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Quantum theory of atomic four-wave mixing in Bose-Einstein condensates
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We present an exact quantum-mechanical analysis of collinear four-wave mixing in a multicomponent
Bose-Einstein condensate consisting of sodium atoms ifrthé ground state. Technically, this is achieved
by taking advantage of the conservation laws of the system to cast its Hamiltonian in terms of angular
momentum operators. We discuss explicitly the build-up of matter-wave side modes from quantum fluctua-
tions, as well as the correlations between these modes. We show the appearance of a strong quantum entangle-
ment between hyperfine states. We also demonstrate that for finite atomic numbers, the system exhibits
periodic collapses and revivals in the exchange of atoms between different spin states.
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PACS numbg(s): 03.75.Fi, 05.30.Jp, 42.65.Hw

[. INTRODUCTION up with almost equal populations of all hyperfine ground
states[10]. The present paper exploits these collisions to
Low-density Bose-Einstein condensates of alkali-metafgenerate four-wave mixing if*Na. It is organized as fol-

atoms are described to an excellent degree of approximatidaws. Section Il describes our physical model, which consid-
by a Gross-Pitaevskii nonlinear ScHinger equation. Such ers degenerate backward phase conjugatio(sinal) con-
equations are ubiquitous in many fields of physics, includingleénsates. Section Il derives a representation of the problem
nonlinear optics, hence it is not surprising that many of thén terms of angular momentum algebra. This leads to an
concepts first developed in optics can readily be extended t@xact diagonalization of the four-wave mixing Hamiltonian
condensates. A number of theoretical investigations alongnd the determination of all eigenstates and eigenenergies.
these lines have already been presented, including the studyese results are applied in Sec. IV to the analysis of the
of matter-wave soliton§1], phase conjugatiofi2,3], four- dynamics of exchange of population between different spin
wave mixing [4], spin-mixing [5], etc. The experimental states. The quantum correlations between these states are
verification of these predictions is also underway, with thealso discussed. Finally, Sec. V is a summary and outlook.

first announcement of four-wave mixing in a sodium conden- The phase conjugation of atomic waves has previously
sate[6]. been discussed in a situation where the matter-wave modes

A recent experimental development of considerable iminvolve the same electronic state but different center-of-mass
portance in this context is the demonstration of multicompo-components2], and using the undepleted pump approxima-
nent condensates, in particular 8Na condensates in far- tion[11]. Mode separation was achieved via Bragg scattering
off-resonance 0ptica| d|po|e tra}ﬁz]_ These systems permit off an optical field. A full three-dimensional numerical solu-
us to distinguish condensate modes in ways other than b§jon of a closely related situation was recently gii@ in
their center-of-mass quantum numbers. This opens up ne@@nnection with experimental work at NIS[6]. Both of
directions of research, such as the study of the stability anthese analyses rely on the Gross-Pitaevskii equation, which
miscibility of quantum fluids, the analysis of pattern forma- effectively assumes a Hartree ansatz with a fixed number of
tion, the generation of ferromagnetic and antiferromagnetidarticles, or spontaneous symmetry breaking. In addition, a
states, etc[8-10,5,8. In the context of nonlinear atom op- recent analysis of matter-wave phase conjugation treats the
tics, the coexistence of condensates with different magnetigentral mode to all orders, but describes the side modes in a
guantum numbers is attractive in that it provides a way tdinearized fashioi3]. In contrast, the present theory, which
perform four-wave mixing experiments in collinear geom- @lso holds for small condensates, does not make any of these
etries, with the considerable advantage of eliminating phaseassumptions. It handles all modes on equal footing, to all
matching limitationd 3]. orders, and makes no assumption about their statistical prop-

It is now well understood that the matter-wave analog oferties. We note that our approach is related to a recent analy-
nonlinear optical interactions is provided by collisions. InSis of spin mixing in spinor Bose-Einstein condensdtgs
particular, in theswave scattering regimé‘'shapeless” ap-  Where the ground state of the system is determined by diago-
proximation two-body collisions are mathematically equiva- Nalizing the system Hamiltonian expressed in terms of angu-
lent to a medium with third-order nonlinear polarization lar momentum operators.

(Kerr medium) and characterized by local and instantaneous

response. Hencg, the kinds of wave-mixing ph_enomena that Il. PHYSICAL MODEL

can take place in a condensate are largely dictated by the

properties of these collisions. For example, recent experi- We consider a Bose-Einstein condensaté®fa atoms in
mental studies of spin population dynamics irf¥a con- the F=1 hyperfine ground state, with the three internal
densate have shown that as a result of spin changing collatomic states|F=1mg=-1), |F=1mg=0), and |F
sions, a sample initially in then.=0 state eventually winds =1m-=1) of degenerate energies in the absence of external
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magnetic fields. The condensate is confined by a far-off- V(ri—r3)=ha8(r;—r5)(g,P>+9doPo)
resonance optical dipole trap. It is described by the three-
component vector Schdinger field =hd(ri—ra)(CotcoFyi-Fy). 9)
W(r,t)={¥_.(r,t),Vo(r,t),¥(r,0)}, (1) In this expression,
which satisfies the bosonic commutation relations Co=(go+20,)/3,
, / 10
[W4(r,0,%](r" )= 8 8(r 1), @ 10

C2=(92—9o)/3,

Accounting for the possibility of two-body collisions, its dy-

namics is described by the second-quantized Hamiltonian Which follows from the identitiesP; +P,=1 and F;-F,
=P,—2P,. Substituting this form of the two-body potential

V(r,—r,) into the second-quantized Hamiltoni&B) leads
H=J dr'(r, ) HoW(r 1) Yira=ra) q @
+ %f drldrz\ItT(rl,t)lItT(rz,t) H= 2 J dr\IfT(r t)[ _I_U(r)} V(1,1
XV(ry=r)W(ry, ) W(ry,t), () %
+ = | dri(cot+c)[WIwivw, ¥
where the single-particle Hamiltonian is given by 2.[ (Cot e[V ¥ats
Ho=p2/2M +Viap (4) S A A R (PR (0 NG (B (O A Y
and the trap potential is of the general form + oW W W oWt 2(Co—C) WIW, W W,
+1 +2¢,(PIwT W W +H.c)}. (11)
Vi= 2, U(n)|F=1m)(F=1m|. (5

The physical interpretation of the various terms of this

. Hamiltonian has been discussed previously: The three terms
Here p is the center-of-mass momentum of the atoms of

quartic in one of the field operators, i.e., those of the form
massM, and U(r), the effective dipole trap potential for

in thd1m h . s ind d & W, T‘IfiTlIfi\Ifi, are selftde)focusing terms, the terms involv-
atoms in t d m) hyperfine state, is independentruffor a ing two hyperfine states conserve the populations of the in-
nonmagnetic trap.

The general form of the two-body interactiof(r;—r,) dividual spin states and merely lead to phase shifts, and the

) . i terms involving the central mod#, and both side modes
has been discussed in detail in R¢£9,12. We reproduce correspond to spin-exchange collisions. This “four-wave

it_s main_ fea_tures for the sake of plarity. Considering e_XC|u'mixing” interaction, involving, e.g., the annihilation of a
s!vely situations where the hyperfine sy 1 Qf the indi- air of atoms withmz=0 and the creation of two atoms in
wdua[ atoms is preserved, we Igbel the hyperfme states of t e statesn.=+1, leads to phase conjugation in quantum
qombmgd system of two collision partners with total hyper'optics and to matter-wave phase conjugation in the present
fine spin F=F,;+F, by |f,m), where f=0,1,2 andm case[3]

=h_ f,. t'h- tf .thln tthe bsgap_eltess t«’?lppr_oxn??tt:on, I ca:nf be The analogy with optical phase conjugation via four-wave
shown that the two-body Interaction Is of the genera Ormmixing becomes even more apparent when we consider a

9] situation where atoms in the-=0 state are placed in a
2 linear superposition of two counterpropagating center-of-
V(ryi—ry)=8(r —fz)E hg Py, (6) Mass modes of momentafikg, that is, the field operator
¥(x) can be expanded as
where 1

Po(x) = —(ekoXay, + e oXa,,), 12

g = dmhag /M @ o(x) \N( o1 02) (12

and while the atoms of spimz=*1 are taken to be at rest,

Pi=> |f,m)(f,m| (8) 1
Vo (X)=—=a;. (13
m ,1( ) \/v *1

is the operator which projects the state of the atomic pair

onto a state of total hyperfine quantum numbederea; is  Hereag, andag, are the annihilation operators of the two
thes-wave scattering length for the channel of total hyperfinecounterpropagatingn.=0 modes, with a; ,aOJ] Sij» 1]
spinf. As a result of the symmetry requirement for bosonic=1 or 2, anda.. are the annihilation operators for the modes
atoms, it can be shown that only states with effeantribute  associated wittmz= + 1. Finally, V is the confinement vol-

to V(r,—r,), so that ume of the condensate. Inserting this mode expansion into
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the I-_|am_|lton|a_n(11) a_nd ignoring all non-ph_age-match_ed I5=a1a1—aila,l (18)
contributions finally yields the four-wave mixing Hamil-
tonian are also conserved. These two conservation laws follow di-
5 2 rectly from the fact that the Hamiltoniafi4) describes the
2= —kN+ ﬁ—CON(N—l) creation and annihilation of bosonic atoms in pairs. For ex-
2M 2 ample, the annihilation of two atoms in the center-of-mass

modes 1 and 2 of theng=0 hyperfine state, described by the
operator paiggyag,, results in the creation of a pair of atoms
in themz=+1 spin states viala', .

Together with the conservation of the total number of
atoms, these conservation laws yield the two additional con-

fic,
+ T[alalalaﬁ a',a',a ja_;—2ala;a’;a_;

1 T t t
+2(aja;+aja 1)(ag@eit agRo)

+4aja’ jap80o1 4218 1ahak], (14 ~ served quantities
. S oAt T
where we have introduced the total number of atoms Ni=a;a;+ap;a01,
(19
< O At t
N=ala;+a' ;a_;+alan+alac. (15 Np,=a_;a_;+aga0;-

Note that the coupling between the central and side modes of These conservation laws make it possible to define an
the condensatea{ailamaoz and its Hermitian conjugate angular momentum algebra for this four-wave mixing system

requires both energy and momentum conservation. Energgnalogous to the Schwinger coupled boson representation

conservation can be achieved, e.g., by introducing an exteFS€d in Ref[13] for the description of two-mode conden-
nal dc magnetic field. sates and in Ref5] for the three-mode coupling problem.

However the present situation requires that these consider-

ations be extended to a compound angular momentum rep-
. ANGULAR MOMENTUM REPRESENTATION resentatiorf14,15.

Despite the formal analogy between the Hamiltonians de- We proceed by introducing spinor operatagsandas,
scribing optical and atomic four-wave mixing, there are im-
portant details in which these processes differ. One of them
is phase matching, which is normally more difficult to
achieve with de Broglie waves due to the quadratic disper-
sion relation of atoms. However, the use of multicomponengs well as the two angular momentum opera@rands,,
condensates permits us to avoid this difficulty, as we have

=

Qo1 a_
31) and a2=( aoz), (20)

) : ; . t T

just seen. More important perhaps is the fact that nonlinear 1 Qo1 tapdg

optics experiments usually use coherent laser light as pumps. =alga, = -| —i(al,a;—agah 21
. . . . = 01¢1 01

It is well known that the number of photons in these fields is S=a o 2 + ! + ! @)

not well determined. In contrast, the number of atoms in a 8p1@01~ A1

condensate is a fixe@nd integer quantity in the absence of

losses. This leads to important conservation laws, which w

exploit in the following to reexpress the Hamiltoniély) in 2t amtal

terms of angular momentum operators. This leads in turn to 1 18027 80281

an exact solutioq of the problem. _ o SZEagg'aZZE —i(aozail—agza,l) , (22
The most obvious conserved quantity of the Hamiltonian at.a .—af A

(15) is the total number of atoms, as follows from the com- -19-1 S02902

mutator

gnd

whereo is the Pauli spin operator. The Casimir operatdys

(RH]=0 16 associated with the angular mome&aare also constants of
N,H]=0. 1 motion since

Nig
7 .

In addition, the populatioulifferences

N
Ki=S'== (23
2 t t L
Do=ap@01~ apA02, (17)

Expressed in terms of the total spin operator

n this case, the energy of atoms in thg=0 state is not af- S=StS, (24)
fec’Fed by the magnetic field and is determlngd solely by _thelr k"With componentsszslj+Szj . the Hamiltonian(14) be-
netic energy. In contrast, the energy of atoms in the hyperfine State(,somes
mg=*+1 changes due to the quadratic Zeeman effect. For the fields
used in Ref.[10] the mg=—1<m=0 and mg=+1<mg=0 A2 h
transitions differ in frequency by 0.9 MHz, which corresponds to an _ —OIQH-EN(N —1)+2hc
energy of 1028 J. This leads to an energy excess in the side modes 2M 2 2
which can be used to compensate the mismatch in kinetic energies. (25

-
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Together with the conserved Casimir operators, this form of <a}a,>
the four-wave mixing Hamiltonian suggests expressing the a
state of the system in terms of the complete set of quantum 30.0
numbers associated with the eigenstates of the oper&fors ~— ]
S, &, andS,. The Hamiltonian(25) can clearly be diago-
nalized in terms of these operators, yielding a complete set of 200
eigenstates and eigenenergies.
To illustrate how this works, we consider for concreteness 10.0
a condensate consisting bif atoms such that initially there
areNg,=(a},a01) = N/2—m atoms in center-of-mass mode 1
andNg,=(a},a0,) =N/2 atoms in center-of-mass mode 2 of 0.0 U
the hyperfine staten-=0, m<<N/2 atoms in the hyperfine 0.0 1.0 2.0 ec,t
statemg=1, and none in the stat®-=—1. In the “natu-
ral” eigenbasis of the operatof&,,S,;,,K,,S,,} the initial <ata,>
state of this system is described by the state vector b
40.0

oy NN NN 26
|$(0))= 77 M7 7)) (26) L ﬂ N,
Expanding it in terms of a complete set of eigenvectors 20.0
{IN/4N/4,S,S,)} of the Hamiltonian(25), we find '
N N N N
|6(0))=2 €| 7 —m,—:S,—m||7, 7S —m),
5 4 4 44 00
(27) )
0.0 1.0 2.0 ¢t
where ] ) ) )
FIG. 1. Time evolution of the side-mode populaﬂ(m}aﬁ for
N N N N N=100 and initial populationga) (aj,aq1)=N/2, (aj,a0,)=N/2,
C(S12:522:S, — M=\ 70 73S — M 75125 7Sz, (ala;)=0, and (a',a_,)=0; (b) (ala0)=N/2—5, (ala)
29 N2 (ala;)=5, and(a' ;a_;)=0.
are Clebsch-Gordan coefficienf46], which are nonzero IV. DYNAMICS

only for S,=S,,+S,,=—m. Ei . .

. ) . irst we apply the results of the preceding section to the
h Th.'s clpnser:vat|ﬁn 0B, under the fHﬁmlltomaanfS) fqr— study of the dynamics of population exchange between the
ther implies that the state vector of the system Is given aliterent modes of the condensate. For instance, the popula-

time t by tion of themz=1 hyperfine spin state can readily be deter-
N N mined from the expectation value 8f,. With Egs.(19) and
|p(t))= > aS(t)Z’ Z;S’_ m> => aqt)|S,— m), the definition ofS;, we find
S S

(29) ; N
| _ . (ajay) =7 —(Sw). (32
where in the second equality we have made explicit use of

the value of the conserved quantiti€g, K,, andS, to sim-
plify the notation via From Eq.(29) we have

2

Note that this simplification is not general, but is appropriateVNere we inserted the identity operator
for the initial condition at hand. N N N N
The equations of motion for the probability amplitudes = 2 —,pl;—,p2> <—,p1;—,Dz (34)

ag(t) follow from the Schrdinger equation. For the conden- pLpy |4 4 4 4

sate containing\ atoms they read, in a frame rotating at the o .

frequencys kN/2M + coN(N — 1)/2— 2¢,[ N/2+ (Do/2)?], and used the simplified notatidB0) as well as the property

that the Clebsch-Gordan coefficients are nonzero only for
ids(t)ZZCZS(SJF 1)agt) (30) S,=S;,+S,,. Equations(33) can be evaluated numerically.
The evolution of the population of thm-=1 side mode
and can be integrated trivially with the initial condition is shown in Fig. 1 foN=100 atoms in the system. In case

(b) the initial mode populations aréa,as.)=N/2—m,
S-m (al,a0)=N/2, (ala;)=m=5, (a' ;a_;)=0 while casea)

N
ag(t=0)=C Z_m’_ 4’ illustrates the build-up from quantum fluctuatioms=0. In
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both cases, the side-mode population exhibits an initial
growth to the point where it contains about 1/3 of the atoms
in the first case and about half of the atoms in the second.
This is followed by a collapse to a quasi-steady-state popu-
lation, as well as a subsequent revival at,t2= . This
dynamics then repeats itself periodically, with revivals at
2c,t,=mn, independently oN. This is similar to the peri- 1.0 4
odical revivals which occur in the two-photon Jaynes- )
Cummings model discussed [ita7].

During the periods of collapse, one h&g=—m/2, so 0.5
that all modes are almost equally macroscopically populated :
with (ala0)=N/4—m/2, (ala;)=N/4+m/2, (alag)

St

SEseetataty:
Sriiaiiate:
Iiiie
trreeit et
N
sesesetvatas
R

fRtetititiesite it

2

=N/4+m/2, and(a}a,)=N/4—m/2. 0.0
A particularly interesting aspect of the present study is :
that it allows one to obtain the quantum correlations between 0.0 1.0 20 ¢t
side modes. In optics, for example, four-wave mixing pro-
vides a method to study purely quantum-mechanical effects Rij

such as squeezing and nonclassical states of the radiation
field, and also to prepare states of composite systems exhib-
iting strong quantum-mechanical entanglemgifl]. These
states are of considerable interest in tests of the foundations 1.0
of physics as well as quantum information processing such
as quantum cryptographpd9,2Q0 and quantum computing
[21]. Macroscopic quantum states of massive particles
present an interesting alternative to all-optical systems, 0.5
hence it is of considerable interest to determine to which
extent quantum entanglement between side modes can be
achieved in Bose-Einstein condensation.

In analogy with the optical case, one can quantify the
amount of 0.0 ‘

quantum entanglement between condensate

modes by determining the extent to which the Cauchy- 0.0 1.0 2.0 c,t
Schwartz inequality is violated by the second-order cross-

correlation functions between modds8]. In particular, for a i i ) )
mode-side-mode correlation functiglower curvg R g7’,(t) and

“classically looking” optical system with positive Glauber X X X s h )
y 9 op y P the one-time normalized side-mode—side-mode correlation function

P representation, the single-time second-order cross:
correlation function is bound by (upper curvé R % (t) for N=100 and (& (ag@e=N/2,

(al,a0)=N/2, (ala;)=0, and(a’ ,a_;)=0; (b) (a},a01)=N/2

Gi(zj)(t)$[Gi(z)(t)GJ(Z)(t)]“Z. (35) -5, §a52a02)=N{2, <a'{a1>_=5, and_(alla,1)=0. The shaded
' area is the classically forbidden region of valuesRgf.

In case theP representation is not positive or does not exist,
N N
)

in contrast, the upper bound is higher, namely
N\2 N
= Z - Z(<Slz>+<822>)+<312522>, (40

Uit P I i i b
Htsspas R e e

S e

FIG. 2. Time evolution of the one-time normalized central-

eﬂ,lm:(
GAM<{[GP 1) +GM(1) G (1) +G(1)]}2
(36)

In these inequalities, we have introduced the single-time and
single-mode first-order correlation functions

where
G =((t)]a]ay|B(1)) (37) o ,
as well as the single-time two-mode second-order correlatioS;,S,,) = > p(—p—m)| > agt)C(p,—(p+m);S,m)
functions p s=m
(41)
GP(M)=(s(t)|alaalay| H(1)) (39)

and the sum can easily be evaluated numerically.

and the single-time, second-order correlation functions Figure 2 compares the time dependence of the normalized
central-mode—side-mode correlation functigower curve

GiA(t=(s(t)]afaajalb(1)). (39)
i i : GE(t)
As was the case for the side-mode populations, the single- Rgzl)l(t)z N i (42)
time single-mode second-order cross correlation between the ' VGR(1GA(1)

side modesmg==*=1 can be expressed in terms of the
component of the individual pseudospins as and the side-mode—side-mode correlatfopper curve
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Gc@ (1) lossless trap. The resulting conservation laws permit us to
R(ﬂ (D= % (43 develop an angular momentum algebra analysis that leads to
’ VP GA(1) an exact solution of the problem away from the linear regime

B ) . where the side-mode populations remain small.
for (a) the casem=0 where the side mode builds up from |, this paper we have applied this technique to the study
quantum fluctuations ant) the casem=5 of an injected  f the dynamics of the population exchange between hyper-

signal. These results illustrate how the correlations betweegne |evels of a condensate. We found that this exchange is
central mode and side modes do satisfy the classical Ca“Chﬁ'eriodic and it is characterized by a sequence of “collapses”

Schwartz inequality while the side-mode—side-mode Crosgng “reyivals” reminiscent of those appearing in the two-
correlations violate them. The violation is particularly strong ypgion Jaynes-Cummings model of optical physics. In addi-
in the case of build-up from quantum fluctuations, as shouldion e found that strong quantum correlations can develop
be intuitively expected.lln that case the hyperfine side modegatween the central modes and the side modes, the general
mg=+1 play symmetric roles, thus state of the system exhibiting a strong quantum entanglement
() — (2 (1) between the modes-=*1. Thus, it appears that multi-
CELA=CI D+ G, (44) component condensates offer a fascinating method to create
i.e., Eq.(36) thus becomes an equality, corresponding to théluantum entanglement at a truly macroscopic level, a possi-

maximum violation of the classical Cauchy-Schwartz in-Pility made even more attractive by the fact that these sys-
equality allowed by quantum mechanics. tems suffer very little from dissipation, since they consist of

The difference in the behavior of the two mode correla-9round-state atoms. The finite lifetime of condensates is usu-

tion functions between side modes and those involving ondlly attributed to three-body collisions, which result in losses
central and one side mode can be intuitively understood fror@" & time scale of seconds. _ _ _
the form of the wave-mixing term}ai 180180, appearing in We conclude by not_mg t_hat the revivals in the population
the Hamiltonian(14). Indeed, the coupling between side €Xchange occur at a time independent of the number of at-
modes, involving two annihilation operators, is reminiscent®™s N the condensate. Hence, they allow for a direct and

of the interactiora}a} in the Hamiltonian of parametric am- absolute determination of the coefficieof. In practice,
plification leading to squeezing and quantum entangIemer‘?\o"\’ever’c2 seems 1o be too smgll t'o observe revivals on the
between two side modes. In contrast, the coupling betwee me scales of the condensate lifetime.

central and side modes involves both an annihilation and a
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