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Internal Josephson effect in trapped double condensates

Patrik Öhberg and Stig Stenholm
Department of Physics, Royal Institute of Technology, Lindstedtsva¨gen 24, S-10044 Stockholm, Sweden

~Received 2 September 1998!

The two-component Bose-Einstein condensate exhibits oscillations in the individual particle number when
the two species are coupled by a Josephson coupling. We present the results of numerical calculations based on
coupled Gross-Pitaevskii equations, and compare the results with an approximate analytic theory. The small
amplitude limit reproduces the conventional results, but the large signal regime offers some features charac-
teristic of the trapped systems.@S1050-2947~99!09005-8#

PACS number~s!: 03.75.Fi, 05.30.Jp
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I. INTRODUCTION

The recent experimental achievement of Bose-Eins
condensation~BEC! in trapped clouds of alkali-metal atom
@1–3# has added one more system to our store of collectiv
condensed quantum systems. In contrast to the earlier kn
systems, superconductors and superfluids, the atomic sy
is characterized by a relatively low particle density and c
sequently a relatively weak interaction. Thus many exp
ments are well described by available mean-field metho
hence many of the ideas known from earlier condensates
applicable to the atomic BEC both experimentally and th
retically.

The conventional theoretical treatment of both superc
ductors and superfluids is based on the appearance of l
range phase correlations, which go together with a lack
precise particle conservation. This manifests itself physic
as observability of the phase difference between two ph
cally distinguishable condensates. The well known Jose
son phenomenon is a direct consequence of this fact, and
well established in superconducting junctions and leaks
superfluids@4–6#.

When atomic BEC was discovered, it was immediat
suggested that separated condensates would tunnel jus
other separated ones@7–13#. Another possibility arose when
experiments revealed that the same atoms could partici
in two different condensates depending on their internal s
state@14#. These are formed into partly separated regions
either to external forces~gravitation! or because of the mu
tual repulsion between the atoms forming the condensat
is, however, in principle possible to create condensates
ting on top of each other, with different shapes deriving fro
the effective potentials they see at condensation. In b
cases, an atom can be coherently transferred from one
densate to another in a coherent manner so that the phas
the two condensates become coupled. One possible cou
mechanism consists of coherent two-photon transitions
tween the levels involved@15#; in the ideal case, this would
just correspond to a direct transfer from one condensat
the other. A recent paper@16# has suggested a possible e
periment, where this effect can be observed. Its approac
based on the separation of the condensed components b
external potential, and a subsequent coupling of the two
external fields. However, even when the condensates
situated just on top of each other, the process of transfe
PRA 591050-2947/99/59~5!/3890~6!/$15.00
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still possible, and due to the different shapes of the two co
ponents, the transfer of particles between them is still obs
able. Switching on the coherent interaction, when the t
condensates are not in mutual equilibrium, will lead to tra
sient transfer between the components, which in the w
coupling limit is equivalent with an internal Josephson
fect. Due to the finite number of particles in each condens
the perturbative region of linear oscillations is extreme
small, and the full nonlinear behavior is interesting also.
fact, it appears possible to transfer a major fraction of
particles from one condensate to the other and back. T
mechanism may well be utilized to prepare desired states
experiments by a suitably tailored coupling, which may
chosen to depend on time or space in a propitious way.
setup thus provides an excellent example of coherent con
of the condensate order parameters.

The internal Josephson effect between two condens
based on the same physical objects has been suggested
two-band superconductor@17# and for condensation in3He.
We suggest that the BEC of trapped atoms offers an ex
lent opportunity to verify its existence experimentally.

The organization of the paper is as follows. Section
introduces the basic concepts and equations. In Sec. III
introduce an approximate analytic solution of the Joseph
oscillations. This is expected to be a valid description
small oscillational amplitudes, but it can serve as a guide
the behavior even away from this region. In Sec. IV, w
present the main results of this paper, the numerical com
tations of the Josephson oscillations as described by
coupled Gross-Pitaevskii equations. These results are c
pared with those of the analytic approximation, which tur
out to be surprisingly good even beyond its expected reg
of validity. Finally, Sec. V comments on the calculations a
their results.

II. FORMULATING THE PROBLEM

We consider a two-component Bose condensed gas in
external harmonic potentials

Vi~r ,z!5
1

2
m~V r i

2 r 21Vzi

2 z2!, i 51,2 ~1!

with the trap frequenciesVa i
, and assume a pair potential o

the atom-atom interaction of the form
3890 ©1999 The American Physical Society



hs

th
ni

s

a
th

on
h
nu

s,

tiv

m
al

e so-
ent
s

s a
-
use

eak

en-

ou-
nal
m-

ow
he

as
hat

kii

ns

we
hson
e

nal
the
em

PRA 59 3891INTERNAL JOSEPHSON EFFECT IN TRAPPED DOUBLE . . .
Ui5
4p\2ai

m
d~r2r 8![v id~r2r 8!, i 51,2,3, ~2!

wherea1 anda2 stand for the intraspecies scattering lengt
a3 is the scattering length between the two different atom
andm is the mass of the atoms, which is taken here to be
same for both species. The second quantized Hamilto
can then be written in the form

Ĥ5Ĥ11Ĥ21Ĥ31ĤJC ~3!

with

Ĥ i5E dr H Ĉ i
†~r !S 2

\2

2m
¹21Vi~r ! D Ĉ i~r !

1
1

2
v iĈ i

†~r !Ĉ i
†~r !Ĉ i~r !Ĉ i~r !J , i 51,2, ~4!

Ĥ35v3E drĈ1
†~r !Ĉ2

†~r !Ĉ1~r !Ĉ2~r !, ~5!

ĤJC52GE dr $Ĉ1
†~r !Ĉ2~r !1Ĉ2

†~r !Ĉ1~r !%, ~6!

whereĈ i
†(r ) andĈ i(r ) are the field operators of the boson

Ĥ1 andĤ2 stand for the intraspecies Hamiltonians, where
Ĥ3 is the coupling between the two species governed by
collisional interaction potential in Eq.~2!. The Josephson
couplingĤJC destroys one atom of species 1 and creates
of species 2 andvice versa. The number of particles in eac
condensate is therefore not preserved, whereas the total
ber is.

Using the bosonic commutation relation

@Ĉ i(r ),Ĉ j
†(r 8)#5d i j d(r2r 8), we obtain the equations

i\
]

]t
Ĉ1~r !5S 2

\2

2m
¹21V1~r !1v1Ĉ1

†~r !Ĉ1~r !

1v3Ĉ2
†~r !Ĉ2~r ! D Ĉ1~r !2GĈ2~r !, ~7!

i\
]

]t
Ĉ2~r !5S 2

\2

2m
¹21V2~r !1v2Ĉ2

†~r !Ĉ2~r !

1v3Ĉ1
†~r !Ĉ1~r ! D Ĉ2~r !2GĈ1~r !. ~8!

Assuming zero temperature allows us to use the effec
field approximation,Ĉ i(r )→^Ĉ i(r )&[C i(r ), and to write
Eqs.~7! and ~8! in the form

i\
]

]t
C1~r !5S 2

\2

2m
¹21V1~r !1v1uC1~r !u2

1v3uC2~r !u2DC1~r !2GC2~r ! ~9!
,
s,
e

an

.

s
e

e

m-

e

i\
]

]t
C2~r !5S 2

\2

2m
¹21V2~r !1v2uC2~r !u2

1v3uC1~r !u2DC2~r !2GC1~r !. ~10!

When we start from a nonequilibrium situation, the syste
retains its time development and, without any addition
physical mechanisms, it does not approach a steady-stat
lution. We therefore have to normalize the time-depend
solutionsC i(r ) with respect to the total number of particle

E dr @ uC1~r !u21uC2~r !u2#5N11N2 . ~11!

III. ORIGIN OF THE DYNAMIC BEHAVIOR

The customary treatment of the Josephson effect a
weak coupling phenomenon@4# suggests that we can de
scribe the oscillations in terms of phase alone. We hence
the ansatz

C i~r ,t !5c i~r !e2 iu i (t), ~12!

where we allow the phasesu i to be complex functions oft
with no spatial dependence andc i(r ) is considered to be
real. For spatially separate condensates coupled by a w
link, this assumption may be valid@11#, but we have over-
lapping ones, coupled by the constant parameterG, which
allows the rate of particle transfer to vary across the ext
sion of the condensate. For Eq.~12! to be a valid ansatz, we
have to assume a smallG, a weak coupling. The particle
transfer then remains small everywhere, and the weak c
pling result is expected to emerge. For large oscillatio
amplitudes, the model solution can serve as a point of co
parison only, but our detailed numerical computations sh
it to be surprisingly good even when a major part of t
particles is transferred.

In order to obtain oscillating solutions, some quantity h
to deviate from steady state. For simplicity we assume t
the condensates contain equal particle numbers initially;N1
5N25N. They are allowed to settle to their Gross-Pitaevs
steady-state solutions without Josephson coupling,G50,
and the normalization condition

E dr c i~r !25Ni ~13!

determines the initial chemical potentials from the equatio

m ic i~r !5S 2
\2

2mi
¹21Vi~r !1v ic i~r !21v3c j~r !2Dc i~r !,

iÞ j . ~14!

In the case of overlapping two-component condensates,
assume that the experimenter can switch on the Josep
coupling. Becausem1Þm2, oscillations start, but to comput
these we need also initial conditions on the phasesu i . Be-
cause the main result of the calculation is the oscillatio
frequency, we do not expect a strong dependence on
initial conditions on the phase, so we are free to choose th
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such that manageable analytic expressions appear. Thro
out the calculations, the chemical potentialsm i remain con-
stant. This is correct within the validity range of the ans
~12!; these parameters just retain the memory of the inti
distribution of particles between the condensates as de
mined by Eqs.~14!.

Inserting the ansatz Eq.~12! into Eqs.~9! and ~10!, mul-
tiplying by c i , and integrating overr , we get two first-order
differential equations for the phases

d

dt
u15m12G̃ei (u12u2), ~15!

d

dt
u25m22G̃e2 i (u12u2), ~16!

with

G̃5GE drc1~r !c2~r !. ~17!

Introducing the notationu65u16u2 and m65m16m2
gives the more transparent equations

d

dt
u25m222i G̃ sinu2 , ~18!

d

dt
u15m122G̃ cosu2 , ~19!

which may be integrated to give the solutions

u2~ t !52 arctanHA114S G̃

m2
D 2

3tanF1

2
A114S G̃

m2
D 2

m2tG12i
G̃

m2
J 2 i ln@a#

~20!

52arctanS 2a tan~ 1
2 am2t !

124~ G̃/m2!22a2 tan2~ 1
2 am2t !

D 6p

2 i
1

2
lnF a224

G̃

m2
cos2~ 1

2 am2t !

a214
G̃

m2
cos2~ 1

2 am2t !
G , ~21!

u1~ t !5m1t22G̃E t

dt8 cos„u2~ t8!… ~22!

5m1t12 arctanS 4aG̃m2 tan~ 1
2 am2t !

4G̃22m2
2 2a2m2

2 tan2~ 1
2 am2t !

D
1 i

1

2
lnFa4216S G̃

m2
D 2

cos4~ 1
2 am2t !G2 i ln@a# ~23!

with
gh-

z
l

er-

a5A114S G̃

m2
D 2

. ~24!

Here we have used the somewhat unwieldy initial va

u2(t50)52 arctan(2iG̃/m2) in order to simplify the algebra
This initial condition only serves to simplify the analyti
expressions. Physically it means that there is a specific r
tion betweenu2(t) and its derivative according to Eq.~18!.
As explained above, this choice is not expected to gre
affect the general consequences of the model. For gen
initial values, the algebra is still straightforward but cons
erably more tedious. Combiningu2 and u1 gives the final
solutions for the phases

u1~ t !5
1

2
m1t1arctanS 4aG̃m2tan~ 1

2 am2t !

4G̃22m2
2 2a2m2

2 tan2~ 1
2 am2t !

D
2

1

2
arctanS 2a tan~ 1

2 am2t !

124~ G̃/m2!22a2tan2~ 1
2 am2t !

D 6p

1 i
1

2
lnFa214

G̃

m2
cos2~ 1

2 am2t !G2 i ln@a#, ~25!

u2~ t !5
1

2
m1t1arctanS 4aG̃m2tan~ 1

2 am2t !

4G̃22m2
2 2a2m2

2 tan2~ 1
2 am2t !

D
1

1

2
arctanS 2a tan~ 1

2 am2t !

124~ G̃/m2!22a2tan2~ 1
2 am2t !

D 6p

1 i
1

2
lnFa224

G̃

m2
cos2~ 1

2 am2t !G2 i ln@a#. ~26!

Only the imaginary parts give a contribution to the oscil
tions in the particle numbers which consequently gives
time-dependent behavior of the densities,

uC1~r ,t !u25c1~r !2S a214
G̃

m2
cos2~ 1

2 am2t !D Y a2

~27!

uC2~r ,t !u25c2~r !2S a224
G̃

m2
cos2~ 1

2 am2t !D Y a2.

~28!

We immediately see that the solutions preserve the total
ticle number 2N. The relative difference may then be writte
in the form

h5
1

2NE dr @ uC1~r ,t !u22uC2~r ,t !u2#5S 4
G̃

m2

114S G̃

m2
D 2 D

3
1

2
@11cos~am2t !#, ~29!

which oscillates with the frequency
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vJ5A114S G̃

m2
D 2

m2 . ~30!

The ansatz in Eq.~12! assumes, in fact, that no symmet
breaking in the steady-state solutions takes place. This is

ensured by the assumptionG̃!m2 , which is easily achieved
if v1 andv2 are chosen different andv3 large, which conse-
quently gives a small contribution for the overlap integral

G̃. By keeping terms linear inG̃/m2 , we see that the particle

number oscillations become independent ofG̃ sincea is of

second order inG̃/m2 ,

h'S 4
G̃

m2
D 1

2
@~11cos~m2t !#. ~31!

The oscillations at the frequencym25m12m2 corresponds
to the ordinary result for the Josephson effect, cf. Ander
@4#. For small oscillational amplitudes, the result~31! is ex-
pected to emerge from our numerical calculations as w
These also allow us to test the model when the oscillatio
amplitude becomes large, and we find it to describe the
havior beyond its assumed range of validity. The numer
results and the comparisons are presented in the next sec

IV. NUMERICAL RESULTS

Solving Eqs.~9! and ~10! numerically allows us to use
tailor-made couplingsG, which may be both time and spac
dependent. The numerical calculations are performed in
usual way with discretized solutions and derivatives, wh
has been successfully used in earlier works concerning
nonlinear Schro¨dinger equation@18–20#. Discretizing the so-
lutions is in this case favorable since we assume a cylindr
symmetry and consequently store the time-dependent s
tions in matrices with ther and z dependence as rows an
columns. The numerical calculation is started by solving
stationary Gross-Pitaevskii equation~14! with the method of
steepest descent, and using that solution as an initial co
tion when applying the Josephson coupling in Eqs.~9! and
~10!. The time-dependent problem, which includes the
sephson coupling, is then solved by the method of finite
ferencing where the time step is split into two parts, givi
an explicit scheme, see, e.g.,@21#. The trap geometry ha
been chosen to beV r i

/Vzi
5A8. In the equations above, th

r and z coordinates are scaled byA\/mV r with V r 1
5V r 2

[V r and consequently the energies are scaled with\V r /2
and time scaled with 2/V r .

We apply a Josephson coupling to a system withN1
5N2521 000 atoms in each condensate, with the interac
strengthsv150.04, v250.042 48, andv350.041 22~corre-
sponding toV r /2p510 Hz for v150.04 with rubidium at-
oms!. The experiment is supposed to take place in suc
way that the condensates settle to their respective gro
states given by Eqs.~14! without the Josephson coupling
G50. When this is switched on att50, the condensates ar
out of equilibrium and particles start to transfer between
components in the Josephson manner. The situation co
sponds to that discussed in Sec. III, except that now the
of transfer is allowed to vary spatially in accordance with t
lso
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exact solution of the coupled Gross-Pitaevskii equations.
The calculations shown in Fig. 1 for two different cou

pling strengths,G50.1 andG51.0, clearly show the oscil-
lational behavior in the particle number difference. T
strong coupling,G51.0, causes nontrivial modulation of th
maximum amplitudes, which the analytic results from E
~29! fail to describe in detail. However, the periodTJ

53.16, calculated with the overlap integralG̃/G50.989 and
m2520.175, still gives a surprisingly good description

the dynamic behavior even if the parameterG̃/m2 is by no

means small~for G51.0 we haveG̃/m2525.64). With the
weaker coupling,G50.1, we have a stronger transfer of pa
ticles with hmax50.88 and a longer periodTJ523.77. The
steady-state solutions from the Gross-Pitaevskii equa
~14! are the symmetric configurations with condensate
forming a shell around the other one~see Ref.@20#!. These
solutions are in fact metastable in certain parameter regi
When we apply the Josephson coupling, the symmetric c
figuration is broken and the condensates strive to sepa
This affects the oscillations since the overlap integral and
chemical potentials change. The symmetry breaking can
seen in Fig. 2, where the center of mass in thez direction is
shown. In Fig. 3 we show the time dependence of the d
sities along thez axis, which exhibits a complicated behavio
due to the broken symmetry and the strong coupling.

In order to avoid the strong coupling effects, we al
evaluate the results in the perturbative regime. Looking

the caseuG̃/m2u!1 we choose a system withv150.02, v2
50.04, v350.1, and N15N2521 000 in the symmetric
configuration. This gives us stable solutions with no risk
symmetry breaking because of a strong repulsionv3. The

overlap integral in Eq.~17! is then G̃/G50.113 andm25
22.283. The maximum amplitude from Eq.~29! is hmax
50.20 with the corresponding periodTJ52.739 forG51.0
andhmax50.02 withTJ52.752 forG50.1. The analytic re-
sults from Sec. III and the numerical calculations forG
51.0 andG50.1 are shown in Fig. 4. The frequencies sho

FIG. 1. The difference in the relative particle numbersh5(N1

2N2)/(N11N2) show significant oscillations due to the Josephs
coupling. Because of the strong coupling and the broken symm
of the initial condition, the oscillation amplitude has a nontrivi
behavior. TheG50.1 case almost completely transfers all partic
from one condensate to the other with a low frequency, whereas
G51.0 case oscillates with a smaller amplitude but a higher
quency. The dashed lines are the analytic results from Sec
showing good agreement for the frequencies.
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only a weak dependence onG, which agrees with the result
obtained in Sec. III.

The analytic results from Sec. III work surprisingly we

even when the assumptionuG̃/m2u!1 is clearly violated. In
Fig. 5 we show the maximum amplitude of the relative nu

ber of particles as a function of the parameteruG̃/m2u. Here
we see that the general behavior is well described by

amplitude in Eq.~29! even for uG̃/m2u.1. The numerical
calculations do not show a complete transfer of the partic

in contrast to the analytic solution atuG̃/m2u51/2. This may
be explained by the symmetry breaking taking place, wh
the condensates separate in thez direction, which causes dy
namics not accounted for in the analytic model.

So far we have looked at static coupling strengthsG. The

FIG. 2. The center of mass in thez direction shows that the
initially symmetric configuration is unstable.

FIG. 3. The time-dependent oscillations in the densities sho
nontrivial behavior due to the broken symmetry in both cases.
strong coupling causes wild oscillations in the densities, wher
the weak coupling oscillations are considerably slower than the
frequency.
-

e

s

re

numerical treatment allows us to use a coupling which
both time and space dependent. In Fig. 6 we show a cu
situation where we take the same situation as in Figs. 1
with G50.1 and cut off the Josephson coupling att512.0.
With such a coupling the particles in condensate 1 are alm
completely transferred to condensate 2 and remain there
this case the symmetric configuration is broken as in F
1–3, which can be seen as a splitting fort.12, where the
small remaining part of condensate 1 is pushed to the si

V. CONCLUSIONS

We have investigated the effect of introducing a coher
Josephson-type coupling between the components of a
component condensate. To simplify the numerical treatm
we have chosen a cylindrical symmetry, which, however
not experimentally unrealistic. For the same reason,

a
e
s
p

FIG. 4. With a stable initial configuration the analytic resu
~dashed lines! may be compared with the numerical calculatio
and show excellent agreement.

FIG. 5. A comparison of the analytic and numerical calculatio
for the oscillation amplitude in the relative particle number sho

that the analytic solution~solid curve! works even ifuG̃/m2u is not
a small number. The filled circles show the numerically calcula
results from Eqs.~9! and ~10!.
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ground state of the system, with zero Josephson couplin
taken to be symmetric; we assume no spontaneous symm
breaking due to external forces.

The effect of the Josephson coupling is first assumed to
just a time dependent modulation of the order parameter,
~12!, which neglects the possibility of having a spatia
modulated exchange of particles between the condens
This simplification has the advantage that it allows an a
lytic solution for the time dependence. The results presen
in Sec. III show that the oscillations take place at the f
quency

vJ5
2p

TJ
5m212G̃S G̃

m2
D 1•••, ~32!

which shows that for a weak couplingG̃, the zeroth-order
result vJ5m12m2 holds. This is shown in our numerica
calculations in the perturbative limit. In Fig. 4 we show t

FIG. 6. By cutting off the Josephson coupling att512.0, it is
possible to transfer almost completely all particles from conden
1 to condensate 2.
an

n,

ys

s.

hy
is
try

e
q.

es.
-
d

-

results foruG̃/m2u50.05 anduG̃/m2u50.005. In both cases
the frequency is nearly correctly given by the analy
theory; for the weaker coupling, the amplitude is correct, t
In fact, the value of the oscillational amplitude is adequat

given by the analytic model even if (G̃/m2) is not small, cf.
Fig. 5.

However, in the configuration chosen, we know that t
symmetric initial condition is not necessarily stable@20#. In
the calculation shown in Fig. 1, the analytic model giv
only an approximation to the correct frequency, but does
describe the amplitude variation correctly when the Jose
son coupling becomes strong. This we ascribe to the in
bility of the spatial configuration caused by the symme
breaking. The results reported in Figs. 2 and 3 support
interpretation. It is thus important to choose the parame
range propitiously when Josephson experiments are
tempted. Due to the finite number of particles, one may
easily be able to achieve observable effects with infinite
mally small exchange of particles; in bulk systems this pro
lem does not exist. On the other hand, the finite parti
number suggests novel uses of the Josephson flipping o
population between the condensates. By suitably chosen
loring of the Josephson coupling one can reach a des
initial state for various experiments. In Fig. 6 we show t
simple example of nearly total transfer of all atoms to t
one condensate. By using a suitable time dependence o
couplingG, one may achieve coherent control of the dyna
ics of the two-component condensate.

We have also pointed out that imposing a space dep
dence on the Josephson coupling, one may further direc
time evolution of the system. We have not explored t
possibility in the present paper, but our numerical calcu
tions could easily handle this case too. When the experim
tal tools and motivations exist, this possibility may offer ne
and unexpected directions for the BEC research.
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