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Quasiperiodic synchronization for two delay-coupled semiconductor lasers
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The dynamical behavior of two mutually coupled semiconductor lasers is studied experimentally, numeri-
cally, and analytically for weak coupling. The lasers have dissimilar relaxation oscillation frequencies and
intensities, and their mutual coupling strength may be asymmetric. We find experimentally that the lasers
preferentially entrain to the relaxation oscillation frequency of either one of the lasers. But quasiperiodic
synchronization, where both relaxation oscillation frequencies appear, is possible. We show that there exist two
distinct mechanisms leading to these regimes corresponding to either a bifurcation to a mixed-mode solution or
a hifurcation induced by the delay of the mutually injected signal. However, only the second transition can be
observed experimentally if the injection strength is continuously increased from zero.

[S1050-294{®9)00705-2

PACS numbgs): 42.65.Sf, 42.55.Px

[. INTRODUCTION symmetrically coupled6]. Synchronization is found when
the spread of the oscillating frequencies is not too large. In

Coherent semiconductor laser arrays are a potential higlan array of coupled lasers, however, the individual lasers
power coherent light source with applications in free-spacenay exhibit intensity oscillations with quite different ampli-
communication and laser radar systems. The requirements tades and frequencies due to manufacturing constraints. Also
be met for these systems are challenging: high coherencthe coupling between the lasers need not to be symmetric.
high power, narrow diffraction limited beam, and stable, The possible forms of synchronization between these differ-
single frequency operation. Since the first phase-locke@nt oscillators are much harder to predict theoretically and
semiconductor laser array was reported by Sciéieal. [1], may depend on the particular laser system considered, such
a tremendous amount of research has been dedicated &s solid state versus semiconductor lasers or evanescently
studying the beam quality and spatial coherence properties abupled versus mutually coupled.
such device$2] and less research has been dedicated to their Synchronization of evanescently coupled identical semi-
temporal characteristics. Elliottt al. [3] have performed conductor lasers has been demonstrated numerically in the
streak camera experiments on a semiconductor laser arrapaotic regime by Winful and Rahmd8]. Experimentally,
consisting of ten coupled stripes. The authors observed th&oy and Thornburg[9] demonstrated that two coupled
the intensity of the individual stripes exhibited strong andNd:YAG lasers exhibit synchronized chaotic fluctuations. In
irregular spiking of 100—200 ps duration. Wang and Winfulboth examples great care was taken that the elements were
[4] used a time-dependent coupled mode theory to investisufficiently identical to ensure good synchronization. But ex-
gate the stability of such an evanescently coupled array. Iperimental observations by Thornbwegal.[10] on spatially
this model the lasers are described by single mode rate equasupled Nd:YAG lasers reveal amplitude and phase instabili-
tions and are coupled to their nearest neighbors. They founties as the lasers are detuned in optical frequency for a given
strong undamped relaxation oscillations in the individual ar-coupling strength. Moreover, numerical studies of the laser
ray elements that evolved into irregular spiking behavior justate equations for this system show that more complex oscil-
as in the experiment. Both the theoretical and experimentdhtory patterns appear as soon as the difference between the
results strongly suggest that the temporal behavior ofndividual laser pumping levels is changgtl]. This moti-
coupled semiconductor laser arrays is very rich and complexates bifurcation studies of the two coupled laser equations.
Yet, understanding the temporal behavior of an array of One form of synchronization, called localized synchroni-
coupled semiconductor lasers is essential for building aation, was recently analyzed by Kuske and Erngl)xor a
stable device. system of two coupled solid-state lasers. Localized synchro-

Systems of coupled lasers are also very interesting fromnization appears when one or more oscillators in a coupled
the point of view of synchronization. A successful device ofarray exhibit large amplitude oscillations whereas the re-
coupled lasers will require quality synchronization betweenmaining oscillators exhibit small oscillations. [¥], two
lasers. Traditionally, synchronization describes frequencydentical lasers are detuned by an optical frequency differ-
entrainment in a system of individual elements that haveence which nearly equals the relaxation oscillation fre-
slightly different intrinsic frequencies but that lock to one quency. Three coexisting solutions are found. Depending on
common frequency when weakly couplgsl. Synchroniza- the initial conditions there is one stable solution for which
tion in a set of coupled oscillators is typically modeled math-the oscillation amplitude of each laser is identical and there
ematically by considering units of identical oscillators with are two stable solutions for which the amplitude of oscilla-
the same amplitude but slightly different frequencies that arg¢ion is localized. These localized states become the dominant
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attractors if the pump parameters of each individual laser are : Pinhole
different. /‘/ 7> Camera
In [12] we showed that localized synchronization between Y - p
; i p; »  Power Spectrum
two mutually coupled semiconductor lasers was possible |,
through a primary Hopf bifurcation mechanism. Depending #{~ " Optical Spectrum
on the values of the coupIi.ng parameters, one laser forces the Laser 1 . Taser 2
other laser to oscillate at its relaxation oscillation frequency R, v 7 I N

(i.e., at frequencyf,; or frequencyf,). However, a single
mode synchronization is not the only possible form of inter-
action between lasers. Mixed mode forms of synchronization FIG. 1. Our experimental setup consists of two commercially
exhibiting the two individual laser relaxation oscillations fre- available Sharp LT015 lasers emitting at 830 nm. They are placed
guencies are physically possible. As we shall demonstrate iat a distance of. =20cm. Two collimating lenses were used to
this paper, these mixed-mode regimes may appear throughneode-match the beams of the two lasers. The coupling strength was
secondary bifurcation mechanism. By contrast to the localeontrolled by a set of three polarizers. Symmetric mutual coupling
ized states, the mixed states are quasiperitaith frequen-  was ensured by imaging the beam of the lasers. The optical spec-
ciesf, andf,) and the two oscillation intensities are compa- trum was measured with a scanning FabryePinterferometer with
rable in amplitude. Our analysis of the laser equations show8 free spectral range of 2000 GHz. The radio frequency spectrum
that they can be stable attractors but they may be harder #2s monitored with a HP8S96E.
find experimentally. This competition between single mode
and mixed-mode regimes is a key problem for all twoSec. V in order to clarify the role of the delay. In Sec. VI our
coupled lasers systems. However, an important feature of ouiesults are summarized, and we compare and contrast our
semiconductor laser problem—which can be ignored foffindings with other interesting issues of coupled semiconduc-
coupled gas or solid-state lasers—is the delay of the mutuor lasers, such as two coupled identical lasers, operation
ally injected signal. As we shall demonstrate numerically,close to threshold, and evanescently versus mutually
the delay is responsible for a different form of quasiperiodiccoupled.
synchronization. The laser oscillations are now characterized
by the frequencyf, (or f5) and a frequency proportional 0 ExpERIMENTAL SETUP AND OPTICAL SPECTRA
the inverse delay time. Furthermore, the intensities of the
two lasers may oscillate with different amplitudes. This lo- Our intent is to study the temporal characteristics of an
calized quasiperiodic regime may appear as a secondary bray of evanescently coupled semiconductor lasers as a
furcation from a stable localized periodic state and has dunction of coupling strength. However, systematic experi-
better chance to be observed than the mixed-mode quasiperizents on coupled semiconductor laser arrays are very diffi-
odic synchronization. Because distinct mechanisms may leacllt to realize because such a device allows very little control
to periodic or quasiperiodic synchronization, it will be useful of its operating parameters. One would have to fabricate a
to have a simple analytical understanding of the laser bifurnew device for each value of coupling strength while keep-
cations. To this end, we take advantage of the natural valuesg all other laser parameters identical. This is naturally a
of the laser parameters and formulate simplified nonlineavery time consuming and expensive procedure. Another dif-
equations which we then analyze by using perturbatiorficulty is to decouple pump currents of the individual lasing
methods. The analysis only considers the case of zero delaglements while maintaining sufficient optical coupling. We
We investigate the effect of the delay by studying numeri-therefore chose two commercially available semiconductor
cally the bifurcation diagram of the original laser rate equa-asers and mutually coupled them by injecting light from one
tions. Two by-products of our combined analytical and nu-into the other. This configuration allowed us to indepen-
merical study are as follows. First, we note that the laserslently control the coupling strength, the detuning between
need to be nonidentical in order to observe synchronizatiorthe optical frequencies of the lasers, and their individual
Second, we show that the branch of localized periodic stategump levels. It also permitted us to study the effect of cou-
may unfold near a secondary bifurcation otherwise known irpling two distinctly nonidentical lasers. We deliberately kept
the mathematical literature as imperfect pitchfork bifurcationthe coupling strength weak in order to avoid the excitation of
[13] and exhibit multiple periodic attractors. more than one external cavity mofie4]. We extracted the
The paper is organized as follows. In Sec. Il we describeunderlying dynamics by observing the optical spectra since
our experimental setup of two mutually coupled semiconducexperiments using streak camefatand theoretical compu-
tor lasers and briefly report on the observation of localizedations[4] have shown that intensity fluctuations in coupled
synchronization which motivates our new analysis of the lasemiconductor lasers typically take place at a subnanosecond
ser equations. We introduce the model for the two mutualljtime scale, which renders direct observations of long and
coupled semiconductor lasers which is based on single mod@gh-quality time traces very difficult.
rate equations in Sec. Ill. Numerical computations are pre- In the experiment we used two commercially available
sented showing that these equations describe the experimesingle-mode semiconductor lasefSharp LT015 lasing at
tal findings. In Sec. IV we predict other synchronization 830 nm and coupled them at a distancelof 20 cm. Two
mechanisms by analyzing a reduced phase model of two mollimating lenses were used to mode-match the beams of
tually coupled semiconductor lasers. We perform a bifurcathe two lasers. The coupling strength was controlled by a set
tion analysis of the periodic states and analyze their stabilitpf three polarizers so that less than #@f the intensity of
properties. Further numerical computations are described ione laser was injected into the oth@fig. 1). Symmetric
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F(a) : fied if we resonantly detune the two lasers. Specifically, we

[ laser 1] | [ (D) laser 2 .

g g have also observed that laser 1 may be entrained to laser 2 at

. ' frequencyf, as we resonantly detune laser 1 from laser 2 by

v,—v,=f,. Figures 2c) and 2d) show the optical spectra

L for each laser, respectively. We see that laser 2 exhibits

. strong relaxation oscillation sidebands at the relaxation os-

l Q cillation frequencyf, and laser 1 is entrained to the same
ro frequency with a weaker oscillation strength. In this paper,

we concentrate on possible synchronization mechanisms re-

laser 2 sulting from coupling only and do not consider these cases of
resonance.

Ill. LASER RATE EQUATIONS AND NUMERICALLY
COMPUTED SPECTRA

Optical Spectrum [arb. units]

. N S The system of these two mutually coupled semiconductor
6420246 6420246 lasers can be modeled using single-mode rate equations.
Each laser is described by one equation for the normalized
complex electric fieldg,, (m=1,2), and one for the normal-
FIG. 2. Experimental optical spectra of the two lasers demon-'zed carrier number at?OVe threshalid}, [8]. T.he.coupllng IS
strating localized synchronization. Less thar 1@f the intensity ~accounted for by adding a delayed electric field of laser 2,

of one laser is injected into the other and for zero optical detuning=2(t—7), with a real coupling efficiency of, to the equa-
we see Strong undamped relaxation oscillation Sidebanﬁ§ @ tion for the CompleX electric field of laser 1 and vice versa

Laser 2 also exhibits sidebandsfat but the oscillation strength is [15]. Self-coupling caused by reflections from the front facet
much weakerb). As we detune laser 2 from laser 1 resonantly by of one laser back into the other is neglected because it is of
v,—v,=Tf,, we find that laser 2 exhibits strong relaxation oscilla- O(r;zm) small and is therefore much smaller than the cross-
tion sidebands aft, (d) and laser 1 is entrained fg; however, the  coupling[16]. The complete set of equations in dimension-

Frequency [ GHz ]

oscillation strength is weakéc). less form is given by

mutual coupling was ensured by imaging the beam of laser 1 E;=(1+ia)N{E;+ nEx(t—7)+iw,Eyq, (1)
and the light of laser 2, which passed the polarizers and was

reflected from the front facet of laser 1, through a pin hole on Ej=(1+ia)NyEx+ 7,E1(t—7) +iw,E,, 2

the same spot. The same procedure was repeated for the
beam of laser 2 and the transmitted beam of laser 1 to verify
the alignment. Through adjustments of the temperature, the
lasers were tuned to the same optical frequefisy., v
=1,), but their pump levels were kept dissimilar. Laser 1 TN;=P,—N,— (1+2Ny)|E,|?. 4
was pumped at 47% and laser 2 at 55% above threshold,
resulting in output powers of 24.4 and 33.4 mW, and free-Primes indicate derivatives with respect to timehere time
running relaxation oscillation frequencies of;=3.77 is measured in units of the photon lifetimg, « is the line-
*+0.05GHz andf,=4.43+0.05 GHz, respectively. The op- width enhancement factow,,=2m7,v, denotes the nor-
tical spectrum was monitored with a scanning FabrggPe malized optical frequencies of each laser which we assume
interferometer which had a free spectral range of 2000 GHzqual.T is the ratio of the carrier lifetime, to 7,. The delay
(Newport SR-240¢ The absence of beat frequencies in thetime 7=L/cr, corresponds to the time it takes for the light
radio frequency spectrurfHP 85968 verified that each of to travel the distancé from one laser to the otheR,, de-
the lasers was lasing at only one single external cavity modeaiotes the pumping above threshold for each laser. This dy-

Figures Za) and Zb) show the optical spectra of laser 1 namical system shares common features with the well-
and laser 2 with weak coupling. The relaxation oscillationstudied injection mod€]l17], delayed feedback modgl8],
frequencyf, of laser 1 is undamped as indicated by strongand the system of two evanescently coupled semiconductor
relaxation oscillation sidebands & [Fig. 2@]. The spec- lasers[19]. We therefore anticipate that our system of two
trum of laser 2[Fig. 2(b)] recorded for the same coupling mutually coupled lasers exhibits similarities to all these mod-
strength shows sidebands that are also locatdd htit that ~ els.
are considerably weaker. Thus the two coupled lasers exhibit We numerically integrated Eq§l)—(4) using typical pa-
a form of localized synchronization characterized by fre-rameters for the sharp LT015 diode lasers used in the experi-
quencyf,. Note that laser 2 is pumped at a high level but isment: 7,=1.4ps, 7,=1ns (T=714), L=20cm (7
forced to oscillate at the relaxation oscillation frequency of=476), =5, w;=w,, andw,7=2nm, n integer. The la-
laser 1 which is pumped at a lower level. As we furthersers were pumped aP,;=0.402 and P,=0.555 above
increase the mutual coupling strength, we find that externahreshold to approximately match the free-running relaxation
cavity modes are excited and the laser output becomes querequencies of ; andf, in the experiment. Figure 3 displays
siperiodic. optical spectra for various values of coupling strength

A successful synchronization between lasers can be modkeeping the ratio

TN;=P;—N;—(1+2Ny)|E,%, ®
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04 depends on the value of the asymmetric coupling faGor
— () laser 1] | [ (D) laser 2 and that quasiperiodic forms of synchronization may appear
.*E' i [ : as we increase the coupling strength. In order to identify the
= 02 L mechanisms leading to these quasiperiodic synchronizations,
.E’ [ I we propose a bifurcation analysis in the next section.
]
g oob—rArt b IV. REDUCED LASER EQUATIONS AND BIFURCATION
g 0, 8420246 64202456 ANALYSIS
i (o laser 1] | | () Taser 2 - _
w Specifically, we reduce Eg&l)—(4) to a simpler and ana-
?cg ol lytically tractable form by taking advanta_ge of the two large
’g‘ -l parameters that are inherently present in semiconductor la-
) sers, the ratid of the two fundamental time scales, and

ool 75, and the linewidth enhancement factarWe have veri-

fied numerically that the solution of the reduced problem is

in good agreement with the solution of the full laser equa-

tions (1)—(4) if T=1000 anda=10. For smaller values of
FIG. 3. Optical spectra computed from Eq4)—(4) for 7, a(a=5), we have found that the bifurcation diagrams of the

—1.4ps, 7e=1ns (T=714), L=20cm (r=476), a=5, P, full and rec_;luced Iaser_equat_lons remain in semiquantitative

=0.402, P,=0.555, w,7=2n7, C=1, andn;=10"3. Laser 1 agreementi.e., same bifurcation transitions and same orders

shows strong sidebands fat (a) and laser 2 shows weak sidebands Of magnitude of the various solutions

also atf, (b) demonstrating localized synchronization. The two  The asymptotic method leading to the simplified laser

lasers can be entrained at the relaxation oscillation frequency dproblem is similar to the method used[20-22 for differ-

laser, f,, for C=2 andn;=6.1x10"%. The optical spectrum of ent laser problems. After substituting the new time

laser 1 shows weak relaxation oscillation sidebandt, dt). The

optical spectrum of laser 2 shows strong relaxation oscillation side- s=0t (6)

bands aff, (d).

T T T T T T T T
6420246 6420246
Frequency [ GHz ]

into Egs.(1)—(4), where
C=nlm 5

0=\2P,/T<1 7
equal to 1. For a coupling strength gf=1.0x10 2 [Fig.
3(a)], laser 1 exhibits strong undamped relaxation oscillatioris the relaxation oscillation frequency of laser 1, we intro-
sidebands at, and laser ZFig. 3(b)] has sidebands dt as  duce the new variables,,, ¥,, andn, defined by
well but smaller in amplitude. Thus, laser 2, which is

pumped at a higher level, is entrained to the relaxation oscil- En=VPn(l+en/a)exdi(V,+oqt)],
lation frequency of laser 1. Since the intensity oscillations of (8)
laser 1 are much larger than the intensity oscillations of laser Npn=Qn,/a,

2, the synchronization is localized. As the coupling strength

is increased, external cavity modes are excited and the lasand neglect alD(1/«) correction terms. The resulting equa-
output becomes quasiperiodic. In our numerical calculationsions can be reformulated in terms ®f; and ¥, only and
we can change the ratio of the two coupling stren@irend  are given by the following two coupled third-order delay-
examine its effects. We find that f&>P,/P,=1.38, the differential equations:

relaxation oscillation frequency of laser 2, namédly, is

strongly undamped and laser 1 is entrained to laser 2 at fre- W+ &P+ W=—rA;cod ()], 9)
qguencyf,. In this case the oscillation strength of laser 1 is
significantly weaker than that of laser 2 and synchronization W+ &Wh+r2W=—rA,cod ¢(s)], (10)

is again localized. The optical spectra are depicted in Figs.
3(c) and 3d) for C=2 and#;=6.1x10"%. We also inves- where primes means differentiation with respect to tanka
tigated the bifurcation diagram of the solutions of Ed9—  these equationsy;, and ¢, are the coupling functions de-
(4) using the same values of the parameters as in Figs. 3 fined by
and 3b). These results are summarized in the numerical sec-
tion below. The two coupled lasers undergo a bifurcation P1(S)=V,(s—Q7)—V(S)— wr7— AsS, 11
from steady to time-periodic intensities. The frequency of the
oscillations isf; and the amplitude of the oscillations of laser Ur(8) =V (s—Q7)—V,(S)— w T+ AS, (12
2 is much smaller than the amplitude of the oscillations of
laser 1. where

In summary, we have observed experimentally and nu-
merically that the two mutually coupled semiconductor la- A=(w1— wy)/Q (13
sers can exhibit localized synchronizatifre., single-mode
operation which is the simplest form of interaction between is the scaled detuning between the optical frequencies. The
the lasers. We also found numerically that the localized statparameters\ ,,, &, andr are defined by
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Ap=ang/Q, &=(1+2P,)/QT,
(14
= P2/Pl.

A, is proportional to the mutual coupling strength, is the
damping constant, and is the ratio of the two pumps.
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& 1+2P,
Tr QT

112
E) (22)

P2

and corresponds to a Hopf bifurcation of the original laser
equations sincé; multiplies sing+ ¢,) in expression15).
After the bifurcation, the oscillations o¥,(s) are O(1) in

Physically, these phase equations describe two oscillatorgmpmude and exhibit a frequenay;, = 1. The oscillations of

one oscillating with frequency;=1 and the other with fre-
quency o,=r (on=27f,7,/Q). Both oscillators are
driven nonlinearly by the cog{,) term. Equationg9) and
(10) have a simple interpretation when the delays ne-

V¥,(s) admit the same frequency but a@ A,) small, as
shown by the higher-order correction of the perturbation so-
lution.

On the other hand, if

glected. Then the system further reduces to two phase oscil-

lators, which are driven nonlinearly by their common phase

difference, cos{;—V,).
In order to determine an analytical solution of E¢8)
and (10), we shall consider the case of weak coupling(

<1) and zero delay. However, a nonzero delay is not
limitation of our analysis. The delay is responsible for qua
siperiodic instabilities that we shall describe in the next sec

tion. We also consider the case=w;=w, (A=0). The
details of the analysis are long and tedigsse[23]) and we

summarize the main results. The leading-order approxima-

tion of the coupled phase equatiof® and(10) is given by
‘Plel SII’I(S+ ¢1)+Bl, (15)
’\PZZAZ SIn(I’S+ ¢2)+Bz, (16)

whereA,, B,,, and¢,, are slowly varying functions of time

c>c*, (23)

we observe an analogous bifurcation scenario, only that laser
1 is now entrained to laser 2 at,=r. The first primary

Bifurcation is now leading to the pure mode solution

(A1,A5)=(0,A,) and is located at

Af?=C gr=Cct

1+2P2(E)1’2 2

QT P,

The determination of the primary bifurcation poirig2) and
(24) is important because they allow us to explain our obser-
vations of localized synchronization. The critical poi@Gt
=C* verifies the conditio-= 0, whereF is defined by Eq.
(20). It corresponds to a change of stability of the phase
© and does not mean ?=AY" [note: A% and AY?

s. They satisfy amplitude equations which are determined bre bifurcation points from two distinct steady states:
applying solvability conditions. The slow time equations for (A, A, ©)=(0,0/2) and A;,A,,0)=(0,0—7/2), re-

A;, A,, and®=B,—B; are given by

Al=—3EAFTALSING)Io(A)IL(A),  (17)
! 1 AZ i
Ay=—3ERe— —SiN(0)Jo(A)Ji(A), (18
0©'=—Fcog0)Jo(A)Io(A,), (19
whereF is defined by
A
F= T_ rAl . (20)

In these equationsly(A,,) andJ;(A,,) denote Bessel func-
tions of A; or A,. Equations(17)—(19) are our bifurcation
equations that we propose to analyze. Recall tQat

=n,/n=A,/A; is defined as the ratio of the coupling

strengths. Our analysis of the primary solutions of E#j8)—

spectively.

As A is progressively increased from zero, secondary
bifurcations appear. We only describe the cé&b for clar-
ity. The bifurcation diagram of the steady-state amplitudes
A; andA, is shown in Fig. 4. The pure mode solution that
emerges atA;=A'" is characterized by a consta@
=m/2 and is stable provided thdp(A;)>0. At A;=A*,
whereA* =2.4 is defined as the first zero &f(A,), the pure
mode solutionA;#0, A,=0 undergoes a secondary bifur-
cation to another pure mode solution characterizedAby
=A* remaining constant but no® being a function of\ ;.
This new solution corresponds to a new periodic state of the
original laser equations. The secondary bifurcation is located
atAle’l*l in Fig. 4. The bifurcation is a pitchfork bifurca-
tion with two distinct branche® =0 (A ,) for A;=A7 n
addition to the cascading bifurcations following = A ',
we observe a second primary bifurcation from;(A,)
=(0,0) to the pure modd&;=0, A,#0 which appears at
A=A However, this solution is unstable ne&f? and

(19) shows that there exist two cases depending on the valugtabilizes only a®#\, surpasseé\* =2.4. This secondary bi-

of C. If

(21)

we find that the first bifurcation of the basic stat;(A,)
=(0,0) is a bifurcation to a pure mode solutioA;(A,)
=(A1,0), whereA;(A,) satisfies the implicit equation ;
= &1A4/2rJ,(A,)>0. This bifurcation occurs at

furcation is located aAle’l*Z in Fig. 4. Then, a stable pure
mode periodic state exhibiting frequenoy=r may coexist
with one of the periodic solution that follows the branching
at A;=A". Finally, this stable periodic solutiom,
=0, A,#0 changes stability at\1=A§" and leads to a
mixed-mode solution characterized by the two relaxation os-
cillation frequencies and comparable amplitudes.

Other branches of periodic states are possible because the
Bessel functions appearing in our bifurcation equations are
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! FIG. 5. Numerical bifurcation diagram of the two coupled phase

0.00 0.05 0.10 015 020 025 030 035 040 equations(9) and (10). The figures represent the deviations of the
A . maxima and minima of the two intensities from their steady-state
1 values. The diagram exhibits all the stable periodic and quasiperi-
FIG. 4. Bifurcation diagram of the steady-state amplituéigs qdic solutions. For the periodic states, the deviations of the intensi-
andA,. The different solutions are obtained analytically from Egs. i€S are well approximated by the amplitudesh; and £A,, re-
(17—(19). The figures exhibit two distinct primary bifurcations to SPectively. Note that the branches of solutions have been
single-mode solutions located Affl and A['Z, respectively. Be- determined by either increasing or dt_acreasw_lg_ (_:ontlnuo_u_sly the con-
causeAT1<AT2, the two lasers synchronize into a localized statelrol parameter and by starting with different initial conditions when
with frequencyf, asA ; surpassed '*. The points denoted hy**  Stable branches overlap.
and A’l’2 are two distinct secondary bifurcations which appear at
A;=A* andA,=A*, respectivelyA}! corresponds to a bifurca- laser equationg1)—(4) with particular attention td(i) the
tion from one stable periodic state to another stable periodic statgeriodic solutions near the secondary bifurcation Aat
A¥? marks the change of stability of the pure mode solution:A’l‘l and(ii) a new quasiperiodic instability caused by the
(A1,A2)=(0A,). As A1>A’l*2, the two pure mode solutions co- delay.
exist in the bifurcation diagram. AA1=A’1" , we observe the bi-
furcation to a mixed-mode solution characterized by nonzero values
of both A; and A,. This solution corresponds to a quasiperiodic V. NUMERICAL STUDY OF THE LASER RATE
regime of the laser rate equations. EQUATIONS

) ] ) The objective of our numerical study is twofold. We first
multivalued functions. These branches of solutions appegish to examine the secondary bifurcation to the new peri-
for larger values of\, and are not shown in Fig. 4.~ odic state which is suggested by our analysis and which ap-

_ _In summary, the b|furcat|_on an:_;\IyS|_S revealed Ht?at in ad‘pears as amplitudé, surpassed\* =2.4. Second, we con-
dition to the two primary bifurcationsi.e., A;=A7" and  centrate on the possible bifurcations to quasiperiodic
A;=AY?), the coupled lasers admit a bifurcation to a newregimes.
periodic state f,=A7% 1y, a bifurcation which allows the In the first case, we note numerically that the secondary
coexistence of periodic states exhibiting different frequencies$ifurcation is unfolded. Specifically, a pitchfork secondary
(A1=A’{2), and a bifurcation to a quasiperiodic mixed bifurcation atAl:A’{l becomes asymmetric and leads to a
modes regime Ale'f'). The latter is an interesting new stable and isolated branch of periodic states and to a smooth
form of synchronization because the intensities of the twddranch of primary periodic states. This unfolding is not pre-
lasers are comparable and because they exhibit two relagicted by the analysis of the amplitude equatiéh®—(19)
ation oscillation frequencies. and requires a higher-order analysis near the secondary bi-

We have verified the results of our analysis based on théurcation point atAle’l*l. We have verified analytically
limit A, small by integrating numerically Eq$9) and(10)  that the unfolding is essentially determined by the correction
for T=1000,a= 10, andr=0. See Fig. 5. We have found all terms multiplying the coupling terms, and 7,. An imme-
our stable solutions and the numerical bifurcation points indiate consequence of this unfolding is that the branch of
Fig. 5 are in excellent agreement with their analytical esti-primary states does not exhibit a secondary bifurcation point
mates shown in Fig. 4. In the next section, we study the fulif the control parameter is slowly increased from zero. We
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note that the straight lin&; = 2.4 in Fig. 4 splits in two lines. NN AR
The lower line smoothly connects the primary bifurcation CTE (@ ]
point A" while the upper line connects the upper unstable 2F ]
branch in Fig. 4 through a limit point located ne/lafl. A 3

The bifurcation to the quasiperiodic oscillations is physi- ~ : ]
cally more interesting because we numerically find bifurca- ©oop - E
tions that were not predicted by our analysis. These new ak ]
bifurcations to quasiperiodic oscillations are produced by the i ]
relatively large delay which forces the laser system to adopt 2¢ @__@f-j E
a two-times responsé.e., the relaxation oscillations time l . | L

| P A SR B ]
f; 1 and the delay time). By decreasing, we clearly note 0.00 005 0.0 015 020 025 030 035

that these bifurcations go to largar, but that the branch of

mixed-mode quasiperiodic oscillations predicted by our sk
analysis only slightly changes. . ]
Figure 6 is a representative bifurcation diagram that dis- 2r E
plays both the results of the unfolding of the secondary bi- 1E 3
furcation and three bifurcations to quasiperiodic oscillations. S ]
Figure 7 shows the bifurcation diagram of the laser rate or ]
equations using the values of the parameters given in Fig. 3 Ak 3
and which best simulate our experiments. E ]
2 ]
Cov v v b vy b e b e by 0w v 1 ‘0]

VI. SUMMARY AND DISCUSSION B00 005 010 015 020 025 030 035

. Coupling Strength A
We have shown that two mutually coupled semiconductor oupling Strength A,

lasers exhibiting different values of the parameters may syn- i, 6. Numerical bifurcation diagram of the laser rate equa-
chronize in different ways. The simple synchronizationons (1)—(4). The figures represent the deviations of the maxima
mechanism is a single-mode form of synchronization wherng minima of the two intensities from their steady-state valags
one laser is forced to oscillate at the relaxation oscillatiorande, are defined by Eq8)]. The diagram exhibits all the stable
frequency of the other laser and with relatively smaller am-periodic and quasiperiodic solutions. The values of the parameters
plitude. It has been called localized synchronization and iareC=1, P,=0.402,P,=0.555,T=2000,a=6, andr=476. The

has been observed experimentally. However, richer synchrdigures show a primary bifurcation to a pure mode periodic solution
nization patterns are possible which exhibit two distinct fre-(A;#0, A,=0). It emerges from a Hopf bifurcation located at
guencies. We have found a quasiperiodic regime charactef;=0.07, and it is designated with bulle(®). Near the critical
ized by the two individual laser relaxation oscillations amplitudeA;=A*=2.4, the unfolding of the pitchfork secondary
frequencies and a quasiperiodic regime where one frequendyjfurcation leads to an isolated branch of periodic states that is
corresponds to a relaxation oscillation frequency of one oflesignated with circle€O). Both branchesgbullets and circlejsun-

the two individual lasers and one frequency proportional tglergo bifurcation to quasiperiodic pscillations which are caused by
the inverse delay time. Although these two forms of quasipihe relatively large delay (frequencies close tb; and7*). These
eriodic entrainment can be stable, only the second regime gfurcanons movc_e to infinity ifris d_ecre_as_ed. Th_e flgures also _show
expected to be seen if we gradually increase the injection ratd€ Pranch of mixed-mode quasiperiodic oscillatigfrequencies
from zero, as suggested by Fig. 7. The first regime is isolated 219 f2). The branch is shown by diamond$ ). This branch is
in the bifurcation diagram and cannot be reached using atgble aftgr a second, secondary bifurcation of the pure mode.perl-
continuation method. On the other hand, the second quasige'c SOlution B:=0, A,#0). We also found a small domain

- . : . ! . Where this solution is stable before the quasiperiodic oscillations.
enqdlc regime appears from a.blfurcatlon of the primary IO'Note that the secondary bifurcation to quasiperiodic oscillations
calized state ar_ld will be Iocallged _toq. Exper|mentally, WenearA1=0.15 is the first instability that appears after the primary
havg founq ewdencp of quasiperiodic synchromzatlon ahifurcation point atA ;~0.07.
relatively high injection rates but frequencies are harder to
identify due to the possible presence of multiple externall is the strong oscillator and laser 2 is the weak one or vice
cavity modes. versa. We varied the delay from=476 to =10 and ob-

We next review a series of problems that are directly reserved that the Hopf bifurcation point moved to larger values
lated to our analysis. The question arises whether two semaf the coupling strength suggesting that this bifurcation is
conductor lasers having the same values of the parametetsntrolled byr. Yet for the simplest case of zero delay the
can exhibit synchronization as they are mutually coupledsystem stays in steady state and does not exhibit instabilities.
We have investigated this systdiaqgs.(1)—(4)] numerically Another interesting question is whether synchronization
for zero optical frequency detuning, symmetric couplingcan be observed as one of the lasers is pumped close to its
strength, and identical pump levels. The parameter valueasing threshold. Our numerical calculations for zero delay in
were 7,=1.43ps, 7s=1ns (T=700), P,=P,=0.402, a Egs. (1)—(4) show that as laser 2 is pumped slightly above
=5,C=1, w1=w,y, andw,7=2n, n integer. As we in- threshold the same scenario of localization takes place as in
cluded the delay, we found that there are three stable statetfie case of both pumps above threshold. The parameter val-
one for which both lasers oscillate in synchrony with identi-ues werer,=1.43ps, 7=1ns (T=700), =0, P;=0.3,
cal amplitudes, and two localized states for which either laseP,=0.005, =5, C=1, w;=w,, and w,7=2n7, n inte-
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o (8 quencyf, of laser 2. However, the modulation depth of laser
E L)

: _w;-_.?; 1 is very small. As laser 2 is pumped below threshdig (
LV ENS =—0.005), the reverse scenario takes place, meaning the

/& strongly pumped laser 1 is destabilized for rather strong cou-

3 pling and the weakly pumped laser 2 entrains to the relax-
ation oscillation frequency, of laser 1.

Finally it is important to know whether localized synchro-
nization can be found in two evanescently coupled semicon-
ductor laserg19] as well. We have studied numerically the
coupled-mode model considered[it9] using the same pa-
rameter values as for Fig. 3 and setting the delay to zero. In
the weak coupling regime the two lasers bifurcate from
steady state into a limit cycle fok =0.065, which is very
close to the theoretically predicted Hopf point in the case of
two mutually coupled lasers. In addition, the oscillatory syn-
chronization between the lasers is clearly localized suggest-
ing that the phenomenon of localized synchronization is
quite general as soon as the two lasers exhibit different pa-
rameter values. However, if the two lasers have identical
parameters, Hopf bifurcations are no more possible for two
= mutually coupled laseréno delay while they still exist for
05 1.0 15 20x10° two evanescently coupled lasers. This is a consequence of
the coupling mechanism being real for the mutually coupled
lasers while being imaginary for the evanescently coupled

FIG. 7. Numerical bifurcation diagram of the laser rate equa-/aSers.
tions (1)—(4). The figures represent the deviations of the maxima
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