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Spontaneous light-polarization symmetry breaking for an anisotropic ring-cavity dye laser

S. V. Sergeyev
Department of Physics, Belarusian State University, 4 Skorina Avenue, 220050 Minsk, Belarus

~Received 5 January 1998; revised manuscript received 13 April 1998!

A semiclassical model of a unidirectional anisotropic ring cavity dye laser has been investigated analytically
and numerically. In spite of the axial symmetry of the inversion angular distribution and the isotropy of the
cavity, polarized initial fluctuations cause spontaneous light-polarization symmetry breaking in the form of
alternative circularly polarized waves. Polarization symmetry is restored by increasing the orientational relax-
ation and pumping rates or the anisotropy of the cavity.@S1050-2947~99!08003-8#

PACS number~s!: 42.60.Mi, 42.55.Mv, 42.65.Sf
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I. INTRODUCTION

It is well known @1–3# that if the parameter of a nonlinea
optical system goes over a critical value, fluctuations cau
switching of linearly polarized waves into left or right ellip
tically polarized ones„an effect of spontaneous ligh
polarization symmetry breaking~SLPSB! @1#…. This effect is
frequently called ‘‘optical threestability’’ or ‘‘polarization
switching’’ @1#. In experiments with isotropic conditions
switching into right and left elliptically polarized waves a
equiprobable due to the property of space inverse symm
with respect to electromagnetic interactions (P invariance
@1#!. Theoretical and experimental works on polarization
stability have been carried out for atomic gases@2,3#. In the-
oretical investigations a model of two-level atoms~with a
degenerate Zeeman ground-state level and a quickly rela
upper level! placed into a Fabry-Perot resonator and exci
by an electromagnetic field with a frequency close to
atomic resonance frequency (L system! has been utilized
@2#. This model corresponds to transitions in Na vapors w
a buffer gas for suppression of hole burning and hyper
structure@1#. It has been shown theoretically and experime
tally that under adiabatic decreases of the input light int
sity, the back transition, namely from a elliptically polarize
to a linearly polarized wave, takes place by a jump to low
intensity in comparison with direct transition~polarization
hysteresis! @2#. Further theoretical and experimental inves
gations@3# have demonstrated the instability of the ellip
cally polarized waves, and the appearance of au
oscillations, including chaos. If the light intensity is close
the saturation value, the output polarization returns to lin
@1,2#.

The effect of spontaneous light-polarization symme
breaking can appear not only as a linearly polarized wav
elliptically polarized wave transition, but in the form of sym
metry breaking in lasers without selection of polarizati
states as well@4–17#. In general, the problem consists of a
investigation of the interaction between two nearly degen
ate modes which have the same longitudinal and transv
spatial patterns and different polarization states, frequenc
and amplitudes@4–16#. „‘‘a laser with a nearly isotropic
resonator,’’ ‘‘Zeeman laser,’’ and ‘‘two-mode laser’’~see
Ref. @5#…. The following polarization states have been fou
@5#: ~i! left and right circularly polarized states~poles on the
PRA 591050-2947/99/59~5!/3909~9!/$15.00
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Poincare´ sphere@18#!, ~ii ! a linearly polarized state with a
rotating polarization plane~equator@18#!; ~iii ! an elliptically
polarized state with a rotating azimuth~circles parallel to the
equator @18#!. The second and third items forms of th
SLPSB, because the lasing is polarized at short-time inte
and is unpolarized after averaging over some much lar
time interval.

All models of ‘‘Zeeman lasers’’ are finite dimension sy
tems, but it has been found@14,15,19,20# that anisotropic dye
lasers are infinite-dimension systems. Additional forms
SLPSB have been found for a dye laser with a satura
absorber:~i! asymmetric steady-state operations on two l
early polarized modes,~ii ! asymmetric periodic auto
oscillation and~iii ! chaotic auto-oscillations@14,15#. Experi-
mentally it can be observed in the form of polarized lasi
changing from one experimental realization to another
spite of an isotropic cavity and the pumping radiation pol
ized along the cavity axis. Lasing is polarized on the aver
in time as well, but it will be unpolarized after averagin
over an ensemble of experimental realizations.

It has been also found that light-polarization symmetry
restored with an increase in the rate of orientational rel
ation processes~the Brownian rotation of excited molecule
or excitation energy migration@14,19#!.

For a description of an anisotropic dye laser with a sa
rable absorber, a model based on adiabatic elimination of
medium polarization has been used@14,15#. Such an ap-
proach is quite relevant for an interpretation of most expe
mental results on dye laser dynamics. However experime
carried out by Hilmanet al. @21# and Guerra and co-worker
@22# demonstrated many of high-order bichromatic ope
tions and spatiotemporal instabilities in cw rhodomine 6
dye lasers that can be explained based only on semiclas
models @22,23#. Experiments carried out by Kozlov an
Sergeyev@17# showed that SLPSB can be observed for a d
laser with an isotropic cavity without a saturable absorb
The experimental results are beyond theoretical predicti
based on the classical model@14,15#. This means that adia
batic elimination of the medium variables is not a suitab
approach for a theoretical description of such resu
@17,22,23#. It is likely that the effect of SLPSB takes new
forms for a semiclassical model of a dye laser, different fro
the forms of SLPSB considered before. Thus the goal of
3909 ©1999 The American Physical Society
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3910 PRA 59S. V. SERGEYEV
paper consists of a theoretical investigation of the semic
sical model of a dye laser, in order to find new forms
spontaneous light-polarization symmetry breaking.

In Sec. I, we consider a semiclassical model of a r
cavity dye laser with pumping polarized along the cav
axis, and describe the main features of the orientationa
laxation operators. We compare our model with some m
els derived for a description of the Zeeman laser dynam
In Sec. II we describe forms of SLPSB for steady states
Sec. III we derive expressions for eigenvalues to determ
the local dynamics. Next we use numerical calculations
determine the global dynamics, and to classify tim
dependent types of SLPSB for isotropic and anisotropic c
ties. We investigate the light-polarization symmetry resto
tion caused by increasing the pumping and orientatio
relaxation rate and the cavity’s anisotropy. In Sec. IV
summarize the results obtained in terms of the theory of n
linear coupled oscillators.

II. MODEL OF AN ANISOTROPIC RING CAVITY DYE
LASER

Let us consider a ring cavity dye laser in which the pum
ing has a transverse geometry@the pumping radiation propa
gates along theX axis in Fig. 1, and is polarized along th
cavity axis (Y axis!#. Two polarization modes emitted by th
laser @14,19# propagate along theY axis, and are polarized
along theX andZ axes. Let us denote the orientation of t
dipole moments of the transitions with absorption and em
sion unit vectorsma and me . We assumema5me5m,
which corresponds to the excitation of the first absorpt
band for the rhodamine 6G dye lasers@24#. Then the orien-
tation of the vectorm with respect to the reference syste
XYZ may be written in the reference frame of the spheri
anglesg5(u,f). Assuming that the ground state consists
one sublevel, we can derive the following system of eq
tions from the system considered in Ref.@16#:

FIG. 1. Scheme of the ring cavity dye laser with linearly pola
ized pumping. 1, 2, and 3 show the cavity mirrors, 4 the dye ce
the pumping radiation, and 6 the output emission.
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dEi

dt
52ki~12 id!Ei1kiE P~g!~meei !dg,

dP~g!

dt
52~11 id!P~g!1^D~g,S!&S (

j 5x,z
r i~meej !Ej ,

~1!

dD~g!

dt
5gS d0~maep!22

1

2(j
„P~g!* Ej

1P~g!Ej* …~meej !2~12L̂!D~g! D ,

k5~kx1kz!/2, rk5k/kk ,

Here we have decomposed the lasing electric field into
cross-polarized componentsEi ( i 5x,z). P(g), D(g) are
the angular distributions of the induced dipole moment d
sity and inversion, respectively.d0 is the scaled parameter o
the pumping. ki , 1, and g are the relaxation rate
of Ei , P, andD, respectively.d is the scaled detuning.L̂
is the orientational relaxation operator~Brownian rotation
@19# or excitation energy migration@14#!. For the excita-
tion energy migration,L̂x52Sx1S^x&s,g , @14#, where

^ . . . &S,g5**••• f (S)dS dg. The value S5R0
6( j (RW

2RW j )
26 determines the sum of the rates of excitation ene

migration from one excited molecule to another unexci
molecule in the active medium~vector RW j determines the
coordinates of thej th unexcited molecule!. The valueS has
the distribution@14#

f ~S!5
N

2S3/2
expS 2pN2

4S D , ~2!

whereN5A2c/c0 (c is the concentration of molecules i
the active medium,c05(4pR0

3/3)21, andR0 is the critical
distance@27#!.

The Brownian rotation operator can be written in the fo
@15,19#:

L̂x5D0S 1

sinu

]

]uS sinu
]x

]u D1
1

sin2 u

]2x

]2f
D . ~3!

It has the property@28,29#

L̂Dmn
l 52 l ~ l 11!D0Dmn

l , ~4!

where Dmn
l an Wigner’s functions@28,29#, andD0 is the

dimensionless Brownian rotation factor.
Before analyzing system~1!, let us determine the place o

this model among the models of Zeeman lasers@5#. System
~1! may be reduced to coupled equations describing the e
lution of two circularly polarized components of a lasin
electric field@5#. Orientational relaxation~OR! processes are
quick, and pumping is isotropic with an intensity slight
above the first threshold one@24#, and the conditions

k!g,1 ~5!

5



to

o

Fo

s
y

in-

y

e
er
in

ith
fo

e
l

ye

PRA 59 3911SPONTANEOUS LIGHT-POLARIZATION SYMMETRY . . .
hold true. Experimentally such an approach corresponds
cw dye laser pumped by a xenon flashlamp@25#. Approxi-
mation ~5! gives us an opportunity to use the procedure
adiabatic elimination ofP(g) andD(g) @26#. It follows from
Eq. ~5! thatdP(g)/dt5dD(g)/dt50 in Eqs.~1!. Quick ori-
entational relaxation or isotropic pumping means (maep)2

5 1
3 . The close-to-threshold operation leads toD(g)5D0 ,

i.e., the inversion distribution is independent of angles.
an isotropic cavitykz5kx5k and r i51. Using the proce-
dure of adiabatic elimination of variablesP(g) and D(g),
and the approximations mentioned above, from the ba
equations~1! we derive the following system for circularl
polarized components of a lasing electric fieldE6 :

dE6

dt
5a•E62b~ uE1u21uE2u2!E6 ,

~6!

a5k~12 id!S d0

9~11d2!
21D , b5

kd0~12 id!

27~11d2!2
,

If we exclude approximations of isotropic pumping and
version D(g)5D0 , it is possible to rewrite system~6! as
follows:

dE1

dt
5„a12b1•~2uE1u213uE2u2!…E1

2b1~E2
2 E1* 1 i uE1u2E22 iE2* E1

2 !,

dE2

dt
5„a12b1~2uE2u213uE1u2!…E2

2b1~E1
2 E2* 2 i uE2u2E11 iE1* E2

2 !, ~7!

a15k~12 id!S d0

15~11d2!
21D , b15

kd0~12 id!

105~11d2!2
.

Both systems~6! and ~7! are close to the system derived b
means of third-order Lamb theory@5#:

dE6

dt
5E6~a62b6uE6u22u6uE7u2!. ~8!

Thus model~1! may be reduced to the model derived bas
on third-order Lamb theory. It is well known that third-ord
Lamb theory does not allow for amplitude instability
quasi-isotropic lasers@5#. Moreover, limitations~5! and the
close-to-threshold approximation fail for dye lasers w
short resonators and laser pumping, respectively. There
it is likely @5# that if we preserve the equations forP(g) and
D(g) in Eq. ~1!, we can find amplitude instabilities for th
quasi-isotropic case. System~1! is an infinite-dimensiona
system due to the angular dependences ofP(g) and D(g),
but the system considered in Ref.@5# is a finite-dimension
one. Thus we believe model~1! is a new form of advanced
Zeeman model—an infinite-dimensional Zeeman model.
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III. STEADY-STATE SPONTANEOUS
LIGHT-POLARIZATION SYMMETRY BREAKING

FOR A RING CAVITY DYE LASER
WITH A WEAK ANISOTROPY

Let us consider solutions of Eq.~1! in the form:

Ei~ t !5uEi~ t !uexp„if i~ t !…, P~g,t !5uP~g,t !uexp„ic~ t !….

~9!

Using the approximationkz5kx5k ~isotropic cavity!, and
substituting Eq.~9! into Eqs.~1!, we can derive the following
system:

uĖi u52kuEi u1kE uP~g!u~meei !dg cos~c2f i !,

uḟ i u5kd1
k

uEi u
E uP~g!u~meei !dg sin~c2f i !,

uPu̇52uPu1D (
i 5z,x

uEi u~meei !cos~f i2c!, ~10!

ċ52d1
D

uPu (i 5z,x
uEi u~meei !sin~f i2c!,

Ḋ5gS d0~maep!22 (
j 5x,z

uPuuEj u~meej !

3cos~c2f i !2~12L̂!D~g! D .

It is easy to obtain steady-state solutions for system~10!:

f5fz2fx50,p, uExu21uEzu25 7
3 ~11d2!~114DOR!m,

f5fz2fx56p/2,
~11!

uExu25uEzu25 7
4 ~11d2!~114DOR!m,

m5d0 /d0
~0!21

FIG. 2. Steady-state solutions for an anisotropic ring cavity d
laser in the reference frame of the Stokes parametersS1 , S2 , and
S3 : S0 5 uEzu2 1 uExu2, S1 5 uEzu2 2 uExu2, S252uExuuEzucosf,
S352uExuuEzusinf, andS0

25S1
21S2

21S3
2 . 1 shows the linearly polar-

ized waves, and 2 the circularly polarized waves.S1 , S2 , andS3

are in arbitrary units.
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3912 PRA 59S. V. SERGEYEV
where d0
(0)515(11d2)/(114DOR) is the first threshold

value for the pumping parameter. HereDOR5D0 for Brown-
ian rotation of excited molecules in the active medium, a
DOR5N/3 for excitation energy migration@15#. Expression
~11! holds true forDOR!1.

It is convenient to describe polarization states in terms
Stokes parameters@30#:

S05uEzu21uExu2,

S15uEzu22uExu2,

S252uExuuEzucosf, ~12!

S352uExuuEzusinf,

S0
25S1

21S2
21S3

2 .

By means of the reference frame (S1 ,S2 ,S3) ~Poincare´
sphere@18#!, we rewrite steady-state solutions~11! in the
forms

S1
21S2

25const, S350,
~13!

S15S250, S356const.

All these solutions are shown in Fig. 2. The first set of so
tions corresponds to all linearly polarized waves. The sec
one determines left and right circularly polarized waves. T
same set of steady-state solutions was found in Ref.@5#. Any
steady state can be reached from different sets of initial c
ditions. Because of luminescence in an active medium, fl
tuations of initial conditions take place, and the polarizat
of the laser output is changed from realization to realizat
with mean values equal to zero@17#. To classify the types of
SLPSB we introduce a variable, namely, a degree of po
ization for lasing:

p5S1 /S0 . ~14!

It is quite clear that only linearly polarized solutions in E
~13! correspond to SLPSB because ofpÞ0. For circularly
polarized lasingp50, according to Eqs.~13! and ~14!, this
means a symmetric solution. To find time-dependent for
of SLPSB we have to carry out a linear stability analysis
steady-state operations~13!.

IV. TIME-DEPENDENT SPONTANEOUS
LIGHT-POLARIZATION SYMMETRY BREAKING

AND RESTORATION FOR ISOTROPIC
AND ANISOTROPIC CAVITIES

The linear stability analysis carried out in the Append
gives us an opportunity to obtain the following eigenvalu
which determine the local dynamics near the poles and e
tor in Fig. 2:

l150, l252k1Ak~11d2!2~kd!2,
~15!

l352g6 iv0 , v05A2k~11d2!mg2g2.
d

f

-
d

e

n-
c-
n
n

r-

s
f

s
a-

The second and the third eigenvalues correspond to
Shil’nikov dynamics@31#. Under the Shil’nikov condition
@31,32#

uRe~l3!/l2u,1, ~16!

the motion becomes chaotic. In expression~15! and relation
~16! it follows that chaotic dynamics is possible when

g,2k1Ak~11d2!2k2d2,
~17!

m.m05
g

2k~11d2!
.

Increasing the parameterm, a Hoph bifurcation appears with
the threshold parameter of the pumping,m1 and the threshold
frequencyv1 :

m15
11d2

2k~31d2!
, v15Ag~11d2!/~31d2!. ~18!

Expressions~15! hold true form!1. Form@1, we find

l15l350, l252k1Ak~11d2!2~kd!2,
~19!

l452~11k!6 iv2 , v25dA~12k2!,

BecauseuRe(l4)/l2u@1, Shil’nikov dynamics is not pos-
sible. Thus we have steady-state solutions in the form de
mined only numerically from Eqs.~1!. If k!g,1 @Eqs. ~6!
and ~7!#, then m0 ,m1→`. This means that the absence
Shil’nikov dynamics and auto-oscillations~Hopf bifurca-
tions! for systems~6! and~7!, i.e., the procedure of the adia
batic elimination of the variablesP(g) and D(g), fails for
the good cavity limit. It is clear that the procedure may
applicable fork;g,1, if

m,m0 ,m1 . ~20!

Thus expression~20! represents the quantitative condition
the applicability of the adiabatic elimination procedure.

To expand the local analysis and to determine the glo
behavior we solve equations~1! numerically. The results
found for pumping polarized along the cavity axis in an is
tropic cavity correspond to conditions quite relevant for d
lasers:m5 7

3 , d51, g50.01, DOR50 @Fig. 3~a!–3~f!#, kz
5kx50.1 @Figs. 3~a! and 3~b!#, kz5kx50.3 @Figs. 3~c! and
3~a!#, andkz5kx50.5 @Figs. 3~e! and 3~f!#. For k50.1 we
find, from expressions~17! and ~18!, m050.025 andm1
52.5. Because ofm0,m,m1 , for this case only Shil’nikov
dynamics is possible. It has been found that form,m0, a
numerical solution of Eqs.~1! takes the form of right or left
circularly polarized waves, i.e., bistable behavior takes pla
The interaction of the Shil’nikov dynamics and the neut
stability l150 for m5 7

3 lead to a finite time localization
near the north and south poles~Fig. 3!. With increasing
losses in the cavity fromk50.1 @Figs. 3~a! and 3~b!# up to
k50.3 @Figs. 3~c! and 3~d!#, the time of localization in-
creases, and a Hopf bifurcation appears~for k50.3 we have
m.m150.83). Further increasing the losses up tokz5kx
50.5 leads to an increase in the frequency of the au
oscillations@Figs. 3~e! and 3~f!#. The interaction of the neu
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FIG. 3. Light-polarization operations for a ring cavity dye laser with an isotropic cavity.S1 , S2 , andS3 are Stokes parameters, an
p5S1 /S0 is the degree of polarization. Laser parameters:m5

7
3 , g50.01, andd51. kz5kx50.1 @~a! and~b!#, kz5kx50.3 @~c! and~d!#,

andkz5kx50.5 @~e! and ~f!#: t is in units of the transverse relaxation timet' , andp is a dimensionless value.
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tral stability (l150) and instabilities inl2.0 and the Hopf
bifurcation (l35a1 iv1 , a.0) leads to the following glo-
bal dynamics: the trajectory is attracted to the limit cyc
from the inner side, goes outside the limit cycle due to
neutral stability and, because of the instability in (l2.0), is
attracted by the inner side of the limit cycle located close
the opposite pole@Figs. 3~c! and 3~e!#. In terms of light-
polarization symmetry breaking, the dynamics operatio
shown in Fig. 3 may be called ‘‘temporal spontaneous lig
polarization symmetry breaking.’’ This means that the la
output is polarized for a short-time interval@Figs. 3~b!, 3~d!,
and 3~f!#, and is unpolarized when the measured mean va
is averaged over some much larger time interval. It has b
found numerically that all spiral attractors shown in Fig.
strongly depend on initial conditions, i.e., fluctuations of t
lasing field~luminescence! cause a broadening of the traje
tory. This kind of behavior is close to the Shil’nikov dynam
e

o

s
-
r

e,
en

ics @31#. Increasing the pumping parameter fromm5 7
3 to

m54, the coupling between poles close to local attract
increases, and in the end a steady-state operation takes p
only two steady statesS15S250 andS35681.4~south and
north poles! are possible, and every state is accessible fr
different sets of initial conditions. This may be called pola
ization symmetry restoration, because the expressionp50
holds true.

Thus we have found that expressions~15! and ~19! give
us an opportunity to classify all possible polarization ope
tions, and to determine conditions when new types of sp
taneous polarization symmetry breaking appear. Numer
results withkzÞkx are beyond analytical investigations.
losses for the two polarization modes are slightly differe
(kx50.3, kx50.31), destabilization of the attractors show
in Fig. 3~c! takes place@Fig. 4~a!#. A quasiperiodic behavior
@Figs. 3~c! and 5~a!# is transformed into a chaotic one@Figs.
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3914 PRA 59S. V. SERGEYEV
4~a! and 5~b!#. For high pumping or cavity anisotropy w
find that the laser output is linearly polarized close to the fi
threshold. For example, for the high cavity anisotropy (kz
50.3, kx50.5) and for the pumping parameterm5 1

3 , the
behavior is stabilized near statesS153.719 andS25S350
@the linearly polarized steady state~LPSS!#. Increasingm up
to m5 2

3 , the behavior is stabilized nearS154.54, S2
50.599, andS3523.168 @the elliptically polarized steady
state~EPSS!#. Here we have SLPSB in a form close to th

classical one@1#: LPSS→
m↑

EPSS.

A numerical solution of Eqs.~1! for the caseDOR.0 is
difficult, but nevertheless the influence of orientational rela
ation processes~ORP’s! may be estimated. As follows from
Eq. ~11!, parameterm increases with increasingDOR, i.e.,
the growth of the ORP rate has the same influence on
dynamics operations as the growth of the pumping powe

V. DISCUSSION

Results obtained in this paper allow us to classify
forms of spontaneous light-polarization symmetry breaki
For an anisotropic system it takes the form of a transit
from a linearly polarized wave to a right or left ellipticall
polarized wave. For an isotropic system we have new for
~i! For a dye laser with a saturable absorber@14,15# asym-
metric steady state operations and asymmetric periodic
chaotic auto-oscillations are possible. Lasing changes its
larization from realization to realization, on the average
maining polarized in time, but it will be unpolarized afte
averaging on realizations.~ii ! For an advanced Zeeman las
model@5#, SLPSB appears as a linearly polarized state wit
rotating polarization plane and an elliptically polarized st
with a rotating azimuth.~iii ! In this paper SLPSB for isotro
pic conditions appears in the form of spiral attractors: traj
tories visit points located close to the poles and the equ
on a Poincare´ sphere.

In summary, we have found that the result of coup
oscillators theory@33# may account for light-polarization
symmetry breaking and polarization symmetry restorati
According to the theory@33#, weak coupling leads to a com
plex behavior, and increasing the coupling causes the s
lization of the behavior, i.e., coupled chaotic attractors go
a stable steady state~the Bar-Eli effect@33#!. Coupling also
increases with an increase in the difference between cou
oscillators @33#. As follows from the results of the pape
coupling is determined by the pumping parameter, the dif
ence in losses for two polarization modes, and the rate
ORP. Complex chaotic attractors appear for weak coup
~Fig. 3!, and stabilization takes place with an increase in
pumping and ORP rates, the difference in losses procee
according to the general theory@33#. Thus spontaneous light
polarization symmetry breaking takes place for weak c
pling, and polarization symmetry restoration~the Bar-Eli ef-
fect @33#! is possible for strong local attractor coupling.

APPENDIX: LINEAR STABILITY ANALYSIS

Substituting uEi u5uEi0u1xi , f i5f i01yi , uPu5uP0u
1u, c5c01v, and D5D01z into Eqs. ~1!, for normal-
ized variablesx̂i5x/uEi0u, û5u/uP0u, andẑ5z/D0 we find
t

-
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e
.
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.
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ẋ̂i52kx̂i1kûi1kd~v2yi !,

ẏi5kd x̂i2kdûi1k~v2yi !,

u̇̂52û1 ẑ1qxx̂x1~12qx!x̂z ~A1!

2d„qxyx1~12qx!yz…1dv,

v̇52dû1d ẑ1d„qxx̂x1~12qx!x̂z…1qxyx1~12qx!yz2v,

ż̂52gS ~12L̂!• ẑ1 (
i 5x,z

mi•„x̂i1û1d•~v2yi !…D ,

where

ûi5

E uP0u•û•~meei !dg

E uP0u•~meei !dg

,

ẑi5

E uP0u• ẑ•~meei !dg

E uP0u•~meei !dg

, ~A2!

qx5
D0

uP0u
uEx0ucos~c02fx0!~meex!,

mi5
uP0u
D0

uEi0ucos~c02f i0!~meei !.

Introducing new variables

x15~ x̂z2 x̂x!/2, x25~ x̂z1 x̂x!/2, y15~yz2yx!/2,

y25~yz1yx!/2,

u15~ ûz2ûx!/2, u25~ ûz1ûx!/2, ~A3!

z15~ ẑz2 ẑx!/2, z25~ ẑz1 ẑx!/2,

we rewrite equations~A1! in the form:

ẋ15k~2x11u12dy1!,

ẏ15k~d•x12du12y1!,

u̇152
m

d
y1 ,

~A4!

ẋ25k~2x21u21dw2!,

ẇ25d~12k!x22~11k!w22d~12k!u21dz2

2d~hz1hx21!x12~hz1hx21!y1 ,



of

d
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u̇25x21d•w22u21z22~hz1hx21!x11d~hz1hx21!y1 .

Herew25v2y2 and

m5~11d2!~hx2hz!,
~A5!

hi5
uEx0u
uEi0u

cos~fx02c0!cos~f i02c0!E D0~meex!~meei !dg.

To complete system~A4! it is necessary to write equation from whichz2 may be determined. As follows from Eqs.~A1!
and relations~A3!,

û
˙
52û1 ẑ1~122qx!x11x22d~122qx!y11dw2 ,

~A6!

ẑ
˙
52gS ~12L̂!ẑ1 (

i 5x,z
miû1~mz2mx!x11~mx1mz!x21d~mx2mz!y11~mx1mz!w2D .

Substitutingû,ẑ;exp(lt) into Eq. ~A6!, and using relations~A2! and~A3! we find the following system as the projection
Eqs.~A4! and ~A6! on theR6 space (u1 ,x1 ,y1 ,x2 ,w2 ,u2):

FIG. 4. Light-polarization operations for a ring cavity dye laser with an anisotropic cavity.S1 , S2 , andS3 are Stokes parameters, an
p5S1 /S0 is the degree of polarization. Laser parameters:m5

7
3 , g50.01, andd51. kz50.3. kx50.31.

FIG. 5. Fourier transform for the intensity of thez-polarization mode.~a! Parameters correspond to Figs. 3~b! and 3~c!. ~b! Parameters
correspond to Figs. 4~a! and 4~b!. i is the number of the Fourier mode, anduCi u is the Fourier coefficient in arbitrary units.



3916 PRA 59S. V. SERGEYEV
U̇5L ~l!U, L ~l!5S A0 B0

C0 D0D , U5S x1

y1

u1

x2

w2

u2

D ,

A05S 2k 2kd k

kd 2k 2kd

0 2m/d 0
D , B05S 0 0 0

0 0 0

0 0 0
D ,

C0~l!5S 0 0 0

2d~212 f̂ 11hz1hx! 2d2 f̂ 1112hz2hx 0

f̂ 12hz2hx11 d~2 f̂ 1211hz1hx! 0
D , ~A7!

D0~l!5S 2k kd k

d~12k1 f̂ 2! 2~11k2d2 f̂ 2! 2d~12k!

11 f̂ 2 d~11 f̂ 2! 21
D .

Here

f̂ i5

E dguP0u f i~meez!/g1

E uP0u~meez!dg

1

E dguP0u f i~meex!/g1

E uP0u~meex!dg

, ~ i 51,2!,

f 1~g!52~11l!~mz2mx!2~mz1mx!~122qx!, f 2~g!52~21l!~mz1mx!, ~A8!

g15~11l!~12L̂1l/g!1 (
i 5x,z

mi .

Based on approximationsm!1 anduuL̂uu!1, we formulate the eigenvalue problem for system~A7! in the forms

l„~k1l!22k~11d2!1~kd!2
…50, l31p~l!l21q~l!l1r ~l!50. ~A9!

Here

p5p01
~21l!mp1

~11l!~11l/g!
, q5q01

~21l!mq1

~11l!~11l/g!
, r 5

~21l!mr 1

~11l!~11l/g!
,

p052~11k!, p15
d2

11d2
, q05~11k!21d2~12k2!, q15

k

11d2
, ~A10!

r 15
k„11k1d2~12k!…

11d2
.

Based on approximationsm@1, we formulate the eigenvalue problem for system~A7! in the forms

l„~k1l!22k~11d2!1~kd!2
…50, l~l21p0l1q0!50. ~A11!

Using expressions~A9!–~A11! we find eigenvalues~15! and ~19!.
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Chem.51, 342 ~1990!; V. M. Pérez-Garcı´a and J. M. Guerra,
Phys. Rev. A50, 1646~1994!; F. Encinas-Sanz, J. M. Guerra
and I. Pastor, Opt. Lett.21, 1153~1996!; O. G. Caldero´n, J. M.
Guerra, A. Costela, I. Garcı´a-Moreno, and R. Sastre~unpub-
lished!.

@23# H. Fu and H. Haken, Phys. Rev. A36, 4802 ~1987!; J. Opt.
Soc. Am. B5, 899 ~1988!; Phys. Rev. Lett.60, 2614~1988!.

@24# H. Jakobi and H. Kuhn Z. Elektrochem.66, 46 ~1962!; and in
Dye Lasers, edited by F. P. Scha¨fer, Topics in Applied Phys-
ics, Vol. 1 ~Springer-Verlag, Berlin, 1990!, p. 177.

@25# L. G. Nair, Prog. Quantum Electron.7, 153 ~1982!.
@26# H. Haken, Light, Vol. 2: Laser Light Dynamics~Springer-

Verlag, Berlin, 1985!.
@27# Th. Förster, Z. Naturforsch. A4A, 321 ~1949!.
@28# D. A. Varshalovich, A. H. Moskalev, and V. K. Hersonsky

Quantum Theory of Angular Momentum~Nauka, Leningrad,
1975!.

@29# L. C. Biedenharm, and J. D. Louck,Angular Momentum in
Quantum Physics. Theory and Application, Encyclopedia of
Mathematics and its Applications, Vol. 8~Addison-Wesley,
Reading, MA, 1981!, p. 586.

@30# A. P. Voitovich and V. N. Severikov,Lasery s Anisotropnym
Resonatorami~Nauka i Technika, Minsk, 1988!.

@31# L. P. Shil’nikov, Dokl. Akad. Nauk SSSR160, 558 ~1965!;
Mat. Sb.77, 119 ~1968!; 77, 461 ~1968!; 81, 92 ~1979!; 81,
123 ~1979!.

@32# F. T. Arecchi, Chaos1, 357 ~1991!.
@33# D. G. Aronson, G. B. Ermentrout, and N. Kopell, Physica

41, 403 ~1990!; D. G. Aronson, E. J. Doedel, and H. G. Oth
mer, ibid. 25, 20 ~1987!.


