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Quantum theory of atomic four-wave mixing in Bose-Einstein condensates

Elena V. Goldstein and Pierre Meystre
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

~Received 12 November 1998!

We present an exact quantum-mechanical analysis of collinear four-wave mixing in a multicomponent
Bose-Einstein condensate consisting of sodium atoms in theF51 ground state. Technically, this is achieved
by taking advantage of the conservation laws of the system to cast its Hamiltonian in terms of angular
momentum operators. We discuss explicitly the build-up of matter-wave side modes from quantum fluctua-
tions, as well as the correlations between these modes. We show the appearance of a strong quantum entangle-
ment between hyperfine states. We also demonstrate that for finite atomic numbers, the system exhibits
periodic collapses and revivals in the exchange of atoms between different spin states.
@S1050-2947~99!09705-X#

PACS number~s!: 03.75.Fi, 05.30.Jp, 42.65.Hw
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I. INTRODUCTION

Low-density Bose-Einstein condensates of alkali-me
atoms are described to an excellent degree of approxima
by a Gross-Pitaevskii nonlinear Schro¨dinger equation. Such
equations are ubiquitous in many fields of physics, includ
nonlinear optics, hence it is not surprising that many of
concepts first developed in optics can readily be extende
condensates. A number of theoretical investigations al
these lines have already been presented, including the s
of matter-wave solitons@1#, phase conjugation@2,3#, four-
wave mixing @4#, spin-mixing @5#, etc. The experimenta
verification of these predictions is also underway, with t
first announcement of four-wave mixing in a sodium cond
sate@6#.

A recent experimental development of considerable
portance in this context is the demonstration of multicom
nent condensates, in particular of23Na condensates in far
off-resonance optical dipole traps@7#. These systems perm
us to distinguish condensate modes in ways other than
their center-of-mass quantum numbers. This opens up
directions of research, such as the study of the stability
miscibility of quantum fluids, the analysis of pattern form
tion, the generation of ferromagnetic and antiferromagn
states, etc.@8–10,5,6#. In the context of nonlinear atom op
tics, the coexistence of condensates with different magn
quantum numbers is attractive in that it provides a way
perform four-wave mixing experiments in collinear geom
etries, with the considerable advantage of eliminating pha
matching limitations@3#.

It is now well understood that the matter-wave analog
nonlinear optical interactions is provided by collisions.
particular, in thes-wave scattering regime~‘‘shapeless’’ ap-
proximation! two-body collisions are mathematically equiv
lent to a medium with third-order nonlinear polarizatio
~Kerr medium! and characterized by local and instantaneo
response. Hence, the kinds of wave-mixing phenomena
can take place in a condensate are largely dictated by
properties of these collisions. For example, recent exp
mental studies of spin population dynamics in a23Na con-
densate have shown that as a result of spin changing c
sions, a sample initially in themF50 state eventually winds
PRA 591050-2947/99/59~5!/3896~6!/$15.00
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up with almost equal populations of all hyperfine grou
states@10#. The present paper exploits these collisions
generate four-wave mixing in23Na. It is organized as fol-
lows. Section II describes our physical model, which cons
ers degenerate backward phase conjugation in~small! con-
densates. Section III derives a representation of the prob
in terms of angular momentum algebra. This leads to
exact diagonalization of the four-wave mixing Hamiltonia
and the determination of all eigenstates and eigenenerg
These results are applied in Sec. IV to the analysis of
dynamics of exchange of population between different s
states. The quantum correlations between these states
also discussed. Finally, Sec. V is a summary and outloo

The phase conjugation of atomic waves has previou
been discussed in a situation where the matter-wave mo
involve the same electronic state but different center-of-m
components@2#, and using the undepleted pump approxim
tion @11#. Mode separation was achieved via Bragg scatter
off an optical field. A full three-dimensional numerical solu
tion of a closely related situation was recently given@4# in
connection with experimental work at NIST@6#. Both of
these analyses rely on the Gross-Pitaevskii equation, w
effectively assumes a Hartree ansatz with a fixed numbe
particles, or spontaneous symmetry breaking. In addition
recent analysis of matter-wave phase conjugation treats
central mode to all orders, but describes the side modes
linearized fashion@3#. In contrast, the present theory, whic
also holds for small condensates, does not make any of t
assumptions. It handles all modes on equal footing, to
orders, and makes no assumption about their statistical p
erties. We note that our approach is related to a recent an
sis of spin mixing in spinor Bose-Einstein condensates@5#,
where the ground state of the system is determined by dia
nalizing the system Hamiltonian expressed in terms of an
lar momentum operators.

II. PHYSICAL MODEL

We consider a Bose-Einstein condensate of23Na atoms in
the F51 hyperfine ground state, with the three intern
atomic states uF51,mF521&, uF51,mF50&, and uF
51,mF51& of degenerate energies in the absence of exte
3896 ©1999 The American Physical Society
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PRA 59 3897QUANTUM THEORY OF ATOMIC FOUR-WAVE MIXING . . .
magnetic fields. The condensate is confined by a far-
resonance optical dipole trap. It is described by the thr
component vector Schro¨dinger field

C~r ,t !5$C21~r ,t !,C0~r ,t !,C1~r ,t !%, ~1!

which satisfies the bosonic commutation relations

@C i~r ,t !,C j
†~r 8,t !#5d i j d~r2r 8!. ~2!

Accounting for the possibility of two-body collisions, its dy
namics is described by the second-quantized Hamiltonia

H5E drC†~r ,t !H0C~r ,t !

1 1
2 E dr1dr2C†~r1 ,t !C†~r 2,t !

3V~r12r2!C~r2 ,t !C~r1 ,t !, ~3!

where the single-particle Hamiltonian is given by

H05p2/2M1Vtrap ~4!

and the trap potential is of the general form

Vtrap5 (
m521

11

U~r !uF51,m&^F51,mu. ~5!

Here p is the center-of-mass momentum of the atoms
massM, and U(r ), the effective dipole trap potential fo
atoms in theu1,m& hyperfine state, is independent ofm for a
nonmagnetic trap.

The general form of the two-body interactionV(r12r2)
has been discussed in detail in Refs.@8,9,12#. We reproduce
its main features for the sake of clarity. Considering exc
sively situations where the hyperfine spinFi51 of the indi-
vidual atoms is preserved, we label the hyperfine states o
combined system of two collision partners with total hyp
fine spin F5F11F2 by u f ,m&, where f 50,1,2 and m
52 f , . . . ,f . In the shapeless approximation, it can
shown that the two-body interaction is of the general fo
@9#

V~r12r2!5d~r12r2!(
f 50

2

\gfPf , ~6!

where

gf54p\af /M ~7!

and

Pf[(
m

u f ,m&^ f ,mu ~8!

is the operator which projects the state of the atomic p
onto a state of total hyperfine quantum numberf. Hereaf is
thes-wave scattering length for the channel of total hyperfi
spin f. As a result of the symmetry requirement for boson
atoms, it can be shown that only states with evenf contribute
to V(r12r2), so that
f-
e-

f

-

he
-

ir

e

V~r12r2!5\d~r12r2!~g2P21g0P0!

5\d~r12r2!~c01c2F1•F2!. ~9!

In this expression,

c05~g012g2!/3,
~10!

c25~g22g0!/3,

which follows from the identitiesP11P25 Î and F1•F2
5P222P0. Substituting this form of the two-body potentia
V(r12r2) into the second-quantized Hamiltonian~3! leads
to

H5(
m

E drCm
† ~r ,t !F p2

2M
1U~r !GCm~r ,t !

1
\

2E dr$~c01c2!@C1
†C1

†C1C1

1C21
† C21

† C21C2112C0
†C0~C1

†C11C21
† C21!#

1c0C0
†C0

†C0C012~c02c2!C1
†C1C21

† C21

12c2~C1
†C21

† C0C01H.c.!%. ~11!

The physical interpretation of the various terms of th
Hamiltonian has been discussed previously: The three te
quartic in one of the field operators, i.e., those of the fo
C i

†C i
†C iC i , are self-~de!focusing terms, the terms involv

ing two hyperfine states conserve the populations of the
dividual spin states and merely lead to phase shifts, and
terms involving the central modeC0 and both side modes
correspond to spin-exchange collisions. This ‘‘four-wa
mixing’’ interaction, involving, e.g., the annihilation of a
pair of atoms withmF50 and the creation of two atoms i
the statesmF561, leads to phase conjugation in quantu
optics and to matter-wave phase conjugation in the pre
case@3#.

The analogy with optical phase conjugation via four-wa
mixing becomes even more apparent when we conside
situation where atoms in themF50 state are placed in a
linear superposition of two counterpropagating center-
mass modes of momenta6\k0, that is, the field operato
C0(x) can be expanded as

C0~x!5
1

AV
~eik0xa011e2 ik0xa02!, ~12!

while the atoms of spinmF561 are taken to be at rest,

C61~x!5
1

AV
a61 . ~13!

Here a01 and a02 are the annihilation operators of the tw
counterpropagatingmF50 modes, with@a0i ,a0 j

† #5d i j , i , j
51 or 2, anda6 are the annihilation operators for the mod
associated withmF561. Finally, V is the confinement vol-
ume of the condensate. Inserting this mode expansion
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3898 PRA 59ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
the Hamiltonian~11! and ignoring all non-phase-matche
contributions finally yields the four-wave mixing Hami
tonian

H5
\2k0

2

2M
N̂1

\c0

2
N̂~N̂21!

1
\c2

2
@a1

†a1
†a1a11a21

† a21
† a21a2122a1

†a1a21
† a21

12~a1
†a11a21

† a21!~a01
† a011a02

† a02!

14a1
†a21

† a01a0214a1a21a01
† a02

† #, ~14!

where we have introduced the total number of atoms

N̂5a1
†a11a21

† a211a01
† a011a02

† a02. ~15!

Note that the coupling between the central and side mode
the condensate (a1

†a21
† a01a02 and its Hermitian conjugate!

requires both energy and momentum conservation. Ene
conservation can be achieved, e.g., by introducing an ex
nal dc magnetic field.1

III. ANGULAR MOMENTUM REPRESENTATION

Despite the formal analogy between the Hamiltonians
scribing optical and atomic four-wave mixing, there are i
portant details in which these processes differ. One of th
is phase matching, which is normally more difficult
achieve with de Broglie waves due to the quadratic disp
sion relation of atoms. However, the use of multicompon
condensates permits us to avoid this difficulty, as we h
just seen. More important perhaps is the fact that nonlin
optics experiments usually use coherent laser light as pum
It is well known that the number of photons in these fields
not well determined. In contrast, the number of atoms i
condensate is a fixed~and integer! quantity in the absence o
losses. This leads to important conservation laws, which
exploit in the following to reexpress the Hamiltonian~14! in
terms of angular momentum operators. This leads in turn
an exact solution of the problem.

The most obvious conserved quantity of the Hamilton
~15! is the total number of atoms, as follows from the co
mutator

@N̂,H#50. ~16!

In addition, the populationdifferences

D̂05a01
† a012a02

† a02, ~17!

1In this case, the energy of atoms in themF50 state is not af-
fected by the magnetic field and is determined solely by their
netic energy. In contrast, the energy of atoms in the hyperfine s
mF561 changes due to the quadratic Zeeman effect. For the fi
used in Ref.@10# the mF521↔mF50 and mF511↔mF50
transitions differ in frequency by 0.9 MHz, which corresponds to
energy of 10228 J. This leads to an energy excess in the side mo
which can be used to compensate the mismatch in kinetic ener
of
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D̂5a1
†a12a21

† a21 ~18!

are also conserved. These two conservation laws follow
rectly from the fact that the Hamiltonian~14! describes the
creation and annihilation of bosonic atoms in pairs. For
ample, the annihilation of two atoms in the center-of-ma
modes 1 and 2 of themF50 hyperfine state, described by th
operator paira01a02, results in the creation of a pair of atom
in the mF561 spin states viaa1

†a21
† .

Together with the conservation of the total number
atoms, these conservation laws yield the two additional c
served quantities

N̂1[a1
†a11a01

† a01,
~19!

N̂2[a21
† a211a02

† a02.

These conservation laws make it possible to define
angular momentum algebra for this four-wave mixing syst
analogous to the Schwinger coupled boson representa
used in Ref.@13# for the description of two-mode conden
sates and in Ref.@5# for the three-mode coupling problem
However the present situation requires that these consi
ations be extended to a compound angular momentum
resentation@14,15#.

We proceed by introducing spinor operatorsa1 anda2,

a1[S a01

a1
D and a2[S a21

a02
D , ~20!

as well as the two angular momentum operatorsS1 andS2,

S1[a1
†sa15

1

2 S a01
† a11a01a1

†

2 i ~a01
† a12a01a1

†!

a01
† a012a1

†a1

D ~21!

and

S2[a2
†sa25

1

2 S a21
† a021a02

† a21

2 i ~a02a21
† 2a02

† a21!

a21
† a212a02

† a02

D , ~22!

wheres is the Pauli spin operator. The Casimir operatorsK j
associated with the angular momentaSj are also constants o
motion since

K j[Sj
25

N̂j

2
S N̂j

2
11D . ~23!

Expressed in terms of the total spin operator

S[S11S2 ~24!

with componentsSj5S1 j1S2 j , the Hamiltonian~14! be-
comes

H5
\2k0

2

2M
N̂1

\c0

2
N̂~N̂21!12\c2FS22

N̂

2
2S D̂0

2
D 2G .

~25!

i-
es
ds

n
s

es.
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Together with the conserved Casimir operators, this form
the four-wave mixing Hamiltonian suggests expressing
state of the system in terms of the complete set of quan
numbers associated with the eigenstates of the operatorS1

2,
S2

2, S2, andSz . The Hamiltonian~25! can clearly be diago-
nalized in terms of these operators, yielding a complete se
eigenstates and eigenenergies.

To illustrate how this works, we consider for concretene
a condensate consisting ofN atoms such that initially there
areN01[^a01

† a01&5N/22m atoms in center-of-mass mode
andN02[^a02

† a02&5N/2 atoms in center-of-mass mode 2
the hyperfine statemF50, m!N/2 atoms in the hyperfine
statemF51, and none in the statemF521. In the ‘‘natu-
ral’’ eigenbasis of the operators$K1 ,S1z ,K2 ,S2z% the initial
state of this system is described by the state vector

uf~0!&5UN4 ,
N

4
2m;

N

4
,2

N

4 L . ~26!

Expanding it in terms of a complete set of eigenvect
$uN/4,N/4,S,Sz&% of the Hamiltonian~25!, we find

uf~0!&5(
S
CS N

4
2m,2

N

4
;S,2mD UN4 ,

N

4
;S,2mL ,

~27!

where

C~S1z ,S2z ;S,2m![ K N

4
,
N

4
;S,2mUN4 ,S1z ;

N

4
,S2zL

~28!

are Clebsch-Gordan coefficients@16#, which are nonzero
only for Sz5S1z1S2z52m.

This conservation ofSz under the Hamiltonian~25! fur-
ther implies that the state vector of the system is given
time t by

uf~ t !&5(
S

aS~ t !UN4 ,
N

4
;S,2mL [(

S
aS~ t !uS,2m&,

~29!

where in the second equality we have made explicit use
the value of the conserved quantitiesK1 , K2, andSz to sim-
plify the notation via

UN4 ,
N

4
;S,2mL→uS,2m&. ~30!

Note that this simplification is not general, but is appropri
for the initial condition at hand.

The equations of motion for the probability amplitud
aS(t) follow from the Schro¨dinger equation. For the conden
sate containingN atoms they read, in a frame rotating at t
frequency\k0

2N/2M1c0N(N21)/222c2@N/21(D0/2)2#,

i ȧS~ t !52c2S~S11!aS~ t ! ~31!

and can be integrated trivially with the initial condition

aS~ t50!5CS N

4
2m,2

N

4
;S,2mD .
f
e
m

of

s

s

t

of

e

IV. DYNAMICS

First we apply the results of the preceding section to
study of the dynamics of population exchange between
different modes of the condensate. For instance, the pop
tion of themF51 hyperfine spin state can readily be dete
mined from the expectation value ofS1z . With Eqs.~19! and
the definition ofS1z we find

^a1
†a1&5

N

4
2^S1z&. ~32!

From Eq.~29! we have

^S1z&5(
p

pU(
S

aS~ t !C„p,2~p1m!;S,2m…U2

, ~33!

where we inserted the identity operator

Î 5 (
p1 ,p2

UN4 ,p1 ;
N

4
,p2L K N

4
,p1 ;

N

4
,p2U ~34!

and used the simplified notation~30! as well as the property
that the Clebsch-Gordan coefficients are nonzero only
Sz5S1z1S2z . Equations~33! can be evaluated numerically

The evolution of the population of themF51 side mode
is shown in Fig. 1 forN5100 atoms in the system. In cas
~b! the initial mode populations arêa01

† a01&5N/22m,
^a02

† a02&5N/2, ^a1
†a1&5m55, ^a21

† a21&50 while case~a!
illustrates the build-up from quantum fluctuations,m50. In

FIG. 1. Time evolution of the side-mode population^a1
†a1& for

N5100 and initial populations~a! ^a01
† a01&5N/2, ^a02

† a02&5N/2,
^a1

†a1&50, and ^a21
† a21&50; ~b! ^a01

† a01&5N/225, ^a02
† a02&

5N/2, ^a1
†a1&55, and^a21

† a21&50.
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3900 PRA 59ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
both cases, the side-mode population exhibits an in
growth to the point where it contains about 1/3 of the ato
in the first case and about half of the atoms in the seco
This is followed by a collapse to a quasi-steady-state po
lation, as well as a subsequent revival at 2c2t15p. This
dynamics then repeats itself periodically, with revivals
2c2tn5pn, independently ofN. This is similar to the peri-
odical revivals which occur in the two-photon Jayne
Cummings model discussed in@17#.

During the periods of collapse, one hasSjz52m/2, so
that all modes are almost equally macroscopically popula
with ^a01

† a01&5N/42m/2, ^a1
†a1&5N/41m/2, ^a02

† a02&
5N/41m/2, and^a2

†a2&5N/42m/2.
A particularly interesting aspect of the present study

that it allows one to obtain the quantum correlations betw
side modes. In optics, for example, four-wave mixing p
vides a method to study purely quantum-mechanical effe
such as squeezing and nonclassical states of the radi
field, and also to prepare states of composite systems ex
iting strong quantum-mechanical entanglement@18#. These
states are of considerable interest in tests of the foundat
of physics as well as quantum information processing s
as quantum cryptography@19,20# and quantum computing
@21#. Macroscopic quantum states of massive partic
present an interesting alternative to all-optical syste
hence it is of considerable interest to determine to wh
extent quantum entanglement between side modes ca
achieved in Bose-Einstein condensation.

In analogy with the optical case, one can quantify t
amount of quantum entanglement between conden
modes by determining the extent to which the Cauc
Schwartz inequality is violated by the second-order cro
correlation functions between modes@18#. In particular, for a
‘‘classically looking’’ optical system with positive Glaube
P representation, the single-time second-order cro
correlation function is bound by

Gi , j
(2)~ t !<@Gi

(2)~ t !Gj
(2)~ t !#1/2. ~35!

In case theP representation is not positive or does not ex
in contrast, the upper bound is higher, namely

Gi , j
(2)~ t !<$@Gi

(2)~ t !1Gi
(1)~ t !#@Gj

(2)~ t !1Gj
(1)~ t !#%1/2.

~36!

In these inequalities, we have introduced the single-time
single-mode first-order correlation functions

Gj
(1)~ t ![^f~ t !uaj

†aj uf~ t !& ~37!

as well as the single-time two-mode second-order correla
functions

Gi j
(2)~ t ![^f~ t !uai

†aiaj
†aj uf~ t !& ~38!

and the single-time, second-order correlation functions

Gj
(2)~ t ![^f~ t !uaj

†aj
†ajaj uf~ t !&. ~39!

As was the case for the side-mode populations, the sin
time single-mode second-order cross correlation between
side modesmF561 can be expressed in terms of thez
component of the individual pseudospins as
l
s
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G21,1
(2) ~ t !5 K S N

4
2S1zD S N

4
2S2zD L

5S N

4 D 2

2
N

4
~^S1z&1^S2z&!1^S1zS2z&, ~40!

where

^S1zS2z&5(
p

p~2p2m!U (
s5m

[N/2]

aS~ t !C„p,2~p1m!;S,m…U2

~41!

and the sum can easily be evaluated numerically.
Figure 2 compares the time dependence of the normal

central-mode–side-mode correlation function~lower curve!

R 01,1
(2) ~ t ![

G01,1
(2) ~ t !

AG01
(2)~ t !G1

(2)~ t !
~42!

and the side-mode–side-mode correlation~upper curve!

FIG. 2. Time evolution of the one-time normalized centra
mode–side-mode correlation function~lower curve! R 01,1

(2) (t) and
the one-time normalized side-mode–side-mode correlation func
~upper curve! R21,1

(2) (t) for N5100 and ~a! ^a01
† a01&5N/2,

^a02
† a02&5N/2, ^a1

†a1&50, and ^a21
† a21&50; ~b! ^a01

† a01&5N/2
25, ^a02

† a02&5N/2, ^a1
†a1&55, and ^a21

† a21&50. The shaded
area is the classically forbidden region of values ofRi j .
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R21,1
(2) ~ t ![

G21,1
(2) ~ t !

AG1
(2)~ t !G21

(2)~ t !
~43!

for ~a! the casem50 where the side mode builds up fro
quantum fluctuations and~b! the casem55 of an injected
signal. These results illustrate how the correlations betw
central mode and side modes do satisfy the classical Cau
Schwartz inequality while the side-mode–side-mode cr
correlations violate them. The violation is particularly stro
in the case of build-up from quantum fluctuations, as sho
be intuitively expected. In that case the hyperfine side mo
mF561 play symmetric roles, thus

G21,1
(2) ~ t !5G1

(2)~ t !1G1
(1)~ t !, ~44!

i.e., Eq.~36! thus becomes an equality, corresponding to
maximum violation of the classical Cauchy-Schwartz
equality allowed by quantum mechanics.

The difference in the behavior of the two mode corre
tion functions between side modes and those involving
central and one side mode can be intuitively understood f
the form of the wave-mixing terma1

†a21
† a01a02 appearing in

the Hamiltonian~14!. Indeed, the coupling between sid
modes, involving two annihilation operators, is reminisce
of the interactiona1

†a2
† in the Hamiltonian of parametric am

plification leading to squeezing and quantum entanglem
between two side modes. In contrast, the coupling betw
central and side modes involves both an annihilation an
creation operator.

V. SUMMARY AND CONCLUSIONS

In contrast to the optical case, where it is usually diffic
to study quantum mechanically four-wave mixing in t
strong field limit, this task can be achieved relatively eas
for matter waves, a direct consequence of the conservatio
the total number of atoms in a condensate atT50 and in a
l-
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lossless trap. The resulting conservation laws permit us
develop an angular momentum algebra analysis that lead
an exact solution of the problem away from the linear regi
where the side-mode populations remain small.

In this paper we have applied this technique to the stu
of the dynamics of the population exchange between hyp
fine levels of a condensate. We found that this exchang
periodic and it is characterized by a sequence of ‘‘collapse
and ‘‘revivals’’ reminiscent of those appearing in the tw
photon Jaynes-Cummings model of optical physics. In ad
tion, we found that strong quantum correlations can deve
between the central modes and the side modes, the ge
state of the system exhibiting a strong quantum entanglem
between the modesmF561. Thus, it appears that multi
component condensates offer a fascinating method to cr
quantum entanglement at a truly macroscopic level, a po
bility made even more attractive by the fact that these s
tems suffer very little from dissipation, since they consist
ground-state atoms. The finite lifetime of condensates is u
ally attributed to three-body collisions, which result in loss
on a time scale of seconds.

We conclude by noting that the revivals in the populati
exchange occur at a time independent of the number of
oms in the condensate. Hence, they allow for a direct
absolute determination of the coefficientc2. In practice,
however,c2 seems to be too small to observe revivals on
time scales of the condensate lifetime.
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