r !ân

†#, ~1!

whereân
† and ân are the creation and annihilation operato

of the EM field for thenth mode, andfn(r ) is the corre-
sponding orthonormal mode function satisfying (“

2

1vn
2/c2)fn50, “•fn(r )50, and on the boundary the tan

gential component is required to vanish:fni(r )50. The
Hamiltonian of the EM field in the cavity is given by

ĤF5(
n

\vnân
†ân . ~2!

Here and henceforth, zero-point energies are ignored bec
they do not affect the following discussions.

Suppose that atoms have the upper energy banduej a& and
the lower energy bandugj b&, where j distinguishes atoms
anda andb denote Zeeman sublevels, if any, of the upp
and lower energy bands, respectively. When the subleve
each band are degenerate, the Hamiltonian ofN identical
atoms has the form

ĤA5(
j 51

N
\vA

2 S (
a

uej a&^ej au2(
b

ugj b&^gj bu D , ~3!

where\vA is the energy separation between the two ban
We consider a situation in which a collection of two-lev
atoms is placed in the cavity and interacts with the EM fi
via the electric-dipole interaction described by

ĤI52(
j 51

N

D̂j•Ê~R̂j !, ~4!

where D̂j52e(k( r̂ jk2R̂j ) denotes the electric-dipole op
erator of thej th atom, which is the sum of differences b
tween the position of the nucleusR̂j and the positions of the
electronsr̂ jk that belong to thej th atoms. We neglect the
dynamics of the center-of-mass motion of atoms, and rep
R̂j with a c number. Making the rotating-wave approxim
tion in the Hamiltonian~4!, we obtain

ĤI52(
j 51

N

(
a,b

(
n

iA\vn

2«0

3@ fn~Rj !uej a&^ej auD̂j ugj b&^gj buân2H.c.#, ~5!

where H.c. denotes the Hermite conjugate of the preced
term.

We assume that only a single mode of the EM field h
ing energy\vF and a single state for each atomic ener
banduej& andugj& participate in the interaction, and omit th
in

se

r
in

s.

ce

g

-

subscriptsn, a, and b in the following discussions. The
Hamiltonian~5! then reduces to

ĤI5(
j 51

N
1

2
@dj•E~Rj !âŝj 11dj* •E* ~Rj !â

†ŝj 2#, ~6!

where E(Rj )52 iA2\v/«0f(Rj ) is the amplitude of the
electric field per photon,dj5^ej uD̂j ugj& is the electric-dipole
matrix element, andŝj 1[uej&^gj u and ŝj 2[ugj&^ej u are the
raising and lowering operators for thej th atom. Provided
that the dipole moment is the same for all atoms, the s
script j in dj may be omitted. We define three operatorsŝjx

[( ŝj 11 ŝj 2)/2, ŝjy[( ŝj 12 ŝj 2)/2i , and ŝjz[(uej&^ej u
2ugj&^gj u)/2, which can be verified to obey the spin com
mutation relation@ ŝjx ,ŝj 8y#5 id j j 8ŝjz and its cyclic permuta-
tions. The two-level atom can therefore be described by s
1/2. The subscriptsx, y, and z do not denote spatial direc
tions, but the expectation value of the operatorŝjz1 1

2 repre-
sents the probability of thej th atom being found in the ex
cited state, andŝjx and ŝjy indicate the quadrature-phas
components of the oscillating dipole. This can be seen
rewriting the dipole operator in the form

D̂j5duej&^gj u1d* ugj&^ej u5dŝj 11d* ŝj 2

52@Re~d!ŝjx2Im~d!ŝjy#. ~7!

The spatial direction of the dipole depends on how we ex
atoms. For example, if the electric field at the position of
atom is linearly polarized, the dipole oscillates along t
same direction. If the electric field at the position of the ato
is circularly polarized, the dipole also rotates in time.

Suppose that all atoms are located in a region smal
comparison with the wavelength of the field, but that they
not located too closely together in order to avoid direct
teractions between them. The Hamiltonian of the entire s
tem is then given by

Ĥ5\vFâ†â1\vAŜz1\g~ âŜ11â†Ŝ2!, ~8!

where the coupling constantg[E(Rj )•d/(2\) is taken to be
real without loss of generality, and the collective spin ope
tors are defined by

Ŝm[(
j

ŝj m ~m5x,y,z! ~9!

and Ŝ6[Ŝx6 iŜy . It is easy to show that these collectiv
operators follow the commutation relation of spin,@Ŝx ,Ŝy#

5 iŜz , and its cyclic permutations. The Hamiltonian~8! is
referred to as the Jaynes-Cummings~JC! Hamiltonian@27#.

It is worth pointing out that one can introduce the colle
tive spin operators when the magnitudes ofE(Rj )•dj in the
Hamiltonian ~6! are the same for all the atoms but the
phases are different due, e.g., to different spatial location
the atoms. The collective spin operators in this case may
defined as
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Ŝ68 [(
j

e6 if j ŝj 6 , Ŝz[(
j

ŝjz , ~10!

wheref j is the phase ofE(Rj )•dj . For example, when at
oms are located in a one-dimensional standing wave at e
half wavelength, we havef j5 j p. The operators~10! also
satisfy the spin commutation relations and the Hamilton
of the system is given by Eq.~8! in which Ŝ6 is replaced by
Ŝ68 . Even if the spin state described by the operators~10!
and that described by the operators~9! are the same, the
corresponding states of the atoms are different. When at
are located in the same place, the dipoles oscillate in ph
When they are located at every half wavelength, the ne
boring dipoles oscillate out of phase. Nevertheless, the p
ton states generated by these atoms via the JC Hamilto
~8! are the same.

When we move to the rotating frame for both the phot
field and the atoms via a unitary transformationÛ0(t)
5ei (vFâ†â1vAŜz)t, the Hamiltonian~8! is transformed to

Û0ĤÛ0
†1 i\

]Û0

]t
Û0

†5g\~ âŜ1e2 idt1â†Ŝ2eidt!, ~11!

whered5vF2vA denotes the detuning between the ato
and the field. Whend is zero, Eq.~11! becomes

Ĥ rot5\g~ âŜ11â†Ŝ2!. ~12!

This commutes with the rotation operator

Û~w![e2 iw~ â†â1Ŝz! ~13!

and is therefore invariant under rotation. This rotational
variance allows us to choose a convenient frame of refere
without loss of generality. For instance, when initially th
EM field is in the coherent stateua& and the atoms are in th
fully excited stateuS,M5S&, we can arbitrarily choose th
phase of the initial coherent state without loss of genera
Time development from the other initial stateuae2 iw&uS,M
5S& can be obtained by a mere rotationÛ(w).

III. SQUEEZING IN COLLECTIVE TWO-LEVEL ATOMS

As shown in the preceding section, a collection of tw
level atoms can be described by collective spin operators~9!.
An eigenvalue of the Casimir operatorŜ25Ŝx

21Ŝy
21Ŝz

2 is
given byS(S11), where the total spinS can take on values
S5N/2, (N/2)21, . . . ,0 ~or 1/2) when the number of at
oms N is even ~or odd!. For each total spinS there are

N!(2S11)/@( 1
2 N1S11)!( 1

2 N2S)! # different subspaces
Generally speaking, a state ofN two-level atoms can be de
scribed by a mixture of these subspaces.

Because the JC Hamiltonian~8! is described by the col
lective spin operators which never mix the subspaces ha
different total spins, we will restrict our discussions to
single subspace having the maximal total spinN/2. This
state can be most easily accessed from the state in whic
the atoms are either in the ground state or in the excited s
It is interesting to note that the subspaces having the s
total spin behave exactly the same within the JC model if
ry
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numbers of atoms are different. For example, the state of
atoms having the total spin 1 and that of 100 atoms hav
the same total spin 1 obey the same JC Hamiltonian.
single-mode photon field distinguishes between these ato
states through the JC interaction.

A state of the single-mode photon field is defined
squeezed if, for a nonzero range of parameterf, ^(Dâf)2& is
smaller than that of the coherent state—the standard q
tum limit ~SQL!—of 1/4, whereâf is defined as

âf[
1

2
~ âe2 if1â†eif!. ~14!

The canonical commutation relation is given b

@ âf ,âf1p/2
† #5 i /2, and the conventional in-phase and ou

of-phase componentsâ1 and â2 can be expressed asâ1

5âf50 and â25âf5p/2, respectively. From the commuta
tion relation we have

^~Dâf!2&^~Dâf1p/2!2&>
1

16
. ~15!

The coherent state has the variance of^(Dâf)2&51/4 for
any f and satisfies the equality in Eq.~15!. The profile of
quantum fluctuations of a photon state described by a den
operatorr̂F can be visualized with the quasiprobability di
tribution

Q~a![
1

p
^aur̂Fua&, ~16!

whereua& is the coherent state with amplitudea. The qua-
siprobability distribution of the coherent state is isotrop
and that of the quadrature-amplitude squeezed state is e
tic.

The coherent state of a spin-S system is defined by

uu,f&[exp@ iu~Ŝx sinf2Ŝy cosf!#uS,M5S&

5 (
M52S

S S 2S

S1M D 1/2

ei ~S2M !fS sin
u

2D S2M

3S cos
u

2D S1M

uS,M &, ~17!

which is referred to as the coherent spin state~CSS!
or the Bloch state@17#. The mean spin vector of the CS
uu,f& points in the direction n5^Ŝ&/u^Ŝ&u
5(sinu cosf,sinu sinf,cosu), where u^Ŝ&u5(^Ŝx&

21^Ŝy&
2

1^Ŝz&
2)1/2. Denotingm as the unit vector that is normal t

both n and the unit vector of thez directionez , namely,m
5n3ez /un3ezu5(sinf,2cosf,0), we may expressuu,f&
as

uu,f&5exp@ ium•Ŝ#uS,M5S&. ~18!

When a system of two-level atoms is described by Eq.~17!
in the spin representation, we will say that the atoms are
coherent atom state~CAS!. The component ofŜ normal to
the mean spin vector is given by
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Ŝ~n,x!5exp~2 ixŜ•n!~Ŝ•m!exp~ ixŜ•n!, ~19!

wherex denotes the angle defined on the plane normal to
mean spin vector@see Fig. 1~a!#. The commutation relation
between the two quadrature components is given by

@Ŝ~n,x!,Ŝ~n,x1p/2!#5 i Ŝ•n, ~20!

and the corresponding uncertainty relation is given by

^@DŜ~n,x!#2&^@DŜ~n,x1p/2!#2&>
u^Ŝ&u2

4
. ~21!

The CSS satisfies the equality in the uncertainty relat
~21!, and^@DŜ(n,x)#2&5S/2 for anyx. The CSS therefore
has an isotropic fluctuation normal to the mean spin vecto
shown in Fig. 1~a!, where the spin state is visualized with th
quasiprobability distribution of spin defined by

Qs~u,f!5
2S11

4p
^u,fur̂Auu,f&, ~22!

wherer̂A is the density operator of a collective atomic sta
Analogous to the case of photons, a spin state is define
squeezed if the following inequality holds for a certainx:

^@DŜ~n,x!#2&,
u^Ŝ&u

2
. ~23!

That is, the squeezed spin state~SSS! is a state whose fluc
tuation of one component normal to the mean spin vecto
less than half of the length of the mean spin vector. When

FIG. 1. Quasiprobability distributions of~a! the coherent spin
state and~b! the squeezed spin state. The unit vectorn points in the
direction of the mean spin vector, and the unit vectorm is normal to
both n and theSz direction. The spin componentS(n,x) is normal
to the mean spin vector, and the anglex is measured fromm.
e

n

s

.
as

is
e

condition ~23! is satisfied, the variance of the quadratu
component̂ @DŜ(n,x1p/2)#2& must be larger thanu^Ŝ&u/2
in order to obey the uncertainty relation~21!, and hence the
fluctuation profile on the spin sphere becomes elliptic,
shown in Fig. 1~b!.

Squeezing in spin or angular momentum has been
cussed by many authors@16,19–26#. However, the defini-
tions of the SSS in Refs.@16,19,20,22–24# depend on the
specific spin coordinates and are therefore not invariant
der rotation in the spin space. It was pointed out in Ref.@25#
that the direction of the mean spin vectorn should be taken
into account to define the SSS in a rotation-invariant man
as in Eq.~23!.

Mathematically, SSS satisfying the condition~23! can be
generated by unitary transformations from the CSS. The u
tary transformations have the forms exp(2ijŜz

2)uu5p/2,f&
and exp@2ih(Ŝ1

2 2Ŝ2
2 )#uu50,f&, wherej and h denote the

parameters that characterize the degree of one-axis twis
and that of two-axis countertwisting, respectively@25#.

Let us return to the spin representation of two-level
oms. We define the squeezed-atom state~SAS! as a state of
two-level atoms that are in the SSS in the spin represe
tion. We note that quantum-mechanical correlations betw
atoms must be established for the atoms to be in an SAS.
state in which all atoms are in their ground state is in a C
uu5p,f& in the spin representation, and not in an SAS.
they are irradiated by ap/2 pulse, the spin state become
uu5p/2,f&, which is also not squeezed, because atoms
described by the same state and are not quantum mec
cally correlated with each other. We also note that a sin
atom cannot be squeezed, since^@DŜ(n,x)#2& is always
1/4 (5S/2) for spin 1/2. In other words, the single atom
cannot be squeezed because it has no partner with whic
be quantum mechanically correlated.

According to the definitions of the collective spin oper
tors ~9!, Ŝz represents the population difference of two-lev
atoms, andŜx andŜy represent quadrature-phase compone
of the electric dipole. Squeezing of theŜz component thus
means reduced fluctuations in the population difference
the expense of the enhanced dipole fluctuation, while squ
ing of Ŝx , Ŝy , or their arbitrary linear combination

Ŝf[
1

2
~Ŝ1e2 if1Ŝ2eif! ~24!

means reduced dipole fluctuations at the expense of the
hanced fluctuations in the population difference.

To measure theŜz component, one can use an ionizatio
detector which counts the number of atoms in the exci
state. If such measurement is carried out repeatedly, with
atoms prepared in the same state for every measuremen
variance of the population difference^(DŜz)

2& is obtained.
Variances of the other spin components can be measure
rotating the spin state so that they become theŜz component.
The rotation in the spin space can be realized by irradia
of a maser or laser with classical intensity to the atoms. T
frequency of the maser or laser is assumed to be reso
with the transition frequency of the atom. The Hamiltoni



ob

e

th
a
io

f

p
n
M

of
A

zin

at

o
we
er
he
ca
on
s

th

s
t
ia

m
w

-
em
in

d

on.

es
lcu-

state

nd

n

w

-

PRA 59 3963SQUEEZED FEW-PHOTON STATES . . .
describing the irradiation process of the classical field is

tained by replacing the operatorâ with a c numbera in the
JC Hamiltonian~12!,

Ĥcl5\g~aŜ11a* Ŝ2!52\guau~Ŝx cosfc2Ŝy sinfc!,
~25!

where fc5arga is the phase of the classical field. Th

Hamiltonian~25! rotates the spin vector about the axisŜfc

through angle 2guauTi , whereTi is the irradiation time. For

example, theŜx component can be measured by counting
population difference with the ionization detector after irr
diation of the classical field corresponding to the operat

exp„2 i (p/2)Ŝy…. In this operation the collective dipole o

the atomsŜx is converted to the population differenceŜz .

IV. PREPARATION OF SQUEEZED-ATOM STATES

Several schemes for generating the SAS have been
posed. Barnett and Dupertuis@23# considered the interactio
of the antisymmetric collective dipole with the coherent E
field. Agarwal and Puri@24# examined the steady state
atoms interacting with broadband squeezed radiation.
though a coordinate-dependent definition of spin squee

^(DŜx(y))
2&,u^Ŝz&u/2 is used in Refs.@23# and @24#, the

states constructed there also satisfy the coordin
independent condition~23!. Winelandet al. @26# considered
the stimulated Raman coupling between kinetic motion
atoms in an ion trap and internal levels of atoms, and sho
that by initially squeezing the kinetic motion one can gen
ate the SAS of the internal state via the JC interaction. T
also showed that the coherent state of the kinetic motion
generate the SAS via the parametric-type interacti
Kuzmich et al. @28# considered V-type three-level atom
driven by squeezed light that leads to the SAS.

In the present paper we follow the scheme proposed
Ref. @18#, namely the interaction between the atoms and
coherent state of photons in a high-Q cavity. The higher-
order interaction between atoms and photons establishe
quantum correlation between the atoms, thereby reducing
dipole fluctuation. This scheme is simple in that no spec
field state, other than the coherent state, is required.

A. Analysis for the case of two atoms

The JC model can be solved exactly for up to three ato
and in the zero-detuning case for up to eight atoms. We
henceforth assume zero detuningd50, and employ the
Hamiltonian ~12!. By exactly solving the dynamical evolu
tion for two atoms, we discuss the properties of this syst

We consider the case in which both atoms are initially
the excited stateuS51,M51&[u1,1&A and photons are in an
arbitrary superposition state(ncnun&F , where un&F is the
photon-number state. The time development is calculate
be @18#
-

e
-
n

ro-

l-
g

e-

f
d
-
y
n
.

in
e

the
he
l

s,
ill

.

to

uc~ t !&5e2~ i /\!Ĥrottun&Fu1,1&A

5 (
n50

`

cne2 i ~n11!vFt@pn~ t !u1,1&Aun&F

1qn~ t !u1,0&Aun11&F1r n~ t !u1,21&Aun12&F],

~26!

where

pn~ t !5
~n11!cosA2~2n13!gt1n12

2n13
, ~27a!

qn~ t !52 iA n11

2n13
sinA2~2n13!gt, ~27b!

r n~ t !5
A~n11!~n12!

2n13
@cosA2~2n13!gt21#.

~27c!

One can calculate any physical quantities from this soluti
Let us first consider the photon-number stateun&F as the

initial state. In this case the initial stateun&Fu1,1&A is invari-
ant with respect to rotation~13!, and consequentlŷ Ŝx&
5^Ŝy&50, which remains true at later times. The varianc
of the components normal to the mean spin vector are ca
lated to be

^~DŜx!
2&5^~DŜy!2&5

1

2 S 11
n11

2n13
sin2A2~2n13!gtD ,

~28!

which is always greater thanS/251/2, andhence the spin
state can never be squeezed. Generally, when the initial
is invariant with respect to the rotationÛ(w), the atoms can
never be squeezed for any number of atoms.

When the photon field is initially in the coherent stateua&,
the coefficients are given bycn5e2uau2/2an/An!. The ampli-
tudea can be taken to be real without loss of generality, a
in this casê â2& and^Ŝx& vanish at any time~see Appendix
A!. Therefore theSx direction is always normal to the mea
spin vector. The variance ofŜx is calculated to be

^~DŜx!
2&5e2uau2(

n52

`
a2n22

An! ~n22!!
pn~ t !r n22~ t !

1
1

2
e2uau2(

n50

`
a2n

n!
@pn~ t !212qn~ t !21r n~ t !2#.

~29!

When a@1, the photon-number distribution has a narro
peak relative to the mean photon numbern̄, and one can
expand Eq.~29! with respect ton2n̄. Replacing the summa

tions with the integrals we obtain, forgt&1/An̄,

^~DŜx!
2&.

1

2
2

1

2n̄
sin4An̄gt1

gt

2An̄
sin 2An̄gt. ~30!
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Similarly, ^Ŝy& and ^Ŝz& are approximated to be

^Ŝy&.2e2~gt!2/2sin 2An̄gt2
gt

An̄
S 3

4
2

5

2
sin2An̄gtD

1
1

8n̄
~sin 2An̄gt1sin 4An̄gt!, ~31a!

^Ŝz&.e2~gt!2/2 cos 2An̄gt2
5gt

4An̄
sin 2An̄gt

1
1

4n̄
sin2 2An̄gt. ~31b!

Therefore, if the squeezing factor defined by

^~DŜx!
2&

u^Ŝ&u/2
.e~gt!2/22

1

n̄
sin2An̄gt1

3

8n̄
sin2 2An̄gt

1
3gt

2An̄
sin 2An̄gt ~32!

is less than 1, the condition for the SAS~23! is fulfilled.
Figure 2 compares the time evolution of the approxim
formula ~32! ~dashed curve! with the exact one which is
numerically calculated from Eq.~26! ~solid curve! for two
atoms and forn̄5a25100. The parametergt in Fig. 2 and
all the quantities appearing in the figures presented he
forth are dimensionless. We find that both curves are in
cellent agreement and the SAS is attained aroundgt50.2.
The variance of another component that is normal to both
mean spin vector and theSx direction never reduces to belo
1/2. It can beshown numerically that the SAS never occu
after the first minimum aroundgt50.2. Although in Fig. 2
the second minimum of the variance^(DŜx)

2& goes below
the first minimum, the squeezing factor does not go be
the first minimum because the length of the spin vector a
decreases.

Equation ~32! shows that squeezing vanishes when
intensity of the coherent state is sufficiently large,n̄@1,

FIG. 2. Time evolutions of the normalized variance 2^(DŜx)
2&

and the squeezing factor 2^(DŜx)
2&/u^Ŝ&u for two atoms. The two

atoms are initially excited, and the EM field is initially in the co
herent state with amplitudea510. The solid curves show the nu
merical results, and the dashed ones show approximate solu
~30! and ~32!.
e

e-
x-

e

w
o

e

which is due to the fact that the classical field merely rota
the spin vector. The photon-number state cannot produce
SAS, as mentioned above. We thus find that both wave
particle aspects of photons are necessary for atoms to
squeezed.

B. Analytic approach for the case of a large number of atoms

We provide here approximate analytic expressions for
case of a large number of atoms. These are derived by
glecting the terms of order 1/N relative to the dominant
terms in the equations of motion, which are therefore v
accurate when the number of atomsN is very large.

The initial state is assumed to be the totally excited st
of the atomsuS,M5S& and the coherent state of the fie
ua&, wherea is assumed to be real and hence^Ŝx&5^â2&
50. The other averages obey the equations of motion~see
Appendix B for derivations!

d^Ŝy&
dt

.22g^â1&^Ŝz&, ~33a!

d^Ŝz&
dt

.2g^â1&^Ŝy&, ~33b!

d^â1&
dt

.2g^Ŝy&, ~33c!

which become those of a pendulum, if we set

^Ŝy&5
N

2
sinu, ~34a!

^Ŝz&5
N

2
cosu, ~34b!

^â1&52
1

2g

du

dt
. ~34c!

The solutions of Eqs.~33! can be expressed in terms of J
cobi’s elliptic functions@29#. Solving the equations of mo
tion for fluctuations, we obtain

^~Dâ2!2&5
1

4dn2~uum!
@11mE2~uum!#, ~35a!

^~DŜx!
2&5

N

4 H m
sn2~uum!cn2~uum!

dn4~uum!

1Fm
sn~uum!cn~uum!

dn2~uum!
E~uum!1dn~uum!G 2J ,

~35b!

where u[gtAN1a2 and m[N/(N1a2). Jacobi’s elliptic
functions @29# are defined bysn(uum)5sinw, cn(uum)
5cosw, dn(uum)5A12m sin2w, whereu andw are related
by

ns
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u5E
0

w du

A12m sin2 u
. ~36!

The elliptic integral of the second kind is given byE(uum)
5*0

udn2(u8um)du8.
Figure 3 compares the analytic solutions~35! ~dashed

curves! with the numerically exact ones~solid curves! for
100 atoms anda510. We find that the analytic curves are
excellent agreement with the numerical ones. The anal
curves, however, begin to deviate from the numerical one
around gt.0.3. This is because the differential equatio
~B4! and ~B9! include errors of order 1/N relative to the
dominant terms, which accumulate to produce errors in
solutions of orderegtAN/N, which becomes of order unity
aroundgt.0.3.

The analogy to the pendulum gives us a qualitative a
simple account of the squeezing mechanism. When the
dulum points in the direction (sinu cosf,sinu sinf,cosu), it
undergoes the force toward the directio
(cosu cosf,cosu sinf,2sinu). In the present case, wherea
is taken to be real, the pendulum begins to fall toward
negativeSy axis and rotates on theSy-Sz plane. Suppose tha
the pendulum has a deviation from theSy-Sz plane @f5
2(p/2)1df#; the direction of the force is (cosudf,0,
2sinu). This force increases the deviation when cosu.0,
and decreases it when cosu,0. In fact, in Fig. 3,^(DŜx)

2&
increases when̂Ŝz&.0, and decreases when^Ŝz&,0.

C. Numerical analysis

When the number of atoms is intermediate, analytic so
tions are unavailable, so we study the dynamical evolution
the system by numerically diagonalizing the Hamiltoni
~12!. The amount of computation increases with increas
the number of atomsN roughly asN3. The initial state is
assumed to be the totally excited state of the atomsuS,M
5S& and the coherent state of the photon fieldua&, wherea
is again taken to be real.

Figure 4 shows time evolutions of statistical properties
atoms and photons. The number of atoms is 10, and
amplitude of the initial coherent state is chosen to bea
53.3 to obtain the maximal squeezing of the atoms. TheSx
component is always normal to the mean spin vector, si

FIG. 3. Time evolutions of̂ Ŝz&/S, 2^(DŜx)
2&/S, and^(Dâ2)2&

for 100 atoms (S550). All the atoms are initially excited, and th
EM field is initially in the coherent state with amplitudea510. The
solid curves show the numerical results, and the dashed ones
approximate solutions~35! and ~B7b!.
ic
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^Ŝx&50. In Fig. 4, the squeezing factor 2^(DŜx)
2&/u^Ŝ&u be-

comes less than 1, which indicates that the SAS is obtain
The maximum degree of squeezing is attained in the fi
minimum. It is found from the long-term behavior that th
squeezing never occurs at a later time. The fluctuation of
other component that is normal to both theSx direction and
the mean spin vector never fulfills the squeezing condit
~23!. Since the mean spin vector rotates in theSy-Sz plane,

^Ŝz& oscillates with the amplitude ofu^Ŝ&u. The amplitude of
the photon field also oscillates with the same period but
of phase because of the energy exchange between the a
and the photon field. The variance^(DŜx)

2& increases when

^Ŝz&.0, and decreases when^Ŝz&,0, as discussed in the
preceding subsection. The Fano factor^(Dn̂)2&/^n̂& of the
photon field also goes below the SQL, and its behavio
very similar to that of̂ (DŜx)

2&. The long-term behavior of
this system is shown in Fig. 5. The collapse and revi
phenomena occur in the population difference and in
Fano factor as in the case of a single atom@30#. The revival
peak of the Fano factor splits and there is a small revi
before the main revival. The variance^(DŜx)

2&, on the other
hand, oscillates with the same period as the revivals, and
initially regular oscillations gradually change to random flu
tuations around some value.

The degree of squeezing of the SAS depends on the n
ber of atomsN, and for eachN the maximum degree o
squeezing is attained at a particular amplitudea of the initial

ow

FIG. 4. Time evolutions of̂ Ŝz&/S, 2^(DŜx)
2&/u^Ŝ&u, ^â&, and

^(Dn̂)2&/^n̂& for 10 atoms (S55). All the atoms are initially ex-
cited, and the EM field is initially in the coherent state with amp
tudea53.3.

FIG. 5. Long-term behaviors of̂ Ŝz&/S, ^(DŜx)
2&, and

^(Dn̂)2&/^n̂& for 10 atoms. All the atoms are initially excited, an
the photon field is initially in the coherent state with amplitudea
53.3.
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coherent state. Figure 6 shows the minimum squeezing fa
2^(DŜx)

2&/u^Ŝ&u for each number of atoms and the amp
tude of the initial coherent state that gives this factor. W
find that the higher degree of squeezing can be obtained
the larger number of atoms. The squeezing factor tend
behave asN20.25 when N is more than about ten, and th
optimal amplitudea behaves asN0.29.

V. QUANTUM-CONTROLLED RADIATION
FROM SQUEEZED ATOMS

It is natural to expect that the atoms whose collect
dipole or population difference is squeezed can radiate
photon field having nonclassical properties. We will sho
that this is indeed the case, and that quantum fluctuation
the photon field can be controlled by manipulating the SA
which is done by applying a classical field to the atoms.

A. Radiation from squeezed atoms

The Heisenberg equations of motion forâf andŜ2f2p/2
are written as

ȧ̂f5
i

\
@Ĥ rot,âf#5gŜ2f2p/2 , ~37a!

Ŝ
˙

2f2p/25
i

\
@Ĥ rot,Ŝ2f2p/2#52gâfŜz . ~37b!

Equation~37a! indicates that the phase of the photon field
connected with the direction of the spin vector. When
spin vector is tilted toward the direction of2f2p/2, the
field is initially amplified toward the direction off, as illus-
trated in Fig. 7. The equations of motion for various fluctu
tions are given by

d

dt
^~Dâc!2&52g^~Dâc!~DŜ2c2p/2!&, ~38a!

d

dt
^~Dâc!~DŜ2c2p/2!&5g@^~DŜ2c2p/2!2&

12^~Dâc!~DâcŜz!&#,

~38b!

FIG. 6. Minimum values of the squeezing facto

2^(DŜx)
2&/u^Ŝ&u obtained by the interaction of atoms with the c

herent states of photons as a function of the number of atomsN. For
eachN the amplitude of the coherent statea is chosen to give the
best squeezing factor. The squeezing factor tends to scale asN20.25

for largeN and the optimal amplitudea asN0.29.
tor

e
or
to

e
e

of
,

e

-

d

dt
^~DŜ2c2p/2!2&52g^@DŜ2c2p/2 ,DâcŜz#1&,

~38c!

whereDÔ[Ô2^Ô&, and@Â,B̂#1[ÂB̂1B̂Â is an anticom-
mutator. The anglec in Eqs.~38! represents the direction o
the fluctuations of the spin and the photon field, as shown
Fig. 7. The right-hand side of Eq.~38a! vanishes att50,
because initially the atoms and the photon field are not c
related. Since the first derivative vanishes att50, the time
development for smallt is determined by the second deriv
tive. From Eqs.~38a! and ~38b! we have

d2

dt2
^~Dâc!2&52g2@^~DŜ2c2p/2!2&12^~Dâc!~DâcŜz!&#.

~39!

At t50, the right-hand side of Eq.~39! reduces to
2g2@^(DŜ2c2p/2)2&1^Ŝz&/2# because^(Dâc)2&51/4 for
the vacuum state. Therefore, if the initial spin state satis
the condition

^~DŜ2c2p/2!2&,2
^Ŝz&

2
, ~40!

the photon field will evolve into a squeezed state. To sati
the inequality~40!, ^Ŝz& must be negative. The equation o
motion ~39! indicates that the fluctuation profile of the ph
ton field is connected with that of the spin state. From E
~37a! and ~39!, then, the direction toward which the sp
vector tilts corresponds to the direction of the displacem
on the complex-a plane of the photon field, and the squeez
or enhanced direction of the spin fluctuation corresponds
that of the fluctuation of the photon field. Consequently,
quasiprobability distribution of the photon field on th
complex-a plane is expected to behave like the quasipro
ability distribution of the atoms on the spin sphere, as illu
trated in Fig. 7.

When the tilting angle of the spin vector from thez axis is
small, i.e.,u.p, we can approximately solve the equatio
of motion ~37! and~38!. In this case,̂ Ŝz& is almost constant,
andŜz can be replaced by a constantc number^Ŝz&0, where

FIG. 7. The relation between~a! the quasiprobability distribu-
tion of the prepared atoms~22! and ~b! that of the emitted photon
field ~16!. The anglef ~or 2f2p/2) represents the direction o
the mean amplitude of the photon field~or the mean spin vector!,
andc represents the direction of the fluctuations of the spin and
photon field. TheSz component of the mean spin vector is negativ
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^•••&0 denotes the expectation value with respect to the
tial state. With this approximation, Eqs.~37! can be solved,
giving

^âf&5
^Ŝ2f2p/2&0

A2u^Ŝz&0u
sinA2u^Ŝz&0ugt, ~41a!

^Ŝ2f2p/2&5^Ŝ2f2p/2&0 cosA2u^Ŝz&0ugt. ~41b!

The equations of motion for the fluctuations~38! become
closed forms in this approximation, and the solutions
given by

^~Dâc!2&5
1

4
cos2A2u^Ŝz&0ugt

1
^~DŜ2c2p/2!2&0

2u^Ŝz&0u
sin2A2u^Ŝz&0ugt,

~42a!

^~DŜ2c2p/2!2&5^~DŜ2c2p/2!2&0 cos2A2u^Ŝz&0ugt

1
u^Ŝz&0u

2
sin2A2u^Ŝz&0ugt. ~42b!

We find that if the condition~40! for the initial spin state is
fulfilled, the variance of the quadrature amplitude~42a! goes

below the SQL of1/4. At time t5p(2A2u^Ŝz&0ug)21, the
fluctuation^(Dâc)2& attains its first minimum,

^~Dâc!2&5
^~DŜ2c2p/2!2&0

2u^Ŝz&0u
, ~43!

and at the same time the amplitude of the field becom
maximum,

^âf&5
^Ŝ2f2p/2&0

A2u^Ŝz&0u
. ~44!

Figure 8 shows time evolutions of the amplitude and
variance of the photon field, where the initial atomic state
the SAS of 100 atoms. This atomic state is prepared by
method discussed in Sec. IV~the state atgt50.14 in Fig. 3!.
Since the tilting angle tan21(2^Ŝy&0 /^Ŝz&0)50.258 is small,
the small-angle approximation is valid. The solutions~41!
and~42! are used for the theoretical curves in Fig. 8~dashed
curves!. One can see that the analytic results agree well w
the numerical ones~solid curves!, and^(Dâ2)2& goes below
the SQL of 1/4. It can beshown numerically that the secon
and the later minima of̂ (Dâ2)2& are larger than the firs
minimum, and hence we should switch off the interacti
when the first minimum is reached.

B. Tailor-made radiation from squeezed atoms

As illustrated in Fig. 7, the quasiprobability distribution
the emitted photon state is like a projection from that of
prepared atomic state. This observation, together with
i-

e

s

e
s
e

h

e
e

solutions~41! and ~42!, suggests to us that we can manip
late the direction of displacement and the direction
squeezing of photons by controlling the spin vector of t
SAS. The rotation of the spin vector about an axis on
Sx-Sy plane can be made by applying a maser or laser w
classical intensity to the atoms as described by the Ha
tonian ~25!. The rotation about theSz axis is realized by
applying a dc magnetic field which causes a temporal de
ing by the Zeeman shift. Combining these two processes
can manipulate both the spin vector and the direction
squeezing. By manipulating the SAS in the spin space,
can control the uncertainty ellipse of the photon field on
complex-a plane. Figure 9 shows the quasiprobability dist
butions of 100 atoms~left panels! and those of the emitted
photon states~right panels!. In Fig. 9~a! the CAS is used, and
in Figs. 9~b!–9~d! the atom states are prepared in the SA
by the method discussed in Sec. IV, where the parameters
optimized to obtain the maximum degree of spin squeez
(a56.8, gt50.19). The tilting angle of the spin vecto
from the negativeSz axis is taken to bep/4 in Figs. 9~a!–
9~d!, and the uncertainty ellipses are turned around by
p/4, andp/2 in Figs. 9~b!, 9~c!, and 9~d!, respectively. One
finds that the fluctuation profiles of the atomic states
rather faithfully transferred to those of the emitted phot
states. Figures 9~c! and 9~d! suggest that not only amplitude
and fluctuations but also higher-order moments of at
states are transferred to those of the photon states. We
thus demonstrated that by manipulating the SAS, we
control quantum-statistical properties of the photon field
our disposal, which we would like to calltailor-made radia-
tion.

The squeezing of photons in the direction of phase can
obtained only if the atomic state is squeezed in the azim
direction as in Fig. 9~b!. Although the CAS can produce th
photon-number squeezed state@31# as in Fig. 9~a!, where the
Fano factor is 0.81, it never produces the phase-sque
photon state by any rotation on the spin sphere. This can
verified numerically, and can also be deduced from the f
that the projection of the fluctuation profile on the comple
a plane from the spin sphere can never be squeezed in
direction of the phase if the fluctuation profile on the sp
sphere is isotropic. To produce not only the amplitud

FIG. 8. Time evolutions of the normalized varianc

2^(DŜx)
2&/S of the atoms, and the amplitude^â& and the variance

^(Dâ2)2& of the photon field emitted from them. The atomic state
gt50.14 in Fig. 3 is used as the initial atom state. The field
initially in the vacuum state. The solid curves show the numeri
solutions and the dashed curves show the approximate solu
~41a! and ~42!.
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squeezed state but also the phase-squeezed state, the
state must therefore be squeezed in the sense of the defin
~23!.

C. Available range of the tailor-made radiation

Let us discuss the range of photon squeezing that is a
able by our method. We use the SAS generated by the in
action between the totally excited atoms and the cohe
state of the photon field with an optimum amplitude as d
cussed in Sec. IV. The available range of the emitted pho
field is obtained by plotting time evolutions of the radiatio
processes for various initial tilting angles of the spin vec
of the SAS.

Figure 10 shows time evolutions of the amplitudes a
the variances of the quadrature amplitudes of the pho
states emitted from the SASs of 100 atoms. Each trajecto
drawn with the initial tilting angle of the mean spin vector
everyp/30. In Fig. 10~b!, the SASs are prepared in the stat
squeezed in the longitudinal direction, as in Fig. 9~b!. The
emitted photon states are therefore out-of-phase sque
states. In Fig. 10~a!, the initial SASs are squeezed in th
latitudinal direction as in Fig. 9~d!, and the emitted photon
states are therefore in-phase squeezed states. We find t
Fig. 10~a! the trajectories tend to return the same pat
whereas in Fig. 10~b! the trajectories tend to round down
ward. This indicates that in the case of in-phase squee
the energy exchange and the fluctuation exchange betw
the atoms and the photon field tend to occur synchronou
and in the out-of-phase squeezing the fluctuation excha

FIG. 9. Quasiprobability distributions of 100 atoms~left! and
those of the photons emitted from the atoms~right!. In ~a! the atoms
are prepared in a coherent atomic state, and in~b!, ~c!, and~d! they
are prepared in squeezed atom states. In~b!, ~c!, and~d! the uncer-
tainty ellipses are turned around by angles 0,p/4, p/2, respec-
tively. The mean spin vectors are tilted byp/4 from the negativeSz

axis. The spin sphere is seen from the negativeSz axis.
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tends to be delayed against the energy exchange. Whe
draw the overlap region of Figs. 10~a! and 10~b!, we can
obtain the available range of the quadrature-amplitu
squeezed state. It can be shown that the larger numbe
atoms can produce the wider range ofu^â&u and ^(Dâf)2&
@9#. This is due to the fact that the larger the number
atoms is, the larger will be the degree of squeezing of
SAS, as shown in Fig. 6.

The ranges of the average photon number^n̂& and the
Fano factor^(Dn̂)2&/^n̂& available from the SASs and th
CASs of 50 and 100 atoms are shown in Fig. 11. It is fou
that for a given number of atoms the SAS can suppress

FIG. 10. Time evolution of the amplitudes and the variances
the quadrature components of the photon state emitted from
squeezed 100 atoms. Each trajectory is drawn with the initial tilt
angle of the mean spin vector at everyp/30. The squeezed atom
states are prepared in the same manner as in Fig. 9 and rotat
the states which are squeezed in the latitudinal direction in~a! @as in
Fig. 9~d!# and in the longitudinal direction in~b! @as in Fig. 9~b!#.
The dashed curves delimit the regions that the trajectories
reach.

FIG. 11. Ranges of the average photon number^n̂& and the Fano

factor ^(Dn̂)2&/^n̂& of the photon field that can be obtained by th
squeezed atom state~SAS! and the coherent atom state~CAS! of 50
and 100 atoms. The SASs are prepared in the same manner
Fig. 9. The regions above the curves show the available pho
states. The solid curves show the results of the SASs and the da
ones show those of the CASs.
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photon-number fluctuation more effectively than the CA
The range of 100 atoms does not cover that of 50 atom
Fig. 11. The SAS of 50 atoms can produce photon sta
having smaller Fano factors than the SAS of 100 atoms w
the average photon number is less than about 40. For a g
average photon number, therefore, there is an optimal n
ber of atoms to produce the best photon-number sque
state.

The ranges of the average photon number^n̂& and the
phase fluctuation̂ (Df̂)2& available from the SASs of 50
and 100 atoms are shown in Fig. 12. Here we use the p
operator proposed by Pegg and Barnett@32#. When ^â& is
real and positive, the variance of the phase is expressed

^~Df̂!2&5
p2

3
1 (

nÞn8

2~21!n2n8

~n2n8!2 F^n8ur̂Fun&F , ~45!

wherer̂F is the density operator of the photon field andun&F
is the photon-number state. Figure 12 shows the varianc
the phasê (Df̂)2& normalized by that of the coherent sta
having the same average photon number^(Df̂)2&coh. Here
the phase is defined as squeezed when^(Df̂)2&/^(Df̂)2&coh
is below unity. The dotted curve in Fig. 12 shows minimu
values of ^(Df̂)2&/^(Df̂)2&coh for given average photon
numbers, which are obtained by the method of Lagra
multipliers @33# ~see Appendix C!. The range of 100 atom
does not completely include that of 50 atoms as in the c
of the Fano factor, which indicates that for a given avera
photon number there is an optimal number of atoms to
duce the phase fluctuation.

In experimental situations, loss of photons in the cav
and spontaneous emission of atoms are unavoidable, an
therefore evaluate how much cavity loss and spontane
emission are allowed in order not to destroy the squeezin
the atoms and that of the photon field. We adopt the mas
equation approach to take into account the effects of diss
tion. The master equation in the presence of cavity loss
spontaneous emission is given by@34#

FIG. 12. Available ranges of the average photon number^n̂&
and the phase fluctuation^(Df̂)2& normalized by that of the coher

ent state having the same average photon number^(Df̂)2&coh. The
regions above the curves show the photon states that can be
tained by our method. The squeezed atom states of 50 and
atoms are prepared in the same manner as in Fig. 9. The d

curve shows the lower bound of^(Df̂)2&/^(Df̂)2&coh of the photon
field.
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\
@r̂,Ĥ rot#1

g f

2
~2âr̂â†2â†âr̂2 r̂â†â!

1
ga

2
~2Ŝ2r̂Ŝ12Ŝ1Ŝ2r̂2 r̂Ŝ1Ŝ2!, ~46!

wherer̂ denotes the density operator of both the atoms
the photon field, andg f

21 and ga
21 are the lifetimes of a

single photon and a single atom in the cavity. We obtain ti
evolution of the density operator by numerically integrati
the master equation~46! by the Runge-Kutta method. Figur
13~a! shows the contour plot of the minimum attainable v
ues of the squeezing factor 2^(DŜx)

2&/u^Ŝ&u of the SASs
obtained by the interaction of 10 atoms with the coher
state of the photon field. The amplitude of the coherent s
is optimized to obtain the maximum degree of squeezing
eachg f andga . Figure 13~b! shows the contour plot of the
minimum values of^(Dâf)2& of the photon field emitted
from the squeezed atoms prepared in Fig. 13~a!. The param-
etersg f andga in the radiation process are assumed to ha
the same values as in the preparation of the SAS. Th
results show that the generation of the SAS and the sque
radiation are possible even in the presence of dissipatio
experimentally feasible situations. We will discuss som
concrete numbers in the next section.

VI. POSSIBLE EXPERIMENTAL SITUATIONS

We discuss possible experimental situations to implem
our theory. Our procedure of generating quantum-contro
few-photon states consists of three stages:~i! preparation of
the SAS,~ii ! manipulation of the SAS~rotation of the spin
vector in the spin space!, and ~iii ! radiation from these at-
oms.

ob-
00
ted

FIG. 13. ~a! The contour plot of the minimum values of th

squeezing factor 2̂(DŜx)
2&/u^Ŝ&u of the SASs obtained by the in

teraction of 10 atoms with the coherent state of the photon fi
The amplitude of the coherent state is optimized to obtain the m
mum degree of squeezing for eachg f andga . ~b! The contour plot

of the minimum values of̂ (Dâf)2& of the photon field emitted
from the squeezed atoms prepared in~a!.
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The simplest realization of our theory would be to fly
bunch of atoms through two cavities and a waveguide
schematically illustrated in Fig. 14. This type of experime
may be done in a microwave regime, since the atoms
required to be within a region much smaller than the wa
length. If we use, for example, the 63p3/2↔61d3/2 transition
of rubidium atoms, the resonant frequency is 21.5 GHz,
wavelength isl;1022 m, and the coupling constant isg
;104 Hz. First, an atomic beam from an oven is collimat
and velocity-selected. The variance of the velocity of t
atoms must beDv!l/T;102 m/s, whereT is the time it
takes the atoms to pass through the apparatus. A mecha
shutter can prepare a bunch of atoms from the atomic be
The atoms in the bunch are then excited to the Rydberg s
that is the upper state of the relevant two levels, and ente
first cavity in which the photon field is prepared to be in
coherent stateua&. The SAS is generated there by the high
order interaction of the atoms with the coherent state. T
interaction time isgt1;1021, i.e., t1;1025 s, e.g., in the
situation in Fig. 4. The velocity of the atoms is therefo
required to bev;103 m/s. The atoms then pass through
waveguide, where the atoms are irradiated by a pulse of
crowave with classical intensity, by which the spin vec
representing the state of collective atoms is rotated. To c
trol the rotation axis of the spin vector, the relative pha
between the microwave and the coherent state in the
cavity must be controlled. The irradiation time of the clas
cal field is much shorter than the interaction time in bo
cavities. Finally, the atoms pass through the second cavit
which the desired state of photons is emitted from the ato

FIG. 14. Schematic illustration of an experimental setup
implement the tailor-made radiation. The state of the atoms at e
stage is shown with the spin quasiprobability distribution. A bun
of two-level excited atoms that is in a coherent atom state~CAS! is
prepared by an oven, a collimator, a velocity selector, a shutter,
a pulse that excites the atoms. The atoms then go into the
cavity and interact with a coherent state of the photon fieldua&. The
output atoms are in a squeezed atom state~SAS!. By the interaction
with a microwave pulse in a waveguide, the mean spin vecto
rotated to a desired direction. The atoms finally go into the sec
cavity and emit photons there. Left in the second cavity is
desired few-photon state.
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The interaction time isgt2;1021, i.e., t2;1025 s, e.g., in
the situation in Fig. 8. The atoms thus pass through the
cavities within a few periods of duration 1025 s, which is
much shorter than the lifetime of the Rydberg atom
;1023 s and the cavity lifetime;1021 s @35#. From Fig.
13, this cavity lifetime corresponding tog f /g;1023 does
not affect the squeezing. If the circular Rydberg states
used, the lifetime is;1 s, and decays from the releva
levels become negligible. Since the microwave frequenc
used, the temperature should be lower than;1 K in order
to make the average number of thermal photons in the ca
much smaller than that of the produced photons.

Another possible scheme is to use atoms confined in
ion trap or a magnetic trap in which the quantized kine
motion of the atoms replaces the role of photons. Winela
et al. @26# proposed the JC interaction between the Zeem
doublet of electronic states of each ion and the center
mass~CM! motion of an ensemble of ions via the inhom
geneous magnetic field. They pointed out that the stimula
Raman transition can also be used to couple the inte
states of each ion to the CM motion of ions@26,36#. In these
models the operatorsâ andâ† in the JC Hamiltonian~8! are
not for photons but for the quantized CM motion of ions in
harmonic trap. By using the stimulated Raman techniq
our theory might be implemented as follows. First, the int
nal levels of the trapped ions are excited and the CM mot
is cooled to the ground state@37#. The CM motions of two
orthogonal directions, say thez andx directions, correspond
to the photon fields in the first and the second cavities in
method discussed in the preceding paragraph. In the
stage, the coherent state of the CM motion in thez direction
is prepared and the Raman beams in this direction are
plied. The coherent state of the CM motion can be genera
by sudden displacement of the trap center. When the ato
internal state becomes the SAS, the Raman beams
switched off. In the second stage, the Raman beams tha
not affect the CM motion are applied, which rotate the sp
vector in the spin space. In the third stage, the Raman be
in the x direction are applied, and the internal states of
ions are coupled to the CM motion in thex direction. By this
coupling the information of the internal states is transfer
to the CM motion in thex direction, which may be called a
tailor-made motional state. Although this is not radiation, t
method using the trapped atoms might be used to test
theory.

The use of dielectric spheres as optical cavities might
another possibility, where the optical whispering galle
~WG! mode in the microsphere is employed. With the m
crosphere cavity, very low threshold lasing has been
served@38,39#, and theQ value of more than 109 has been
achieved with highly transparent silica glass optical-fib
material @40#. The atoms are fixed on the substrate and
coupled to evanescent waves of two microspheres which
placed very closely. They have the slightly different reson
frequenciesv1 and v2. The optical WG mode in the firs
microsphere is prepared in a coherent state, while that in
second one is prepared in the vacuum state. In the first st
the atoms are brought into resonance with the WG m
frequency in the first microspherev1, and are far from reso-
nant with that of the second microspherev2. This can be
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done by Zeeman-shifting the transition frequency of the
oms by a magnetic field. When the atomic state becomes
SAS by interacting with the coherent state, the interact
with the WG mode in the first microsphere is switched off
switching off the magnetic field. In the second stage, the s
vector is rotated by applying a laser pulse resonant with
transition frequency of the atoms. In the third stage, by
plying an appropriate magnetic field, the atoms are brou
into resonance with the WG mode of the second microsph
v2. By switching off the magnetic field, the desired phot
state is left in the second microsphere. The coupling cons
g can be of order 108, and g f /g;1022 and ga /g;1021,
where the spontaneous emission rate of an atom in the
space is assumed. From Fig. 13, we find that both the S
and the squeezed photon state are not washed out by
effects of dissipation.

VII. CONCLUSIONS

In conclusion, we have shown that quantum fluctuatio
of few-photon states can be controlled by using the SA
This controllability is based on the fact that quantum flu
tuations of the atoms are faithfully transferred to those of
emitted photons. The correspondence shown in Fig. 9
tween the quasiprobability distribution on the spin sph
and that on the complex-a plane indicates that a variety o
photon states can be produced by merely rotating the
vector of the SAS. We also found that this manipulation
few-photon states is possible only if the atoms are in
SAS. Although the CAS can produce the photon-num
squeezed state, the degree of squeezing is lower than th
the photon state produced by the SAS, and the ph
squeezed state can never be produced by the CAS. The
sible experimental situations to implement our theory w
discussed. By these schemes, we can generate the qua
controlled few-photon state in the microcavity and t
quantum-controlled center-of-mass motion of trapped ato
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APPENDIX A: CONDITIONS FOR EXPECTATION
VALUES TO VANISH IN THE JAYNES-CUMMINGS

INTERACTION

It is assumed in Sec. IV that the expectation values^Ŝx&
and^â2& always vanish if the time evolution is governed b
the Hamiltonian ~12! and when the initial state isua&
^ uS,M5S& with real a. In this appendix we give a genera
condition for this to be true.

Since an expectation value of a Hermitian operator,
Ô, is real, it follows that

^eiĤ rottÔe2 iĤ rott&05^eiĤ rottÔe2 iĤ rott&0* 5^e2 iĤ rottÔ* eiĤ rott&0 ,
~A1!

where the expectation values are taken with respect to
initial state ua& ^ uS,M5S&, and Ô* denotes an operato
whose matrix elements are complex conjugates of thos
t-
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Ô. In the second line of Eq.~A1! we used the fact that the
matrix element of the Hamiltonian~12!,

Šnz^S,M uĤ rotuS,M 8& zn8‹5g\@An11A~S1M !~S2M11!

3dn,n821dM ,M811

1AnA~S2M !~S1M11!

3dn,n811dM ,M821#, ~A2!

is real and henceĤ rot* 5Ĥ rot. By a unitary transformation
eipŜz we haveeipŜzĤ rote2 ipŜz52Ĥ rot and eipŜzua& ^ uS,M
5S&5eipSua& ^ uS,M5S&. Applying this unitary transfor-
mation to the second line of Eq.~A1!, the expectation value
becomes

^eiĤ rottÔe2 iĤ rott&05^eiĤ rotteipŜzÔ* e2 ipŜze2 iĤ rott&0 .
~A3!

Therefore, if eipŜzÔ* e2 ipŜz52Ô, the expectation value
~A3! must vanish. The operatorsŜx and â2 meet this condi-
tion. In general, an expectation value of a Hermitian opera
that consists of operator products in whichŜx andâ2 appear
an odd number of times always vanishes. General condit
required for the initial state of the photon fieldr̂F and that of
the atomsr̂A are r̂F* 5 r̂F andeipŜzr̂Ae2 ipŜz5 r̂A .

APPENDIX B: DERIVATION OF THE APPROXIMATE
SOLUTIONS „35…

In this appendix, we derive the approximate solutio
~35!. It is convenient to define@31#

âi8[
âi

AN
~ i 51,2!, ~B1a!

Ŝm8 [
Ŝm

N
~m5x,y,z!, ~B1b!

t[gANt, ~B1c!

in order to estimate errors of the approximation. The eq
tions of motion for these operators have the forms

]tŜx8522â28Ŝz8 , ~B2a!

]tŜy8522â18Ŝz8 , ~B2b!

]tŜz852~ â18Ŝy81â28Ŝx8!, ~B2c!

]tâ1852Ŝy8 , ~B2d!

]tâ2852Ŝx8 . ~B2e!

We assume that the initial state is the CASuu50,f& for the
atoms and the coherent stateua& for the photon field, where
a is taken to be real without loss of generality. Taking t
expectation values of Eqs.~B2! yields
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]t^Ŝy8&522^â18&^Ŝz8&22^Dâ18DŜz8&, ~B3a!

]t^Ŝz8&52^â18&^Ŝy8&22^Dâ18DŜy8&, ~B3b!

]t^â18&52^Ŝy8&, ~B3c!

whereDÔ[Ô2^Ô& for any operators. It can be shown th

^Ŝy8&, ^Ŝz8&, and^â18& are of order unity, and̂Dâ18DŜz8& and

^Dâ18DŜy8& are of order 1/N. If we neglect relative errors o
1/N, the second terms of Eqs.~B3a! and ~B3b! can be ne-
glected, giving

]t^Ŝy8&522^â18&^Ŝz8&, ~B4a!

]t^Ŝz8&52^â18&^Ŝy8&, ~B4b!

]t^â18&52^Ŝy8&. ~B4c!

If we set

^Ŝy8&5
1

2
sinu~t!, ~B5a!

^Ŝz8&5
1

2
cosu~t!, ~B5b!

^â18&52
1

2
]tu~t!, ~B5c!

the equations of motion~B3! reduce to

]t
2u~t!5sinu~t!, ~B6!

which has the same form as the equation of motion for
mechanical pendulum. The angular velocity of the pendul
corresponds to the field amplitude. The solutions for the
tial condition u(0)50 and ]tu(0)522a8, where a8
[a/AN, can be expressed in terms of Jacobi’s elliptic fun
tions as
e

i-

-

^Ŝy8&52A12msd~uum!cd~uum!, ~B7a!

^Ŝz8&5
1

2
@2cd2~uum!21#, ~B7b!

^â18&5a8nd~uum!, ~B7c!

^â18&5^Ŝx8&50, ~B7d!

whereu[tA11a82 andm[1/(11a82).
The equations of motion for variances are written as

]t^~Dâ28!2&522^Dâ28DŜx8&, ~B8a!

]t^~DŜx8!2&524^Dâ28DŜx8&^Ŝz8&12^DŜx8DŜz8Dâ28&

12^DŜz8DŜx8Dâ28&, ~B8b!

]t^Dâ28DŜx8&52^~DŜx8!2&2^~Dâ28!2&^Ŝz8&2^~Dâ28!2DŜz8&.
~B8c!

It can be shown that the second-order fluctuations, such

^(DŜx8)
2&, are of order 1/N, and that the third-order fluctua

tions, such aŝDŜx8DŜz8Dâ28&, are of order 1/N2. Neglecting
the third-order fluctuations in Eqs.~B8!, we have

]t^~Dâ28!2&522^Dâ28DŜx8&, ~B9a!

]t^~DŜx8!2&524^Dâ28DŜx8&^Ŝz8&, ~B9b!

]t^Dâ28DŜx8&52^~DŜx8!2&2^~Dâ28!2&^Ŝz8&. ~B9c!

Using the form of^Ŝz8& in Eq. ~B7b!, which has at most a
relative error of 1/N, Eqs.~B8! reduce to the closed differ
ential equations with relative errors 1/N. They have three
independent sets of solutions, and two of them are obtai
as
S ^~Dâ28!2&

^~DŜx8!2&

^Dâ28DŜx8&

D 5S 1

N
nd2~uum!

m

N
sd2~uum!cd2~uum!

2
Am

N
sd~uum!cd~uum!nd~uum!

D ,

S 1

N
nd2~uum!E2~uum!

m

N
@msd~uum!cd~uum!E~uum!1dn~uum!#2

2
Am

N
@msd~uum!cd~uum!E~uum!1dn~uum!#nd~uum!E~uum!

D .

~B10!
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The linear combination of these solutions to satisfy the ini
conditions ^(DŜx8)

2&51/4N, ^(Dâ28)
2&51/4N, and

^Dâ28DŜx8&50 yields the solutions~35!.

APPENDIX C: A METHOD TO MINIMIZE THE PHASE
FLUCTUATION

In this appendix, we briefly show a method to obtain
photon state having the minimum phase fluctuation, whic
the dotted curve in Fig. 12. The variance of the Pegg-Bar
phase operator of the photon state(ncnun&F is given by

^~Df̂!2&5
p2

3
12 (

nÞm
Anmcncm , ~C1!

whereAnm5(21)n2m/(n2m)2. The coefficients that mini-
mize the variance~C1! satisfying the constraints(ncn

251

and(nncn
25n̄ are obtained by minimizing the function
o

ics

F

.
,

e

ys

el

tt

ys
l

is
tt

F~$cn%,l,b!52 (
nÞm

Anmcncm

1lS (
n

cn
221D 1bS (

n
ncn

22n̄D ,

~C2!

wherel andb are the Lagrange multipliers. The variation
problem]F/]cn50 is equivalent to the eigenvalue proble

(
n8

~2Ann81nbdnn8!cn81lcn50, ~C3!

which can be solved numerically.
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