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Spatial fragmentation of a Bose-Einstein condensate in a double-well potential

R. W. Spekkens and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 30 October 1998!

We present a theoretical study of the ground state of a Bose-Einstein condensate with repulsive interparticle
interactions in a double-well potential, using a restricted variational principle. Within such an approach, there
is a transition from a single condensate to a fragmented condensate as the strength of the central barrier of the
potential is increased. We determine the nature of this transition through an approximate analytic solution as
well as a numerical solution of our model, in the regime where the interparticle interactions can be treated
perturbatively. The degree of fragmentation of the condensate is characterized by the degrees of first- and
second-order spatial coherence across the barrier.@S1050-2947~99!06605-6#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The recent experimental demonstration of interfere
phenomena in Bose-condensed atomic gases@1# motivates a
study of the spatial coherence of a condensate in a dou
well potential. In particular, we are interested in the loss
spatial coherence that can occur at zero temperature du
fragmentationof the condensate. A fragmented condensat
one for which there is a macroscopic occupation of two
more orthogonal single-particle wave functions. If the occ
pied single-particle wave functions are spatially well se
rated, coherence over the spatial extent of the entire sys
will be lost, persisting only over the spatial extent of ea
fragment.

As Nozières@2# has pointed out, for repulsive interpartic
interactions it is the exchange energy that typically preve
fragmentation into a number of degenerate~or nearly degen-
erate! single-particle wave functions. However, this arg
ment is inapplicable for bosons in an external potential w
several local minima, since single-particle wave functio
that are localized about these minima may have very li
overlap with one another, thereby leading to a very sm
exchange energy. Moreover, since the self-interaction en
of such a fragmented condensate is smaller than that
single condensate, it is possible for the total interaction
ergy to be smaller as well. Although every particle in t
fragmented condensate will pay a price in kinetic energy
occupy localized wave functions, the overall energy may s
be less than that of a single condensate. Indeed, it ca
shown that in the limit of a symmetric double-well potent
with an infinitely strong central barrier, one can always fi
a fragmented state that has a total energy lower than
single condensate@3#.

Thus we have the following situation in a double-we
potential: in the absence of any central barrier the gro
state is well approximated by a single condensate, while
the presence of an infinitely strong barrier it is well appro
mated by a fragmented condensate. It is clear, therefore,
there must be a transition between these two extremes as
increases the strength of the barrier. The first goal of
paper is to propose a theoretical model for describing
transition. Specifically, we argue for an approximation of t
fully interacting ground state that is more general than
PRA 591050-2947/99/59~5!/3868~10!/$15.00
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Fock state, and that can be said to describe ‘‘partial fragm
tation’’ of the condensate. The equations that such a s
must satisfy are derived within a variational approach. T
second goal of the paper is to solve these equations
regime where the interparticle interactions can be treated
turbatively. Numerical solutions of the equations and a
lytic approximations to these solutions are obtained wit
this regime. It should be noted that this limit is inappropria
for the description of the MIT condensate interference
periment@1#, and, consequently, our results do not spec
the nature of the transition for this experimental setup. No
theless, we expect the generic features of the transitio
persist in the experimentally relevant regime.

We pause to consider previous treatments of this to
and their relation to this work. Ro¨hrl et al. @4# provided a
model of the MIT condensate interference experiment; ho
ever, it is a mean-field analysis and therefore cannot desc
fragmentation. Fragmentation in the case of attractive in
particle interactions has been considered by Wilkin, Gu
and Smith@5#, but this effect is qualitatively different from
that of the repulsive case. Finally, Milburnet al. @6# consid-
ered the energy eigenstates of a Bose-Einstein condensa
a double-well potential, and predicted fragmentation wh
the interparticle interactions are sufficiently strong. Ho
ever, these authors considered only traps with wea
coupled wells, and therefore could not determine the deg
of fragmentation of the ground state in the regime of lo
barrier strengths where the coupling between the wells
strong. Moreover, this paper did not address the issue of
spatial coherence of the ground state. Since the presenc
long-range order is a defining characteristic of Bose-Eins
condensation, it is critical to understand the manners
which this spatial coherence can be lost.

There has also been theoretical work on the problem
Bose condensates containing atoms in two different inte
states, which is analogous to the two well problem. E
et al. @7# determined the probability distributions and life
times of two interacting condensates in different intern
states confined to the same trap, while Ciracet al. @8# as well
as Steel and Collett@9# considered the ground states of su
a system when the internal atomic states can be controlle
a Josephson-like laser coupling. In this case, the distingu
ability of atoms in the two condensates is ensured by th
3868 ©1999 The American Physical Society
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internal state rather than their single-particle wave functio
However, the requirement of orthogonality in the spatial d
grees of freedom is indispensable in a multiple-well proble
since it is precisely the shape of the single-particle wa
functions that determines the degree of fragmentation in
system.

The remainder of the paper is organized as follows.
Sec. II we present our model and define some useful m
sures of spatial coherence of the condensate. In Sec. II
present approximate analytic solutions of our model in
regime of nearly noninteracting particles, and compare th
to a numerical solution for a particular choice of the exter
potential. The experimental signature of fragmentation a
finite temperature effects are discussed in Sec. V, follow
by our concluding remarks in Sec. VI.

II. MODEL

A. Basic approach

Our system consists of an even numberN of spinless
bosons at zero temperature. We model the interactions
two-particle pseudopotential in the shape-independent
proximation, V(r ,r 8)5gd(r2r 8) with an interaction
strengthg54pasc\

2/m, whereasc is the s-wave scattering
length, andm is the mass of the bosons. The Hamiltonian
given by @10#

Ĥ5E d3r F2
\2

2m
Ĉ†~r !“2Ĉ~r !1U~r !Ĉ†~r !Ĉ~r !

1
g

2
Ĉ†~r !Ĉ†~r !Ĉ~r !Ĉ~r !G , ~1!

whereĈ(r ) is the quantum field operator, andU(r ) is the
external potential. The external potential is taken to exhib
single minimum along they andz axes, and a double mini
mum along thex axis. It is also taken to be symmetric abo
x50.

In order to capture the phenomenon of fragmentation
our model of the ground state, we must go beyond a me
field analysis. Specifically, we consider arbitrary superpo
tions of Fock states where up to two single-particle states
occupied. This corresponds to postulating a state vecto
the form

uc&5 (
N150

N

CN1
uN1 ,N2&~f1 ,f2! , ~2!

where

uN1 ,N2&~f1 ,f2![
~a1

†!N1

AN1

~a2
†!N2

AN2

uvac&

is the Fock state in whichN1 particles occupy the single
particle statef1(r )5^r ua1

†uvac& and N2 particles occupy
f2(r )5^r ua2

†uvac&. The total number of particles is fixed
N2[N2N1, the vector consisting of the set of coefficien
CN1

is normalized, and the single-particle wave functionsf1

andf2 are both normalized and orthogonal to one anoth
s.
-
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State~2! is certainly not the most general state one c
consider. Indeed, such a state would be a poor choice if
were interested in studying the depletion of a single cond
sate due to interactions, since one there expects a ce
fraction of the particles to be distributed among a mac
scopic number of single-particle states. However, in this
per we are interested in the possibility of the particles be
redistributed into a few single-particle states that are e
macroscopically occupied. We restrict ourselves totwo
single-particle states because the double-well geometry
are considering encourages fragmentation into two pie
@3#. Although it may be energetically favorable to fragme
into more than two pieces at very high particle densities,
defer consideration of this possibility to a later work.

Among the many-body states defined by Eq.~2!, we con-
sider only those which have the same symmetry as
Hamiltonian under reflections aboutx50. This implies that
the single-particle wave functions are mirror images of o
another acrossx50 within a phase factor,f1(2x,y,z)
5eiuf2(x,y,z), and that the coefficients satisfyCN1

5CN2N1
. With this assumption, and choosingf1 andf2 to

be real, the Hamiltonian takes the form

Ĥ25e11N̂1„e121gT1~N̂21!…~a1
†a21a2

†a1!

1
gT0

2
~N̂1

21N̂2
22N̂!

1
gT2

2
~a1

†a1
†a2a21a2

†a2
†a1a114N̂1N̂2!, ~3!

whereN̂15a1
†a1 , N̂25a2

†a2 , N̂5N̂11N̂2, and where

e115E d3r f1~r !S 2
\2

2m
“

21U~r ! Df1~r !,

e125E d3r f1~r !S 2
\2

2m
“

21U~r ! Df2~r !,

T05E d3r f1
4~r !,

T15E d3r f1
3~r !f2~r !,

T25E d3r f1
2~r !f2

2~r !.

These quantities have the following physical interpretati
e11 is the single-particle energy for the statef1 ; e12 is pro-
portional to the inversion frequency of a single particle in t
external potential; finally,T0 quantifies the self-interaction
energy, whileT1 andT2 both quantify the cross-interactio
energy.

In order to facilitate comparison of our work with earlie
studies@6,9#, we re-express the Hamiltonian in terms of o
erators satisfying angular momentum commutation relatio
rather than in terms of the creation and annihilation opera
we have employed thus far. We introduce the operators
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Ĵz5
1

2
~a2

†a11a1
†a2!,

Ĵy5
i

2
~a2

†a12a1
†a2!,

Ĵx5
1

2
~N̂22N̂1!,

which form an angular momentum algebra with total angu
momentum j 5N/2 @6#. In terms of these operators, th
Hamiltonian can be rewritten as

Ĥ25E012„e121gT1~N21!…Ĵz12gT2Ĵz
21g~T02T2!Ĵx

2 ,
~4!

where

E0[e11N1 1
4 N~N22!~gT01gT2!,

and where we have usedĴx
21 Ĵy

21 Ĵz
25 j ( j 11) to eliminate

Ĵy
2 from the expression. The observable corresponding toĴx

is the particle number difference between the localized st
f1 and f2. Defining the wave functionsfs5221/2(f1
1f2) and fa5221/2(f12f2), which are, respectively
symmetric and antisymmetric aboutx50, one sees thatĴz

can be rewritten as12 (as
†as2aa

†aa), whereas
† andaa

† are the
creation operators associated withfs andfa , respectively.
Thus, Ĵz corresponds to the particle number difference
tween the symmetrized statesfs andfa . Finally, Ĵy corre-
sponds to the condensate momentum. Since we are co
ering the ground state, it follows that^Jy&50, and since the
ground state is symmetric under reflections aboutx50 it
follows that ^Jx&50.
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B. A restricted variational principle

We now turn to the problem of identifying the groun
state of our model. This can be achieved by minimizing
expectation value ofĤ2 with respect to variations in both th
coefficientsCN1

and the single-particle wave functionf1,
subject to the constraints that the set of coefficients is n
malized, andf1 is both normalized and orthogonal tof2, its
mirror image aboutx50. However, it is in fact more conve
nient to minimize the expectation value ofĤ2 with respect to
variations infs andfa rather thanf1. The reason for this is
that no constraint corresponding to orthogonality is requi
when working withfs andfa , since they are orthogonal b
construction; as a result the analysis is simplified.

We begin with the variation offs andfa , implementing
the normalization constraints through Lagrange multipli
Es andEa , respectively. This results in two coupled nonli
ear Schro¨dinger equations forfs andfa,

F2
\2

“

2

2m
1U~r !1gGa

° fa
2~r !1gGa

x fb
2~r !Gfa~r !

5Eafa~r !, ~5!

where

Ga
° 5^~aa

†aa!22aa
†aa&/^aa

†aa&,
~6!

Ga
x 5^aa

†aa
†abab1ab

†ab
†aaaa14aa

†aaab
†ab&/^aa

†aa&,

and where the indices (a,b) take the values (s,a) and (a,s).
We now minimize the expectation value ofĤ2 with re-

spect to variations in the coefficientsCN1
, and implement the

normalization constraint on theCN1
through a Lagrange mul

tiplier E. This results in a five-term recurrence relation f
the coefficients,
FNe111
gT0

2
~N1

21N2
22N!12gT2N1N22EGCN1

1@e121gT1~N21!#@AN1~N211!CN1211AN2~N111!CN111#

1
gT2

2
@A~N121!N1~N211!~N212!CN1221A~N221!N2~N111!~N112!CN112#50, ~7!
he
te.

is

as
d to
c

rite-
for each value ofN1; E is immediately identified as the ex

pectation value ofĤ2. The latter set of equations forms
matrix eigenvalue equation for theN-element vector of co-
efficientsCN1

. Given values fore11, e12, T0 , T1, andT2,

we can solve this equation by diagonalizing anN3N matrix
with nonzero entries along five diagonals, a problem wh
is numerically tractable if the number of nonzero coefficie
is not too large.

Since Eqs.~5! and~7! form a coupled set of equations fo
fs , fa , and CN1

, we must in general solve these se

consistently. Of the many solutions thus obtained, the gro
state is the one which minimizes the value ofE. However, it
is not obvious that the solution that minimizesEs and Ea
h
s

d

also minimizesE; thus it may be necessary to compare t
energies of many solutions in order to find the ground sta

C. Regime of nearly noninteracting particles

The full problem outlined above is rather complex. In th
paper, we consider only perturbative solutions of Eq.~5! in
the nearly noninteracting regime, which we here define
the regime where the interaction energy is small compare
the difference betweenes

(1) , the energy of the first symmetri
single-particle excited state of the external potential, andes ,
the energy of the ground state. This is ensured by the c
rion

gNT0!es
~1!2es . ~8!
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SinceT0 is on the order of the inverse of the volume of t
trap, this criterion places an upper limit on the density of
condensate.

In this regime, we can treat the nonlinear terms in Eq.~5!

perturbatively. To obtain the expectation value ofĤ2 to first
order in the perturbation, we need only solve for the eig
functions of Eq.~5! to zeroth order. Thus, we need on
solve the two linear Schro¨dinger equations

F2
\2

“

2

2m
1U~r !2eaGfa~r !50 ~9!

for a5s, a. In this case, the wave functionsfs andfa are
simply the two lowest single-particle energy eigenfunctio
of the external potential, and the assumption of a state of
form of Eq. ~2! corresponds to a two mode approximation

The solutions of Eq.~9! determine the magnitudes o
e11, e12, T0 , T1, and T2, and these subsequently defin
the form of the recurrence relation~7! that must be solved to
obtain the coefficientsCN1

. Although the full results are pre
sented in Sec. III, it is illustrative to consider the ground st
of Ĥ2 in two particularly simple limits: that of no barrier an
that of an infinitely strong barrier.

In the absence of any barrier,ue12u.es
(1)2es , and since

uT1u and T2 are on the order ofT0 or less, it follows from
criterion ~8! that ue12u@NgT0 ,NguT1u,NgT2. If we provi-
sionally assume that the ground state fulfills the conditio
that Nu^Ĵz&u*^Ĵz

2&,^Ĵx
2&, then we are led to approximate th

Hamiltonian by

Ĥ2.E012e12Ĵz . ~10!

The ground state of Eq.~10! is simply the Fock stateuN&fs

which describesN particles occupying the single-partic
ground statefs . Since this solution satisfies our provision
assumption, the approximation is consistent. Such a F
state is of course what one would expect for the ground s
of a single well in the limit of nearly noninteracting particle
When this state is written in the form of Eq.~2!, that is, in
the basis ofuN1 ,N2& (f1 ,f2) states, rather than the basis

uNs ,Na& (fs ,fa) states, the coefficientsCN1
form a binomial

distribution overN1, centered atN/2. It seems appropriate t
refer to any state of the formuN&f0

for macroscopicN and

arbitraryf0, as a ‘‘single condensate.’’ In this paper, we a
concerned only with single condensates wherein the sin
particle wave functionf0 is symmetric aboutx50. We do
not introduce any additional terminology to distinguish su
a state from one with arbitraryf0, since no confusion is
likely to arise.

In the limit of infinite barrier strength, the amplitudes
fs andfa at x50 are necessarily zero, whilefs andfa at
xÞ0 satisfy the same equation. Consequently,fs and fa
differ only in their symmetry under reflection aboutx50 and
thus e125T15T250. The Hamiltonian of Eq.~4! then re-
duces to

Ĥ25E01gT0Ĵx
2 . ~11!
e

-

s
e

e

s

ck
te

e-

The ground state isuN/2,N/2& (f1 ,f2) , which describes two
independent condensates, or, in other words, a conden
which is fragmented into two pieces. Since we are consid
ing a potential well that is symmetric aboutx50, the two
fragments are equally populated. It seems appropriate to
fer to any state of the formuN1 ,N2& (f1 ,f2) whereN1 andN2

are macroscopic andf1 and f2 are orthogonal, as a ‘‘dua
condensate’’@11#. In this paper we will be concerned onl
with dual condensates whereinN15N25N/2, andf1 and
f2 are mirror images of one another acrossx50.

The analysis above confirms, for the limit of nearly no
interacting particles, the results of an earlier study@3#: the
ground state is well approximated by a single condensat
zero barrier strength, and a dual condensate at infinite ba
strength. At intermediate barrier strengths, we keep all
terms in Ĥ2 for our calculations. Although the cross
interaction terms are typically found to be small for gene
shapes of the double-well potential, it is not obvious th
these terms are negligible for an arbitrary potential, and t
we include them in our analytic results wherever possible

D. Measures of the degree of fragmentation

Finally, in order to facilitate the interpretation of our re
sults, we highlight some observables that reveal the deg
of spatial fragmentation of the condensate. The most us
observables for this purpose are those that probe the sp
coherence of the condensate across the barrier. In analo
measures of optical coherence@12#, we normalize the first-
order correlation functionr1(r ,r 8)5^Ĉ†(r )Ĉ(r 8)& to ob-
tain the degree of first-order spatial coherence betw
points r and r 8,

g~1!~r ,r 8!5
r1~r ,r 8!

@r1~r ,r !r1~r 8,r 8!#1/2
. ~12!

Considering pointsr5(x,y,z) andr 85(2x,y,z) wherex is
positive and chosen to be sufficiently large so thatuf1(r )u
!uf2(r )u and uf1(r 8)u@uf2(r 8)u, for any state of the form
of Eq. ~2! that is symmetric under reflection aboutx50, the
quantityg(1)(r ,r 8) is in fact independent ofr andr 8, and has
the value

C ~1!5
^a1

†a21a2
†a1&

N
. ~13!

We refer toC (1) simply as the degree of first-order spati
coherence across the barrier. It is straightforward to ve
that it attains its maximum value of 1 for a single condens
and a value of 0 for a dual condensate.

The second-order correlation functionr2(r ,r 8)
5^Ĉ†(r )Ĉ†(r 8)Ĉ(r 8)Ĉ(r )&, which is simply the normally
ordered density-density correlation, can be normalized to
tain the degree of second-order spatial coherence betw
points r and r 8,

g~2!~r ,r 8!5
r2~r ,r 8!

@r2~r ,r !r2~r 8,r 8!#1/2
. ~14!

DefiningC (2) in a manner completely analogous toC (1), we
find
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C ~2!5

124S DN1

N D 2

N22

N
14S DN1

N D 2 , ~15!

whereDN1[(^N̂1
2&2^N̂1&

2)1/2 is the variance in the numbe
of particles occupying the localized statef1. We refer to
C (2) as the degree of second-order spatial coherence ac
the barrier. The variance inN1 for a single condensateuN&fs

is that of a binomial distribution overN1, namely,AN/2. For
a dual condensate the number of particles in a well is fix
so thatDN150. As a consequence,C (2)2150 for a single
condensateuN&fs

, andC(2)2152/(N22) for a dual conden-

sate. SinceDN1 is sufficient to specifyC (2), while being
simpler to interpret, we useDN1 together withC (1) to char-
acterize our results.

III. ANALYTIC APPROXIMATIONS AND NUMERICAL
SOLUTIONS

For a given shape of the double-well potential, it
straightforward to obtain the single-particle ground state
first excited state by solving the linear Schro¨dinger equation
~9!. The localized single-particle statesf1 andf2 are simply
the sum and difference of the single-particle ground and
excited states. Using these wave functions, the coeffici
CN1

can be obtained by solving the recurrence relation~7!.
Here we present approximate analytic solutions for

CN1
given an arbitrary shape of the double-well potenti

Subsequently, we consider a particular form of the exter
potential for which the single-particle ground, and first e
cited states are obtained numerically. This allows us to
tain a numerical solution forCN1

and to compare this solu
tion to the analytic approximations.

A. Continuum approximation

Suppose the coefficients for the ground state satisfy
condition

uCN1112CN1
u!CN1

.

It is then useful to construct a functionC(u), defined over
the real numbers, such thatC(u)5CN1

at the discrete points

u5N21(N12N/2), and such thatuC8(u)u!NC(u). Given
this assumption of smoothness, a coefficient of the fo
CN11p , wherep is a small integer, is well approximated b
oss

d,

d

st
ts

e
.
al
-
-

e

a Taylor expansion ofC(u1p/N) to second order inp/N. In
this way, the recurrence relation~7! for theCN1

can be recast

as a second-order differential equation for the functionC(u).
Moreover, any sum overN1 can be approximated by an in
tegral overu. In particular, the constraint of normalizatio
for the coefficients is replaced by the constraint that the
tegral ofC2(u) over allu is 1/N. The assumption of smooth
ness is readily verified to be appropriate for a single cond
sate, and we therefore expect it to continue to hold
solutions over a range of small barrier heights.

We also make use of the fact that the coefficientsCN1
are

significant only in the region whereN1&AN, or, equiva-
lently, that the functionC(u) is significant only whereu
&A1/N. This follows from the fact that any set of coeffi
cients that has significant amplitude outside the rangeN1

&AN also has an energy that is larger than a single cond
sate; the interaction energy is greater since it scales w
DN1, and the single-particle energy is greater since it i
minimum for a single condensate. It is therefore appropri
to expand each of theN1-dependent terms as a power ser
in u,

2

N
AN1~N211!5 (

n50

`

I nun,

4

N2
A~N121!N1~N211!~N212!5 (

n50

`

Jnun,

which implicitly defines theI n andJn .
The second-order differential equation forC(u) we obtain

is found to have a first-order term which can be elimina
by the substitutionC̄(u)5C(u)exp(2(na2nu

2n) with an ap-
propriate choice of the constantsa2n . It then follows that
C̄(u) satisfies a second-order differential equation identi
to that of a particle with positionu in a one-dimensiona
potential well of even powers ofu. Since the solution is only
significant in the rangeu&A1/N, we make the approxima
tion that terms in the potential that are quartic or of high
order in u are small perturbations upon the quadratic ter
and can be neglected. In this case, the functionC̄(u)
5C(u)exp(2tu2/2) satisfies the equation for the modes o
simple harmonic oscillator:

2C̄9~u!1~n21t2!u2C̄~u!5~h1t!C̄~u!, ~16!

where, after expanding theI n andJn to leading order in 1/N,
h52N2

E/N2Fe111e121NgS 1

4
T01T11

3

4
T2D G

2e122Ng~T11T2!
,

n25
2N2

2e122Ng~T11T2! F S 22
h

N2D ~2e122NgT1!1NgXT01S 2
h

N2
23D T2CG , ~17!

t52.
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Thus the solution forC(u) that minimizesh, thereby mini-
mizing the energyE, is a Gaussian,

C~u!5
1

AN

1

~2p!1/4As
e2u2/4s2

, ~18!

with width

s5
1

2AN

1

A2A1AA21B
, ~19!

where

A5
3

2N

2e122NgS T11
4

3
T2D

2e122Ng~T11T2!
,

B5

2e122NgS T11
3

2
T22

1

2
T0D

2e122Ng~T11T2!
,

and with energy

E5NF2e122Ng~T11T2!

4N2s2
1~e111e12!

1NgS 1

4
T01T11

3

4
T2D G . ~20!

The variance inN1 for this solution is simplyNs, while the
degree of first-order spatial coherence is given by

C ~1!5e21/8s2N2S 11
1

N
22s2D . ~21!

In the absence of any barrier, ue12u
@NgT0 ,NguT1u,NgT2, and it can be verified that Eq.~19!
predicts the appropriate value for this limit, namely,DN1

.AN/2, the value for a single condensate. As the bar
strength is increased, the magnitudes ofe12, T1, and T2
decrease, while the magnitude ofT0 does not vary signifi-
cantly; it therefore follows from Eq.~19! that DN1 will de-
crease with barrier strength. WhenDN1 falls below 1, the
assumption of smoothness breaks down. Thus the rang
validity of the continuum approximation isDN1*1 or,
equivalently,C (1)*0.88.

If the potential is such thatNguT1u,NgT2!ue12u continues
to hold as the barrier strength is raised from zero, then
leading order in 1/N the expression fors simplifies to

s5
1

2AN

1

A11
N

2

gT0

~2e12!

,

depending only on the ratio of the interaction energy to
splitting between the symmetric and antisymmetric levels
the trap.
r

of

to

e
f

B. Two-coefficient approximation

At large barrier strengths, we make use of the followi
conditions:

ugu!1,

where ~22!

g[

AN

2 S N

2
11D „2e122g~N21!T1…

gT0

and

uzu!1,

where ~23!

z[
N2gT2

AN

2 S N

2
11D „2e122g~N21!T1…

.

The first of these conditions is always satisfied for su
ciently strong barriers, since in the limit of an infinitel
strong barrier,e125T150, while T0 is finite. Moreover, we
have numerically verified that the second condition holds
sufficiently large barrier strengths for a variety of extern
potentials. Within the domain of applicability of these co
ditions, we seek coefficientsCN1

that satisfy the recurrenc

relation~7! to first order ing andz. Dividing the recurrence
relation by gT0, one finds that all terms involvingN2gT2
have a magnitude on the order ofgz and can therefore be
neglected. In this limit, the following set of coefficients are
solution:

CN1
5A122g2 for N15

N

2

5g for N15
N

2
11,

N

2
21 ~24!

50 otherwise.

The energy in this case is

E5Ne111S N~N22!

4
22g2DgT0 . ~25!

We refer to this approximation as thetwo-coefficient ap-
proximation, and we dub any state of the form of Eq.~24! a
perturbed dual condensate. For such a state,C (1) and DN1
are given by

C ~1!52gA122g2A11
2

N
, ~26!

DN15A2g. ~27!

Keeping terms to first order ing, and to leading order in
powers of 1/N, we haveC (1)52g. The range of validity of
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the two-coefficient approximation is the range of barr
strengths for whichC (1)!1 andDN1!1.

An alternative manner of deriving this solution that
perhaps more physically intuitive, is to begin by assumin
state of the form of Eq.~24! and showing that the value ofg
that minimizes the energy is indeed the value given in
~22!. We begin by recalling the form ofĤ2, exhibited in Eq.
~3!. Assuming thatuzu!1, theT2 term in (Ĥ2) can safely be
neglected. If we introduce the operators

n̂15N̂12
N

2
,

n̂25N̂22
N

2
,

then we find that

^Ĥ2&.Edual1„e121gT1~N21!…^a1
†a21a2

†a1&

1 1
2 gT0~^n̂1

2&1^n̂2
2&!,

whereEdual is the energy of the dual condensate. Since
magnitude of the cross-interaction term involvingT1 only
depends on the many-body state through expectation va
of bilinear operators, this term, together with thee12 term,
can be considered as an effective single-particle energy
first order in g and to leading order in 1/N, the perturbed
dual condensate has^a1

†a21a2
†a1&52gN, and consequently

it has an effective single-particle energy benefit over the d
condensate of 2gN(2e122gNT1) ~this quantity is positive
at the barrier strengths of interest, sincee12,0 and typically
T1,0). On the other hand,̂n̂1

2&5^n̂2
2&52g2 for such a

state, corresponding to a self-interaction energy cost
2g2gT0. Thus the effective single-particle energy of the p
turbed dual condensate decreases linearly withg, while the
self-interaction energy increases quadratically with this
rameter. The minimum occurs precisely wheng has the
valueN(2e122gNT1)/2gT0, which approximates the valu
in Eq. ~22! for N@1.

For typical double-well potentials, whereNguT1u!ue12u,
g is well approximated byN(2e12)/2gT0 to leading order in
1/N. In this case, the transition from a completely fra
mented condensate to one that shows some coherence a
the barrier occurs when the number of particles times
ratio of the inversion frequency to the self-interaction ene
becomes non-negligible. Thus, for a given shape of the
and a fixed barrier strength, the degree of fragmentation
creases as the number of particles is increased but incre
as the strength of the interaction is increased.

C. Numerical solutions

The form of the double-well potential in the MIT conde
sate interference experiment@1# is well modeled by a term
that is harmonic along all three Cartesian axes, with frequ
cies vx , vy , and vz , respectively, to which is added
Gaussian barrier of widthd and strengtha centered atx
50:
r

a

.

e

es

o

al

of
-

-

ross
e
y
p
e-
ses

n-

U~r !5m~vx
2x21vy

2y21vz
2z2!1

a

A2pd
e2x2/2d2

. ~28!

The parameter values appropriate for Ref.@1# are vx52p
319 Hz, vy5vz52p3250 Hz, andd56 mm. Within
such a trap, criterion~8! for the applicability of our pertur-
bative approach becomesN!100, which is much smaller
than the number of condensate atoms in their experim
We consider instead a larger trap, specifically, one which
isotropic with the trapping frequency of the axis of weake
confinement in the MIT trap,vx5vy5vz52p319 Hz. In
this case our perturbative approach is good for up to appr
mately N5100 particles, and this is the example we co
sider. The scattering length of23Na is taken to beasc53 nm
@13#.

In Fig. 1 we plot the profile along thex axis of the exter-
nal potentialU(r ) and the wave functionsf1(r ) andf2(r ),
together with the coefficientsCN1

for several values of the
barrier strength. Figure 2 displays the degree of first-or
spatial coherence,C (1), and the variance,DN1, in the number
of particles occupying the localized statef1 as a function of
the barrier strength. The generic features of these results

FIG. 1. Numerical solutions for the single-particle wave fun
tionsf1(r ) andf2(r ) and the coefficientsCN1

for N5100 particles
and double-well potentials with barrier strengths ofa
50, 15, 30, 45, and 60 in units ofA\3vx /m. The remaining pa-
rameter values are specified in the text. The dotted curve is
external potential along thex axisU(x,y50,z50) in units of\vx .
The solid and dashed curves aref1(x,y50,z50) and f2(x,y
50,z50), respectively, in arbitrary units.
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sist for different choices of parameters in Eq.~28! as well as
for different choices of the form ofU(r ).

Also displayed in Fig. 2 are the values forC (1) andDN1
given by the continuum approximation, as specified by E
~19! and ~21!, and given by the two-coefficient approxima
tion, as specified by Eqs.~26! and ~27!, for the same choice
of external potential. For their respective ranges of valid
the analytic approximations are found to fit the numeri
results extremely well.

From these calculations arise the following picture of t
transition between a single condensate and a fragme
condensate. Moving up from zero barrier strength, there
range of barrier strengths over whichC (1) is close to unity,
while DN1 falls from its single condensate value ofAN/2 to
a value of 1. Moving down from infinite barrier strengt
there is a range of barrier strengths over whichC (1) andDN1
are both much less than 1. Between these two domains, t
is a narrow range of barrier strengths wherein the grea
part of the transition inC (1) is made. The barrier strength
delimiting these domains can be estimated analytically us
the approximations presented in this section.

IV. DISCUSSION

A. Experimental signature of fragmentation

Herein we consider a measurement of the first-order
gree of spatial coherence. This is accomplished by a typ
interference experiment that has been widely discussed in
literature @1,14–17#. Essentially, it constitutes a double-s
experiment for Bose condensates. The thought experim
runs as follows. After preparation of the condensate, the
potential is removed and the atoms fall under the force

FIG. 2. ~a! The degree of first-order spatial coherence across
barrier,C (1), and~b! the variance in the occupation number of o
of the wells,DN1, as a function of the barrier strength,a, in units
of A\3vx /m for N5100 particles and the parameter values spe
fied in the text. The solid curve is the numerical solution, the das
curve is the continuum approximation, and the dotted curve is
two-coefficient approximation.
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gravity through a pair of slits, located symmetrically abo
x50. These slits can be formed by changing the shape of
trapping potential, as long as this change is not so rapid
excitations are induced, and not so slow that the system
time to relax to a new many-body ground state. For simp
ity of the analysis, we also assume that the particles on
left and right are each given momentum translations of m
nitude \k toward one another@14#. In the absence of such
translations, the interference pattern is simply more com
cated, and has been studied by Ro¨rhl et al. @4#. We make the
approximation that the interparticle interactions are insign
cant during this expansion period. In this case, only
single-particle wave functions evolve, while the coefficien
CN1

in the many-body state~2! remain unchanged.

Suppose the slits are centered at pointsr5(x,y,z) and
r 85(2x,y,z), wherex is positive and chosen to be suffi
ciently large so that uf1(r )u!uf2(r )u and uf1(r 8)u
@uf2(r 8)u. In this case, the single-particle wave functio
f1(r ) andf2(r ) evolve to wave functions localized entirel
at just one of the slits. After the momentum translation an
period of free expansion the single-particle wave functio
originating from the left and right of the barrier acquire com
plex phase factors ofeikx ande2 ikx and magnitudes we de
note byf̃1(r ) andf̃2(r ), respectively. For many-body state
that are symmetric under a reflection aboutx50, these mag-
nitudes are roughly uniform and equal in the far field of t
double slit, so that the many-body state in the far field can
approximated by the many-body state prior to removal of
trap, with f1(r ) and f2(r ) replaced byeikx and e2 ikx, re-
spectively.

We now imagine detectors in the far field that are a
sumed to remove atoms from the condensate@15#. The prob-
ability distribution over the positionr1 of the first detection
is given by the expectation value of normally ordered fie
operators P1(r1)5(1/N)^Ĉ†(r1)Ĉ(r1)&. The probability
distribution over the positionsr1 ,r2 , . . . ,rm of the first m
detections is given byPm(r1 ,r2 , . . . ,rm)5@(N2m)!/
N!] ^Ĉ†(r1)Ĉ†(r2)•••Ĉ†(rm)Ĉ(rm)•••Ĉ(r2)Ĉ(r1)&. The
density of detection events that emerges in a single run of
double-slit experiment has the formrm(r )5(N/m)( i 51

m d(r
2r i) where the set of positions$r i% is obtained from the
probability distributionPm(r1 ,r2 , . . . ,rm). Of course, the
finite resolution of any realistic detector can be accounted
by replacing thed function in this expression with a suitabl
broadened distribution; as long as the resolution is finer t
the distance between the fringes of the interference patt
the difference will not be significant.

In a single run of the double-slit experiment, both t
single and dual condensates typically yield a distribut
rm(r ) with essentially the maximum possible fringe visib
ity. This is obviously true for a single condensate, and h
been shown to be true for a dual condensate in the sem
paper of Javanainen and Yoo@15#. Thus the mere presenc
of such interference is not indicative of a nonzero degree
first-order coherence. However, suppose the experimen
repeated many times with the same initial many-body st
In this case, the spatial phase of the interference pattern
vary randomly from one run to the next if the initial state
a dual condensate, while it will remain fixed if the initia
state is a single condensate@15#. We therefore expect the
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degree of first-order spatial coherence to be revealed by
variancein the spatial phase of the interference pattern o
many runs, or, equivalently, the fringe visibility of theaver-
age detection pattern over many runs. Indeed, if one av
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ages the pattern of detections from an infinite number of r
of the double-slit experiment, all prepared initially in th
same many-body state, and each involvingm detection
events, one obtains
r̄m~r !5E d3r 1•••d3r mS N

m (
i 51

m

d~r2r i !D Pm~r1 ,r2 , . . . ,rm!

5
N

m (
i 51

m E d3r 1•••d3r i 21d3r i 11•••d3r mPm~r1 , . . . ,r i 21 ,r ,r i 11 , . . . ,rm!5^Ĉ†~r !Ĉ~r !&. ~29!
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The final equality follows from the fact that each element
the sum is simply equal toP1(r i). If the fringe visibility of

the average detection pattern,r̄m(r ), is evaluated for the
many-body state in the far field, it is found to be precise
equal to our definition ofC (1), the degree of first-order spa
tial coherence across the barrier, and thus enables a mea
ment of the latter.

Another possibility for an experimental study of fragme
tation is a measurement of the degree of second-order sp
coherence; this may be accessible through nonresonan
aging @18#.

B. Finite temperatures

We close this section with a few comments on the eff
of finite temperatures on the coherence properties of the
densate. The excited states of the system are not in ge
well approximated by a state of the form of Eq.~2!. None-
theless it can be shown that at infinite barrier strength
first-order degree of spatial coherence across the barrie
zero for thermal equilibrium at any finite temperature. T
proof is as follows. For an infinitely strong barrier the Ham
tonian is separable into two terms, each involving only o
erators pertaining to particles on one side of the barrier. C
sequently, any nondegenerate energy eigenstates are t
products of states describing particles on one side of
barrier only. For any set of energy eigenstates that are
generate, the subspace of Hilbert space spanned by thi
has a basis of such product states. Thus one can always
tify a basis of energy eigenstates that are product state
this sort. Since the density operator that represents the
equilibrium, r̂, is a mixture of these energy eigenstates,
will necessarily have Tr„r̂Ĉ†(r )Ĉ(r 8)…50 if r and r 8 are
on opposite sides of the barrier, and consequently the de
of first-order spatial coherence across the barrier for suc
mixed state is zero as well. In the absence of any barrier
long as the temperature is small enough that most of
particles are in the lowest single-particle energy level,
first-order degree of spatial coherence for the thermal s
should be close to unity. For such temperatures, if the ba
strength is varied from zero to infinity, the first-order degr
of spatial coherence of the thermal state will vary fro
nearly unity to zero. Thus a significant transition must s
occur at such temperatures.
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V. CONCLUSIONS

A theoretical treatment of fragmentation in Bose conde
sates must go beyond a mean-field analysis. For the cas
repulsive interparticle interactions and a double-well tra
ping potential, we have proposed an approach wherein
approximation to the many-body ground state is obtained
a restricted variational principle. We have implemented t
proposal for the case of nearly noninteracting particles.

The coherence properties that we have considered are
degrees of first- and second-order coherence across the
tral barrier of the potential. The first of these quantifies t
variance over many runs in the spatial phase of the frin
pattern arising from the interference of atoms on either s
of the barrier. The second is essentially the density-den
correlation across the barrier, and for the states we cons
it is a simple function of the variance in the number of pa
ticles in one of the wells. We find that as the barrier stren
is increased, this variance is continuously squeezed d
from its value for a single condensate. The degree of fi
order spatial coherence is close to unity when this varianc
greater than 1, but thereafter drops off rapidly. Above a c
tain critical barrier strength we find that both quantities b
come much less than 1, indicating that the condensat
essentially completely fragmented.

We have discussed how the degree of first-order coh
ence might be measured through interference experime
and argued that a significant effect should be present eve
finite temperatures. A concern, however, is that the grou
state might be difficult to prepare if the relaxation time of t
system is long compared to the lifetime of the condens
This could arise if the only way for the particles to be red
tributed across the barrier is by tunneling through it. Ho
ever for numbers of particles that are not too large, this t
neling time need not be restrictive. For instance, in
example presented in Sec. III C, the single-particle tunne
time at the barrier strength whereC (1)50.88 is approxi-
mately 1 min, while at the barrier strength whereC (1)50.1 it
is roughly 1 h.

Our variational approach can be extended in a straight
ward manner to the determination of the many-body grou
state in systems where the external potential has an arbi
numbern of minima. In such cases, one would simply intr
duce states that are arbitrary superpositions of Fock st
where up ton single-particle wave functions are occupie



th
tic
er
fa
th

ad

,
s.

En-
Re-

PRA 59 3877SPATIAL FRAGMENTATION OF A BOSE-EINSTEIN . . .
Such an analysis is of relevance to the determination of
coherence properties of Bose condensates in optical lat
@19#. Moreover, at extremely high densities, where the int
action energy is dominant, it may become energetically
vorable for a condensate to begin to fragment even in
presence of a perfectly uniform potential. We hope to
dress this possibility in future work.
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