PHYSICAL REVIEW A VOLUME 59, NUMBER 5 MAY 1999
Spatial fragmentation of a Bose-Einstein condensate in a double-well potential
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We present a theoretical study of the ground state of a Bose-Einstein condensate with repulsive interparticle
interactions in a double-well potential, using a restricted variational principle. Within such an approach, there
is a transition from a single condensate to a fragmented condensate as the strength of the central barrier of the
potential is increased. We determine the nature of this transition through an approximate analytic solution as
well as a numerical solution of our model, in the regime where the interparticle interactions can be treated
perturbatively. The degree of fragmentation of the condensate is characterized by the degrees of first- and
second-order spatial coherence across the baf8&050-29479)06605-§

PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION Fock state, and that can be said to describe “partial fragmen-
tation” of the condensate. The equations that such a state

The recent experimental demonstration of interferencenust satisfy are derived within a variational approach. The
phenomena in Bose-condensed atomic gakemotivates a second goal of the paper is to solve these equations in a
study of the spatial coherence of a condensate in a doubleegime where the interparticle interactions can be treated per-
well potential. In particular, we are interested in the loss ofturbatively. Numerical solutions of the equations and ana-
spatial coherence that can occur at zero temperature due ligtic approximations to these solutions are obtained within
fragmentatiorof the condensate. A fragmented condensate ishis regime. It should be noted that this limit is inappropriate
one for which there is a macroscopic occupation of two orfor the description of the MIT condensate interference ex-
more orthogonal single-particle wave functions. If the occu-periment[1], and, consequently, our results do not specify
pied single-particle wave functions are spatially well sepathe nature of the transition for this experimental setup. None-
rated, coherence over the spatial extent of the entire systetheless, we expect the generic features of the transition to
will be lost, persisting only over the spatial extent of eachpersist in the experimentally relevant regime.
fragment. We pause to consider previous treatments of this topic

As Noziges[2] has pointed out, for repulsive interparticle and their relation to this work. Rul et al. [4] provided a
interactions it is the exchange energy that typically preventsnodel of the MIT condensate interference experiment; how-
fragmentation into a number of degener@enearly degen- ever, it is a mean-field analysis and therefore cannot describe
eratg single-particle wave functions. However, this argu-fragmentation. Fragmentation in the case of attractive inter-
ment is inapplicable for bosons in an external potential withparticle interactions has been considered by Wilkin, Gunn,
several local minima, since single-particle wave functionsand Smith[5], but this effect is qualitatively different from
that are localized about these minima may have very littlehat of the repulsive case. Finally, Milbugt al.[6] consid-
overlap with one another, thereby leading to a very smalkred the energy eigenstates of a Bose-Einstein condensate in
exchange energy. Moreover, since the self-interaction energy double-well potential, and predicted fragmentation when
of such a fragmented condensate is smaller than that of the interparticle interactions are sufficiently strong. How-
single condensate, it is possible for the total interaction enever, these authors considered only traps with weakly
ergy to be smaller as well. Although every patrticle in thecoupled wells, and therefore could not determine the degree
fragmented condensate will pay a price in kinetic energy tf fragmentation of the ground state in the regime of low
occupy localized wave functions, the overall energy may stillbarrier strengths where the coupling between the wells is
be less than that of a single condensate. Indeed, it can Istrong. Moreover, this paper did not address the issue of the
shown that in the limit of a symmetric double-well potential spatial coherence of the ground state. Since the presence of
with an infinitely strong central barrier, one can always findlong-range order is a defining characteristic of Bose-Einstein
a fragmented state that has a total energy lower than angondensation, it is critical to understand the manners in
single condensatgs]. which this spatial coherence can be lost.

Thus we have the following situation in a double-well ~ There has also been theoretical work on the problem of
potential: in the absence of any central barrier the groundose condensates containing atoms in two different internal
state is well approximated by a single condensate, while irstates, which is analogous to the two well problem. Esry
the presence of an infinitely strong barrier it is well approxi-et al. [7] determined the probability distributions and life-
mated by a fragmented condensate. It is clear, therefore, théitnes of two interacting condensates in different internal
there must be a transition between these two extremes as ostates confined to the same trap, while Cieaal.[8] as well
increases the strength of the barrier. The first goal of thigs Steel and Collef9] considered the ground states of such
paper is to propose a theoretical model for describing this system when the internal atomic states can be controlled by
transition. Specifically, we argue for an approximation of thea Josephson-like laser coupling. In this case, the distinguish-
fully interacting ground state that is more general than aability of atoms in the two condensates is ensured by their
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internal state rather than their single-particle wave functions. State(2) is certainly not the most general state one can
However, the requirement of orthogonality in the spatial de-consider. Indeed, such a state would be a poor choice if one
grees of freedom is indispensable in a multiple-well problemwere interested in studying the depletion of a single conden-
since it is precisely the shape of the single-particle wavesate due to interactions, since one there expects a certain
functions that determines the degree of fragmentation in th&action of the particles to be distributed among a macro-
system. scopic number of single-particle states. However, in this pa-

The remainder of the paper is organized as follows. Inper we are interested in the possibility of the particles being
Sec. Il we present our model and define some useful meaedistributed into a few single-particle states that are each
sures of spatial coherence of the condensate. In Sec. Ill weacroscopically occupied. We restrict ourselves tteo
present approximate analytic solutions of our model in thesingle-particle states because the double-well geometry we
regime of nearly noninteracting particles, and compare thesare considering encourages fragmentation into two pieces
to a numerical solution for a particular choice of the external 3]. Although it may be energetically favorable to fragment
potential. The experimental signature of fragmentation andnto more than two pieces at very high particle densities, we
finite temperature effects are discussed in Sec. V, followedlefer consideration of this possibility to a later work.

by our concluding remarks in Sec. VI. Among the many-body states defined by E?), we con-
sider only those which have the same symmetry as the
Il. MODEL Hamiltonian under reflections aboxt=0. This implies that
_ the single-particle wave functions are mirror images of one
A. Basic approach another acrosx=0 within a phase factorg,(—x,y,2)
i i =e'’¢p,(x,y,z), and that the coefficients satisiC
Our system consists of an even numidérof spinless 2(X,Y,2), Ny

bosons at zero temperature. We model the interactions by &Cy-n;- With this assumption, and choosirg and ¢, to

two-particle pseudopotential in the shape-independent amye real, the Hamiltonian takes the form

proximation, V(r,r')=gé(r—r’) with an interaction

strengthg=4masfi?/m, whereag. is the swave scattering A= ey N+ (e10+ gTo(N— 1))(aTa2+aZa1)

length, andm is the mass of the bosons. The Hamiltonian is !
iven by[10 To no as -

J yiiol +%(N§+N§—N)

N h? . R R R

H= f d3r[ - ﬁ\IfT(r)VZ\P(rH— U)W T(r)w(r)

T o o~
+ %(a{a{azafr ajaba;a;+4N;N,),  (3)

+SUT(NT (T (T ()|, (1)

N @

whereN;=ala;, N,=ala,, N=N;+N,, and where

where ¥ (r) is the quantum field operator, atd(r) is the
external potential. The external potential is taken to exhibit a €11= f d3r ¢4(r)
single minimum along thg andz axes, and a double mini-
mum along the axis. It is also taken to be symmetric about 42
x=0. — 3 _0 g2

In order to capture the phenomenon of fragmentation in €12 f ar ¢1(r)( ZmV +U(r))¢2(r),
our model of the ground state, we must go beyond a mean-
field analysis. Specifically, we consider arbitrary superposi-
tions of Fock states where u ingle-parti T :f dr $3(r),

p to two single-particle states are 0 1

occupied. This corresponds to postulating a state vector of
the form

d4(r),

hZ
2
sz +U(r)

T1=f d3r ¢3(r) ¢a(r),

N

|¢>=NE:0 Cn,IN1.N2) (4, .6+ )
1 T= [ ot g .
where
These quantities have the following physical interpretation:
_ (aDNl (ag)'\12 €11 1S the single-particle energy for the state; €,, is pro-
[N 'N2>(¢1,¢2>= Tl leae} portional to the inversion frequency of a single particle in the

external potential; finallyT, quantifies the self-interaction
energy, whileT, and T, both quantify the cross-interaction

is the Fock state in whiclN; particles occupy the single- energy.

particle stated(r)=(r|aj|vag and N, particles occupy In order to facilitate comparison of our work with earlier
¢o(r)=(r|ajlvac. The total number of particles is fixed, s gies[6.9], we re-express the Hamiltonian in terms of op-
N>=N-—Nj,, the vector consisting of the set of coefficients grators satisfying angular momentum commutation relations,
Cy, is normalized, and the single-particle wave functigns  rather than in terms of the creation and annihilation operators
and ¢, are both normalized and orthogonal to one another.we have employed thus far. We introduce the operators
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B. A restricted variational principle

1
3Tt T
=5 (@t a13y), We now turn to the problem of identifying the ground

state of our model. This can be achieved by minimizing the
expectation value dfi, with respect to variations in both the
coefficientsCy, and the single-particle wave functiop,
subject to the constraints that the set of coefficients is nor-
~ 1 . malized, andp, is both normalized and orthogonal #5, its
JXZE(NZ_Nl)’ mirror image abouk=0. However, it is in fact more conve-
nient to minimize the expectation valuelgf, with respect to
which form an angular momentum algebra with total angula/ariations in¢gs and ¢, rather thang,. The reason for this is
momentumj=N/2 [6]. In terms of these operators, the that no constraint corresponding to orthogonality is required

o
Jy=3(aja;-ajay),

Hamiltonian can be rewritten as when working withés and ¢, , since they are orthogonal by
N A Ao Ao construction; as a result the analysis is simplified.
Ho=Eo+2(e12+9T1(N—1))J,+29T,J;+9(To—T2)J5, We begin with the variation ofs and ¢, , implementing

(4)  the normalization constraints through Lagrange multipliers
E; andE,, respectively. This results in two coupled nonlin-

here -
W ear Schrdinger equations foth; and ¢,
Eo=euN+iN(N=2)(gTo+gTy), 52V2
ne mo a - +U(r)+gl 2 (r)+gT* p3(r r
and where we have usef+J5+J32=j(j+1) to eliminate 2m (N + 9L b +Tadp(0) | Salr)
35 from the expression. The observable corresponding to =E_ (1) (5)

is the particle number difference between the localized states

¢, and ¢,. Defining the wave functionsp=2"Y% (¢, Where
+¢,) and ¢,=2"Y(p,—¢,), which are, respectively,
symmetric and antisymmetric aboxt=0, one sees that,

can be rewritten aj(ala;—ala,), wherea! anda] are the I =(alalaza,+alala,.a,+4ala,alag/(ala,), (
creation operators associated wit and ¢, respectively.

Thus, 3, corresponds to the particle number difference be-2nd where the indicesy, ) take the valuessa) and @,s).

tween the symmetrized statég and ¢,. Finally, jy corre- We now minimize the expf_eqtatlon value_ b, with re-
sponds to the condensate momentum. Since we are consigP€Ct (0 variations in the coefficier@,,, and implement the
ering the ground state, it follows thél,)=0, and since the ~normalization constraint on th@y, through a Lagrange mul-
ground state is symmetric under reflections abostO it  tiplier E. This results in a five-term recurrence relation for
follows that{J,)=0. the coefficients,

I.=((ala,)?~ala,)/(aa,),

6)

gTo
Nepg+ T('\@*’ N7—N)+29gT,N;N,—E Cn, T LetgTi(N=1)J[ VN3 (Na+1)Cp 1+ VNa(N1+1)Cy +4]

gT, .
+ T[\/(Nl_l)Nl(N2+ 1)(N2+2)Cp, 2+ V(Nz— 1)N(Ny+1)(N; +2)Cy 2] =0, )

for each value oN,; E is immediately identified as the ex- also minimizesE; thus it may be necessary to compare the
pectation value ofi,. The latter set of equations forms a energies of many solutions in order to find the ground state.
matrix eigenvalue equation for thé-element vector of co-
efficientsCNl. Given values fore;;, €15, Tgo, Ty, andT,,

we can solve this equation by diagonalizinghr N matrix The full problem outlined above is rather complex. In this

. . ; > . paper, we consider only perturbative solutions of Ej.in
with nonzero entries along five diagonals, a problem Whld{)he nearly noninteracting regime, which we here define as

is numerically tractable if the number of nonzero coefficients,q regime where the interaction energy is small compared to

is not too large. _ the difference betweeet? , the energy of the first symmetric
Since Egs(5) and(7) form a coupled set of equations for gjnqje_narticle excited state of the external potential, and

bs, #a, and Cy,, we must in general solve these self- o energy of the ground state. This is ensured by the crite-
consistently. Of the many solutions thus obtained, the grouneion

state is the one which minimizes the valueEbfHowever, it

is not obvious that the solution that minimiz&s and E, gNTo<el! —es. 8

C. Regime of nearly noninteracting particles



PRA 59 SPATIAL FRAGMENTATION OF A BOSE-EINSTEIN ... 3871

SinceTy is on the order of the inverse of the volume of the The ground state i$l\|/2,N/2>(¢l,¢2), which describes two

trap, this criterion places an upper limit on the density of thejndependent condensates, or, in other words, a condensate
condensate. which is fragmented into two pieces. Since we are consider-

In this regime, we can treat the nonlinear terms in &Y. ing a potential well that is symmetric aboxt=0, the two
perturbatively. To obtain the expectation valuetbf to first ~ fragments are equally populated. It seems appropriate to re-
order in the perturbation, we need only solve for the eigenfer to any state of the fOTﬁNl,N2>(¢1,¢2) whereN; andN,

functions of Eq.(5) to z_eroth order. Thus, we need only gy macroscopic ang, and ¢, are orthogonal, as a “dual
solve the two linear Schdinger equations condensate’{11]. In this paper we will be concerned only
with dual condensates whereld, =N,=N/2, and ¢; and

¢, are mirror images of one another acress0.

om TU(N—€q|¢a(r)=0 ©) The analysis above confirms, for the limit of nearly non-
interacting particles, the results of an earlier stf@y the

. . round state is well approximated by a single condensate at
f(_)r a=s, a In this case, the wave functions a_nd b, are gero barrier strength, gr?d a dual con)éensatg at infinite barrier
simply the two lowest single-particle energy e'genfunCt'onSstrength. At intermediate barrier strengths, we keep all the
of the external potential, and the assumption of a state of the N '

form of Eq. (2) corresponds to a two mode approximation. [€'MS in Hy for our calculations. Although the cross-
The solutions of Eq.(9) determine the magnitudes of interaction terms are typically found to be small for generic

€11, €15, To, Ty, andT,, and these subsequently define shapes of the double-well potential, it is not obvious that
the form of the recurrence relatidid) that must be solved to thes_e terms are qegllglble for an arbitrary potential, anq thus
obtain the coefficienté:Nl. Although the full results are pre- we include them in our analytic results wherever possible.

sented in Sec. lll, it is illustrative to consider the ground state

of H, in two particularly simple limits: that of no barrier and
that of an infinitely strong barrier.
In the absence of any barridi;)| = ") — ¢, and since

2v2

D. Measures of the degree of fragmentation

Finally, in order to facilitate the interpretation of our re-
sults, we highlight some observables that reveal the degree
IT,| andT, are on the order of, or less, it follows from of spatial fragmentation of the condensate. The most useful

1 e 2 0 ' X observables for this purpose are those that probe the spatial
gntenon (8) that |€12|>N9T0’N9|T1|'N9T2'. It we POV oherence of the condensate across the barrier. In analogy to
S|0naIIyAassunA1e thflt the ground state fulfills the Cond't'on%easures of optical coherenfE2], we normalize the first-
thatN|<JZ.>|Z<J§>’<J§>’ then we are led to approximate the , je correlation functioms(r,r')=(¥1(r)¥(r')) to ob-
Hamiltonian by tain the degree of first-order spatial coherence between

pointsr andr’,
H,=Eqg+2€;,,. (10

pa(r,r’)
D(r,ry= .
The ground state of Eq10) is simply the Fock stattN},,,s g [p(r,)py(r’,r")]¥?
which describesN particles occupying the single-particle

round stateps. Since this solution satisfies our provisional o L
g &bs b Rositive and chosen to be sufficiently large so that(r)|

assumption, the approximation is consistent. Such a Foc C s ,
state is of course what one would expect for the ground stat§f|g 2(r%| ?hn<1|_¢1(r )|>|td.’2(r )o||, for ﬁn);_statebgi;hoe ftcr>]rm
of a single well in the limit of nearly noninteracting particles. of Eq. (2) that is symmetric under reflection a » the

When this state is written in the form of E(), that is, in qhuantitlyg(l)(r,r’) is in fact independent afandr’, and has
the basis oﬂNl,N2>(¢1,¢2) states, rather than the basis of the value
INs.Na)(g, .4, States, the coefficienty form a binomial C(l)_(aIaZJr aba,)
distribution overN;, centered alN/2. It seems appropriate to - :
refer to any state of the forr‘[N>¢0 for macroscopidN and

We refer toC ") simply as the degree of first-order spatial

arbitrary ¢, as a “single condensate.” In this paper, we are . i ' ’
concerned only with single condensates wherein the Sing|é:_oherence across the barrier. It is straightforward to verify

particle wave functionp, is symmetric abouk=0. We do that it attains its maximum value of 1 for a single condensate
not introduce any additional terminology to distinguish such@nd @ value of 0 for a dual condensate. ,
a state from one with arbitrarg,, since no confusion is The  second-order  correlation  functionp(r,r’)
likely to arise. =(¥T()¥T(r")y¥(r")¥(r)), which is simply the normally

In the limit of infinite barrier strength, the amplitudes of ordered density-density correlation, can be normalized to ob-
&< and ¢, atx=0 are necessarily zero, whilg, and ¢, at  tain the degree of second-order spatial coherence between
x#0 satisfy the same equation. Consequendly,and ¢,  Ppointsr andr’,
differ only in their symmetry under reflection about 0 and ,
thus e,,=T;=T,=0. The Hamiltonian of Eq(4) then re- g@(r.r')= pz(r,r’) — (14)
duces to [p2(r,)pa(r',r')]

(12

Considering points = (x,y,z) andr’=(—X,y,z) wherex is

(13

. s DefiningC® in a manner completely analogousdé?, we
Ha=Eo+gToJs. 1D find
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AN, \? a Taylor expansion o€ (u+ p/N) to second order ip/N. In
1—4(7) this way, the recurrence relatig#) for the CN1 can be recast
c?= N—2 AN. 2 (15 as a second-order differential equation for the func@ign).
—+4<—1 Moreover, any sum ovel; can be approximated by an in-
N N tegral overu. In particular, the constraint of normalization

e N . . for the coefficients is replaced by the constraint that the in-
whereAN,=((N)—(N1)?)**is the variance in the number 4044 4fC2(u) over alluis 1N. The assumption of smooth-
of particles occupying the localized stadg. We refer o pegs s readily verified to be appropriate for a single conden-
C® as the degree of second-order spatial coherence acrosgte, and we therefore expect it to continue to hold for
the barrier. The variance iN; for a single condensatN)¢s solutions over a range of small barrier heights.

is that of a binomial distribution oveM,, namely,/N/2. For We also make use of the fact that the coefficidtg are

a dual condensate the number of particles in a well is fixedgjgnificant only in the region wherdl; <N, or, equiva-

so thatAN;=0. As a c(%nsequencé,(z)—1=0 for a single |ently, that the functionC(u) is significant only whereu
condensateN) ;, andC'®—1=2/(N—2) for a dual conden- < /N, This follows from the fact that any set of coeffi-
sate. SinceAN; is sufficient to specifyC(®, while being cients that has significant amplitude outside the raNge

simpler to interpret, we us&N; together withC(*) to char- ~ </N also has an energy that is larger than a single conden-

acterize our results. sate; the interaction energy is greater since it scales with
AN, and the single-particle energy is greater since it is a

1. ANALYTIC APPROXIMATIONS AND NUMERICAL minimum for a single condensate. It is therefore appropriate
SOLUTIONS to expand each of thi,-dependent terms as a power series

in
For a given shape of the double-well potential, it is
straightforward to obtain the single-particle ground state and 2 o
first excited state by solving the linear ScHimmger equation —N;(N,+1)= 2>, 1,u",
(9). The localized single-particle statg¢g and ¢, are simply N n=0
the sum and difference of the single-particle ground and first .
excited states. Using these wave functions, the coefficients 4 N
Cy, can be obtained by solving the recurrence relation @\/(Nl_ 1)N1(N2+1)(N2+2):n§=:0 It
Here we present approximate analytic solutions for the
Cy, given an arbitrary shape of the double-well potential.which implicitly defines thd , andJ, .
Subsequently, we consider a particular form of the external The second-order differential equation fofu) we obtain
potential for which the single-particle ground, and first ex-is found to have a first-order term which can be eliminated
C|t.ed states are obtalr_1ed numerically. This aIIows.us to obpy the substitutiorC(u) = C(u)exp( =,a,U?") with an ap-
tain a numerical solution fo€y and to compare this solu- propriate choice of the constands,. It then follows that

tion to the analytic approximations. C(u) satisfies a second-order differential equation identical

to that of a particle with positionu in a one-dimensional

A. Continuum approximation potential well of even powers af. Since the solution is only

Suppose the coefficients for the ground state satisfy th&lgnificant in the rangei< J1/N, we make the approxima-
condition tion that terms in the potential that are quartic or of higher
order inu are small perturbations upon the quadratic term,

Ny+1 ON N, and can be neglected. In this case, the func
|Cn,+1—Cn,[<Cy, d b lected. In th the functd

. _ _ =C(u)exp(— 7u%/2) satisfies the equation for the modes of a
It is then useful to construct a functidd(u), defined over  simple harmonic oscillator:

the real numbers, such th@(u)zCN1 at the discrete points

u=N"%(N;—N/2), and such thatC’(u)|<NC(u). Given —C"(u)+ P+ A UC(u)=(n+7)C(u), (16
this assumption of smoothness, a coefficient of the form

Cn,+ps wherep is a small integer, is well approximated by where, after expanding tig andJ, to leading order in M,

1 3
E/N_ Ell+ 612+ Ng ZTO+T1+ ZTz):|
=2N? ,
7 — 1~ Ng(T,+T,)
2N?2

2_

— €1~ Ng(T1+Tp)

, 17

7
ZE—S) T2)

(2—%) (—elz—Nng)JrNg(ToJr

T=2.
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Thus the solution foC(u) that minimizess, thereby mini-
mizing the energy, is a Gaussian,

1 1 —u2/40?
C(U)= \/_N me ) (18)
with width
1 1 19
o= , 19
2VN V- a+ A2+ B
where
4
3 — €10 Ng Tl+ §T2
A: ANt ]
2N — €15~ Ng(T1+Ty)
3 1
— €10 Ng T1+ ETZ_ ETO
B= )
— €1~ Ng(T1+T>)
and with energy
— €15~ Ng(T1+T»)
E:N 4N20.2 +(€11+ 612)
1 3

The variance i\, for this solution is simplyN o, while the
degree of first-order spatial coherence is given by

cW=g" 1/80-2N?

1+ ! 202 21
N2 (21

In the absence of any Dbarrier, |e;)
>NgTy,Ng|T4|,NgT,, and it can be verified that E419)
predicts the appropriate value for this limit, namelyN;
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B. Two-coefficient approximation

At large barrier strengths, we make use of the following
conditions:

|yl<1,
where (22
N/N
> §+1 (—€—g(N-1)Ty)
7= gTo
and
|¢]<1,
where (23
(= N29T2

/NN '
> E"‘l (—e—9g(N=1)Ty)

The first of these conditions is always satisfied for suffi-
ciently strong barriers, since in the limit of an infinitely
strong barriere;,=T1=0, while T, is finite. Moreover, we
have numerically verified that the second condition holds at
sufficiently large barrier strengths for a variety of external
potentials. Within the domain of applicability of these con-
ditions, we seek coefﬁcient@,\,1 that satisfy the recurrence

relation(7) to first order iny and{. Dividing the recurrence
relation bygT,, one finds that all terms involvinl?gT,
have a magnitude on the order ¢f and can therefore be
neglected. In this limit, the following set of coefficients are a
solution:

N

Cn,=V1-297 forNy==

N N
Ni=5+1, 5—1

~/N/2, the value for a single condensate. As the barrier

strength is increased, the magnitudesegf, T, and T,

decrease, while the magnitude ©f does not vary signifi-

cantly; it therefore follows from Eq19) that AN, will de-

crease with barrier strength. WheiN, falls below 1, the
assumption of smoothness breaks down. Thus the range of

validity of the continuum approximation iAN;=1 or,
equivalently,cY=0.88.

If the potential is such thatg|T;|,NgT,<| e, continues
to hold as the barrier strength is raised from zero, then t

leading order in M the expression fos simplifies to

1 1

2N [N gT, |
1+§(—€12)

o=

=y for 5 5 (24
=0 otherwise.
The energy in this case is
E=Nej + w—z«yz)gn. (25)

We refer to this approximation as thevo-coefficient ap-

(g)roximation and we dub any state of the form of EG4) a

perturbed dual condensat&or such a state]*) and AN,

are given by
2
C(1)=27\/1—272\/1+N, (26)

depending only on the ratio of the interaction energy to the
splitting between the symmetric and antisymmetric levels oKeeping terms to first order iry, and to leading order in
the trap. powers of 1IN, we haveC Y=2y. The range of validity of
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the two-coefficient approximation is the range of barrier =60
strengths for whictt Y<1 andAN;<1.

An alternative manner of deriving this solution that is
perhaps more physically intuitive, is to begin by assuming a
state of the form of Eq(24) and showing that the value of
that minimizes the energy is indeed the value given in Eq.

(22). We begin by recalling the form dfi,, exhibited in Eq.

(3). Assuming thatZ|<1, theT, term in (H,) can safely be
neglected. If we introduce the operators

=45

nl:Nl_E, o=30
AR || ||
n2:N2_ E,

o=15
then we find that

(F2)=Equart €12+ gT1(N—1))ala,+ala;)

+39To((n5)+(n3)),
i
whereEg 4 is the energy of the dual condensate. Since the
magnitude of the cross-interaction term involviig only : . .
depends on the many-body state through expectation values -20 . [om] 20 35 ?\? 65
11

1

of bilinear operators, this term, together with thg term,
can be considered as an effective single-particle energy. To g1, 1. Numerical solutions for the single-particle wave func-
first order in-y and to leading order in I, the perturbed tions ¢,(r) and¢,(r) and the coefficient€, for N=100 particles
dual condensate hdaja,+aja;)=2yN, and consequently ang  double-well potentials  with barrier strengths  of

it has an effective single-particle energy benefit over the dual o, 15, 30, 45, and 60 in units aff.3w,/m. The remaining pa-
condensate of N(—€1,—gNT;) (this quantity is positive rameter values are specified in the text. The dotted curve is the
at the barrier strengths of interest, singe<<O and typically  external potential along theaxis U(x,y=0,z=0) in units of% w,.
T,<0). On the other hand(n?)=(n3)=2y? for such a The solid and dashed curves agg(x,y=02z=0) and $,(x,y
state, corresponding to a self-interaction energy cost of 02=0), respectively, in arbitrary units.

2y2gT,. Thus the effective single-particle energy of the per-

turbed dual condensate decreases linearly witlwhile the

self-interaction energy increases quadratically with this pa- = mM( 02x2+ 02V2+ 0222 PR Y,
nergy quadratically S pa U(r) =m(wix*+ wyy“+ 03z°) + e . (28
rameter. The minimum occurs precisely whenhas the V2o

valueN(—e,,—gNT;)/29 Ty, which approximates the value
in Eq. (22) for N>1.

For typical double-well potentials, wheteg|T;|<|eq4,
v is well approximated byN(— €1,)/2g T, to leading order in
1/N. In this case, the transition from a completely frag-
mented condensate to one that shows some coherence acr
the barrier occurs when the number of particles times th
rbaet::c;)rc:]f ;2 ehgnr:/_ ir:gljcljigiglee(_wl?hnucg, tfc:)rthae gsisgr:nstﬁ;)ce“%? ,ﬁ]nee,[?g' otrppic with_ the trapping frequency of the axis of weakest

onfinement in the MIT trapp,= 0y = w,=2m7X19 Hz. In

and a fixed barrier strength, the degree of fragmentation d T turbat hi iy ¢ .
creases as the number of particles is increased but increas&S case our perturbative approach 1S good for up 1o approxi-

as the strength of the interaction is increased. materN=1OO pa_\rticles, and thi§ is the example we con-
sider. The scattering length éfNa is taken to b@g=3 nm

[13].
C. Numerical solutions In Fig. 1 we plot the profile along theaxis of the exter-
The form of the double-well potential in the MIT conden- Nal potentialu(r) and the wave functiong,(r) and ¢,(r),

sate interference experimeft] is well modeled by a term together with the coefficient€y for several values of the
that is harmonic along all three Cartesian axes, with frequenbarrier strength. Figure 2 displays the degree of first-order
cies wy, wy, and w,, respectively, to which is added a spatial coherencé, "), and the varianceyNy, in the number
Gaussian barrier of widtl§ and strengtha centered ax  of particles occupying the localized stafg as a function of
=0: the barrier strength. The generic features of these results per-

The parameter values appropriate for Rédfl are w,=2m

X 19 Hz, wy=w,=2mXx250 Hz, andé=6 um. Within
such a trap, criterioni8) for the applicability of our pertur-
g.give approach becomd$<100, which is much smaller
an the number of condensate atoms in their experiment.
e consider instead a larger trap, specifically, one which is
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gravity through a pair of slits, located symmetrically about

x=0. These slits can be formed by changing the shape of the
trapping potential, as long as this change is not so rapid that
excitations are induced, and not so slow that the system has

1.0 (a)

e 051 time to relax to a new many-body ground state. For simplic-
© ity of the analysis, we also assume that the particles on the
left and right are each given momentum translations of mag-

0.0 nitude 7k toward one anothefl4]. In the absence of such

T . T : T - translations, the interference pattern is simply more compli-
cated, and has been studied byt al.[4]. We make the
approximation that the interparticle interactions are insignifi-
cant during this expansion period. In this case, only the
single-particle wave functions evolve, while the coefficients
Cy, in the many-body staté) remain unchanged.

Suppose the slits are centered at points(x,y,z) and
r'=(—x,y,z), wherex is positive and chosen to be suffi-
ciently large so that|¢i(r)|<|@,(r)] and |@.(r')]
>|¢,(r')|. In this case, the single-particle wave functions

0 20 40 60 80 $+1(r) and ¢,(r) evolve to wave functions localized entirely

at just one of the slits. After the momentum translation and a
FIG. 2. (a) The degree of first-order spatial coherence across th@period of free expansion the single-particle wave functions

barrier,C‘?, and(b) the variance in the occupation number of one originating from the left and right of the barrier acquire com-

of the wells,AN;, as a function of the barrier strength, in units  plex phase factors X ande™ ' and magnitudes we de-

of 3w, /m for N=100 particles and the parameter values specinote by, (r) and,(r), respectively. For many-body states

fied in the text. The solid curve is the numerical solution, the dasheghat gre symmetric under a reflection abrut0, these mag-

curve is t_hg continuum approximation, and the dotted curve is th‘la'litudes are roughly uniform and equal in the far field of the

two-coefficient approximation. double slit, so that the many-body state in the far field can be
approximated by the many-body state prior to removal of the

sist for different choices of parameters in EB8) as well as trap, with ¢,(r) and ¢,(r) replaced bye’™ ande ¥ re-

for different choices of the form dfJ(r). spectively.

Also displayed in Fig. 2 are the values 6" and AN, We now imagine detectors in the far field that are as-
given by the continuum approximation, as specified by Eqssumed to remove atoms from the conden$&8. The prob-
(19 and(21), and given by the two-coefficient approxima- ability distribution over the position; of the first detection
tion, as specified by Eq$26) and(27), for the same choice s given by the expectation value of normally ordered field
of external potential. For their respective ranges of Va”dity’operators Pl(rl):(1/N)<\'I}T(rl)\i,(r1)>. The probability
the analytic approximations are found to fit the numericaldistribution over the positions, ,f,, . .. rn of the firstm

results extremely well. detecti ; ; by P™ =[(N—m)!/
From these calculations arise the following picture of the ?]?(\:ifl,?(?s)l{;(rg;ven@% )\(i,r(lrri ' .\.if,(r?))\if[((r )) njr)ﬁe
! L S)- - NI (1)) (ry)).

transition between a single condensate and a fragment ; % . .
condensate. Moving up from zero barrier strength, there is ensity of detection events that emerges in a single run of the
double-slit experiment has the forp?(r)=(N/m)=™, 5(r

range of barrier strengths over whicéh® is close to unity, . _ )
while AN, falls from its single condensate value @/2 to —r) W.h_ere .the' set of %03|t|on«$ri} is obtained from the
h probability distributionP™(rq,r5, ... r,). Of course, the

a value of 1. Moving down from infinite barrier strength, finit luti f listic detect b ted f

there is a range of barrier strengths over whgék andAN, Inite resofution of any realistic detector can be accounted for

are both much less than 1. Between these two domains, thed replacing th@ f“F‘C“O” in this expression W.'th a sgltably

is a narrow range of barrier strengths wherein the greatet roa(;jeped dlztr;\t,)vutlon,tr?s flqng as t?(tehrescilut;on IS flnerttthan

part of the transition irCY) is made. The barrier strengths € distance between he 1ringes ot the interierence patiern,
gwe difference will not be significant.

delimiting these domains can be estimated analytically usin In a single run of the double-slit experiment, both the

the approximations presented in this section. single and dual condensates typically yield a distribution
p™(r) with essentially the maximum possible fringe visibil-
IV. DISCUSSION ity. This is obviously true for a single condensate, and has
been shown to be true for a dual condensate in the seminal
paper of Javanainen and Y¢t5]. Thus the mere presence
Herein we consider a measurement of the first-order deef such interference is not indicative of a nonzero degree of
gree of spatial coherence. This is accomplished by a type dfrst-order coherence. However, suppose the experiment is
interference experiment that has been widely discussed in thepeated many times with the same initial many-body state.
literature[1,14—17. Essentially, it constitutes a double-slit In this case, the spatial phase of the interference pattern will
experiment for Bose condensates. The thought experimen@ry randomly from one run to the next if the initial state is
runs as follows. After preparation of the condensate, the trap dual condensate, while it will remain fixed if the initial
potential is removed and the atoms fall under the force obtate is a single condensdi€5]. We therefore expect the

A. Experimental signature of fragmentation
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degree of first-order spatial coherence to be revealed by th&ges the pattern of detections from an infinite number of runs
variancein the spatial phase of the interference pattern oveof the double-slit experiment, all prepared initially in the
many runs, or, equivalently, the fringe visibility of tleer- same many-body state, and each involving detection
age detection pattern over many runs. Indeed, if one averevents, one obtains

_ N
pm(r)=J d3ry- - -d3rm<a ;1 5(r—ri)> P™(ry,ro, .o fm)
N m
~m Zl f dr g ¥ PP (g, TS ,rm)=<‘I'T(r)\If(r)>. (29
|
The final equality follows from the fact that each element of V. CONCLUSIONS

the sum is simply equal té’l(ri_)' If the fringe visibility of A theoretical treatment of fragmentation in Bose conden-
the average detection patterp’(r), is evaluated for the gate5 must go beyond a mean-field analysis. For the case of
many-body state in the f"j(‘[)f'eld' it is found to be preciselyrepyisive interparticle interactions and a double-well trap-
equal to our definition o '*/, the degree of first-order spa- ping potential, we have proposed an approach wherein an
tial coherence across the barrier, and thus enables a measUg@mproximation to the many-body ground state is obtained by
ment of the latter. . a restricted variational principle. We have implemented this
Another possibility for an experimental study of fragmen- yroposal for the case of nearly noninteracting particles.

tation is a measurement of the d_egree of second-order spa_tlal The coherence properties that we have considered are the
coherence; this may be accessible through nonresonant ifgggrees of first- and second-order coherence across the cen-

aging[18]. tral barrier of the potential. The first of these quantifies the
variance over many runs in the spatial phase of the fringe
pattern arising from the interference of atoms on either side
of the barrier. The second is essentially the density-density
We close this section with a few comments on the effectorrelation across the barrier, and for the states we consider
of finite temperatures on the coherence properties of the conrjs 5 simple function of the variance in the number of par-
densate. The excited states of the system are not in genefglies in one of the wells. We find that as the barrier strength
well approximated by a state of the form of HQ). None- i jncreased, this variance is continuously squeezed down
t_heless it can be shown f[hat at infinite barrier strength_ th?rom its value for a single condensate. The degree of first-
first-order degree of spatial coherence across the barrier (§qer spatial coherence is close to unity when this variance is
zero f.or thermal equ|I|br|u.m_a.t any finite temperature. T,hegreater than 1, but thereafter drops off rapidly. Above a cer-
proofis as follows. For an infinitely strong barrier the Hamil- t5i critical barrier strength we find that both quantities be-

tonian is separable into two terms, each involving only 0p-come mych less than 1, indicating that the condensate is
erators pertaining to particles on one side of the barrier. Conéssentially completely fragmented.

sequently, any nondegenerate energy eigenstates are tensofye have discussed how the degree of first-order coher-

products of states describing particles on one side of thgnce might be measured through interference experiments,
barrier only. For any set of energy eigenstates that are deyq argued that a significant effect should be present even at
generate, the subspace of Hilbert space spanned by this sgfite temperatures. A concern, however, is that the ground
has a basis of such product states. Thus one can always idefizte might be difficult to prepare if the relaxation time of the
tify a basis of energy eigenstates that are product states Q{stem is long compared to the lifetime of the condensate.
this sort. S|rA1ce the density operator that represents thermaghis could arise if the only way for the particles to be redis-
equilibrium, p, is a mixture of these energy eigenstates, weributed across the barrier is by tunneling through it. How-
will necessarily have Tp¥(r)¥(r'))=0 if r andr’ are  ever for numbers of particles that are not too large, this tun-
on opposite sides of the barrier, and consequently the degréeling time need not be restrictive. For instance, in the
of first-order spatial coherence across the barrier for such example presented in Sec. Ill C, the single-particle tunneling
mixed state is zero as well. In the absence of any barrier, a@sme at the barrier strength whe@®=0.88 is approxi-
long as the temperature is small enough that most of thenately 1 min, while at the barrier strength whéré)=0.1 it
particles are in the lowest single-particle energy level, thas roughly 1 h.

first-order degree of spatial coherence for the thermal state Our variational approach can be extended in a straightfor-
should be close to unity. For such temperatures, if the barrieward manner to the determination of the many-body ground
strength is varied from zero to infinity, the first-order degreestate in systems where the external potential has an arbitrary
of spatial coherence of the thermal state will vary fromnumbemn of minima. In such cases, one would simply intro-
nearly unity to zero. Thus a significant transition must stillduce states that are arbitrary superpositions of Fock states
occur at such temperatures. where up ton single-particle wave functions are occupied.

B. Finite temperatures
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