PHYSICAL REVIEW A VOLUME 59, NUMBER 5 MAY 1999
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This paper develops a method of manipulating the squeezed atom state to generate a few-photon state whose
phase or photon-number fluctuations are prescribed at our disposal. The squeezed-atom state is a collective
atomic state whose quantum fluctuations in population difference or collective dipole are smaller than those of
the coherent atom state. It is shown that the squeezed-atom state can be generated by the interaction of atoms
with a coherent state of the electromagnetic field, and that it can be used as a tunable source of squeezed
radiation. A variety of squeezed states, including the photon-number squeezed state and the phase squeezed
state, can be produced by manipulating the atomic state. This is owing to the fact that quantum-statistical
information of the atomic state is faithfully transferred to that of the photon state. Possible experimental
situations to implement our theory are discus$&4.050-29479)02905-4

PACS numbe(s): 42.50.Dv, 03.65.Bz, 42.50.Gy, 42.50.Lc

[. INTRODUCTION to show that we can generate quantum-controlled few-photon
states by preparing the atoms in sgueezed-atom state
Nonclassical properties and manipulation of the quantizedSAS), which is a collective state of quantum mechanically
electromagneti¢EM) field have been a center of interest in correlated atoms whose quantum fluctuations in population
guantum opticd1]. A variety of methods have been pro- difference or collective dipole are suppressed to below those
posed for the generation of squeezed states of the EM fiel®f the coherent atom stat€AS) [17]. The SAS can be gen-
and several of them have been realized experimenfdlly —erated via the interaction of atoms with a coherent state of
The quadrature-amplitude squeezed state in which fluctughotons in the cavity having a high quality facfas]. It will
tions of the in-phase or out-of-phase component are Sud)e shown in Sec. V that the SAS can be used as a tunable
pressed to below those of the coherent state can be generag@irce of squeezed radiation. This is owing to the fact that
via nonlinear optical processd8,4]. The photon-number quantum fluctuations of the atomic state are rather faithfully
squeezed state exhibiting sub-Poissonian photon statisti¢gansferred to those of the emitted photon state. It will be
can be generated using semiconductor lag&is light- shown that the number-phase uncertainty relation of photons
emitting diodeg6,7], and tailor-made semiconductor hetero- can be manipulated only if the atoms are in the SAS.
structureq8]. It is well known that the state of a two-level atom can be
A coherent state with average photon numbehas the ~Mapped onto that of a spitV2. A collection ofN two-level
. i . — \/: d th a_toms can be described with a systgm of spins th_)se mag-
relative photon-number fluctuation din/n 1_/ N and e hitudes are at most/2. In particular, if all atoms are in the
phase fluctuation ok ¢=1/(2/n). Hence, ifn>1, there is  same pure state, the collective atomic state can be described
practically no need of squeezing. In a few-photon regimepy a single spifN/2. The concept of squeezing in the spin or
however,An becomes comparable tbandA ¢ becomes of SU(2) algebrg 16,19—-28 provides a mathematical definition
the order of 1. It is thus within the few-photon regime thatof squeezed states in a system of two-level atoms and in
the manipulation of quantum fluctuations becomes cruciallyother systems that can be described by the spin algebra.
important. Such quantum-controlled few-photon states migh¥urke et al.[21] pointed out that the Mach-Zehnder interfer-
be useful, e.g., for optical interconnections in semiconductoometer is described by spin, and that its phase sensitivity can
microstructures and spectroscopic diagnostics in biology. reach the fundamental limit of RV using anN particle
In the present paper, we develop a method of manipulatsqueezed state. Kitagawa and U¢#88] showed that such a
ing a collective atomic state to generate quantum-controlledqueezed state can be realized using the Coulomb interaction
few-photon statef9]. Radiation from atoms has been exten- between charged particles. Winelaatal. [26] applied the
sively studied in quantum opticklO], e.g., superradiance SAS to Ramsey spectroscopy and showed that its sensitivity
[11], resonance fluorescen¢#2], photon emission in the can surpass that of uncorrelated atoms.
cavity [13], etc. As regards nonclassical properties of radia- This paper is organized as follows. Section Il briefly re-
tion, it is known that resonant fluorescence exhibits photorviews the interaction between two-level atoms and photons
antibunching and sub-Poissonian photon stati$fids15. It  in the cavity. Section Il defines the SAS in terms of the spin
was pointed out in Ref.16] that squeezing in the resonant representation of two-level atoms and discusses its physical
fluorescence is related to quantum fluctuations in the atomimeaning. Section IV analyzes dynamical processes to gener-
state. However, the relation between quantum fluctuations adte the SAS. Section V describes how quantum-controlled
the collective atomic state and those of the emitted photomadiation is generated from squeezed atoms. Section VI dis-
state has yet to be fully explored from the standpoint of thecusses possible experimental schemes to implement our
control of few-photon states. The aim of the present paper itheory. Some complicated algebraic manipulations are rel-
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egated to the Appendixes to avoid digressing from the maisubscriptsn, «, and 8 in the following discussions. The

subjects. Hamiltonian(5) then reduces to
II. INTERACTION BETWEEN PHOTONS R N 1 R ~pa
AND TWO-LEVEL ATOMS IN THE LOSSLESS CAVITY H|:j21 E[dj-E(Rj)aSHde,* -E*(Rya's;_], (6)
The EM-field operator in a lossless cavity can be written
as where E(R)) = —iV2h ol f(R;) is the amplitude of the
— electric field per photory, =<ej|I§j|gj) is the electric-dipole
E(N=i> \/ o f.(r)a,—fr(ral, (1)  matrix element, and; , =|e;)(g;| ands;_=|g;)(g;| are the
n 0

raising and lowering operators for thj¢h atom. Provided
that the dipole moment is the same for all atoms, the sub-

scriptj in d; may be omitted. We define three operaté,r@
=(Sj++5;-)/2, sjy=(sj+—s;-)/2i, and s;,=(|e;)(g|l

Whereég and én are the creation and annihilation operators
of the EM field for thenth mode, andf,(r) is the corre-
sponding orthonormal mode function satisfyingV . o /
+pwﬁ/cz)§1]‘n=0, V.-f,(r)=0, and on the boundar;y thge :fan- _|gj>_<gi|)/2’ Wh'gh can be_ verified to _obey the spin com-
gential component is required to vanisfy(r)=0. The Mutation relatioris;..s;.y]=idj;s;, and its cyclic permuta-
Hamiltonian of the EM field in the cavity is given by tions. The two—leyel atom can therefore be descrlped py spin
1/2. The subscriptg, y, and z do not denote spatial direc-

Agn tions, but the expectation value of the operé@ﬁ% repre-

N t
HF_; hrwonanan. ) sents the probability of thgth atom being found in the ex-

) ) ) cited state, and%ix and §jy indicate the quadrature-phase
Here and henceforth, zero-point energies are ignored becauggmponents of the oscillating dipole. This can be seen by

they do not affect the foIIOWing discussions. rewriting the d|po|e operator in the form
Suppose that atoms have the upper energy banil and

the lower energy ban¢l;z), wherej distinguishes atoms, A ool d% N e — da. s
and « and 8 denote Zeeman sublevels, if any, of the upper Dj=dlej){g;| +d*[g;)(ej|=dsj, +d*s;

and lower energy bands, respectively. When the sublevels in =2[Re(d)S, —Im(d)S., ]. )
each band are degenerate, the HamiltoniarNafientical - Y

atoms has the form The spatial direction of the dipole depends on how we excite

N 2w atoms. For example, if the electric field at the position of an
. A C . X :
HA:E — Z |eja><eja|_z 19is)(9il |, (3 atom is Imgarly polanzed,_ thg dipole oscn_lz_ites along the
j=1 a B same direction. If the electric field at the position of the atom
i i is circularly polarized, the dipole also rotates in time.
wherefiw, is the energy separation between the two bands. gyppose that all atoms are located in a region small in
We consider a situation in which a collection of two-level .o mparison with the wavelength of the field, but that they are
atoms is placed in the cavity and interacts with the EM fieldyt |ocated too closely together in order to avoid direct in-
via the electric-dipole interaction described by teractions between them. The Hamiltonian of the entire sys-
N tem is then given by
Hi=-2 I5J"IAE(FAQ]), (4) R o . A
=1 H=hwra'a+hw,S,+hg(aS,+a's.), (8)

whet:re Dli Th_'?r?k(trjk_ RJ’%. dher_lottis the elefc(tjr_:c?—dlpole Obp- where the coupling constagt=£(R)) - d/(2#) is taken to be
erator ot they ) .a om, which IS the sum o |.(.arences € real without loss of generality, and the collective spin opera-
tween the position of the nucle®; and the positions of the  tors are defined by

eIectronstk that belong to thgth atoms. We neglect the

dynamics of the center-of-mass motion of atoms, and replace . .

R; with a c number. Making the rotating-wave approxima- SME; Sip  (L=XY,2) ©)
tion in the Hamiltonian4), we obtain

N P andS.=S5,+iS,. It is easy to show that these collective
~ . n A~ ~
H= —z 2 2 ' operators follow the commutation relation of spjig,,S, ]

j=1 a8 n 280 -
=iS,, and its cyclic permutations. The Hamiltoni&8) is
X[fa(R))|€0)(€1a|Djlg;s)(gjslan—H.c], (5) referred to as the Jaynes-Cummird€) Hamiltonian[27].

It is worth pointing out that one can introduce the collec-
where H.c. denotes the Hermite conjugate of the precedingive spin operators when the magnitudes&gR;) - d; in the
term. Hamiltonian (6) are the same for all the atoms but their

We assume that only a single mode of the EM field havphases are different due, e.g., to different spatial locations of
ing energyfwr and a single state for each atomic energythe atoms. The collective spin operators in this case may be
band|e;) and|g;) participate in the interaction, and omit the defined as
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. o . . numbers of atoms are different. For example, the state of two
8.=> e*lls., §=2 s, (100 atoms having the total spin 1 and that of 100 atoms having
) ) the same total spin 1 obey the same JC Hamiltonian. No
where ¢; is the phase o£(R))-d, . For example, when at- single-mode photon fie_ld distir)guishes between these atomic
oms are located in a one-dimensional standing wave at evegfates through the JC interaction. S _
half wavelength, we have;=j . The operatorg10) also A state of the single-mode photon field is Adeflned as
satisfy the spin commutation relations and the Hamiltoniarsqueezed if, for a nonzero range of paramene((Aad,)z) is
of the system is given by E@8) in which S. is replaced by ~Smaller than that of the coherent state—the standard quan-

&, . Even if the spin state described by the operata@  tum limit (SQL}—of 1/4, wherea, is defined as

and that described by the operatd® are the same, the 1
corresponding states of the atoms are different. When atoms é¢z —(ae ?+afe'?). (14)
are located in the same place, the dipoles oscillate in phase. 2

When they are located at every half wavelength, the neigh1—_h
. ) ! e
boring dipoles oscillate out of phase. Nevertheless, the pho-" .. _ i .
ton states generated by these atoms via the JC Hamiltonid@s 84+ -2]=1/2, and the conventional in-phase and out-
(8) are the same. of-phase componenta; and a, can be expressed as;
When we move to the rotating frame for both thAe photon= é¢:0 and 512=5¢:77/2, respectively. From the commuta-
field and the atoms via a unitary transformatith(t)  tion relation we have
—¢l(@ra’ateaS)t the Hamiltonian(8) is transformed to 1
20 ((Aag)®)((Aag 12)? =16 (15
LAJOAU(T)JriﬁToﬂgzgh(é&e*‘mré*é,e‘&), (12)

canonical commutation relation is given by

The coherent state has the variance(mé¢)2>=1/4 for
where 5= s — w, denotes the detuning between the atomg®Y ¢ and satisfies the equality in EGLS). The profile of

and the field. Whers is zero, Eq.(11) becomes quantum fluctuations of a photon state described by a density
operatorpg can be visualized with the quasiprobability dis-
H™'=#g(aS, +a'sS.). (12)  tribution

i i i 1 “
This commutes with the rotation operator O(a)= ;<a|pF|a>, (16)
O(p)=eie@ars) (13
where|a) is the coherent state with amplitude The qua-
and is therefore invariant under rotation. This rotational in-siprobability distribution of the coherent state is isotropic
variance allows us to choose a convenient frame of referencand that of the quadrature-amplitude squeezed state is ellip-
without loss of generality. For instance, when initially the tic.
EM field is in the coherent stater) and the atoms are inthe ~ The coherent state of a spBisystem is defined by
fully excited state]S,M =S), we can arbitrarily choose the R R
phase of the initial coherent state without loss of generality. |6,p)=exdi6(S, sin¢>—Sycos¢)]|S,M =S)
Time development from the other initial stdtee™'¢)|S,M s
=S) can be obtained by a mere rotatior{¢). -
M=-8

1/2

2S _ g\> M
el(S-Mé sin5

S+M

Ill. SQUEEZING IN COLLECTIVE TWO-LEVEL ATOMS

S+M
>< )

As shown in the preceding section, a collection of two- SM), (17

0
cos;
level atoms can be described by collective spin operd@)rs
An eigenvalue of the Casimir operatéquSfﬂL §§+ gg is which is referred to as the cohe(ent spin sta@S9
given by S(S+ 1), where the total spi can take on values O the Bloch statd17]. The mean spin vector of theA CSS
S=N/2, (N/2)—1,...,0(or 1/2) when the number of at- |6,¢#) points in the direction n=(S)/|(S)|
oms N is even(or odd. For each total spirS there are  =(sin#cos#,singsin,cosd), where |[(S)]|=((5,)%+(S,)?

NI(2S+1)/[(3N+S+1)!(3N—9)!] different subspaces. +(S,)?)/2. Denotingm as the unit vector that is normal to

Generally speaking, a state Nftwo-level atoms can be de- bothn and the unit vector of the directione,, namely,m

scribed by a mixture of these subspaces. =nXeg,/|nXe,|=(sin¢,—cos$,0), we may express$d, ¢)
Because the JC HamiltonigB) is described by the col- as

lective spin operators which never mix the subspaces having .

different total spins, we will restrict our discussions to a |6,4)=exdiom-S]|S,M=S). (18

single subspace having the maximal total spif2. This

state can be most easily accessed from the state in which alyhen a system of two-level atoms is described by &q)

the atoms are either in the ground state or in the excited stat#! the spin representation, we will say that the atoms are in a

It is interesting to note that the subspaces having the sanmherent atom stat€CAS). The component of normal to

total spin behave exactly the same within the JC model if thehe mean spin vector is given by
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condition (23) is satisfied, the variance of the quadrature

S(n. %) component[ AS(n, x+ 7/2)]?) must be larger that(S)|/2

’ in order to obey the uncertainty relati¢dl), and hence the
fluctuation profile on the spin sphere becomes elliptic, as
shown in Fig. 1b).

Squeezing in spin or angular momentum has been dis-
<S>°cn cussed by many authof46,19—-28. However, the defini-
tions of the SSS in Ref416,19,20,22—2kdepend on the
specific spin coordinates and are therefore not invariant un-
der rotation in the spin space. It was pointed out in [R25%]
that the direction of the mean spin vectoshould be taken
into account to define the SSS in a rotation-invariant manner
_ as in Eq.(23).

\\g§\ Mathematically, SSS satisfying the conditit@8) can be
T\ generated by unitary transformations from the CSS. The uni-
tary transformations have the forms exﬁ>§§)|0:7-r/2,¢>

and exp—in(S —)]6=0,4), where& and 5 denote the
parameters that characterize the degree of one-axis twisting
and that of two-axis countertwisting, respectivEdp|.

Let us return to the spin representation of two-level at-
oms. We define the squeezed-atom s{&t&S) as a state of
two-level atoms that are in the SSS in the spin representa-

FIG. 1. Quasiprobability distributions ) the coherent spin  tion. We note that quantum-mechanical correlations between
state andb) the squeezed spin state. The unit vect@oints in the  atoms must be established for the atoms to be in an SAS. The
direction of the mean spin vector, and the unit veatas normal to  state in which all atoms are in their ground state is in a CAS
bothn and thes, direction. The spin componef(n, ) is normal |6=1,¢) in the spin representation, and not in an SAS. If
to the mean spin vector, and the anglés measured fronm. they are irradiated by a/2 pulse, the spin state becomes

|6=/2,¢), which is also not squeezed, because atoms are
~ . ~ ~ described by the same state and are not quantum mechani-
S(n,x)=exp—ixS-n)(S-myexpixS-n), (19 cally correlated with each other. We also note that a single

atom cannot be squeezed, sin@e&é(n,x)]2> is always

T4 (=S/2) for spinl/2. In other words, the single atom
cannot be squeezed because it has no partner with which to
be quantum mechanically correlated.

wherey denotes the angle defined on the plane normal to th
mean spin vectofsee Fig. 1a)]. The commutation relation
between the two quadrature components is given by

[8(n, x),8(n,x + 7/2)]=i5n, (20 Accorfjlng to the definitions of _the c_ollectlve spin opera-
tors (9), S, represents the population difference of two-level
and the corresponding uncertainty relation is given by atoms, ands, andS, represent quadrature-phase components

|<§>|2 of the electric dipole. Squeezing of tf& component thus
([AS(N ) 1PH[AS(n,x+ 7/2)]2)=———. (21) means reduced fluctuations in the population difference at
4 the expense of the enhanced dipole fluctuation, while squeez-

The CSS satisfies the equality in the uncertainty relatiod"d ©f Sx, Sy, or their arbitrary linear combination
(21), and([AS(n,x)1?)=S/2 for any x. The CSS therefore
has an isotropic fluctuation normal to the mean spin vector as
shown in Fig. 1a), where the spin state is visualized with the
guasiprobability distribution of spin defined by

.1
S¢E§(S+e"‘f’+8_e'¢) (24)

2S+1 ) means reduced dipole fluctuations at the expense of the en-
Q. 8,0)= W(9,¢|pA| 0,9), (220 hanced fluctuations in the population difference.

To measure th&, component, one can use an ionization

wherep, is the density operator of a collective atomic state.detector which counts the number of atoms in the excited

Analogous to the case of photons, a spin state is defined slate. If such measurement is carried out repeatedly, with the
squeezed if the following inequality holds for a certain atoms prepared in the same state for every measurement, the

variance of the population differend¢AS,)?) is obtained.
. ) (S| Variances of the other spin components can be measured by
([AS(n,x)] ><T' (23 rotating the spin state so that they becomeﬁpeomponent.
The rotation in the spin space can be realized by irradiation
That is, the squeezed spin std&SS is a state whose fluc- of a maser or laser with classical intensity to the atoms. The
tuation of one component normal to the mean spin vector ifrequency of the maser or laser is assumed to be resonant
less than half of the length of the mean spin vector. When thavith the transition frequency of the atom. The Hamiltonian
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describing the irradiation process of the classical field is ob- |w(t)>:e—(i/h)l:|r°‘t|n>':|l 1A

tained by replacing the operatérwith ac numberea in the

JC Hamiltonian(12), = it
:nzo cne (MO [ (1)[1,1)alN)e

|:|C|: ﬁg(a§++ C(* ASf):ZﬁglaK’\Sx COS¢C_§ySin¢C)' +qn(t)|1’0>A|n+1>F+rn(t)|1'_ 1>A|n+2>F]!

(25) (26)
where
where ¢.=arga is the phase of the classical field. The
Hamiltonian (25) rotates the spin vector about the aﬁf;c pn(t) = (n+1)cosV2(2n+3)gt+n+2, (279
through angle 8|«|T;, whereT;, is the irradiation time. For 2n+3
example, theS, component can be measured by counting the n+i
population difference with the ionization detector after irra- qn(t)=—i 5 +3sin\/2(2n+3)gt, (27b
diation of the classical field corresponding to the operation n
exr(—i(w/Z)éy). In this operation the collective dipole of (n+1)(n+2)
the atomsS, is converted to the population differenge. rn(t)= —— 3 [cosy2(2n+3)gt—1].
(279
IV. PREPARATION OF SQUEEZED-ATOM STATES One can calculate any physical quantities from this solution.

) Let us first consider the photon-number statg:- as the
Several schemes for generating the SAS have been presitig| state. In this case the initial stale)g|1,1) is invari-

posed. Ba}rnett anq Dupertt{@ﬁ%] (.:on5|de.red the interaction ant with respect to rotatiorf13), and consequentI)(AS,J
of the antisymmetric collective dipole with the coherent EM ~ . . . . .
=(S,)=0, which remains true at later times. The variances

field. Agarwal and Puri{24] examined the steady state of )
atoms interacting with broadband squeezed radiation AI9f the components normal to the mean spin vector are calcu-
"_. lated to be

though a coordinate-dependent definition of spin squeezing

(AS,\))2)<|(5)|/2 is used in Refs[23] and [24], the . . 1 n+1

<states(y) cc>)nst<ruc>ted there also satisfy the coordinate-{(AS0%)=((AS)*)=7|1+ 2n+35ir12V2(2n+3)gt),

independent conditiof23). Winelandet al. [26] considered (28)

the stimulated Raman coupling between kinetic motion of

atoms in an ion trap and internal levels of atoms, and showewhich is always greater tha®#2=1/2, andhence the spin

that by initially squeezing the kinetic motion one can gener-state can never be squeezed. Generally, when the initial state

ate the SAS of the internal state via the JC interaction. Thejs invariant with respect to the rotatidi(¢), the atoms can

also showed that the coherent state of the kinetic motion canever be squeezed for any number of atoms.

generate the SAS via the parametric-type interaction. When the photon field is initially in the coherent sthig,

Kuzmich et al. [28] considered V-type three-level atoms the coefficients are given h%:e—lalzman/ W The ampli-

driven by squeezed light that leads to the SAS. tudea can be taken to be real without loss of generality, and
In the present paper we follow the scheme proposed ify, this case(a,) and(S,) vanish at any timésee Appendix

Ref.[18], namely the interaction between the atoms and thex) Therefore thes, direction is always normal to the mean

coherent state of photons in a high-cavity. The higher- ¢, yector. The variance &, is calculated to be
order interaction between atoms and photons establishes the

gquantum correlation between the atoms, thereby reducing the ,
dipole fluctuation. This scheme is simple in that no special ((AS()2>=e‘|“| Z
field state, other than the coherent state, is required. n=2

2n—2

o
—————pp(t)ry_o(1)
mpn( n 2(

1 2 ” azn
+=e 17 —[pn(1)2+20,(t) 2+ 1, (1)2].
A. Analysis for the case of two atoms 2 nZO n! [Pu(t) An()"F (V7]

The JC model can be solved exactly for up to three atoms, (29
and in the zero-detuning case for up to eight atoms. We will
henceforth assume zero detunidy=0, and employ the When a>1, the photon-number distribution has a narrow
Hamiltonian (12). By exaptly solving the dynamica] evolu- peak relative to the mean photon numbgrand one can
tion for two 'atoms, we dls_cuss 'the properties of th!s's.yste_mexpand Eq(29) with respect tm— n. Replacing the summa-

We consider the case in which both atoms are initially U ith the int | btain. f <1/\/=
the excited statéS= 1M =1)=|1,1), and photons are in an "> WIth (e Integrais we obtain, gt=1/yn,
arbitrary superposition stat®,c,|n)s, where|n) is the

; ; - 1 1 gt
photon-number state. The time development is calculated to AS))~ = _Jinzt\/ﬁ t+ in 2\/ﬁ t. (30
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1.2 Ne2 - which is due to the fact that the classical field merely rotates
=10 the spin vector. The photon-number state cannot produce the
(A8 / SAS, as mentioned above. We thus find that both wave and
11 - S)H/2 particle aspects of photons are necessary for atoms to be
squeezed.
1 -
2(AS)%) W B. Analytic approach for the case of a large number of atoms
0 0.2 0.4 0.6 We provide here approximate analytic expressions for the

case of a large number of atoms. These are derived by ne-

gt glecting the terms of order N relative to the dominant
terms in the equations of motion, which are therefore very

FIG. 2. Ti luti f th lized vari 8S))? ;
ime evolutions of the normalized variancf(25,)°) accurate when the number of atoidds very large.

. S\ 2 &
and the squeezing factof @5,)%)/|(S)| for two atoms. The two The initial state is assumed to be the totally excited state
atoms are initially excited, and the EM field is initially in the co-

herent state with amplitude=10. The solid curves show the nu- of the atoms _S’M =5) and the coherent StateA of th? field
merical results, and the dashed ones show approximate solutiohg), Where « is assumed to be real and hen(®)=(a,)

(30) and(32). =0. The other averages obey the equations of motse®e
Appendix B for derivations

Similarly, <§y> and(S,) are approximated to be d<§y>

gt(3 5 gt = 20(a)(Sy), (333
(8,)=—e~(@2sin 2/ngt— —(— — —sinz\/ﬁgt)

e (8

1 _ o —20(a(§), (330)
+ 8—_(S|n 2\/ﬁgt+ sin 4\/ﬁgt), (319
n ~
d{a .

A g, (330

A 5¢gt
(§)=e" (997205 2\/ﬁgt— 29 i 2\/ﬁgt
o

which become those of a pendulum, if we set

1
—qj c N 1
+ 4ﬁsm2 2\/ﬁgt. (31b (8)= Ssin 0, (343
Therefore, if the squeezing factor defined by N
. (8,)= =cosb, (34b)
AS§))? 1 3 2
(B850 _ avie Lo gt sir 2ot
(S)|/2 n 8n A 1 de -
ap)=———-. C
3gt ! 2g dt

+ T:Sin 2\/ﬁgt (32
2\n The solutions of Eqs(33) can be expressed in terms of Ja-

. . . ) cobi’s elliptic functions[29]. Solving the equations of mo-
is less than 1, the condition for the SA83) is fulfilled. tion for fluctuations, we obtain

Figure 2 compares the time evolution of the approximate
formula (32) (dashed curvewith the exact one which is

numerically ca_lculated from E26) (solid curve for two ((Aéz)z): [1+mEX(u/m)], (359
atoms and fon=a?=100. The parametegt in Fig. 2 and 4dn?(ulm)

all the quantities appearing in the figures presented hence-

forth are dimensionless. We find that both curves are in ex- sr?(ulm)cn?(ulm)

cellent agreement and the SAS is attained arogtd0.2.  ((AS)?)= Z|m an*(ulm)

The variance of another component that is normal to both the
mean spin vector and tH& direction never reduces to below {

2

1/2. It can beshown numerically that the SAS never occurs sn(umjen(u|m) ] ,
after the first minimum aroundt=0.2. Although in Fig. 2 dn®(u|m)
the second minimum of the varian¢€AS,)?) goes below (35b)
the first minimum, the squeezing factor does not go below
the first minimum because the length of the spin vector alsquhere u=gt\yN+ «? and m=N/(N+ «?). Jacobi's elliptic
decreases. functions [29] are defined bysn(u|m)=sing, cn(u/m)

Equation (32) shows that squeezing vanishes when the=cos¢, dn(u|m)=\/1—msir’e, whereu and¢ are related
intensity of the coherent state is sufficiently larger1, by

E(ulm)+dn(um)
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FIG. 3. Time evolutions ofS,)/S, 2((AS)?)/S, and((Aa,)?) FIG. 4. Time evolutions of S,)/S, 2((A8)2)/|(S)|, (a), and

for 100 atoms $=50). All the atoms are initially excited, and the ((An)2)/(n) for 10 atoms §=5). All the atoms are initially ex-

EM field is initially in the coherent state with amplitude=10. The  ¢ijted, and the EM field is initially in the coherent state with ampli-
solid curves show the numerical results, and the dashed ones shqyge o= 3.3.

approximate solution&35) and (B7b).

e do (5)=0. In Fig. 4, the squeezing factof @A S,)?)/|(S)| be-
u= | ——. (36)  comes less than 1, which indicates that the SAS is obtained.
0 y1—msir? 6 The maximum degree of squeezing is attained in the first
minimum. It is found from the long-term behavior that the
The elliptic integral of the second kind is given Bfu|m) squeezing never occurs at a later time. The fluctuation of the
= [bdn?(u’|m)du’. other component that is normal to both tBedirection and
Figure 3 compares the analytic solutiof35) (dashed the mean spin vector never fulfills the squeezing condition
curvesg with the numerically exact oneolid curves for  (23). Since the mean spin vector rotates in S, plane,
100 atoms an@d = 10. We find that the analytic curves are in <§;Z> oscillates with the amplitude ¢(é>|_ The amplitude of
excellent agreement with the numerical ones. The analytiehe photon field also oscillates with the same period but out
curves, however, begin to deviate from the numerical ones aif phase because of the energy exchange between the atoms

aroundgt=0.3. This is because the differential equationsynq the photon field. The varian¢eA $,)2) increases when
(B4) and (B9) include errors of order N relative to the ééz>>0 and decreases whdeZ)<0 as discussed in the

dominant terms, which accumulate to produce errors in th ] - ~ oA
preceding subsection. The Fano fac{¢An)<)/(n) of the

solutions of ordere9“N/N, which becomes of order unity ; ) S
aroundgt=0.3. photon field also goes below the SQL, and its behavior is

The analogy to the pendulum gives us a qualitative andery similar to that of{(AS,)?). The long-term behavior of
simple account of the squeezing mechanism. When the peftRis system is shown in Fig. 5. The collapse and revival
dulum points in the direction (sificose,sinésin,cosé), it ~ Phenomena occur in the population difference and in the
undergoes the force toward the direction Fano factor as in the case of a single atkﬁﬁ] The revival
(cos@cose,cosfsing,—sin ). In the present case, whese peak of the Fano factor splits and there is a small revival
is taken to be real, the pendulum begins to fall toward thebefore the main revival. The varian¢m§x)2>, on the other
negativeS, axis and rotates on tH&-S, plane. Suppose that hand, oscillates with the same period as the revivals, and the

the pendulum has a deviation from tI%-S, plane[¢= initially regular oscillations gradually change to random fluc-
—(w/2)+ 6¢]; the direction of the force is (ca®$,0, tuations around some value.
—sind). This force increases the deviation when 609, The degree of squeezing of the SAS depends on the num-

and decreases it when cs0. In fact, in Fig. 3,((AS,)?)  ber of atomsN, and for eachN the maximum degree of
increases whehéz)>0 and decreases wheéfsz><0 squeezing is attained at a particular amplitudef the initial

C. Numerical analysis

When the number of atoms is intermediate, analytic solu-
tions are unavailable, so we study the dynamical evolution of
the system by numerically diagonalizing the Hamiltonian
(12). The amount of computation increases with increasing
the number of atom& roughly asN®. The initial state is
assumed to be the totally excited state of the atd&M
=S) and the coherent state of the photon figld, wherea
is again taken to be real.

Figure 4 shows time evolutions of statistical properties of
atoms and photons. The number of atoms is 10, and the FIG. 5. Long-term behaviors of(S)/S, ((AS)?), and
amplitude of the initial coherent state is chosen tode ((An)2)/(n) for 10 atoms. All the atoms are initially excited, and
= 3.3 to obtain the maximal squeezing of the atoms. $f1e the photon field is initially in the coherent state with amplitude
component is always normal to the mean spin vector, since-3.3.

A,
{(An)*) &S

o N B~ O @
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FIG. 7. The relation betweeta) the quasiprobability distribu-
FIG. 6. Minimum values of the squeezing factors tion of the prepared atom@2) and(b) that of the emitted photon
2((A8,)2)/|(S)| obtained by the interaction of atoms with the co- field (16). The angle¢ (or —¢—m/2) represents the direction of
herent states of photons as a function of the number of arorfer ~ the mean amplitude of the photon fieldr the mean spin vectpr
eachN the amplitude of the coherent stateis chosen to give the and represents the direction of the fluctuations of the spin and the
best squeezing factor. The squeezing factor tends to schle®®  Photon field. Thes, component of the mean spin vector is negative.
for largeN and the optimal amplitude asN%2°,

d R . . s
coherent state. Figure 6 shows the minimum squeezing factor ﬁ«AS‘ o =202 =20([AS_ 212:88,5,]4),

2((AS)?)1|(S)| for each number of atoms and the ampli- (380
tude of the initial coherent state that gives this factor. We
find that the higher degree of squeezing can be obtained for

the larger number of atoms. The squeezing factor tends tghereAOzO—(O), .and[A,B]+EAB+BA IS an gnthom-
behave adN~°25 when N is more than about ten, and the mutator. The angle in Egs.(38) represents the direction of

. . 0.29 the fluctuations of the spin and the photon field, as shown in
optimal amplitudex behaves adl™= Fig. 7. The right-hand side of Eq389 vanishes at=0,
because initially the atoms and the photon field are not cor-

V- QUANTUM-CONTROLLED RADIATION related. Since the first derivative vanishegat0, the time
FROM SQUEEZED ATOMS development for smaliis determined by the second deriva-

It is natural to expect that the atoms whose collectivetive. From Egs(38a and(38b) we have
dipole or population difference is squeezed can radiate the
photon field having nonclassical properties. We will show (2 . . . o
that this is indeed the case, and that quantum fluctuations of—2<(Aa¢)2>:292[<(A5— s-m12)2)+2((Aa,)(Aa,S,))].
the photon field can be controlled by manipulating the SAS, dt (39
which is done by applying a classical field to the atoms.

At t=0, the right-hand side of EQq(39) reduces to
X A 297 ((AS_ ;- m2)2)+(S,)/2] because((Aa,)?)=1/4 for
The Heisenberg equations of motion oy andS_,_,»  the vacuum state. Therefore, if the initial spin state satisfies

A. Radiation from squeezed atoms

are written as the condition
. | . . . ~
a,=—[A™a,]=95 4_ ., 37 . (S,)
¢ h[ #1=9S_ 4712 (373 ((AS_,_,p)H<-— — (40)
A iAo . -~ 4
S,(,,,ﬁ,z:%[H”", S_4—m2]=20a,4S,. (37 the photon field will evolve into a squeezed state. To satisfy

the inequality(40), (S,) must be negative. The equation of

Equation(373 indicates that the phase of the photon field ismotion (39) indicates that the fluctuation profile of the pho-
connected with the direction of the spin vector. When theton field is connected with that of the spin state. From Egs.

spin vector is tilted toward the direction of ¢ —w/2, the (373 and (39), then, the direction toward which the spin
field is initially amplified toward the direction ap, as illus-  vector tilts corresponds to the direction of the displacement
trated in Fig. 7. The equations of motion for various fluctua-on the complexa plane of the photon field, and the squeezed
tions are given by or enhanced direction of the spin fluctuation corresponds to
that of the fluctuation of the photon field. Consequently, the

(383 quasiprobability distribution of the photon field on the
complex« plane is expected to behave like the quasiprob-
ability distribution of the atoms on the spin sphere, as illus-

d - - A
i((88,)%)=20((8a,)(A5 ),

d - N A trated in Fig. 7.
— — 2
dt<(Aa¢)(AS— y=m12)) = OL{(AS- - 772)%) When the tilting angle of the spin vector from thexis is
R L small, i.e., 6=, we can approximately solve the equations
+2((Aay)(Aa,S))], of motion (37) and(39). In this case(S,) is almost constant,

(38  and$, can be replaced by a constanbumber(S,),, where
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(---)o denotes the expectation value with respect to the ini-
tial state. With this approximation, Eq&7) can be solved,
giving

~ <AS*¢*7T/2>0 i -
(84)= ——=—=siNV2[(Sy)o|gt, (419
V2|(S,)ol

<é—¢—w/2>:<é—¢—w/2>oC05V2|<éz>o|9t- (41b) 0 o1 0'29,(0'3 04 05

The equations of motion for the fluctuatiot38) become
closed forms in this approximation, and the solutions are FIG. 8. Time evolutions of the normalized variance

given by 2((AS,)?)/S of the atoms, and the amplituda) and the variance
1 ((Aay)?) of the photon field emitted from them. The atomic state at
N N [o1/& gt=0.14 in Fig. 3 is used as the initial atom state. The field is
((Aa,,,) ) 4C052 2|<SZ>0|gt initially in the vacuum state. The solid curves show the numerical
. ) solutions and the dashed curves show the approximate solutions
((AS_y 72)%0 . = (413 and (42).
+ WS"@ V2[(Spolgt,
0

(423 solutions(41) and(42), suggests to us that we can manipu-

late the direction of displacement and the direction of

P 2\ _ /(A& 2 o7&, squeezing of photons by controlling the spin vector of the

(A8 y-712)") =((AS- - 712)°)0 COSV2I(S, ol gt SAS. The rotation of the spin vector about an axis on the

& _ S-S, plane can be made by applying a maser or laser with

+ |<Szz>0|sinz\/2|<sz)0|gt. (42b classical intensity to the atoms as described by the Hamil-

tonian (25). The rotation about thé, axis is realized by

We find that if the conditior(40) for the initial spin state is 2PPlying a dc magnetic field which causes a temporal detun-
fulfilled, the variance of the quadrature amplitud@a goes N9 by the Zeeman shift. Combining these two processes, we

. B e [y -1 can manipulate both the spin vector and the direction of
below the SQL ofL/4. At time t=m(2V2|(S7olg) ", the squeezing. By manipulating the SAS in the spin space, we

fluctuation((Aa,)?) attains its first minimum, can control the uncertainty ellipse of the photon field on the
- ) complex« plane. Figure 9 shows the quasiprobability distri-

(Aay)?)— ((AS_y_72)%)0 43 butions of 100 atomgleft panel$ and those of the emitted

4 2/(S,)ol ' photon stategright panels. In Fig. 9a) the CAS is used, and

in Figs. 9b)—9(d) the atom states are prepared in the SASs
and at the same time the amplitude of the field becomeby the method discussed in Sec. IV, where the parameters are

maximum, optimized to obtain the maximum degree of spin squeezing
(«=6.8, gt=0.19). The tilting angle of the spin vector
R <AS,¢,,W,2>O from the negativeS, axis is taken to ber/4 in Figs. 9a)—
(ag)= — (44)  9(d), and the uncertainty ellipses are turned around by 0,
V2[(S,)ol w4, andw/2 in Figs. 9b), 9(c), and 4d), respectively. One

) ) ) _ finds that the fluctuation profiles of the atomic states are

Figure 8 shows time evolutions of the amplitude and theather faithfully transferred to those of the emitted photon
variance of the photon field, where the initial atomic state isstates. Figures(®) and 9d) suggest that not only amplitudes
the SAS of 100 atoms. This atomic state is prepared by thgnd fluctuations but also higher-order moments of atom
method discussed in Sec. [the state agt=0.14 in Fig. 3. states are transferred to those of the photon states. We have
Since the tilting angle tefrﬂ(—(Sy)O/(SZ)o)=0.258 issmall, thus demonstrated that by manipulating the SAS, we can
the small-angle approximation is valid. The solutiddd) control quantum-statistical properties of the photon field at
and(42) are used for the theoretical curves in Figiddshed our disposal, which we would like to cakilor-made radia-
curves. One can see that the analytic results agree well withion.
the numerical onessolid curves, and((Aéz)z) goes below The squeezing of photons in the direction of phase can be
the SQL of 1/4. It can bshown numerically that the second Obtained only if the atomic state is squeezed in the azimuth
and the later minima of(A,)?) are larger than the first diréction as in Fig. @). Although the CAS can produce the
minimum, and hence we should switch off the interactionphown'numb.er squegzed sted] as in Fig. 9a), where the
when the first minimum is reached. Fano factor is 0.81, it never produce_s the phase-_squeezed
photon state by any rotation on the spin sphere. This can be
verified numerically, and can also be deduced from the fact
that the projection of the fluctuation profile on the complex-

As illustrated in Fig. 7, the quasiprobability distribution of « plane from the spin sphere can never be squeezed in the
the emitted photon state is like a projection from that of thedirection of the phase if the fluctuation profile on the spin
prepared atomic state. This observation, together with thephere is isotropic. To produce not only the amplitude-

B. Tailor-made radiation from squeezed atoms
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FIG. 10. Time evolution of the amplitudes and the variances of
the quadrature components of the photon state emitted from the

squeezed 100 atoms. Each trajectory is drawn with the initial tilting
angle of the mean spin vector at every30. The squeezed atom
states are prepared in the same manner as in Fig. 9 and rotated to
the states which are squeezed in the latitudinal directida)ifas in

Fig. 9d)] and in the longitudinal direction ifb) [as in Fig. 9b)].

The dashed curves delimit the regions that the trajectories can
reach.

FIG. 9. Quasiprobability distributions of 100 atorfisft) and
those of the photons emitted from the atofmight). In (a) the atoms
are prepared in a coherent atomic state, an@)n(c), and(d) they
are prepared in squeezed atom stategbjn(c), and(d) the uncer-
tainty ellipses are turned around by angles#@4, =/2, respec-
tively. The mean spin vectors are tilted by4 from the negativés,

axis. The spin sphere is seen from the negaflyexis. tends to be delayed against the energy exchange. When we

draw the overlap region of Figs. (@ and 1@b), we can
squeezed state but also the phase-squeezed state, the agitain the available range of the quadrature-amplitude
state must therefore be squeezed in the sense of the definitiggueezed state. It can be shown that the larger number of

(23). atoms can produce the wider range|(d)| and((Aaz)?)
. _ o [9]. This is due to the fact that the larger the number of
C. Available range of the tailor-made radiation atoms is, the larger will be the degree of squeezing of the

Let us discuss the range of photon squeezing that is avaiffAS, as shown in Fig. 6. i
able by our method. We use the SAS generated by the inter- The ranges of the average photon numbey and the

action between the totally excited atoms and the coherentgng factor<(Aﬁ)2>/<ﬁ> available from the SASs and the
state of the photon field with an optimum amplitude as dis-CASs of 50 and 100 atoms are shown in Fig. 11. It is found

cussed in Sec. IV. The available range of the emitted phOtO[hat for a given number of atoms the SAS can suppress the
field is obtained by plotting time evolutions of the radiation

processes for various initial tilting angles of the spin vector 1 i — —
of the SAS. N |
Figure 10 shows time evolutions of the amplitudes and 08 /%S o
the variances of the quadrature amplitudes of the photon L. 0.6 VN S o
states emitted from the SASs of 100 atoms. Each trajectory is §$ 04 + ~_ N=100
drawn with the initial tilting angle of the mean spin vector at ~ '
every/30. In Fig. 1@b), the SASs are prepared in the states 02 SAS| "/ 1
squeezed in the longitudinal direction, as in Figh)9 The o LAY=30 .
emitted photon states are therefore out-of-phase squeezed 0 20 40 60 80 100
states. In Fig. 1@), the initial SASs are squeezed in the ()

latitudinal direction as in Fig. @), and the emitted photon

states are therefore in-phase squeezed states. We find that inF|G. 11. Ranges of the average photon nungbérand the Fano

Fig. 10@) the trajectories tend to return the same pathStacior ((AR)2)/(n) of the photon field that can be obtained by the
whereas in Fig. 1®) the trajectories tend to round down- squeezed atom stat8AS) and the coherent atom Std@AS) of 50
ward. This indicates that in the case of in-phase squeezingnd 100 atoms. The SASs are prepared in the same manner as in
the energy exchange and the fluctuation exchange betwegwy. 9. The regions above the curves show the available photon
the atoms and the photon field tend to occur synchronouslystates. The solid curves show the results of the SASs and the dashed
and in the out-of-phase squeezing the fluctuation exchangenes show those of the CASs.
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FIG. 12. Available ranges of the average photon num{mgr - 027 {(Aag)) A
and the phase fluctuatidifA ¢)2) normalized by that of the coher- =
ent state having the same average photon nur(e$)?).o,. The 01 = |
coh-
regions above the curves show the photon states that can be ob- 0 %\L :
tained by our method. The squeezed atom states of 50 and 100 0 05 1 15 2
atoms are prepared in the same manner as in Fig. 9. The dotted %9
curve shows the lower bound 6fA ¢)2)/( (A ¢)?)¢on 0f the photon
field. AASI(A ) )eon P FIG. 13. (a) The contour plot of the minimum values of the

squeezing factor @AS,)?)/|(S)| of the SASs obtained by the in-

h ber i . frectively th he CAS teraction of 10 atoms with the coherent state of the photon field.
photon-number fluctuation more effectively than the ‘The amplitude of the coherent state is optimized to obtain the maxi-

The range of 100 atoms does not cover that of 50 atoms i, degree of squeezing for eaghand y, . (b) The contour plot

Fig. 11. The SAS of 50 atoms can produce photon state - 22 i .
. f th | A f the ph fiel
having smaller Fano factors than the SAS of 100 atoms Whego:nih:]I;;}T;;nze\;a:ti?n:(érezg)rgdght e photon field emitted

the average photon number is less than about 40. For a given
average photon number, therefore, there is an optimal num- R

ber of atoms to produce the best photon-number squeezed ‘9_P: '_ ~ ooty YEonnat atan nagn
state. ot~ pLpHTIT 5 (2apai—atap—pa‘a)
The ranges of the average photon numbé)' and the y
phase fluctuatio(A ¢)?) available from the SASs of 50 + f(zéj&—&é,ﬁ—ﬁ&é,), (46)

and 100 atoms are shown in Fig. 12. Here we use the phase

operator proposed by Pegg and Bar&g]. When(a) is N .
real and positive, the variance of the phase is expressed al/herep denotes the d‘qu'ty operator of both the atoms and
the photon field, andy; = and y, = are the lifetimes of a

R s 2(—1)" " R single photon and a single atom in the cavity. We obtain time
((Ap)?)= ?+ > —,2F<n’|pp|n)p, (45  evolution of the density operator by numerically integrating
n#n’ (N—n") the master equatiof#6) by the Runge-Kutta method. Figure

13(a) shows the contour plot of the minimum attainable val-

ues of the squeezing factor (A S,)?)/|(S)| of the SASs

. ) : ; tained by the interaction of 10 atoms with the coherent
'S the photon Anuzmber stafte. Figure 12 shows the variance @f;te of the photon field. The amplitude of the coherent state
the .phase((Acﬁ) ) normalized by that of the (;oherent State js optimized to obtain the maximum degree of squeezing for
having the same average photon num{eY$)“)con. Here  eachy, andy,. Figure 13b) shows the contour plot of the

the phase is defined as squeezed W{{en)*)/((Ad)?)con  minimum values of((Aa,)?) of the photon field emitted

is below unity.AThe dot’Eed curve in Fig. 12 shows minimumfrom the squeezed atoms prepared in Figal3The param-
values of ((A¢)2)/{(Ad)?).n for given average photon etersy; andy, in the radiation process are assumed to have
numbers, which are obtained by the method of Lagrang¢he same values as in the preparation of the SAS. These
multipliers [33] (see Appendix € The range of 100 atoms results show that the generation of the SAS and the squeezed
does not completely include that of 50 atoms as in the caseadiation are possible even in the presence of dissipation in
of the Fano factor, which indicates that for a given averageexperimentally feasible situations. We will discuss some
photon number there is an optimal number of atoms to reeoncrete numbers in the next section.

duce the phase fluctuation.

In experimental situations, loss of photons in the cavity
and spontaneous emission of atoms are unavoidable, and we
therefore evaluate how much cavity loss and spontaneous We discuss possible experimental situations to implement
emission are allowed in order not to destroy the squeezing afur theory. Our procedure of generating quantum-controlled
the atoms and that of the photon field. We adopt the mastefew-photon states consists of three stagBspreparation of
equation approach to take into account the effects of dissipdhe SAS,(ii) manipulation of the SASrotation of the spin
tion. The master equation in the presence of cavity loss andector in the spin spageand (iii) radiation from these at-
spontaneous emission is given [84] oms.

wherepe is the density operator of the photon field andl:

VI. POSSIBLE EXPERIMENTAL SITUATIONS
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[ exced stoms The interaction time igt,~10"%, i.e.,t,~107° s, e.g., in

@—c:;;%— ] ST the situation in Fig. 8. The atoms thus pass through the two

: velocity cavities within a few periods of duration 18 s, which is
oven - collimator gejectoy - shutter e";,ﬁ‘la;g"“ much shorter than !tjhe lifetime of the Rydberg atoms

waveguide ~10"2 s and the cavity lifetime~10"! s[35]. From Fig.
13, this cavity lifetime corresponding te;/g~10 2 does

NP ) m —1 |0 not affect the squeezing. If the circular Rydberg states are

( ) ) used, the lifetime is~1 s, and decays from the relevant

. - levels become negligible. Since the microwave frequency is

| cavity micr@wave i, cavity used, the temperature should be lower thah K in order

pulse to make the average number of thermal photons in the cavity
' much smaller than that of the produced photons.

Another possible scheme is to use atoms confined in an
ion trap or a magnetic trap in which the quantized kinetic
motion of the atoms replaces the role of photons. Wineland
et al. [26] proposed the JC interaction between the Zeeman
rotated SAS doublet of electronic states of each ion and the center-of-
mass(CM) motion of an ensemble of ions via the inhomo-

FIG. 14. Schematic illustration of an experimental setup to eneous magnetic field. They pointed out that the stimulated

implement the tailor-made radiation. The state of the atoms at eacﬁ . Iso b d le the i |
stage is shown with the spin quasiprobability distribution. A bunch aman transition can also be used to couple the interna

of two-level excited atoms that is in a coherent atom st@#s) is  States of each ion to the CM motion of iof26,36. In these
prepared by an oven, a collimator, a velocity selector, a shutter, andnodels the operatom anda' in the JC Hamiltoniar(8) are
a pulse that excites the atoms. The atoms then go into the firgiot for photons but for the quantized CM motion of ions in a
cavity and interact with a coherent state of the photon fie)d The ~ harmonic trap. By using the stimulated Raman technique,
output atoms are in a squeezed atom stafeS). By the interaction  our theory might be implemented as follows. First, the inter-
with a microwave pulse in a waveguide, the mean spin vector isal levels of the trapped ions are excited and the CM motion
rotated to a desired direction. The atoms finally go into the secongs cooled to the ground staf87]. The CM motions of two
cavity and emit photons there. Left in the second cavity is thegrthogonal directions, say theandx directions, correspond
desired few-photon state. to the photon fields in the first and the second cavities in the
method discussed in the preceding paragraph. In the first
The simplest realization of our theory would be to fly a stage, the coherent state of the CM motion in zftbrection
bunch of atoms through two cavities and a waveguide a# prepared and the Raman beams in this direction are ap-
schematically illustrated in Fig. 14. This type of experimentplied. The coherent state of the CM motion can be generated
may be done in a microwave regime, since the atoms arby sudden displacement of the trap center. When the atomic
required to be within a region much smaller than the waveinternal state becomes the SAS, the Raman beams are
length. If we use, for example, the B3, 61d;, transition  switched off. In the second stage, the Raman beams that do
of rubidium atoms, the resonant frequency is 21.5 GHz, thenot affect the CM motion are applied, which rotate the spin
wavelength is\~10"2 m, and the coupling constant ¢  vector in the spin space. In the third stage, the Raman beams
~10* Hz. First, an atomic beam from an oven is collimatedin the x direction are applied, and the internal states of the
and velocity-selected. The variance of the velocity of theions are coupled to the CM motion in tladirection. By this
atoms must be\v<\/T~10° m/s, whereT is the time it  coupling the information of the internal states is transferred
takes the atoms to pass through the apparatus. A mechanidalthe CM motion in thex direction, which may be called a
shutter can prepare a bunch of atoms from the atomic beanailor-made motional state. Although this is not radiation, the
The atoms in the bunch are then excited to the Rydberg stateethod using the trapped atoms might be used to test our
that is the upper state of the relevant two levels, and enter thiaeory.
first cavity in which the photon field is prepared to be in a The use of dielectric spheres as optical cavities might be
coherent stater). The SAS is generated there by the higher-another possibility, where the optical whispering gallery
order interaction of the atoms with the coherent state. ThéWG) mode in the microsphere is employed. With the mi-
interaction time isgt;~10"%, i.e.,t;~107° s, e.g., in the crosphere cavity, very low threshold lasing has been ob-
situation in Fig. 4. The velocity of the atoms is thereforeserved[38,39, and theQ value of more than has been
required to bev~10> m/s. The atoms then pass through aachieved with highly transparent silica glass optical-fiber
waveguide, where the atoms are irradiated by a pulse of mimaterial[40]. The atoms are fixed on the substrate and are
crowave with classical intensity, by which the spin vectorcoupled to evanescent waves of two microspheres which are
representing the state of collective atoms is rotated. To corplaced very closely. They have the slightly different resonant
trol the rotation axis of the spin vector, the relative phaserequenciesw; and w,. The optical WG mode in the first
between the microwave and the coherent state in the firghicrosphere is prepared in a coherent state, while that in the
cavity must be controlled. The irradiation time of the classi-second one is prepared in the vacuum state. In the first stage,
cal field is much shorter than the interaction time in boththe atoms are brought into resonance with the WG mode
cavities. Finally, the atoms pass through the second cavity ifrequency in the first microsphere,, and are far from reso-
which the desired state of photons is emitted from the atomsiant with that of the second microspheang. This can be
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done by Zeeman-shifting the transition frequency of the atQ. |n the second line of EqA1) we used the fact that the
oms by a magnetic field. When the atomic state becomes th@atrix element of the Hamiltonia(12),

SAS by interacting with the coherent state, the interaction

with the WG mode in the first microsphere is switched off by (nj(s M|A™|S,M")|n’)=gA[ Vn+ 1/(S+M)(S—M+1)
switching off the magnetic field. In the second stage, the spin

vector is rotated by applying a laser pulse resonant with the X Onnr—10M,M7 +1

transition frequency of the atoms. In the third stage, by ap-
plying an appropriate magnetic field, the atoms are brought + \/ﬁ\/(s_ M)(S+M+1)

into resonance with the WG mode of the second microsphere X8 v 10um 1], (A2)
w,. By switching off the magnetic field, the desired photon ’ '
state is left in the second microsphere. The coupling consta
g can be of order 1 and y;/g~10"2 and y,/g~10"1,
where the spontaneous emission rate of an atom in the fr
space is assumed. From Fig. 13, we find that both the SA
and the squeezed photon state are not washed out by t
effects of dissipation.

% real and hencéi™* =A™ By a unitary transformation

£ we havee S0 17S= — {4 and €/ S| ) ® |S,M

S=S>=e'”5| a)®|S,M=S). Applying this unitary transfor-

'%ation to the second line of E¢AL), the expectation value

bécomes

VIl. CONCLUSIONS (10 M) = (el el TS:O* @175 N ° a3
In conclusion, we have shown that quantum fluctuations L oiaa. o R _

of few-photon states can be controlled by using the SASTherefore, if 7%0*e™' %= —O, the expectation value

This controllability is based on the fact that quantum fluc-(A3) must vanish. The operato& anda, meet this condi-

tuations of the atoms are faithfully transferred to those of theion. In general, an expectation value of a Hermitian operator

emitted photons. The correspondence shown in Fig. 9 bahat consists of operator products in whishanda, appear
tween the quasiprobability distribution on the spin sphereyn odd number of times always vanishes. General conditions

and that on the complex-plane indicates that a variety of : P~ .
photon states can be produced by merely rotating the Spilr,]eqwred for the initial state of the photon figlgd and that of

vector of the SAS. We also found that this manipulation oft€ 20mMspa arepf = pr ande'"pae "= p,.
few-photon states is possible only if the atoms are in the

SAS. Although the CAS can produce the photon-number APPENDIX B: DERIVATION OF THE APPROXIMATE
squeezed state, the degree of squeezing is lower than that of SOLUTIONS (35)

the photon state produced by the SAS, and the phase
squeezed state can never be produced by the CAS. The p
sible experimental situations to implement our theory were
discussed. By these schemes, we can generate the quantum- A

controlled few-photon state in the microcavity and the al=— (i=1,2), (B1a)
guantum-controlled center-of-mass motion of trapped atoms. N

_In this appendix, we derive the approximate solutions
5). It is convenient to defin€31]
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APPENDIX A: CONDITIONS FOR EXPECTATION in order to estimate errors of the approximation. The equa-
VALUES TO VANISH IN THE JAYNES-CUMMINGS tions of motion for these operators have the forms
INTERACTION R o
R 9,5,=—2a,S,, (B2a)
It is assumed in Sec. IV that the expectation val{8g
and(a,) qlways vanish if the time evolgt@qn is governed by 37”33’/: —Zéié; , (B2b)
the Hamiltonian (12) and when the initial state i$a)
®|S,M=S) with real . In this appendix we give a general 08 =28 +a8 B2C
condition for this to be true. 52 =2(a18y 280, (B20
Since an expectation value of a Hermitian operator, say PPV (820)
O, is real, it follows that 2= S
(™MD 1™ty — (@M ™1 Q TR X — (oIt (x g™ty 0.:8;==$,. (B29

Al

(AL We assume that the initial state is the CX8=0,¢) for the
where the expectation values are taken with respect to thgtoms and the coherent state) for the photon field, where
initial state |@)®|S,M=S), and O* denotes an operator « is taken to be real without loss of generality. Taking the
whose matrix elements are complex conjugates of those afxpectation values of EqéB2) yields
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I48)=—2a))(8)-2(aajA8), (B
748 =2a)(E) - 28ai88), (B
a8 =—(8)), ®

whereAO=0—(0) for any operators. It can be shown that
(és’,), (8)), and(a}) are of order unity, andAajAS.) and
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3a) (§))=—V1-msdulm)cd(ulm), (B7a)
) (&)= 2r2cd(um)-1], @7
30)

(a})=a’'nd(ulm), (B70)
(a1)=(80=0, (B7d)

(AéiAS’,) are of order 1N. If we neglect relative errors of

1/N, the second terms of Eq&éB3a) and (B3b) can be
glected, giving

ne- whereu=r\1+a'? andm=1/(1+a’'?).

The equations of motion for variances are written as

I{8)=—2(ai)(8)), (B4a) IA(ABY)2) = —2(ARLAE)), (B8a)
948,) = 2ai)(S,). B4 (A= —a(AaAE)(8)) +2(AGAZ AR
dfap=—(S). (B4o) +2(A8ASAAS), (B8b)
e set IABR5A8) =~ (A8~ ((833)2)(8)) — (8354 8)).
o1 (B8c)
(S))= Esin (1), (B5a) _
It can be shown that the second-order fluctuations, such as
A 1 ((AS))?), are of order 1N, and that the third-order fluctua-
(S;)=5c0s6(7), (B5b)  tions, such agAS,AS,Aa}), are of order 1N?. Neglecting
the third-order fluctuations in EqéB8), we have
- 1 - I
(a)=—50,0(7), (B5¢) d{(Aap)?)=—2(AazAS,), (B9a)
the equations of motiofB3) reduce to 9(A8))?)=—4(Aa,AS)(S)), (B9b)
2 _ .
7o =sn o, 0 T(ABAT) = —(A8)H —(A8pH(E). (B9

which has the same form as the equation of motion
mechanical pendulum. The angular velocity of the pe
corresponds to the field amplitude. The solutions for
tial condition #(0)=0 and 4,0(0)=—2a’', where
=al N, can be expressed in terms of Jacobi’s ellipti

for the

ndulunUsing the form of(S,) in Eq. (B7b), which has at most a
the inirelative error of 1N, Eqgs.(B8) reduce to the closed differ-

a ential equations with relative errors N/ They have three

¢ func-independent sets of solutions, and two of them are obtained

tions as as
|
) %ndz(u|m)
((Aaz)?)
m
(A8)?) | =| Fsdulmed (ulm)
(waas)) | Jm

N sd(u/m)cd(u|/m)nd(ulm)

(B10)

indz(u|m)E2(u|m)

N

m
N[mso[u|m)cd(u|m)E(u|m)+dn(u|m)]2

ym
— W[msc{u|m)cd(ulm)E(ulm)+dn(u|m)]nd(u|m)E(u|m)
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The linear combination of these solutions to satisfy the initial
conditions ((A8)H=1/4N, ((Aa)%=1/4N, and F({cah N B)=2 20 AanCCn
(Aa,AS))=0 yields the solution$35).

> ci-1

n

APPENDIX C: A METHOD TO MINIMIZE THE PHASE +A +B

FLUCTUATION

; ncﬁ—?),

In this appendix, we briefly show a method to obtain a (C2)

photon state having the minimum phase fluctuation, which is

the dotted curve in Fig. 12. The variance of the Pegg-Barnett o o
phase operator of the photon statgc,|n) is given by where\ and g are the Lagrange multipliers. The variational
problemdF/dc,,=0 is equivalent to the eigenvalue problem

2

~ a
(A$)%= 5422 AnrCoCm, (&)
2 (2Agy +NBSyy)Cr+ACH=0, (C3)
whereA,,=(—1)"""(n—m)2. The coefficients that mini- "
mize the varianc€C1) satisfying the constraint§,ncﬁ=1
andEnncﬁzﬁare obtained by minimizing the function which can be solved numerically.
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