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Quasiperiodic synchronization for two delay-coupled semiconductor lasers
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The dynamical behavior of two mutually coupled semiconductor lasers is studied experimentally, numeri-
cally, and analytically for weak coupling. The lasers have dissimilar relaxation oscillation frequencies and
intensities, and their mutual coupling strength may be asymmetric. We find experimentally that the lasers
preferentially entrain to the relaxation oscillation frequency of either one of the lasers. But quasiperiodic
synchronization, where both relaxation oscillation frequencies appear, is possible. We show that there exist two
distinct mechanisms leading to these regimes corresponding to either a bifurcation to a mixed-mode solution or
a bifurcation induced by the delay of the mutually injected signal. However, only the second transition can be
observed experimentally if the injection strength is continuously increased from zero.
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I. INTRODUCTION

Coherent semiconductor laser arrays are a potential h
power coherent light source with applications in free-sp
communication and laser radar systems. The requiremen
be met for these systems are challenging: high cohere
high power, narrow diffraction limited beam, and stab
single frequency operation. Since the first phase-loc
semiconductor laser array was reported by Scifreset al. @1#,
a tremendous amount of research has been dedicate
studying the beam quality and spatial coherence propertie
such devices@2# and less research has been dedicated to t
temporal characteristics. Elliottet al. @3# have performed
streak camera experiments on a semiconductor laser a
consisting of ten coupled stripes. The authors observed
the intensity of the individual stripes exhibited strong a
irregular spiking of 100–200 ps duration. Wang and Win
@4# used a time-dependent coupled mode theory to inve
gate the stability of such an evanescently coupled array
this model the lasers are described by single mode rate e
tions and are coupled to their nearest neighbors. They fo
strong undamped relaxation oscillations in the individual
ray elements that evolved into irregular spiking behavior j
as in the experiment. Both the theoretical and experime
results strongly suggest that the temporal behavior
coupled semiconductor laser arrays is very rich and comp
Yet, understanding the temporal behavior of an array
coupled semiconductor lasers is essential for building
stable device.

Systems of coupled lasers are also very interesting f
the point of view of synchronization. A successful device
coupled lasers will require quality synchronization betwe
lasers. Traditionally, synchronization describes freque
entrainment in a system of individual elements that ha
slightly different intrinsic frequencies but that lock to on
common frequency when weakly coupled@5#. Synchroniza-
tion in a set of coupled oscillators is typically modeled ma
ematically by considering units of identical oscillators wi
the same amplitude but slightly different frequencies that
PRA 591050-2947/99/59~5!/3941~9!/$15.00
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symmetrically coupled@6#. Synchronization is found when
the spread of the oscillating frequencies is not too large
an array of coupled lasers, however, the individual las
may exhibit intensity oscillations with quite different ampl
tudes and frequencies due to manufacturing constraints. A
the coupling between the lasers need not to be symme
The possible forms of synchronization between these dif
ent oscillators are much harder to predict theoretically a
may depend on the particular laser system considered,
as solid state versus semiconductor lasers or evanesc
coupled versus mutually coupled.

Synchronization of evanescently coupled identical se
conductor lasers has been demonstrated numerically in
chaotic regime by Winful and Rahman@8#. Experimentally,
Roy and Thornburg@9# demonstrated that two couple
Nd:YAG lasers exhibit synchronized chaotic fluctuations.
both examples great care was taken that the elements
sufficiently identical to ensure good synchronization. But e
perimental observations by Thornburget al. @10# on spatially
coupled Nd:YAG lasers reveal amplitude and phase insta
ties as the lasers are detuned in optical frequency for a g
coupling strength. Moreover, numerical studies of the la
rate equations for this system show that more complex os
latory patterns appear as soon as the difference betwee
individual laser pumping levels is changed@11#. This moti-
vates bifurcation studies of the two coupled laser equatio

One form of synchronization, called localized synchro
zation, was recently analyzed by Kuske and Erneux@7# for a
system of two coupled solid-state lasers. Localized synch
nization appears when one or more oscillators in a coup
array exhibit large amplitude oscillations whereas the
maining oscillators exhibit small oscillations. In@7#, two
identical lasers are detuned by an optical frequency dif
ence which nearly equals the relaxation oscillation f
quency. Three coexisting solutions are found. Depending
the initial conditions there is one stable solution for whi
the oscillation amplitude of each laser is identical and th
are two stable solutions for which the amplitude of oscil
tion is localized. These localized states become the domin
3941 ©1999 The American Physical Society
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attractors if the pump parameters of each individual laser
different.

In @12# we showed that localized synchronization betwe
two mutually coupled semiconductor lasers was poss
through a primary Hopf bifurcation mechanism. Depend
on the values of the coupling parameters, one laser force
other laser to oscillate at its relaxation oscillation frequen
~i.e., at frequencyf 1 or frequencyf 2!. However, a single
mode synchronization is not the only possible form of int
action between lasers. Mixed mode forms of synchroniza
exhibiting the two individual laser relaxation oscillations fr
quencies are physically possible. As we shall demonstrat
this paper, these mixed-mode regimes may appear throu
secondary bifurcation mechanism. By contrast to the loc
ized states, the mixed states are quasiperiodic~with frequen-
cies f 1 and f 2! and the two oscillation intensities are comp
rable in amplitude. Our analysis of the laser equations sh
that they can be stable attractors but they may be harde
find experimentally. This competition between single mo
and mixed-mode regimes is a key problem for all tw
coupled lasers systems. However, an important feature of
semiconductor laser problem—which can be ignored
coupled gas or solid-state lasers—is the delay of the m
ally injected signal. As we shall demonstrate numerica
the delay is responsible for a different form of quasiperio
synchronization. The laser oscillations are now character
by the frequencyf 1 ~or f 2! and a frequency proportional t
the inverse delay timet. Furthermore, the intensities of th
two lasers may oscillate with different amplitudes. This
calized quasiperiodic regime may appear as a secondar
furcation from a stable localized periodic state and ha
better chance to be observed than the mixed-mode quasi
odic synchronization. Because distinct mechanisms may
to periodic or quasiperiodic synchronization, it will be use
to have a simple analytical understanding of the laser bi
cations. To this end, we take advantage of the natural va
of the laser parameters and formulate simplified nonlin
equations which we then analyze by using perturbat
methods. The analysis only considers the case of zero d
We investigate the effect of the delay by studying nume
cally the bifurcation diagram of the original laser rate equ
tions. Two by-products of our combined analytical and n
merical study are as follows. First, we note that the las
need to be nonidentical in order to observe synchronizat
Second, we show that the branch of localized periodic st
may unfold near a secondary bifurcation otherwise known
the mathematical literature as imperfect pitchfork bifurcat
@13# and exhibit multiple periodic attractors.

The paper is organized as follows. In Sec. II we descr
our experimental setup of two mutually coupled semicond
tor lasers and briefly report on the observation of localiz
synchronization which motivates our new analysis of the
ser equations. We introduce the model for the two mutua
coupled semiconductor lasers which is based on single m
rate equations in Sec. III. Numerical computations are p
sented showing that these equations describe the experi
tal findings. In Sec. IV we predict other synchronizati
mechanisms by analyzing a reduced phase model of two
tually coupled semiconductor lasers. We perform a bifur
tion analysis of the periodic states and analyze their stab
properties. Further numerical computations are describe
re
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Sec. V in order to clarify the role of the delay. In Sec. VI o
results are summarized, and we compare and contrast
findings with other interesting issues of coupled semicond
tor lasers, such as two coupled identical lasers, opera
close to threshold, and evanescently versus mutu
coupled.

II. EXPERIMENTAL SETUP AND OPTICAL SPECTRA

Our intent is to study the temporal characteristics of
array of evanescently coupled semiconductor lasers a
function of coupling strength. However, systematic expe
ments on coupled semiconductor laser arrays are very d
cult to realize because such a device allows very little con
of its operating parameters. One would have to fabricat
new device for each value of coupling strength while kee
ing all other laser parameters identical. This is naturally
very time consuming and expensive procedure. Another
ficulty is to decouple pump currents of the individual lasi
elements while maintaining sufficient optical coupling. W
therefore chose two commercially available semiconduc
lasers and mutually coupled them by injecting light from o
into the other. This configuration allowed us to indepe
dently control the coupling strength, the detuning betwe
the optical frequencies of the lasers, and their individ
pump levels. It also permitted us to study the effect of co
pling two distinctly nonidentical lasers. We deliberately ke
the coupling strength weak in order to avoid the excitation
more than one external cavity mode@14#. We extracted the
underlying dynamics by observing the optical spectra si
experiments using streak cameras@3# and theoretical compu
tations@4# have shown that intensity fluctuations in coupl
semiconductor lasers typically take place at a subnanose
time scale, which renders direct observations of long a
high-quality time traces very difficult.

In the experiment we used two commercially availab
single-mode semiconductor lasers~Sharp LT015 lasing at
830 nm! and coupled them at a distance ofL520 cm. Two
collimating lenses were used to mode-match the beam
the two lasers. The coupling strength was controlled by a
of three polarizers so that less than 1024 of the intensity of
one laser was injected into the other~Fig. 1!. Symmetric

FIG. 1. Our experimental setup consists of two commercia
available Sharp LT015 lasers emitting at 830 nm. They are pla
at a distance ofL520 cm. Two collimating lenses were used
mode-match the beams of the two lasers. The coupling strength
controlled by a set of three polarizers. Symmetric mutual coupl
was ensured by imaging the beam of the lasers. The optical s
trum was measured with a scanning Fabry-Pe´rot interferometer with
a free spectral range of 2000 GHz. The radio frequency spect
was monitored with a HP8596E.
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mutual coupling was ensured by imaging the beam of las
and the light of laser 2, which passed the polarizers and
reflected from the front facet of laser 1, through a pin hole
the same spot. The same procedure was repeated fo
beam of laser 2 and the transmitted beam of laser 1 to ve
the alignment. Through adjustments of the temperature,
lasers were tuned to the same optical frequency~i.e., n1
5n2!, but their pump levels were kept dissimilar. Laser
was pumped at 47% and laser 2 at 55% above thresh
resulting in output powers of 24.4 and 33.4 mW, and fre
running relaxation oscillation frequencies off 153.77
60.05 GHz andf 254.4360.05 GHz, respectively. The op
tical spectrum was monitored with a scanning Fabry-Pe´rot
interferometer which had a free spectral range of 2000 G
~Newport SR-240C!. The absence of beat frequencies in t
radio frequency spectrum~HP 8596E! verified that each of
the lasers was lasing at only one single external cavity mo

Figures 2~a! and 2~b! show the optical spectra of laser
and laser 2 with weak coupling. The relaxation oscillati
frequencyf 1 of laser 1 is undamped as indicated by stro
relaxation oscillation sidebands atf 1 @Fig. 2~a!#. The spec-
trum of laser 2@Fig. 2~b!# recorded for the same couplin
strength shows sidebands that are also located atf 1 but that
are considerably weaker. Thus the two coupled lasers ex
a form of localized synchronization characterized by f
quencyf 1 . Note that laser 2 is pumped at a high level but
forced to oscillate at the relaxation oscillation frequency
laser 1 which is pumped at a lower level. As we furth
increase the mutual coupling strength, we find that exte
cavity modes are excited and the laser output becomes
siperiodic.

A successful synchronization between lasers can be m

FIG. 2. Experimental optical spectra of the two lasers dem
strating localized synchronization. Less than 1024 of the intensity
of one laser is injected into the other and for zero optical detun
we see strong undamped relaxation oscillation sidebands atf 1 ~a!.
Laser 2 also exhibits sidebands atf 1 , but the oscillation strength is
much weaker~b!. As we detune laser 2 from laser 1 resonantly
n12n25 f 2 , we find that laser 2 exhibits strong relaxation oscil
tion sidebands atf 2 ~d! and laser 1 is entrained tof 2 ; however, the
oscillation strength is weaker~c!.
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fied if we resonantly detune the two lasers. Specifically,
have also observed that laser 1 may be entrained to laser
frequencyf 2 as we resonantly detune laser 1 from laser 2
n12n25 f 2 . Figures 2~c! and 2~d! show the optical spectra
for each laser, respectively. We see that laser 2 exhi
strong relaxation oscillation sidebands at the relaxation
cillation frequencyf 2 and laser 1 is entrained to the sam
frequency with a weaker oscillation strength. In this pap
we concentrate on possible synchronization mechanisms
sulting from coupling only and do not consider these case
resonance.

III. LASER RATE EQUATIONS AND NUMERICALLY
COMPUTED SPECTRA

The system of these two mutually coupled semiconduc
lasers can be modeled using single-mode rate equati
Each laser is described by one equation for the normali
complex electric field,Em (m51,2), and one for the normal
ized carrier number above threshold,Nm @8#. The coupling is
accounted for by adding a delayed electric field of laser
E2(t2t), with a real coupling efficiency ofh1 to the equa-
tion for the complex electric field of laser 1 and vice ver
@15#. Self-coupling caused by reflections from the front fac
of one laser back into the other is neglected because it i
O(hm

2 ) small and is therefore much smaller than the cro
coupling @16#. The complete set of equations in dimensio
less form is given by

E185~11 ia!N1E11h1E2~ t2t!1 iv1E1 , ~1!

E285~11 ia!N2E21h2E1~ t2t!1 iv2E2 , ~2!

TN185P12N12~112N1!uE1u2, ~3!

TN285P22N22~112N2!uE2u2. ~4!

Primes indicate derivatives with respect to timet, where time
is measured in units of the photon lifetimetp , a is the line-
width enhancement factor,vm[2ptpnm denotes the nor-
malized optical frequencies of each laser which we assu
equal.T is the ratio of the carrier lifetimets to tp . The delay
time t[L/ctp corresponds to the time it takes for the lig
to travel the distanceL from one laser to the other.Pm de-
notes the pumping above threshold for each laser. This
namical system shares common features with the w
studied injection model@17#, delayed feedback model@18#,
and the system of two evanescently coupled semicondu
lasers@19#. We therefore anticipate that our system of tw
mutually coupled lasers exhibits similarities to all these mo
els.

We numerically integrated Eqs.~1!–~4! using typical pa-
rameters for the sharp LT015 diode lasers used in the exp
ment: tp51.4 ps, ts51 ns (T5714), L520 cm (t
5476), a55, v15v2 , andvmt52np, n integer. The la-
sers were pumped atP150.402 and P250.555 above
threshold to approximately match the free-running relaxat
frequencies off 1 and f 2 in the experiment. Figure 3 display
optical spectra for various values of coupling strengthh1
keeping the ratio
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C[h2 /h1 ~5!

equal to 1. For a coupling strength ofh151.031023 @Fig.
3~a!#, laser 1 exhibits strong undamped relaxation oscillat
sidebands atf 1 and laser 2@Fig. 3~b!# has sidebands atf 1 as
well but smaller in amplitude. Thus, laser 2, which
pumped at a higher level, is entrained to the relaxation os
lation frequency of laser 1. Since the intensity oscillations
laser 1 are much larger than the intensity oscillations of la
2, the synchronization is localized. As the coupling stren
is increased, external cavity modes are excited and the l
output becomes quasiperiodic. In our numerical calculati
we can change the ratio of the two coupling strengthsC and
examine its effects. We find that forC.P2 /P1.1.38, the
relaxation oscillation frequency of laser 2, namelyf 2 , is
strongly undamped and laser 1 is entrained to laser 2 at
quencyf 2 . In this case the oscillation strength of laser 1
significantly weaker than that of laser 2 and synchronizat
is again localized. The optical spectra are depicted in F
3~c! and 3~d! for C52 andh156.131024. We also inves-
tigated the bifurcation diagram of the solutions of Eqs.~1!–
~4! using the same values of the parameters as in Figs.~a!
and 3~b!. These results are summarized in the numerical s
tion below. The two coupled lasers undergo a bifurcat
from steady to time-periodic intensities. The frequency of
oscillations isf 1 and the amplitude of the oscillations of las
2 is much smaller than the amplitude of the oscillations
laser 1.

In summary, we have observed experimentally and
merically that the two mutually coupled semiconductor
sers can exhibit localized synchronization~i.e., single-mode
operation! which is the simplest form of interaction betwee
the lasers. We also found numerically that the localized s

FIG. 3. Optical spectra computed from Eqs.~1!–~4! for tp

51.4 ps, ts51 ns (T.714), L520 cm (t5476), a55, P1

50.402, P250.555, vmt52nt, C51, and n151023. Laser 1
shows strong sidebands atf 1 ~a! and laser 2 shows weak sideban
also at f 1 ~b! demonstrating localized synchronization. The tw
lasers can be entrained at the relaxation oscillation frequenc
laser, f 2 , for C52 and n156.131024. The optical spectrum of
laser 1 shows weak relaxation oscillation sidebands atf 2 ~c!. The
optical spectrum of laser 2 shows strong relaxation oscillation s
bands atf 2 ~d!.
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depends on the value of the asymmetric coupling factoC
and that quasiperiodic forms of synchronization may app
as we increase the coupling strength. In order to identify
mechanisms leading to these quasiperiodic synchronizati
we propose a bifurcation analysis in the next section.

IV. REDUCED LASER EQUATIONS AND BIFURCATION
ANALYSIS

Specifically, we reduce Eqs.~1!–~4! to a simpler and ana
lytically tractable form by taking advantage of the two lar
parameters that are inherently present in semiconducto
sers, the ratioT of the two fundamental time scales,tp and
ts , and the linewidth enhancement factora. We have veri-
fied numerically that the solution of the reduced problem
in good agreement with the solution of the full laser equ
tions ~1!–~4! if T51000 anda510. For smaller values o
a(a>5), we have found that the bifurcation diagrams of t
full and reduced laser equations remain in semiquantita
agreement~i.e., same bifurcation transitions and same ord
of magnitude of the various solutions!.

The asymptotic method leading to the simplified las
problem is similar to the method used in@20–22# for differ-
ent laser problems. After substituting the new time

s[Vt ~6!

into Eqs.~1!–~4!, where

V[A2P1 /T!1 ~7!

is the relaxation oscillation frequency of laser 1, we intr
duce the new variablesem , Cm , andnm defined by

Em5APm~11em /a!exp@ i ~Cm1vmt !#,
~8!

Nm5Vnm /a,

and neglect allO~1/a! correction terms. The resulting equa
tions can be reformulated in terms ofC1 and C2 only and
are given by the following two coupled third-order dela
differential equations:

C1-1j1C191C1852rL1 cos@c1~s!#, ~9!

C2-1j2C291r 2C2852rL2 cos@c2~s!#, ~10!

where primes means differentiation with respect to times. In
these equations,c1 and c2 are the coupling functions de
fined by

c1~s![C2~s2Vt!2C1~s!2v2t2Ds, ~11!

c2~s![C1~s2Vt!2C2~s!2v1t1Ds, ~12!

where

D[~v12v2!/V ~13!

is the scaled detuning between the optical frequencies.
parametersLm , jm , andr are defined by

of

e-
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Lm[ahm /V, jm[~112Pm!/VT,
~14!

r[AP2 /P1.

Lm is proportional to the mutual coupling strength,jm is the
damping constant, andr 2 is the ratio of the two pumps.

Physically, these phase equations describe two oscilla
one oscillating with frequencys151 and the other with fre-
quency s25r (sm[2p f mtp /V). Both oscillators are
driven nonlinearly by the cos(cm) term. Equations~9! and
~10! have a simple interpretation when the delayt is ne-
glected. Then the system further reduces to two phase o
lators, which are driven nonlinearly by their common pha
difference, cos(C12C2).

In order to determine an analytical solution of Eqs.~9!
and ~10!, we shall consider the case of weak coupling (Lm
!1) and zero delay. However, a nonzero delay is no
limitation of our analysis. The delay is responsible for qu
siperiodic instabilities that we shall describe in the next s
tion. We also consider the casev5v15v2 (D50). The
details of the analysis are long and tedious~see@23#! and we
summarize the main results. The leading-order approxi
tion of the coupled phase equations~9! and~10! is given by

C1.A1 sin~s1f1!1B1 , ~15!

C2.A2 sin~rs1f2!1B2 , ~16!

whereAm , Bm , andfm are slowly varying functions of time
s. They satisfy amplitude equations which are determined
applying solvability conditions. The slow time equations f
A1 , A2 , andQ[B22B1 are given by

A1852 1
2 j1A11rL1 sin~Q!J0~A2!J1~A1!, ~17!

A2852 1
2 j2A22

L2

r
sin~Q!J0~A1!J1~A2!, ~18!

Q852F cos~Q!J0~A1!J0~A2!, ~19!

whereF is defined by

F[
L2

r
2rL1 . ~20!

In these equations,J0(Am) andJ1(Am) denote Bessel func
tions of A1 or A2 . Equations~17!–~19! are our bifurcation
equations that we propose to analyze. Recall thatC
[h2 /h15L2 /L1 is defined as the ratio of the couplin
strengths. Our analysis of the primary solutions of Eqs.~17!–
~19! shows that there exist two cases depending on the v
of C. If

C,C![r 25
P2

P1
, ~21!

we find that the first bifurcation of the basic state (A1 ,A2)
5(0,0) is a bifurcation to a pure mode solution (A1 ,A2)
5(A1,0), whereA1(L1) satisfies the implicit equationL1
5j1A1/2rJ1(A1).0. This bifurcation occurs at
rs,

il-
e

a
-
-

a-

y

ue

L1
H1[

j1

r
5

112P1

VT S P1

P2
D 1/2

~22!

and corresponds to a Hopf bifurcation of the original las
equations sinceA1 multiplies sin(s1f1) in expression~15!.
After the bifurcation, the oscillations ofC1(s) are O~1! in
amplitude and exhibit a frequencys151. The oscillations of
C2(s) admit the same frequency but areO(L2) small, as
shown by the higher-order correction of the perturbation
lution.

On the other hand, if

C.C!, ~23!

we observe an analogous bifurcation scenario, only that la
1 is now entrained to laser 2 ats25r . The first primary
bifurcation is now leading to the pure mode solutio
(A1 ,A2)5(0,A2) and is located at

L1
H25C21j2r 5C21

112P2

VT S P2

P1
D 1/2

. ~24!

The determination of the primary bifurcation points~22! and
~24! is important because they allow us to explain our obs
vations of localized synchronization. The critical pointC
5C* verifies the conditionF50, whereF is defined by Eq.
~20!. It corresponds to a change of stability of the pha
Q and does not meanL1

H25L1
H1 @note: L1

H2 and L1
H1

are bifurcation points from two distinct steady state
(A1 ,A2 ,Q)5(0,0,p/2) and (A1 ,A2 ,Q)5(0,02p/2), re-
spectively#.

As L1 is progressively increased from zero, second
bifurcations appear. We only describe the case~21! for clar-
ity. The bifurcation diagram of the steady-state amplitud
A1 andA2 is shown in Fig. 4. The pure mode solution th
emerges atL15L1

H1 is characterized by a constantQ
5p/2 and is stable provided thatJ0(A1).0. At A15A* ,
whereA* .2.4 is defined as the first zero ofJ0(A1), the pure
mode solutionA1Þ0, A250 undergoes a secondary bifu
cation to another pure mode solution characterized byA1
5A* remaining constant but nowQ being a function ofL1 .
This new solution corresponds to a new periodic state of
original laser equations. The secondary bifurcation is loca
at L15L1*

1 in Fig. 4. The bifurcation is a pitchfork bifurca
tion with two distinct branchesQ5Q(L1) for L1>L1*

1. In
addition to the cascading bifurcations followingL15L1

H1,
we observe a second primary bifurcation from (A1 ,A2)
5(0,0) to the pure modeA150, A2Þ0 which appears a
L1

H2.L1
H1. However, this solution is unstable nearL1

H2 and
stabilizes only asA2 surpassesA* .2.4. This secondary bi-
furcation is located atL15L1*

2 in Fig. 4. Then, a stable pure
mode periodic state exhibiting frequencys5r may coexist
with one of the periodic solution that follows the branchin
at L15L1

H1. Finally, this stable periodic solutionA1

50, A2Þ0 changes stability atL15L1
M and leads to a

mixed-mode solution characterized by the two relaxation
cillation frequencies and comparable amplitudes.

Other branches of periodic states are possible becaus
Bessel functions appearing in our bifurcation equations
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multivalued functions. These branches of solutions app
for larger values ofL1 and are not shown in Fig. 4.

In summary, the bifurcation analysis revealed that in
dition to the two primary bifurcations~i.e., L15L1

H1 and
L15L1

H2!, the coupled lasers admit a bifurcation to a ne
periodic state (L15L1*

1), a bifurcation which allows the
coexistence of periodic states exhibiting different frequenc
(L15L1*

2), and a bifurcation to a quasiperiodic mixe
modes regime (L15L1

M). The latter is an interesting new
form of synchronization because the intensities of the t
lasers are comparable and because they exhibit two re
ation oscillation frequencies.

We have verified the results of our analysis based on
limit L1 small by integrating numerically Eqs.~9! and ~10!
for T51000,a510, andt50. See Fig. 5. We have found a
our stable solutions and the numerical bifurcation points
Fig. 5 are in excellent agreement with their analytical e
mates shown in Fig. 4. In the next section, we study the

FIG. 4. Bifurcation diagram of the steady-state amplitudesA1

andA2 . The different solutions are obtained analytically from Eq
~17!–~19!. The figures exhibit two distinct primary bifurcations t
single-mode solutions located atL1

H1 and L1
H2, respectively. Be-

causeL1
H1,L1

H2, the two lasers synchronize into a localized sta
with frequencyf 1 asL1 surpassesL1

H1. The points denoted byL1*
1

and L1*
2 are two distinct secondary bifurcations which appear

A15A* and A25A* , respectively.L1*
1 corresponds to a bifurca

tion from one stable periodic state to another stable periodic s
L1*

2 marks the change of stability of the pure mode solut
(A1 ,A2)5(0,A2). As L1.L1*

2, the two pure mode solutions co
exist in the bifurcation diagram. AtL15L1

M , we observe the bi-
furcation to a mixed-mode solution characterized by nonzero va
of both A1 and A2 . This solution corresponds to a quasiperiod
regime of the laser rate equations.
ar

-

s

o
x-

e

n
i-
ll

laser equations~1!–~4! with particular attention to~i! the
periodic solutions near the secondary bifurcation atL1

5L1*
1 and~ii ! a new quasiperiodic instability caused by th

delay.

V. NUMERICAL STUDY OF THE LASER RATE
EQUATIONS

The objective of our numerical study is twofold. We fir
wish to examine the secondary bifurcation to the new p
odic state which is suggested by our analysis and which
pears as amplitudeA1 surpassesA* .2.4. Second, we con
centrate on the possible bifurcations to quasiperio
regimes.

In the first case, we note numerically that the second
bifurcation is unfolded. Specifically, a pitchfork seconda
bifurcation atL15L1*

1 becomes asymmetric and leads to
stable and isolated branch of periodic states and to a sm
branch of primary periodic states. This unfolding is not p
dicted by the analysis of the amplitude equations~17!–~19!
and requires a higher-order analysis near the secondar
furcation point atL15L1*

1. We have verified analytically
that the unfolding is essentially determined by the correct
terms multiplying the coupling termsh1 andh2 . An imme-
diate consequence of this unfolding is that the branch
primary states does not exhibit a secondary bifurcation p
if the control parameter is slowly increased from zero. W

.

t

te.

es

FIG. 5. Numerical bifurcation diagram of the two coupled pha
equations~9! and ~10!. The figures represent the deviations of t
maxima and minima of the two intensities from their steady-st
values. The diagram exhibits all the stable periodic and quasip
odic solutions. For the periodic states, the deviations of the inte
ties are well approximated by the amplitudes6A1 and 6A2 , re-
spectively. Note that the branches of solutions have b
determined by either increasing or decreasing continuously the
trol parameter and by starting with different initial conditions wh
stable branches overlap.
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note that the straight lineA152.4 in Fig. 4 splits in two lines.
The lower line smoothly connects the primary bifurcati
point L1

H1 while the upper line connects the upper unsta
branch in Fig. 4 through a limit point located nearL1*

1.
The bifurcation to the quasiperiodic oscillations is phy

cally more interesting because we numerically find bifur
tions that were not predicted by our analysis. These n
bifurcations to quasiperiodic oscillations are produced by
relatively large delay which forces the laser system to ad
a two-times response~i.e., the relaxation oscillations tim
f 1

21 and the delay timet!. By decreasingt, we clearly note
that these bifurcations go to largerL1 but that the branch o
mixed-mode quasiperiodic oscillations predicted by o
analysis only slightly changes.

Figure 6 is a representative bifurcation diagram that d
plays both the results of the unfolding of the secondary
furcation and three bifurcations to quasiperiodic oscillatio
Figure 7 shows the bifurcation diagram of the laser r
equations using the values of the parameters given in Fi
and which best simulate our experiments.

VI. SUMMARY AND DISCUSSION

We have shown that two mutually coupled semiconduc
lasers exhibiting different values of the parameters may s
chronize in different ways. The simple synchronizati
mechanism is a single-mode form of synchronization wh
one laser is forced to oscillate at the relaxation oscillat
frequency of the other laser and with relatively smaller a
plitude. It has been called localized synchronization an
has been observed experimentally. However, richer sync
nization patterns are possible which exhibit two distinct f
quencies. We have found a quasiperiodic regime charac
ized by the two individual laser relaxation oscillation
frequencies and a quasiperiodic regime where one freque
corresponds to a relaxation oscillation frequency of one
the two individual lasers and one frequency proportiona
the inverse delay time. Although these two forms of quas
eriodic entrainment can be stable, only the second regim
expected to be seen if we gradually increase the injection
from zero, as suggested by Fig. 7. The first regime is isola
in the bifurcation diagram and cannot be reached usin
continuation method. On the other hand, the second qua
eriodic regime appears from a bifurcation of the primary
calized state and will be localized too. Experimentally,
have found evidence of quasiperiodic synchronization
relatively high injection rates but frequencies are harde
identify due to the possible presence of multiple exter
cavity modes.

We next review a series of problems that are directly
lated to our analysis. The question arises whether two se
conductor lasers having the same values of the param
can exhibit synchronization as they are mutually coupl
We have investigated this system@Eqs.~1!–~4!# numerically
for zero optical frequency detuning, symmetric coupli
strength, and identical pump levels. The parameter va
were tp51.43 ps, ts51 ns (T.700), P15P250.402, a
55, C51, v15v2 , and vmt52np, n integer. As we in-
cluded the delay, we found that there are three stable st
one for which both lasers oscillate in synchrony with iden
cal amplitudes, and two localized states for which either la
e
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1 is the strong oscillator and laser 2 is the weak one or v
versa. We varied the delay fromt5476 to t510 and ob-
served that the Hopf bifurcation point moved to larger valu
of the coupling strength suggesting that this bifurcation
controlled byt. Yet for the simplest case of zero delay th
system stays in steady state and does not exhibit instabili

Another interesting question is whether synchronizat
can be observed as one of the lasers is pumped close t
lasing threshold. Our numerical calculations for zero delay
Eqs. ~1!–~4! show that as laser 2 is pumped slightly abo
threshold the same scenario of localization takes place a
the case of both pumps above threshold. The parameter
ues weretp51.43 ps, ts51 ns (T.700), t50, P150.3,
P250.005,a55, C51, v15v2 , and vmt52np, n inte-

FIG. 6. Numerical bifurcation diagram of the laser rate equ
tions ~1!–~4!. The figures represent the deviations of the maxi
and minima of the two intensities from their steady-state values@e1

ande2 are defined by Eq.~8!#. The diagram exhibits all the stabl
periodic and quasiperiodic solutions. The values of the parame
areC51, P150.402,P250.555,T52000,a56, andt5476. The
figures show a primary bifurcation to a pure mode periodic solut
(A1Þ0, A250). It emerges from a Hopf bifurcation located
L1.0.07, and it is designated with bullets~d!. Near the critical
amplitudeA15A* .2.4, the unfolding of the pitchfork secondar
bifurcation leads to an isolated branch of periodic states tha
designated with circles~s!. Both branches~bullets and circles! un-
dergo bifurcation to quasiperiodic oscillations which are caused
the relatively large delayt ~frequencies close tof 1 andt21!. These
bifurcations move to infinity ift is decreased. The figures also sho
the branch of mixed-mode quasiperiodic oscillations~frequencies
f 1 and f 2!. The branch is shown by diamonds~L!. This branch is
stable after a second, secondary bifurcation of the pure mode
odic solution (A150, A2Þ0). We also found a small domain
where this solution is stable before the quasiperiodic oscillatio
Note that the secondary bifurcation to quasiperiodic oscillatio
nearL150.15 is the first instability that appears after the prima
bifurcation point atL1.0.07.
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ger. We find that again the weakly pumped laser 2 is de
bilized, undergoes a Hopf bifurcation, and the stron
pumped laser 1 entrains to the relaxation oscillation f

FIG. 7. Numerical bifurcation diagram of the laser rate eq
tions ~1!–~4!. The figures represent the deviations of the maxi
and minima of the two intensities from their steady-state values
function ofh1 . The values of the parameters are the same as in
3. We note that the primary bifurcation to the localized state
quickly followed by a bifurcation to quasiperiodic oscillations a
is caused by the delay.
s

d

D

l
.
9

a-

-

quencyf 2 of laser 2. However, the modulation depth of las
1 is very small. As laser 2 is pumped below threshold (P2
520.005), the reverse scenario takes place, meaning
strongly pumped laser 1 is destabilized for rather strong c
pling and the weakly pumped laser 2 entrains to the rel
ation oscillation frequencyf 1 of laser 1.

Finally it is important to know whether localized synchr
nization can be found in two evanescently coupled semic
ductor lasers@19# as well. We have studied numerically th
coupled-mode model considered in@19# using the same pa
rameter values as for Fig. 3 and setting the delay to zero
the weak coupling regime the two lasers bifurcate fro
steady state into a limit cycle forL50.065, which is very
close to the theoretically predicted Hopf point in the case
two mutually coupled lasers. In addition, the oscillatory sy
chronization between the lasers is clearly localized sugg
ing that the phenomenon of localized synchronization
quite general as soon as the two lasers exhibit different
rameter values. However, if the two lasers have ident
parameters, Hopf bifurcations are no more possible for t
mutually coupled lasers~no delay! while they still exist for
two evanescently coupled lasers. This is a consequenc
the coupling mechanism being real for the mutually coup
lasers while being imaginary for the evanescently coup
lasers.
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