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Internal Josephson effect in trapped double condensates
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The two-component Bose-Einstein condensate exhibits oscillations in the individual particle number when
the two species are coupled by a Josephson coupling. We present the results of numerical calculations based on
coupled Gross-Pitaevskii equations, and compare the results with an approximate analytic theory. The small
amplitude limit reproduces the conventional results, but the large signal regime offers some features charac-
teristic of the trapped system{s$1050-294{9)09005-9

PACS numbsgps): 03.75.Fi, 05.30.Jp

[. INTRODUCTION still possible, and due to the different shapes of the two com-
ponents, the transfer of particles between them is still observ-
The recent experimental achievement of Bose-Einstei@ble. Switching on the coherent interaction, when the two
condensatioiBEC) in trapped clouds of alkali-metal atoms condensates are not in mutual equilibrium, will lead to tran-
[1-3] has added one more system to our store of collectivelygient transfer between the components, which in the weak
condensed quantum systems. In contrast to the earlier knowgPupling limit is equivalent with an internal Josephson ef-
systems, Superconductors and SuperﬂuidS, the atomic Systéﬁpt Due to the finite number of pal’ticles in each Condensate,
is characterized by a relatively low particle density and conthe perturbative region of linear oscillations is extremely
sequently a relatively weak interaction. Thus many experiSmall, and the full nonlinear behavior is interesting also. In
ments are well described by available mean-field methoddact, it appears possible to transfer a major fraction of the
hence many of the ideas known from earlier condensates aRarticles from one condensate to the other and back. This
applicable to the atomic BEC both experimentally and theomechanism may well be utilized to prepare desired states for
retically. experiments by a suitably tailored coupling, which may be
The conventional theoretical treatment of both superconchosen to depend on time or space in a propitious way. The
ductors and superfluids is based on the appearance of lon§etup thus provides an excellent example of coherent control
range phase correlations, which go together with a lack off the cpndensate order parameters.
precise particle conservation. This manifests itself physically The internal Josephson effect between two condensates
as observability of the phase difference between two physiPased on the same physical objects has been suggested for a
cally distinguishable condensates. The well known JosepHWo-band superconduct$i7] and for condensation ifHe.
son phenomenon is a direct consequence of this fact, and it /€ suggest that the BEC of trapped atoms offers an excel-
well established in superconducting junctions and leaks ifent opportunity to verify its existence experimentally.
superfluids4—6]. The organization of the paper is as follows. Section I
When atomic BEC was discovered, it was immediatewintroduces the basic concepts and equations. In Sec. Il we
suggested that separated condensates would tunnel just likéroduce an approximate analytic solution of the Josephson
other Separated Onég_lg]_ Another poss|b|||ty arose when oscillations. This is eXpeCted to be a valid description for
experiments revealed that the same atoms could participafénall oscillational amplitudes, but it can serve as a guide to
in two different condensates depending on their internal subthe behavior even away from this region. In Sec. IV, we
state[14]. These are formed into partly separated regions du@resent the main results of this paper, the numerical compu-
either to external forcegravitation or because of the mu- tations of the Josephson oscillations as described by the
tual repulsion between the atoms forming the condensate. foupled Gross-Pitaevskii equations. These results are com-
is, however, in principle possible to create condensates siffared with those of the analytic approximation, which turns
ting on top of each other, with different shapes deriving fromout to be surprisingly good even beyond its expected region
the effective potentials they see at condensation. In botRf validity. Finally, Sec. V comments on the calculations and
cases, an atom can be coherently transferred from one coffeir results.
densate to another in a coherent manner so that the phases of
the two condensates become coupled. One possible coupling Il. FORMULATING THE PROBLEM
mechanism consists of coherent two-photon transitions be- . .
tween the levels involvefil5]; in the ideal case, this would We consider a two-component Bose condensed gas in the
just correspond to a direct transfer from one condensate {BXt€Mal harmonic potentials
the other. A recent pap¢f6] has suggested a possible ex- 1
periment, where this effect can be observed. Its approach is Vi(r,2)==m(Q2r2+ 02722, =12 1)
based on the separation of the condensed components by an 2 : '
external potential, and a subsequent coupling of the two by
external fields. However, even when the condensates aMith the trap frequencie€, , and assume a pair potential of
situated just on top of each other, the process of transfer ithe atom-atom interaction of the form
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47Thzai , , . . 9 ﬁZ ) ,
- Sr—=r")y=v;é(r—r’), =123, (2 |hE\P2(r): - ﬁv +Vo(r) + v, Po(r)]
wherea; anda, stand for the intraspecies scattering lengths, +v3|\p1(r)|2)q;2(r) —TW,(r). (10
a; is the scattering length between the two different atoms,

andm s the mass of the atoms, which is taken here to be th

same for both species. The second quantized Hamiltonial hgn we stgrt from a nonequilibrium lsituation, the sy;tem
can then be written in the form retains its time development and, without any additional

physical mechanisms, it does not approach a steady-state so-
lution. We therefore have to normalize the time-dependent

H=H;+Hz+Hs+Hyc () solutions¥,(r) with respect to the total number of particles
with 2 9
dr[[ W (r)[*+[W5(r)[*]=Ni+N,. (1)
2
¥ P J T _——— 2 . I .
Hi f dr[\P' (r)( ZmV +V,(r)>‘l’|(r) Ill. ORIGIN OF THE DYNAMIC BEHAVIOR
1 oo e s . . The customary treatment of the Josephson effect as a
oo (NWIDWNWi(r) =12, (4 weak coupling phenomeno] suggests that we can de-
scribe the oscillations in terms of phase alone. We hence use
the ansatz
H3:U3J drq’{(r){l\,;(r)\pl(r)@Z(r)r (5) \I/i(r,t):wi(r)efif)i(t), (12)

where we allow the phasea to be complex functions of
Jc:—rf dr{\if{(r)\ifz(r)+\if£(r)\ifl(r)}’ (6)  with no spatial dependence an(r) is considered to be
real. For spatially separate condensates coupled by a weak
A . link, this assumption may be valid 1], but we have over-
Wherellf;‘(r) andW,(r) are the field operators of the bosons. lapping ones, coupled by the constant paramE&tewhich

A, andH, stand for the intraspecies Hamiltonians, whereagllows the rate of particle transfer to vary across the exten-

I:I3 is the coupling between the two species governed by th ion of the condensate. For E42) to be a valid ansatz, we

collisional interaction potential in Eq2). The Josephson ave to assume a smdll, a weak coupling. The particle
transfer then remains small everywhere, and the weak cou-

COUp“ngHJC dest.roys one atom of species 1 and creates On5Iing result is expected to emerge. For large oscillational
of species 2_and|ce versaThe number of particles in each amplitudes, the model solution can serve as a point of com-
condensate is therefore not preserved, whereas the total nurﬁ'érison only, but our detailed numerical computations show

ber IS. . . . it to be surprisingly good even when a major part of the
i Usmg the bosonic commutation relations, particles is transferred.
[Wi(r), ¥(r')]=5;6(r—r'), we obtain the equations In order to obtain oscillating solutions, some quantity has
to deviate from steady state. For simplicity we assume that
0. h? ) Shs the condensates contain equal particle numbers initidlly;
=W () =| = 5 Vi Vi(r) + oW (n)Wa(r) =N,=N. They are allowed to settle to their Gross-Pitaevskii

steady-state solutions without Josephson coupling;0,

A A A A and the normalization condition
+03\P;(r)\P2(r))\Ifl(r)—I‘\Ifz(r), (7)

f dr 4(r)?=N; 13
1280 = | = A w2 vy ol
! ot 2= 2m 2(1) o2 Wo(1) W) determines the initial chemical potentials from the equations
S pa - - %2
+vs‘Ifl(r)‘Pl(r))\Ifz(r)—F‘I’l(r)- €S) ,u,ilﬂi(r)=<—Z—miV2+Vi(r)+vi¢i(r)2+vg¢j(r)2 Pi(r),
Assuming zero temperature allows us to use the effective i#j. (14

field approximation,¥;(r)—(¥;(r))=W;(r), and to write

Egs.(7) and (8) in the form In the case of overlapping two-component condensates, we

assume that the experimenter can switch on the Josephson

9 72 coupling. Becausg, # u,, oscillations start, but to compute
ih—W,(r)=|— —V2+V1(r)+v1I\I’1(r)|2 these we need also initial conditions on the phagesBe-
at 2m cause the main result of the calculation is the oscillational

frequency, we do not expect a strong dependence on the
+v3|\lfz(r)|2)\lfl(r)—l“\[f2(r) (9) initial conditions on the phase, so we are free to choose them
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such that manageable analytic expressions appear. Through-

out the calculations, the chemical potentiglsremain con-

stant. This is correct within the validity range of the ansatz
(12); these parameters just retain the memory of the intitialH
distribution of particles between the condensates as deter-

mined by Eqgs(14).

Inserting the ansatz Eq412) into Eqgs.(9) and (10), mul-
tiplying by ¢;, and integrating over, we get two first-order
differential equations for the phases

aglzul_fei(f)r@z), (15

aazzﬂz_'f‘eii(ﬂliﬁz)y (16)
with

'f=rf dr gy (1) (). 17

Introducing the notationf.=6,=6, and u-=pu*= u,
gives the more transparent equations

d o~
—60_=u_—2iI'sing_,

T (18

=p,— 2T cosé_ , (29

aif+

which may be integrated to give the solutions
T )2
M
Xt L \/1+4 L) t
al E ,lL_ M

0_(t)=2 arcta{ 1+4

ot}
IM— iIn[ «]

(20)
2actan(zau_t)
=—arcta = +
1-4(T/pu_)%—a?tarf(: au_t)
T
a’—4——cog(} au_t)
~iZn = , 21)
? 2+ 4 d (3
a ICO (3 au_t)
~ [t
0+(t)=,u+t—2Ff dt’ cod6_(t")) (22

4af‘,u,, tan(3 au_t)
472~ pr-

=pu,t+2arcta
az,uz_ tarf(3 ap_t)

2
r
at— 16( M_) cod(% au_t)

—iln[a] (23)

+'1I
|§n

with
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1+4

T )2
o= — .
7.
ere we have used the somewhat unwieldy initial value
0_(t=0)=2 arctan(Z'/u._) in order to simplify the algebra.
This initial condition only serves to simplify the analytic
expressions. Physically it means that there is a specific rela-
tion betweend_(t) and its derivative according to E¢L8).
As explained above, this choice is not expected to greatly
affect the general consequences of the model. For general
initial values, the algebra is still straightforward but consid-
erably more tedious. Combining_ and 8. gives the final
solutions for the phases

(24)

4afu_tar(% ap_t)

1
0,(t)= s u,t+arctan —
! 27 AT%— u? — aPpltarf(3 au_t)

1 2atan; au_t)
—zarctal =
2 1—4(T/u_)%— a’tarf(% ap_t)

*a

—iln[a],

(25

1 T
._ 2 . l
+|2In a +4M7C052(2a,u,_t)

4af,u,,tad% ap_t)
4f‘2—,U,2_ —a?pltarf(3 ap_t)

1
0,(1) =§/,L+t+ arctar(

1 2actan3 au_t)
+ -arcta — +
2 1-4(T/u_)2— o’tart(} au_t)
1 ) _
+izin a2—4M—c052(%a,u,t) —iln[a]. (26)

Only the imaginary parts give a contribution to the oscilla-
tions in the particle numbers which consequently gives the
time-dependent behavior of the densities,

(27)

|W 4 (r,0)]%= iy(r)?

r
a’+ 4M—CO§(%C¥,LL,'[)

|‘I’2(r,t)|2=¢2(r)2(a2—4£cosz(%a,u,t))/az.
(28

We immediately see that the solutions preserve the total par-
ticle number . The relative difference may then be written
in the form

)
1 4,;,_
7= ) SO a0 |
1+4 —)
M

x%[1+coia,u,t)],

which oscillates with the frequency
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0.5

(30

The ansatz in Eq.12) assumes, in fact, that no symmetry
breaking in the steady-state solutions takes place. This is also

ensured by the assumpti(fhé,u_ , Which is easily achieved
if v, andv, are chosen different ang; large, which conse-
guently gives a small contribution for the overlap integral in

I'. By keeping terms linear iﬁ/,u, , we see that the particle
number oscillations become independentio$ince « is of
second order if'/u_ ,

FIG. 1. The difference in the relative particle numbers (N,
—N,)/(N;+N,) show significant oscillations due to the Josephson
coupling. Because of the strong coupling and the broken symmetry
of the initial condition, the oscillation amplitude has a nontrivial
behavior. Thd™=0.1 case almost completely transfers all particles
IIlrom one condensate to the other with a low frequency, whereas the
I'=1.0 case oscillates with a smaller amplitude but a higher fre-
quency. The dashed lines are the analytic results from Sec. Ill

n~ (31)

T ) 1

4M7 2[(1+co$,u_t)].

The oscillations at the frequenqy_ = u,— u, corresponds

to the ordinary result for the Josephson effect, cf. Anderso

[4]. For small oscillational amplitudes, the res(8t) is ex-

pected to emerge from our numerical calculations as weII.h ; d for the f .

These also allow us to test the model when the oscillational © 9 900¢ agreement for the frequencies.

amplitude becomes large, and we find it to describe the be-

havior beyond its assumed range of validity. The numericagéxact solution of the coupled Gross-Pitaevskii equations.

results and the comparisons are presented in the next section. The calculations shown in Fig. 1 for two different cou-

pling strengthsI'=0.1 andI"=1.0, clearly show the oscil-

lational behavior in the particle number difference. The

strong coupling]’=1.0, causes nontrivial modulation of the
Solving Egs.(9) and (10) numerically allows us to use maximum amplitudes, which the analytic results from Eq.

tailor-made coupling$’, which may be both time and space (29) fail to describe in detail. However, the periof,

dependent. The numerical calculations are performed in the 3.16, calculated with the overlap integﬂ%ﬁl‘zo.989 and

usual way with discretized solutions and derivatives, which —~_ ~0.175, still gives a surprisingly good description of
the dynamic behavior even if the paramefdm_ is by no

has been successfully used in earlier works concerning the -

nonlinear Schrdinger equatiof18—2Q. Discretizing the so- =

lutions is in this case favorable since we assume a cylindricaheans smal(for I'=1.0 we havd'/n_= —5.64). With the
symmetry and consequently store the time-dependent soluveaker couplingl’=0.1, we have a stronger transfer of par-
tions in matrices with the and z dependence as rows and ticles with 7,,,,=0.88 and a longer perio@l;=23.77. The
columns. The numerical calculation is started by solving thesteady-state solutions from the Gross-Pitaevskii equation
stationary Gross-Pitaevskii equati@t) with the method of (14) are the symmetric configurations with condensate 2
steepest descent, and using that solution as an initial condierming a shell around the other origee Ref[20]). These

tion when applying the Josephson coupling in E§.and  solutions are in fact metastable in certain parameter regions.
(10). The time-dependent problem, which includes the JoWhen we apply the Josephson coupling, the symmetric con-
sephson coupling, is then solved by the method of finite diffiguration is broken and the condensates strive to separate.
ferencing where the time step is split into two parts, givingThis affects the oscillations since the overlap integral and the

an explicit scheme, see, e.21]. The trap geometry has chemical potentials change. The symmetry breaking can be
been chosen to b8, /Q, = V8. In the equations above, the seen in Fig. 2, where the center of mass in firection is

IV. NUMERICAL RESULTS

r and z coordinates are scaled hy/mQ, with erzﬂrz s_h_own. In Fig. 3 we sh(_)w the _tir_ne depend_ence of the (_Jlen-
sities along the axis, which exhibits a complicated behavior

due to the broken symmetry and the strong coupling.
In order to avoid the strong coupling effects, we also
evaluate the results in the perturbative regime. Looking at

n ~
gl'/u_|<1 we choose a system with,=0.02, v,

=(), and consequently the energies are scaled Wwith/2
and time scaled with 2V, .

We apply a Josephson coupling to a system with
=N,=21000 atoms in each condensate, with the interactio
strengthsy;=0.04, v,=0.042 48, and)3=0.041 22(corre-
sponding to(},/2r=10 Hz forv,=0.04 with rubidium at-
oms. The experiment is supposed to take place in such

the cas
=0.04, v3=0.1, and N;=N,=21000 in the symmetric
gonfiguration. This gives us stable solutions with no risk of

way that the condensates settle to their respective groundyMmetry breaking because of a strong repulsign The

states given by Eqg914) without the Josephson coupling;
I'=0. When this is switched on &0, the condensates are

overlap integral in Eq(17) is thenT/T'=0.113 andu_ =
—2.283. The maximum amplitude from E€R9) is 7max

out of equilibrium and particles start to transfer between the=0.20 with the corresponding perioy=2.739 forI'=1.0
components in the Josephson manner. The situation corrend 7,.=0.02 withT;=2.752 for['=0.1. The analytic re-
sponds to that discussed in Sec. Ill, except that now the ratsults from Sec. Il and the numerical calculations for
of transfer is allowed to vary spatially in accordance with the=1.0 andl’=0.1 are shown in Fig. 4. The frequencies show
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FIG. 4. With a stable initial configuration the analytic results
(dashed linesmay be compared with the numerical calculations
and show excellent agreement.

FIG. 2. The center of mass in thedirection shows that the
initially symmetric configuration is unstable.

only a weak dependence &h which agrees with the results numerical treatment allows us to use a coupling which is
obtained in Sec. Ill. both time and space dependent. In Fig. 6 we show a cutoff
The analytic results from Sec. Il work surprisingly well situation where we take the same situation as in Figs. 1-3

even when the assumptiofi/u_|<1 is clearly violated. In  With '=0.1 and cut off the Josephson couplingt&t12.0.

Fig. 5 we show the maximum amplitude of the relative num-With such a coupling the particles in condensate 1 are almost

ber of particles as a function of the paramdlfé/r,u |. Here cqmpletely transferred to condensate 2 and remain Fher('e. In

we see that the general behavior is well desc;it.)ed by ththls case the symmetric conﬂgurgtpn 's broken as in Figs.
‘i—3, which can be seen as a splitting for12, where the

amplitude in Eq.(29) even for|I'/u_|>1. The numerical small remaining part of condensate 1 is pushed to the side.
calculations do not show a complete transfer of the particles

in contrast to the analytic solution kﬁ/,u,| =1/2. This may V. CONCLUSIONS

be explained by the symmetry breaking taking place, where i i ) i

the condensates separate in frdirection, which causes dy- We have investigated the effect of introducing a coherent
namics not accounted for in the analytic model. Josephson-type coupling between the components of a two-

So far we have looked at static coupling strength&he component condensat_e. T_o simplify the num_erical treatment,
we have chosen a cylindrical symmetry, which, however, is

not experimentally unrealistic. For the same reason, the
condensate 1

I=1.0

FIG. 3. The time-dependent oscillations in the densities show a FIG. 5. A comparison of the analytic and numerical calculations
nontrivial behavior due to the broken symmetry in both cases. Théor the oscillation amplitude in the relative particle number shows
strong coupling causes wild oscillations in the densities, whereathat the analytic solutiogsolid curve works even if[['/u_| is not
the weak coupling oscillations are considerably slower than the trap small number. The filled circles show the numerically calculated
frequency. results from Eqs(9) and(10).
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|¥| 2 condensate 2 results for|'/u_|=0.05 and/ I’/ _|=0.005. In both cases,

0.015 the frequency is nearly correctly given by the analytic
0.01 theory; for the weaker coupling, the amplitude is correct, too.
0'00(5) In fact, the value of the oscillational amplitude is adequately

given by the analytic model even if'(w_) is not small, cf.
Fig. 5.
However, in the configuration chosen, we know that the
symmetric initial condition is not necessarily stabid]. In
the calculation shown in Fig. 1, the analytic model gives
2 only an approximation to the correct frequency, but does not
by condensate 1 describe the amplitude variation correctly when the Joseph-

0

0('? (])? son coupling becomes strong. This we ascribe to the insta-
0.005 bility of the spatial configuration caused by the symmetry
0 breaking. The results reported in Figs. 2 and 3 support this

interpretation. It is thus important to choose the parameter
range propitiously when Josephson experiments are at-
tempted. Due to the finite number of particles, one may not
easily be able to achieve observable effects with infinitesi-
mally small exchange of particles; in bulk systems this prob-
FIG. 6. By cutting off the Josephson couplingtat12.0, itis  1€m does not exist. On the other hand, the finite particle
possible to transfer almost completely all particles from condensatBumber suggests novel uses of the Josephson flipping of the
1 to condensate 2. population between the condensates. By suitably chosen tai-
loring of the Josephson coupling one can reach a desired
ground state of the system, with zero Josephson coupling, igitial state for various experiments. In Fig. 6 we show the
taken to be symmetric; we assume no spontaneous symmetsimple example of nearly total transfer of all atoms to the
breaking due to external forces. one condensate. By using a suitable time dependence of the
The effect of the Josephson coupling is first assumed to beouplingI’, one may achieve coherent control of the dynam-
just a time dependent modulation of the order parameter, Edcs of the two-component condensate.
(12, which neglects the possibility of having a spatially We have also pointed out that imposing a space depen-
modulated exchange of particles between the condensatedence on the Josephson coupling, one may further direct the
This simplification has the advantage that it allows an anatime evolution of the system. We have not explored this
lytic solution for the time dependence. The results presentegossibility in the present paper, but our numerical calcula-
in Sec. Il show that the oscillations take place at the fre-tions could easily handle this case too. When the experimen-
quency tal tools and motivations exist, this possibility may offer new

2 ~ and unexpected directions for the BEC research.
Q)JZT—Z/J,,‘FZF - cty (32)
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