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Spontaneous light-polarization symmetry breaking for an anisotropic ring-cavity dye laser
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A semiclassical model of a unidirectional anisotropic ring cavity dye laser has been investigated analytically
and numerically. In spite of the axial symmetry of the inversion angular distribution and the isotropy of the
cavity, polarized initial fluctuations cause spontaneous light-polarization symmetry breaking in the form of
alternative circularly polarized waves. Polarization symmetry is restored by increasing the orientational relax-
ation and pumping rates or the anisotropy of the cayB1.050-2947®9)08003-9

PACS numbeis): 42.60.Mi, 42.55.Mv, 42.65.Sf

I. INTRODUCTION Poincaresphere[18)), (ii) a linearly polarized state with a
rotating polarization planéequator{18]); (iii) an elliptically
It is well known[1-3] that if the parameter of a nonlinear polarized state with a rotating azimuftircles parallel to the
optical system goes over a critical value, fluctuations cause aquator[18]). The second and third items forms of the
switching of linearly polarized waves into left or right ellip- SLPSB, because the lasing is polarized at short-time interval
tically polarized ones(an effect of spontaneous light- and is unpolarized after averaging over some much larger
polarization symmetry breakingELPSB [1]). This effectis  time interval.
frequently called “optical threestability” or “polarization All models of “Zeeman lasers” are finite dimension sys-
switching” [1]. In experiments with isotropic conditions, tems, but it has been fourid4,15,19,2]that anisotropic dye
switching into right and left elliptically polarized waves are |asers are infinite-dimension systems. Additional forms of
equiprobable due to the property of space inverse symmetrg| psg have been found for a dye laser with a saturable
with respect to electromagnetic interactior® {nvariance — apsorper(i) asymmetric steady-state operations on two lin-
[1])._'I_'he0ret|cal and ex_perlmental Work_s on polarization IN-early polarized modes(ii) asymmetric periodic auto-
stability have been carried out for atomic gak28). In the-  sjj1ation andiiii) chaotic auto-oscillationgl4,15. Experi-
gretlcal investigations a model of two-level ato_rmnh a mentally it can be observed in the form of polarized lasing
egenerate Zeema_n ground-state level and a quickly rela_lxm anging from one experimental realization to another in
upper level placed into a Fabry-Perot resonator and excited. . f an isotropi it 4 th i diati lar-
by an electromagnetic field with a frequency close to theSp'te ot an Isotropic cavily and the pumping radiation poiar
atomic resonance frequencwy (system has been utilized !zeq along the cavity axis. Lasing is po!anzed on the average
[2]. This model corresponds to transitions in Na vapors withD fime as well, but it will ,be unpolarl'zed. after averaging
a buffer gas for suppression of hole burning and hyperfin@Ver an ensemble of experimental realizations. _
structurg 1]. It has been shown theoretically and experimen- 't has been also found that light-polarization symmetry is
tally that under adiabatic decreases of the input light intenf€Stored with an increase in the rate of orientational relax-
sity, the back transition, namely from a elliptically polarized ation processe&he Brownian rotation of excited molecules
to a linearly polarized wave, takes place by a jump to lowerOr excitation energy migratiofi4,19).
intensity in comparison with direct transitiofpolarization For a description of an anisotropic dye laser with a satu-
hysteresis[2]. Further theoretical and experimental investi- rable absorber, a model based on adiabatic elimination of the
gations[3] have demonstrated the instability of the ellipti- medium polarization has been usgt4,15. Such an ap-
cally polarized waves, and the appearance of autoproach is quite relevant for an interpretation of most experi-
oscillations, including chaos. If the light intensity is close to mental results on dye laser dynamics. However experiments
the saturation value, the output polarization returns to lineacarried out by Hilmaret al.[21] and Guerra and co-workers
[1,2]. [22] demonstrated many of high-order bichromatic opera-
The effect of spontaneous light-polarization symmetrytions and spatiotemporal instabilities in cw rhodomine 6G
breaking can appear not only as a linearly polarized wave-dye lasers that can be explained based only on semiclassical
elliptically polarized wave transition, but in the form of sym- models [22,23. Experiments carried out by Kozlov and
metry breaking in lasers without selection of polarizationSergeye\17] showed that SLPSB can be observed for a dye
states as well4—17]. In general, the problem consists of an laser with an isotropic cavity without a saturable absorber.
investigation of the interaction between two nearly degenerThe experimental results are beyond theoretical predictions
ate modes which have the same longitudinal and transverdmmsed on the classical moddi,15. This means that adia-
spatial patterns and different polarization states, frequenciebatic elimination of the medium variables is not a suitable
and amplituded4-16]. (“a laser with a nearly isotropic approach for a theoretical description of such results
resonator,” “Zeeman laser,” and “two-mode laser(see [17,22,23. It is likely that the effect of SLPSB takes new
Ref.[5]). The following polarization states have been foundforms for a semiclassical model of a dye laser, different from
[5]: (i) left and right circularly polarized statépoles on the the forms of SLPSB considered before. Thus the goal of this
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dE :
o= —ki(1—|5)Ei+kiJ P(g)(mee)dg,

Z /ma’ m,
dP(9) :
’ 7 g = (LTIOP@+(D(9.9)s X pilmee)E;,
e, (1)
Y 6
X e dD(g) 1
“dt = 7( do(maep)z_ EE}: (P(9)* Ej
% +P(Q)E} )(meg) —(1-L)D(9) |,
&g Y k=(ky+k,)/2, p=kIK,
X Here we have decomposed the lasing electric field into the

cross-polarized components (i=x,z). P(g), D(g) are
FIG. 1. Scheme of the ring cavity dye laser with linearly polar- the angular distributions of the induced dipole moment den-
ized pumping. 1, 2, and 3 show the cavity mirrors, 4 the dye cell, 5sjity and inversion, respectively, is the scaled parameter of
the pumping radiation, and 6 the output emission. the pumping. ki, 1, and y are the relaxation rates

of E;, P, andD, respectively.s is the scaled detuningC
is the orientational relaxation operat@rownian rotation
paper consists of a theoretical investigation of the semiclag-19] or excitation energy migratiof14]). For the excita-

sical model of a dye laser, in order to find new forms oftjgn energy migration,ZXZ_SX+S<x>sg, [14], where
spontaneous light-polarization symmetry breaking. (.. Vsq=Jf --f(9dSdg The value S= RSS (R
1 /Sg i

In Sec. |, we consider a semiclassical model of a ring' =\ "% . —
cavity dye laser with pumping polarized along the cavity_.Rj) . determines the sum of the rates of excitation energy
migration from one excited molecule to another unexcited

axis, and describe the main features of the orientational re- . . . > .
laxation operators. We compare our model with some mod[nolec_ule in the z_;\ctlve me_dlur(vector R;_determines the
els derived for a description of the Zeeman laser dynamicscoord.'na}tes.Of thgth unexcited molecue The valueS has
In Sec. Il we describe forms of SLPSB for steady states. "Jihe distribution[ 14]

Sec. lll we derive expressions for eigenvalues to determine )

the local dynamics. Next we use numerical calculations to f(S)= lexr{ — N ) @)
determine the global dynamics, and to classify time- 2g83/2 4s )’

dependent types of SLPSB for isotropic and anisotropic cavi-

ties. We investigate the light-polarization symmetry restorawhere N= \2c/c, (c is the concentration of molecules in
tion caused by increasing the pumping and orientationajhe active mediume,=(47R3/3)"%, andR, is the critical
relaxation rate and the cavity's anisotropy. In Sec. IV wedistance27]).

summarize the results obtained in terms of the theory of non- The Brownian rotation operator can be written in the form

linear coupled oscillators. (15,19
R 1 d( ox 1 %
Il. MODEL OF AN ANISOTROPIC RING CAVITY DYE Lx="Dy sing 29! SN075]t % 7g)” ©)
LASER si 9 0%¢

Let us consider a ring cavity dye laser in which the pump-It has the property28,29
ing has a transverse geomefthle pumping radiation propa-
gates along th& axis in Fig. 1, and is polarized along the LDl =—1(1+1)D,D! ., (4)
cavity axis (Y axis)]. Two polarization modes emitted by the
laser[14,19 propagate along th¥ axis, and are polarized where D!, , an Wigner's functiong28,29, and D, is the
along theX andZ axes. Let us denote the orientation of the dimensionless Brownian rotation factor.
dipole moments of the transitions with absorption and emis- Before analyzing systeifl), let us determine the place of
sion unit vectorsm, and m,. We assumem,=me=m, this model among the models of Zeeman lagéiis System
which corresponds to the excitation of the first absorption(1) may be reduced to coupled equations describing the evo-
band for the rhodamine 6G dye las¢gsl]. Then the orien- |ution of two circularly polarized components of a lasing
tation of the vectom with respect to the reference system electric field[5]. Orientational relaxatiofOR) processes are
XY Z may be written in the reference frame of the sphericalquick, and pumping is isotropic with an intensity slightly
anglesg= (0, ¢). Assuming that the ground state consists ofabove the first threshold orig4], and the conditions
one sublevel, we can derive the following system of equa-
tions from the system considered in REE6]: k<y,1 (5)
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hold true. Experimentally such an approach corresponds to a Ill. STEADY-STATE SPONTANEOUS

cw dye laser pumped by a xenon flashlaf@p]. Approxi- LIGHT-POLARIZATION SYMMETRY BREAKING
mation (5) gives us an opportunity to use the procedure of FOR A RING CAVITY DYE LASER
adiabatic elimination oP(g) andD(g) [26]. It follows from WITH A WEAK ANISOTROPY

Eq. (5) thatdP(g)/dt=dD(g)/dt=0 in Egs.(1). Quick ori-
entational relaxation or isotropic pumping meanma(:p)2
=1. The close-to-threshold operation leadsli¢g) =D _ : _ .

3 0 Ei(t)=|E; i P(g,t)=|P .
i.e., the inversion distribution is independent of angles. For (D =[Ei(D]expli ¢i(1),  P(g,1)=[P(g,1)]expli (1))
an isotropic cavityk,=k,=k and p;=1. Using the proce- )
dure of adiabatic elimination of variabld¥(g) andD(g),  Using the approximatiork,=k,=k (isotropic cavity, and

and the approximations mentioned above, from the basigypstituting Eq(9) into Egs.(1), we can derive the following
equations(1) we derive the following system for circularly system:

polarized components of a lasing electric fiéld :

e El=—KEl+k ] [P@I(me)dgeosy-a).

- 4. _ 2 2
G- =a-E.—b(E.[?+|E_PE.,

Let us consider solutions of E€l) in the form:

: k
® bl =ko+ 51 [ IP@I(meerdgsin- 6.
a=k(1-io)

do ) _ kdg(1-i0)

9(1+82) T 271+ 8692 .
e e PI=—IPI+D 3 [El(meacosdi—w), (10

If we exclude approximations of isotropic pumping and in-

versionD(g)=Dy, it is possible to rewrite syster(6) as . D )

follows: v==0% 1.2, [Elmee)sin(g— ),
dE. 2 2 :
gt~ @by (2B [*+3[E_9)E. D=1| do(mag)?~ > |PI|Ej|(mee))

j=x,z
—by(E2E* +i|E,|?E_—IE*E?), A
Xcog¢—¢)—(1-L)D(g) |.

—=(a;—by(2|E_|*+3|E,|*))E_

dt It is easy to obtain steady-state solutions for syst&@:
—by(EZEX—I[E_PE.+IETED), (D ¢=¢,~ =0, [EJ*H[E[?=1(1+6%)(1+4Dopn,
_ 6 Kdo(1—19) $= ¢z~ == ml2,
a;=k(1-i8)| ———-— s , . , (11)
141+469 1051+ 5% |[Exl?=|E,|*=%(1+ 6*)(1+4Dop) t,
Both system€6) and(7) are close to the system derived by M:do/dg‘”— 1

means of third-order Lamb theof$]:

dE+
d_{:Et(at_ﬁ1|Et|2_0t|E:|2)- ®)

Thus model(1) may be reduced to the model derived based
on third-order Lamb theory. It is well known that third-order
Lamb theory does not allow for amplitude instability in
quasi-isotropic lasergb]. Moreover, limitations(5) and the
close-to-threshold approximation fail for dye lasers with
short resonators and laser pumping, respectively. Therefore,
it is likely [5] that if we preserve the equations f8fg) and 2

D(g) in Eg. (1), we can find amplitude instabilities for the G, 2. Steady-state solutions for an anisotropic ring cavity dye
quasi-isotropic case. Systefd) is an infinite-dimensional |aser in the reference frame of the Stokes paraméegrsS,, and
system due to the angular dependence®(@) andD(g), S;: Sy=|E, ]2+ |EJ% S, =|E, ]2~ |EJ% S,=2|E,||E,|cose,

but the system considered in R¢8] is a finite-dimension  $,=2|E ||E/sin ¢, andS3= S+ S2+ SZ. 1 shows the linearly polar-
one. Thus we believe modél) is a new form of advanced ized waves, and 2 the circularly polarized wavBg, S,, andS;
Zeeman model—an infinite-dimensional Zeeman model.  are in arbitrary units.

S
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where dg°)=15(1+ 52)1(1+4Dor) is the first threshold The second and the third eigenvalues correspond to the
value for the pumping parameter. HePgr= D, for Brown- Shil'nikov dynamics[31]. Under the Shil'nikov condition
ian rotation of excited molecules in the active medium, and 31,32
Dor=N/3 for excitation energy migratiofil5]. Expression
(11) holds true forDgr<1. [Re(Na)/ho| <1, (16)
It is convenient to describe polarization states in terms o

Ehe motion becomes chaotic. In expressi®b) and relation
Stokes parametef80]: pressi®B)

(16) it follows that chaotic dynamics is possible when

So=|E,|*+|E4?, y< —k+ Vk(1+ 62) — K262,
(17)
S1=|Ez|2_|Ex|21 0%
H> po=——"——.
2k(1+ 6°
S, 2|E,|E;|cosg, (12 (1+59
) Increasing the parametgr, a Hoph bifurcation appears with
S;=2|E,||E/|sin¢, the threshold parameter of the pumpipg,and the threshold
frequencyw; :
S=S2+S5+S3.
1+ 6° , .
By means of the reference frames,(S,,S;) (Poincare M 31 &) w1 =\y(1+8)/(3+6%). (18
sphere[18]), we rewrite steady-state solutiori$1) in the
forms Expressiong15) hold true foru<1. For u>1, we find
S+ S3=const, S;=0, A=A3=0, A,=—k+k(1+ 8% —(kd)?
13 , (19
S$,=S,=0, S;=*const. A= —(1+K) Fiwy,  w=68V(1-K%),

Because|Re(\4)/\,|>1, Shil'nikov dynamics is not pos-

All these solutions are shown in Fig. 2. The first set of solu- ible. Th h teadv-stat Ui the f det
tions corresponds to all linearly polarized waves. The seco goe. fhus we have steady-state sofutions in the form deter-

one determines left and right circularly polarized waves. Thémge(; onlr)]/ numerically fr9rrrr]1_ Eqs(D). If rl:< yhl [qus. (6) ¢
same set of steady-state solutions was found in [BgfAny 2" (7], then ug,uy—o=. This means that the absence o

steady state can be reached from different sets of initial coroni Nikov dynamics and auto-oscillationgHopf bifurca-

ditions. Because of luminescence in an active medium, flucions for systems(6) and(7), i.e., the procedure of the adia-
tuations of initial conditions take place, and the polarization?@ti¢ €limination of the variableB(g) andD(g), fails for

of the laser output is changed from realization to realizatiorf"¢ 900d cavity limit. [t is clear that the procedure may be
with mean values equal to zefd7]. To classify the types of aPPlicable fork~y,1, if

SLPSB we introduce a variable, namely, a degree of polar-

< .
ization for lasing: M pro M1 (20

Thus expressiof20) represents the quantitative condition of
P=5/Sp. (149 the applicability of the adiabatic elimination procedure.

To expand the local analysis and to determine the global
It is quite clear that only Iinearly polarized solutions in Eq behavior we solve equatior(g_) numerica”y_ The results
(13) correspond to SLPSB because pf 0. For circularly  found for pumping polarized along the cavity axis in an iso-
polarized lasingo=0, according to Eqs(13) and (14), this  tropic cavity correspond to conditions quite relevant for dye
means a symmetric solution. To find time-dependent formsasers: =%, =1, y=0.01, Dog=0 [Fig. Ja)-3(f)], k,
of SLPSB we have to carry out a linear stability analysis of=k =0.1 [Figs. 3a) and 3b)], k,=k,=0.3 [Figs. 3c) and

steady-state operatiori$3). 3(@)], andk,=k,=0.5[Figs. 3e) and 3f)]. Fork=0.1 we
find, from expressiong17) and (18), uu=0.025 andu,
IV. TIME-DEPENDENT SPONTANEOUS =2.5. Because ofig<u< w1, for this case only Shil'nikov
LIGHT-POLARIZATION SYMMETRY BREAKING dynamics is possible. It has been found that fox uq, a
AND RESTORATION FOR ISOTROPIC numerical solution of Eqq1) takes the form of right or left
AND ANISOTROPIC CAVITIES circularly polarized waves, i.e., bistable behavior takes place.

. . ) ) i . The interaction of the Shil'nikov dynamics and the neutral
The linear stability analysis carried out in the Appendix stability A;=0 for u=2 lead to a finite time localization

gives us an opportunity to obtain the following eigenvalues,a4r the north and south poléBig. 3. With increasing
which determine the local dynamics near the poles and equissses in the cavity frork=0.1[Figs. 3a) and 3b)] up to

tor in Fig. 2: k=0.3 [Figs. 3c) and 3d)], the time of localization in-
B B > 5 creases, and a Hopf bifurcation appedos k=0.3 we have
A1=0, Ap=—k+Vk(1+6%)—(ko)%, w>u,=0.83). Further increasing the losses upkte= k,

(15 =0.5 leads to an increase in the frequency of the auto-

N3=—7y*iwg, wo=2k(1+86)uwy— 2. oscillations[Figs. 3e) and 3f)]. The interaction of the neu-
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FIG. 3. Light-polarization operations for a ring cavity dye laser with an isotropic caSity.S,, andS; are Stokes parameters, and
p=S,/S, is the degree of polarization. Laser parametgrs:5, y=0.01, ands=1. k,=k,=0.1[(a) and(b)], k,=k,=0.3[(c) and(d)],
andk,=k,=0.5[(e) and(f)]: t is in units of the transverse relaxation tirhe, andp is a dimensionless value.

tral stability (\,=0) and instabilities in,>0 and the Hopf ics [31]. Increasing the pumping parameter frqu= % to
bifurcation \3=a+iw;, a@>0) leads to the following glo- =4, the coupling between poles close to local attractors
bal dynamics: the trajectory is attracted to the limit cycleincreases, and in the end a steady-state operation takes place:
from the inner side, goes outside the limit cycle due to theonly two steady stateS;=S,=0 andS;= *81.4(south and
neutral stability and, because of the instability & 0), is  north pole$ are possible, and every state is accessible from
attracted by the inner side of the limit cycle located close tadifferent sets of initial conditions. This may be called polar-
the opposite poldFigs. 3c) and 3e)]. In terms of light- ization symmetry restoration, because the exprespie®
polarization symmetry breaking, the dynamics operationdolds true.

shown in Fig. 3 may be called “temporal spontaneous light- Thus we have found that expressidid$) and (19) give
polarization symmetry breaking.” This means that the lasemus an opportunity to classify all possible polarization opera-
output is polarized for a short-time interddigs. 3b), 3(d),  tions, and to determine conditions when new types of spon-
and 3f)], and is unpolarized when the measured mean valuganeous polarization symmetry breaking appear. Numerical
is averaged over some much larger time interval. It has beeresults withk,#k, are beyond analytical investigations. If
found numerically that all spiral attractors shown in Fig. 3losses for the two polarization modes are slightly different
strongly depend on initial conditions, i.e., fluctuations of the(k,=0.3, k,=0.31), destabilization of the attractors shown
lasing field(luminescencecause a broadening of the trajec- in Fig. 3(c) takes placéFig. 4@)]. A quasiperiodic behavior
tory. This kind of behavior is close to the Shil'nikov dynam- [Figs. 3c) and 3a)] is transformed into a chaotic ofEigs.
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4(a) and 8b)]. For high pumping or cavity anisotropy we
find that the laser output is linearly polarized close to the first
threshold. For example, for the high cavity anisotropy ( ) R R
=0.3, k,=0.5) and for the pumping parametgr=3, the yi=kéx;—kéu;+k(v—vy;),
behavior is stabilized near stat8€=3.719 andS,=S;=0
[the linearly polarized steady stalePSS]. Increasingu up
to uw=3%, the behavior is stabilized nea%,=4.54, S,
=0.599, andS;=—3.168[the elliptically polarized steady
state(EPSS]. Here we have SLPSB in a form close to the = 8(Ayyx+(1—0ay)y,)+ dv,

) 1
classical ong1]: LPSSS EPSS.

A numerical solution of Egs(l) for the caseDgog>0 is
difficult, but nevertheless the influence of orientational relax-
ation processe€ORP’S may be estimated. As follows from 7=— 7( (1-L1)-z+ 2 mi- (X +Uu+8-(v—y))|,
Eqg. (11), parameteru increases with increasin®og, i.€., i=xz
the growth of the ORP rate has the same influence on the
dynamics operations as the growth of the pumping power. where

%= — K%+ kUi +ké(v—y;),

U= — 0+ 2+ g+ (1 a)%, (A1)
l.}: — du+ 82+ 6(qx;(x+ (1- qx);(z)"_ auyxt+(1—0a,y,—v,

~

V. DISCUSSION f |Po|-U-(meg)dg
Ui:

Results obtained in this paper allow us to classify the
forms of spontaneous light-polarization symmetry breaking. |Po|-(Mee)dg
For an anisotropic system it takes the form of a transition

from a linearly polarized wave to a right or left elliptically -

polarized wave. For an isotropic system we have new forms. X j |Pol-z-(me&)dg

(i) For a dye laser with a saturable absorfit,15 asym- = : (A2)
metric steady state operations and asymmetric periodic and f |Po|- (meg)dg

chaotic auto-oscillations are possible. Lasing changes its po-

larization from realization to realization, on the average re-
maining polarized in time, but it will be unpolarized after
averaging on realizationsi) For an advanced Zeeman laser
model[5], SLPSB appears as a linearly polarized state with a
rotating polarization plane and an elliptically polarized state |Pol
with a rotating azimuth(iii ) In this paper SLPSB for isotro- mi:D_0|EiO|C°5( Yo~ bio)(Me&).
pic conditions appears in the form of spiral attractors: trajec-
tories visit ppints located close to the poles and the equat%troducing new variables
on a Poincaresphere.

In summary, we have found that the result of coupled
oscillators theory[33] may account for light-polarization
symmetry breaking and polarization symmetry restoration.

Do
ax= | Ex0| COg Yo~ o) (MeB),
|Pol

X1= (;(z_;(x)/zv X2= (;(z_";(x)/za y1=(Y,—Yx)/2,

According to the theory33], weak coupling leads to a com- y2=(Yz+¥4/2,

plex behavior, and increasing the coupling causes the stabi- . A

lization of the behavior, i.e., coupled chaotic attractors go to Up=(U,—U)/2, Uuy;=(U,+u,)/2, (A3)
a stable steady stafthe Bar-Eli effect{33]). Coupling also o o

increases with an increase in the difference between coupled 2,=(2,—2)12, z,=(z,+2,)/2,

oscillators[33]. As follows from the results of the paper, _ . .
coupling is determined by the pumping parameter, the differwe rewrite equationgAl) in the form:
ence in losses for two polarization modes, and the rate of

ORP. Complex chaotic attractors appear for weak coupling X1=K(=Xy+ U= dy1),
(Fig. 3), and stabilization takes place with an increase in the

pumping and ORP rates, the difference in losses proceeding y1=K(8-X;— Su;— VY1),
according to the general thedr$3]. Thus spontaneous light-

polarization symmetry breaking takes place for weak cou- ) m

pling, and polarization symmetry restorati¢he Bar-Eli ef- Ur=="5Y1

fect[33]) is possible for strong local attractor coupling. (A4)

APPENDIX: LINEAR STABILITY ANALYSIS Xp=K(=XzHUz+ oWp),
Substituting  |Ej|=|Eio|+ X, ¢i=diotYi, |P|=[Pol

+u, y=i¢y+tv, andD=Dgy+z into Egs. (1), for normal-

ized variables;=x/|Ejo|, U=u/|Py|, andz=2z/D, we find —8(h,+hy—1)x;— (h,+h,—1)y,,

W= 8(1—K)X,— (1+K)W,— 8(1—K) Uy + 62,
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3.8x10° 3.88x10" 3.96x10' t

b)

FIG. 4. Light-polarization operations for a ring cavity dye laser with an anisotropic c&4ity.S,, andS; are Stokes parameters, and
p=S,/S, is the degree of polarization. Laser parametgars:%, v=0.01, andés=1. k,=0.3. k,=0.31.

U2=x2+ 8-Wy—Uy+2,—(h,+h,—1)x;+ 6(h,+h,—1)y;.
Herew,=v -y, and

m=(1+ 6%)(hy—h,),
(A5)
I |
i—mcoi o~ P¥0)COS dig— ) | Do(Meg)(Mee)dg.

0
i0

To complete systenfA4) it is necessary to write equation from whizh may be determined. As follows from Eq#\1)
and relationgA3),

u=— ﬂ+i+(1—2qx)x1+xz— o(1—20q,)y;+ 6wy,
(AB)

7=—y (1—2)2+i_§X‘,Z MU+ (M,— M) Xy + (M, +m,) X, + 8(My—m,)y; + (M +m,)W, |.

Substitutingu,z~ exp(\t) into Eq. (A6), and using relationéA2) and (A3) we find the following system as the projection of
Egs.(A4) and(A6) on theR® space (1;,X;,Y1,X2,W,,U,):

1.5x10°

IC; | IC; |

8000

1x10°

6000

4000

5x10*

2000

0 ! ] 1) | | | 0
500 1000 1500 500 . 1000 1500
1 | 3

a) b)

FIG. 5. Fourier transform for the intensity of tlzepolarization mode(a) Parameters correspond to Figgbj3and 3c). (b) Parameters
correspond to Figs.(d) and 4b). i is the number of the Fourier mode, aj@| is the Fourier coefficient in arbitrary units.
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X1
Y1
Ao By up
U=L(MU, LV=| ¢, Do)’ u=| x, |-
W>
uz
0
0
0

-k —ké k 0
ké -k —ké
0 —-mé O

>
o
[
w
o
Il
o
o o o

0 0 0
Cy(M) = —5(A—1—f1+hz+hx) —52Af1+1—hz—hx 0
fi—h,—he+1 8(—f,—1+h,+hy) O

: (A7)

-k ko k
8(1—k+f,) —(1+k—6%, —8(1-k)
1+f, S5(1+7,) -1

Do(N) =

Here

[ dgpdltiimesra, [ dglPolrimeeor,
fi: + ’ (|:112)1

f |Pol(mee,)dg f |Pol(mee,)dg

fl(g):_(1+)\)(mz_mx)_(mz+mx)(1_2qx)1 f2(g):_(2+7\)(mz+mx)- (A8)

91=(1+N)(1—L+Ny)+ > m,.

=X,z

Based on approximations<1 and||Z||<1, we formulate the eigenvalue problem for systeki) in the forms
AM(k+N)Z2=k(1+ 8%+ (kd)D=0, A3+p(M)N%+q(N)N+r(N)=0. (A9)
Here

L @eoep o @fNpa (2+0an
P=Po™ ) (@iny) 97T @y T @y

52 k

=2(1+k), =—— =(1+k)?+8%(1-k?), o1=—s, A10
Po=2( )y P1 1 do=( ) ( ), 1 1+ 52 (A10)

+ 62

_k(1+k+8%(1-k))
- 1+ &2

5]

Based on approximationg>1, we formulate the eigenvalue problem for systekd) in the forms
A(K+HN)Z2=k(1+ 65+ (kd)?)=0, AA2+poh+Qg)=0. (A11)

Using expression§A9)—(A11) we find eigenvalue¢l5) and (19).
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