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Quantum statistics of atoms in microstructures
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This paper proposes groovelike potential structures for the observation of quantum information processing
by trapped particles. As an illustration the effect of quantum statistics at a 50-50 beam splitter is investigated.
For noninteracting particles we regain the results known from photon experiments, but we have found that
particle interactions destroy the perfect bosonic correlations. Fermions avoid each other due to the exclusion
principle and hence they are far less sensitive to particle interactions. For bosons, the behavior can be explained
with simple analytic considerations which predict a certain amount of universality. This is verified by detailed
numerical calculation§.51050-29479)03205-9

PACS numbds): 03.75.Dg, 03.67%a, 03.65.Ge

[. INTRODUCTION through the device and interact with its structures and each
other. This may well provide an opportunity to design quan-
The duality between wave and particle aspects is one dum apparatuses, process information, and perform computa-
the central issues of quantum mechanics. Much has bedions. The advantage is that both the structures and the input
made of the particle aspects of photons, but the recemdtates are easy to control in an atomic environment. An
progress in cooling and controlling atomic motion hasequivalent point of view is expressed by Schmiedmayer in
brought forward their wave mechanical behavior in a promi-Ref. [7].
nent way. The new field of atomic optics has emergfEd A next step in the experimental progress would be to ob-
With modern cooling and trapping techniques, one carserve the quantum character of atofos possibly ions An
envisage controlled motion of atomic particles in structuresessential quantum characteristic of particles is their statistical
whose mechanical dimensions match the heterostructurdshavior. The difference between bosons and fermions mani-
used in electronic circuits. Neutral atoms can be stored ifiests itself dramatically in many situations. Optical networks
magneto-optical traps, and hisch and his group has re- can be fed by a few photons only, and their quantum aspects
cently showr(2] that such traps can be made very smalt, have been utilized in experiments ranging from secure com-
of the order of 18um. This requires high precision in the munication to tests of fundamental issues. Recently Zeilinger
fabrication of the solid structures defining the dimensions ofand his groug10] have tested the behavior of two-photon
the trap. Modern lithographic technology suggests that suchtates at beam splitters. Using the overall symmetry proper-
structures could be made even much smaller, and then wées of the states, they have been able to display both sym-
can imagine experiments in traps of genuinely microscopignetric and antisymmetric behavior.
dimensions, where quantum effects would dominate the par- Similar experiments are in principle possible with elec-
ticle dynamics. Hasch has also suggested that such trapsrons. In nanostructures, one can fabricate the devices simu-
could be made into channels and structures, thus providing lating optical components, but it is far less trivial to launch
tool to design arbitrary devices at the surface of a substrataingle conduction electrons in well controlled states. Yama-
Similar structures can be constructed by combiningmoto’s group, however, has been able to show quantum cor-
charged wires with evanescent wave mirrf8s4] or mag- relations in an experiment which is the analog of a beam
netic mirrors[5]. Such combinations can be used to build upsplitter for photong11].
the structures utilized in nanoelectronics. The use of wires to In this paper we give an example of the multiparticle ef-
guide atomic motion has been investigated by Denschlag anfécts observable when particle states are launched along po-
Schmiedmayel6]. Schmiedmayer has also discussed the uséential grooves on a surface. The specific phenomenon
of such structures to construct quantum dots and quantumingled out for investigation is the effect of particle statistics
wires for atomg7]. at a beam-splitter-like coupling device. The corresponding
Alternative ways to achieve guided motion and possiblyeffect with photons is described in Sec. Il as a motivation. In
controlled interaction between atoms is to utilize hollow op-Sec. Il we present the details of the model chosen and a
tical fibers with evanescent waves trapping the atoms to nasimplified analytic treatment demonstrating the main features
row channels at the center of the fij89]. These can even- expected of this model. In Sec. IV we carry through a nu-
tually be fused to provide couplers similar to those used fomerical analysis of the situation, for one particle as a two-
optical signal transmission in fibers. Also the pure atomicdimensional propagation problem, but for two particles in a
wave guide achievable by the use of hollow laser modes magaraxial approximation. For noninteracting particles, the ex-
be used. pected behavior is found, but when particle interactions are
We see these methods as an opening to novel and innadded, the boson behavior is changed. For fermions the ex-
vative uses of particle traps. By arranging a network ofclusion principle makes them essentially insensitive to the
grooves on a surface, we can launch parti¢lesve packefs interaction. An unexpected feature is found: the sign of the
into the various inputs of the system, let them propagaténteraction is irrelevant for the effect. In Sec. V this is ex-
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FIG. 1. Schematic drawing of a beam splitter. The incoming
modesa;, ,b;, are piloted into the outgoing modes;,b,,; accord-
ing to the beam-splitter relations.

FIG. 2. A contour plot of the beam-splitter potentid(x,z).
plained within our simple analytic model, and, as a conseThe two channels approach each othez=ap. The scaled variables
quence, a certain universality is proposed: When the intera& andz used in the numerical calculations are relateck tand z
tion strength over the tunneling frequency becomes of th@ccording to Eq.(19). The scaled dimensionless oscillator fre-
order of /3, the noninteracting bosonic behavior is essenquency isa=30. The distancel(?) between the two valleys is
tially destroyed. This is verified by numerical calculations, chosen as in Eq26), with dy=1.8903 andp=1. Two cross sec-
reported in Fig. 13. Finally Sec. VI presents a discussion ofions of the potential a=0 andx=2.5 are also shown.
parameter ranges in real materials, where our effects may be
observable, and summarizes our conclusions.
|\P>:agutbgurjo>:|na,0ut:1!nb,out: 1>’ (5)

Il. MOTIVATION
. . and they always remain separated.

In order to show the opportunities offered by atomic net-  \ygjhset al.[10] have been able to verify these properties
works, we investigate the manifestations of quantum staliSgyperimentally using photons. As the requirements of quan-
tics on an experiment emulating the behavior of photons i,y statistics refer only to the total wave functions, they
beam splitters. This is a straightforward approach, which €npaye heen able to realize both the symmetric and the anti-
ables us to display the potentialities and limitations of S“Cfbymmetric cases, thus offering the behavior of both bosons
treatments. _ o and fermions.

Our work has been motivated by the statistics displayed  ppotons are ideal for experiments, they do not interact
by a 50-50 beam splitter, which has been used in the experiqytyally and they propagate essentially undisturbed in
ments by the Zeilinger groufl0]. When two particles are \acyum. As models for quantum systems, they have the
directed into the beam splitter in the incoming modes in Figqrawhack that they cannot be localized, their wave packets
1, they are piloted into the outgoing modes according to the,re f rather elusive character, and the influence of particle
beam splitter relations interactions cannot be established. Thus we have chosen to

+ discuss the propagation of massive particles through beam-
out| L ) (1) splitter-like structures. As explained above, such experi-
blul 2 ’

ments may be performed with atoms or electrons in traps of
microscopic dimensions. We can thus investigate the propa-

see Ref[12]. When one particle is directed into each incom- gation of wave packets through these structures, explore the

ing channel, the state is role of quantum statistics and switch on and off the particle
interaction at will.

+
in

biy

1 i
—-i 1

|¥)=a] b} |0), 2

where|0) is the vacuum state. Without assuming anything Ill. MODEL

about the statistics of the incoming particles, we can express e consider particles moving in potential wells which
the state(2) in terms of the outgoing states by inverting the form grooves over a two-dimensional surface. These may
relation(1) as cross or couple by tunneling when approaching each other,
i 1 thus forming a network of potential channels emulating a
_ T2 T2 TRt linear optical system.
W)= 2[(a°“t) + (bou)°110) + 2[a°“t’b°“t]|0>' & Herepwe cogsider two separate channels which run paral-
lel for z— * and approach each other in théirection, as
From this follows that boson statistics gives shown in Fig. 2. For simplicity we construct the potential
from two harmonic oscillators

i
WYy=—(|N, ou=2.Np.ou=0) *+ [Nz our=0Np ou=2));
| > \E(| a,out b,out > | a,out b,out >) 1
(4) U.(X)=zmw?

1 2
5 Xt—d) , (6)

2

the particles emerge together at either output. For fermions
we have so that a double well potential can be obtained by writing
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Y(t)=exp —iHt/h) ¢,

1 — .
= —exp(—iEt/h) (Y yst e My,)

\/ \/

Vg v, =exp(—iEt/A)(cosQte, +isinQteg). (12
FIG. 3. Symmetric and antisymmetric eigenfunctighsandy,, ~ This displays the expected flipping back and forth between
of the double well. the two wells. For
U, (x,2)U_(x,z _T
U(x,2)= +(%2)U_(x.2) Qto=7 (13
U, (x,2)+U_(x,2)
1 [x+d(2)/2][x—d(2)/2]? the coupling performs the action of a 50-50 beam splitter.
e 2 B . .
me X+ d(2) 2]+ [x=d(2) 122 (7 We now move to consider the action of such a potential

configuration on a two-particle initial state. We first choose

i ) the bosonic one
If we now choosed(z) in a suitable manner, we can

achieve the potential behavior shown in Fig. 2. Note that at 1
the minima, the potentiaU(x,z) essentially follows the ‘I'SZ—[<PL(1)¢R(2)+<PL(2)<PR(1)], (14
shape of the smaller potentitl._. . V2

We consider a wave packet sitting stationary near the bot- _ )
tom of one well atz=0, where the distance between the where the argument denotes the coordinates of the particle.
wells is at its minimumd,. The particle can then tunnel ThiS can be expressed as
across the barrier with the rate

1
\IfS‘:Ews(l)ws(a—wAu)wA(z)], (15)

T~exp{—J’ V2mU(x,0)dx|~exd — «vU(0,0)dg],

(8) which can be evolved in time straightforwardly to give

where « is some constant. From Ed7) we see that ) g 1 =
exp(—iHtg/h)Wo=—=exp —i2Ety/h)

U(0,0)=d3 so that we expect 2
In T~ — k'd3+ const. (9) X [e2Moyg(1) Ys(2)
_ a—i20t
In order to acquire a heuristic understanding of the phys- e oY (1) Ya(2)]
ics involved in the coupling of the groovesat 0, we look i .
at the lowest eigenfunctions of the double well potential. = —=exp(—i2Eto/f)[oL(1) ¢ (2)
These are expected to be symmetiig, with energyEg, V2
and antisymmetricys, , with energyE,, as shown in Fig. 3.
We haveE,>Eg and hence we write T or(2)er(1)]- (16
_ As we see, the bosonic two-particle state works as in(#q.
EA=E+AQ, both particles emerge together.
(10 In the fermionic case we have

ES: E_ﬁQ,

where 2) is the tunneling frequency.
Using the eigenstates we form the localized states

1
WS=E[¢L(1>¢R(2>—¢L(2>¢R<1>]

1
1 =E[t/fA(l)ws(Z)—ws(l)wA(Z)]- 17
@L:E(‘ﬂs"' ),
Because both statef, /s and ¢y, evolve with the energy

2E, W remains uncoupled to other states. Thus the fermi-
ons emerge at separate exit channels as expected.

11

1
@R:E(‘//s_ n),

IV. NUMERICAL WORK
where the subscriptls (R) denote left(right) localization.
We can easily integrate the time evolution by using the
energy eigenstates. If we now assume that we start fspm The Schrdinger equation in the two-dimensional system
at timet=0, then is of the form

A. The Schradinger equation
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g 2 2 P 14
in—W(xzt)=| -5 2o +U(X,2) [¥(X,2,1). p— N
(18) t='8 10 X
_______________ //’\\_ _2
As a preparation for the numerical work, we introduce the 14
scaling parameters and ¢ giving the dimensionless vari- E—
ables I
x=x/£, t=-4 - 10 X
____________ Seend _2
z=2¢, (19 R
t=t/7,

4
t= 10 X

p=mp/m¢. | AR

We apply this to the one-dimensional oscillator Hamiltonian 14
2 1 14
P 2,2 42
H=-—+ smwX 2 )
2m 2™ 20 g [ET
and find the Schidinger equation =
ht\d p? 1. )
i|— | =¥=|5+-0%%|V. 21
m§2> at 2 2 @) - 2
=8 g X
The dimensionless oscillator frequency is givends w. =2
This shows that choosing the scaling units suitably, we can . 14
tune the effective dimensionless Planck constant
zZ
%= hr 22) FIG. 4. Time evolution of a two-dimensional Gaussian wave
- m§2' packet propagating through the 50-50 beam splitter. The frame
shown is centered around the wave packet moving inztbeec-
To check the consistency of this we calculate tion. The dashed lines represent the minima of the potential. The
potential is given by the scaled version of E@) with d(z) as in
. 1\[ 7 . Eq. (26) where »=30. The scaled oscillator frequency ds=30;
[x,p]=(g)(m—§)[x,p]=|ﬁ. (23)  %-s.

This gives us a way of controlling the quantum effects in theb Inf the_foII?V\(mg d|sc:‘ju35|on,. V(\;? use thhe fsca:]ed vana_bles,
numetical calculations. ut for simplicity, we do not indicate this in the notation.

In our numerical calculations we employ the split OperatorWhenever variables are assigned dimensionless values, these

method[13] refer to the scaled versions.
In order to achieve beam splitter operation, we let the
ex —i(T+U)At/h]~exd —iTAt/A ]exd —iUAt/A]. distance between the potential wells vary in the following
way:
(24)
d(z)=2+dy— (26)

The corrections to this are given by coshz/n)’

At2 At 202 [Xp+px which inserted into Eq.7) gives a potential surface as shown
[TU]l—~= ) ( = (25)  inFig. 2. To test its operation as beam splitter, we let a wave
2 4 h packet approach the coupling region in one of the channels,

and follow its progress through the intersection numerically
In order to achieve satisfactory numerical accuracy, thisss a two-dimensional problem. The result is shown in Fig. 4.
should not be too large; in our calculations, witht e see that the parameters chosen lead to ideal 50-50 split-
=0.001, =30, andh =6, the expectation value of expres- ting of the incoming wave packet. The progress of the wave
sion (25) is of the order of 10%. Decreasing\t or the grid  packet through the interaction region is steady and nearly
spacing has been found not to change our results signifidniform, and no backscattering is observed. This suggest
cantly. simplifying the situation so that the motion in tkelirection
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appears, and it is replaced by a potential sweeping by with
velocity po/m. This is what we call the paraxial approxima-
tion.

Taking the parameters from the integration in Fig. 4, we
can obtain the beam splitting operation also in the paraxial
approximation as shown in Fig. 5. The transfer of the wave
packet from one well to the linear superposition is shown in
Fig. 6. This proves that the potential configuration works
exactly as in the analytic result2).

Now the integration is one dimensional for a single par-
ticle, and it is easy to investigate the tunneling probability as
a function of the parameters. In Fig. 7 we display the transi-
tion rateT as a function of the parametd§, which controls
X the coupling between the wells. For small valuéé,<3, we

i _ ) are in a coherent flipping region; the wave packet is trans-

FIG. 5. Time evolution of a wave packet propagating throughtereq hack and forth between the wells and resonant trans-
the 50-50 beam splitter in the paraxial approximation. The Wave i ion occurs. For larger valued2>3, the analytic esti-
packet is incident in one channel and splits into two equal parts, o ) -

Parameters are as in Fig. 4, the only difference is that in the poten- ate O.f a logaritmic depenfjence in H) is seen to h.OId
tial U(x,2), z is replaced bytp,/m according to the paraxial ap- approxmately. Our calculations work di=1.8903, which
proximation. The initial wave packet is®(x)=N exp{—(w/27%)[x givesT=1/2.

—(1+dy/2)12.

////";&\'
P

B. Effects of quantum statistics

:zr:ﬁ)slizig k:ﬁ;jcgrftﬁ]n:ﬁ/;é?gz’ioanndlft?heefw:ie:ar:glr(g tpirsob- We can now integrate the propagation of a two-particle

put y In the ; N pact wave function by choosing the initial state to be combina-
long enough in the direction, its velocity is well defined, ..

X L tions of
and this should be a good approximation.
The implementation of such a paraxial approach becomes 2

imperative when we want to put two particles into the struc- qu(R)(x) =N exp{ Ty } ] , (30
ture. The full two-dimensional integration would require the

treatment of four degrees of freedom, which is demanding on . o
the computer resources. With the paraxial approximationWhere the+ (—) refers to the particle entering in the left

two particles can be treated by a two-dimensional numericafight) channel. For bosons, this is used in the combination
approach, which is within the resources available. (14) and integrated in the potentiéf), where thez depen-

To introduce the paraxial approximation, we perform adence is replaced by iadependence according to E@9).

Galilean transformation of the wave function to a comovingThe result is shown in Fig. 8. At=—10, the bosons enter
symmetrically in the two input channels, i.e., they have dif-

1
X+ 1+ Edo

frame : _ | f - _
ferent signs for their coordinates. After being mixed at time
; 2
= ' Pot 2 1
P(X,2,t) = p(X,s,t)ex 7 Poz oml | (27) T T T T T
where . 08 r .
t =
s=2— 2 29 B 067 1
m o
£ f
The initial momentum in the direction is denoted by,. 8 04 r i i
The new wave function is found to obey the Salirger (' !
equation 02 L , |
ih i (X,s,t) i + ,92) 0 ' ! "i' ! :
ih—o(X,st)=| —z=| —+—
at” amiax® - os® 8 4 0 4 3
t
+U X,g+% o(X,s,1). (29 !
FIG. 6. The probabilities, as a function of time, to find the

particle of Fig. 5 in the rightfull line) and left(dashed lingvalley

For a well defined momentum,, the wave packet is very of the beam splitter. The particle is incident at the right input and
broad in thes direction and its derivatives with respectdo  emerges with equal probability at the left and right outputs. Param-

may be neglected. The corresponding degree of freedom digters as in Fig. 5.
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FIG. 7. Tunneling probability as a function of the square of the
minimum distance between the valleg§. The point of 50-50
beam-splitter operatiod,=1.8903 is indicated with dashed lines.
For small values oﬁg, the wave packet is transferred back and
forth between the wells and resonant transmission occurs. For larger
values,d§>3, the relation(9) is seen to hold approximately.
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FIG. 8. Two bosons propagating through the beam splitter.
Snapshots of the two-particle wave functioh|? at different times

42
40 X
©@ -
® o |
40 x
o ® 2
40 x
10"
o @ 1
40 x
©® o 22
©® -2
40 X
42
4 2 0 4
Xy

PRA 59

t=-10 -

o
Sy

t=-0.2 40X

t=0

1
o

X2

t=0.2 -

o

X2

t=10 -

o

X

FIG. 9. Two fermions propagating through the beam splitter.
Snapshots of the two-particle wave functioh|? at different times
are shown. On the horizontal axes we see the coordinate of particle
1; the vertical axes refer to particle 2. The two particles enter and
exit in different input and output channels. Parameters as in Fig. 5.

t=0, they emerge together with equal strength at both output
channels, i.e., their coordinates have the same sign. This re-
sult fully reproduces the behavior expected from bosons at a
50-50 beam splitter.

We can, however, also test the fermionic case by using
the statd17) as the initial one. The result is shown in Fig. 9.
Neart=0, the wave packets follow the potential wells, but
they remain separated and emerge at different outputs as ex-
pected. Fermions do not like to travel together.

We have thus been able to verify the properties of a 50-50
beam splitter on massive particles represented by wave pack-
ets traveling in potential structures. The calculations in Figs.
8 and 9 do not, however, include any particle interactions.
We can now proceed to include these, and evaluate their
effect on the manifestations of quantum statistics.

When we introduce the interaction, we have to decide
which type of physical system we have in mind. Conduction
electrons or ions interact through the Coulomb force whereas
neutral atom interactions may be described by a force of the
Lennard-Jones form. In both cases, the interaction is singular
at the origin, and it has to be regularized there. We do this by
introducing the variable

ro=vr2+e% (31)

are shown. On the horizontal axes we see the coordinate of particle ) ) . )
1; the vertical axes refer to particle 2. The two particles are seer his makes the interaction energy finite when the particles

incident in different input channels; they mix aroutd0 and fi-
nally exit together. Parameters as in Fig. 5.

overlap, but does not affect the main part of our argument in
other ways.
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With this notation the Coulomb interaction is written
Y, 12
Ve(n)=— (32 =10 10%
Me 42
and the Lennard-Jones interaction is —
b2 [p)\6 72
Via(r)=Vo T _(E }; (33 t=-0.2 - (2) X
this contains the additional range paramétein both cases, =
the strength of the interaction is regulated 4y 1,

It is straightforward to integrate the Schlinger equation =0 1o x
with the two-particle interaction included, and look how its 2
increase affects the correlations imposed by quantum statis- 7
tics. For fermions, the effect is essentially not seen in the =
parameter ranges we are able to cover. As seen from Fig. 9, N
the particles never really approach each other, and they re- =0.2 1o x
main separated due to their quantum statistics for all times; ’ 2
the interaction does not affect them. 12

For bosons the effect is different. We have investigated =
their behavior for a range of interaction parameters and find ® 2
that an increase in the interaction does destroy the simple t=10 10 x
behaviors found for noninteracting ones. The result of such ® 1,
an integration is found in Fig. 10. Compared with Fig. 8 this CL
shows that now the particles appear in separate channels with 4 2 0 2 4
about the same probability as in the same channels. Thus the X,

statistical effect has been destroyed. Figure 11 shows how

the result emerges during the time evolution; the system tries FiG. 10. Two bosons propagating through the beam splitter;

to achieve the ideal case, but settles to the final state olinteraction is included. Snapshots of the two-particle wave function

served in Fig. 10. | ¥ |? at different times are shown. On the horizontal axes we see the
Figure 12 shows how an increase in the interactiorncoordinate of particle 1; the vertical axes refer to particle 2. The two

strength destroys the ideal behavior. This is drawn using a@articles enter in different input channels and mix arowsd.

Lennard-Jones potential, but the behavior is similar for othewith no interaction the two bosons were always emerging together,

cases we have investigated. as in Fig. 8. Now there is a finite probability also for the bosons to
One unexpected feature emerged from our calculationggmerge in separate output channels. The interaction is given by Eq.

The destruction of the ideal behavior turned out to be inde{32), with V,=50 ande=1. Other parameters as in Fig. 5.

pendent of the sign of the interaction. One may have ex-

pected an attractive interaction between the bosons to en-

hance their tendency to appear together, but this turned out

not to be the case. In order to understand this feature we have

to turn to our simple analytic argument in Sec. Il and inves- 1 . . — . .
tigate the interplay between two-particle states and the inter-
action. L:
>, 08} ! .
V. STATISTICS VERSUS INTERACTIONS E
In order to introduce the particle interaction, we choose a ,B 06 | {\ .
convenient basis for the two-particle states. As the first com- 3
ponent we choose the bosonic stétd) "8
04 \/ ]
‘-1 ' 3
1 =
U=—=[eL(1)er(2) + ¢ (2)pr(1)]. (34
V2 02 t ]
In addition, there are two more bosonic states, where the }
particles enter in the same channels 0 1 L 1 . L
1 8 4 0 4 8
Up=—= 1 2)+ @Rr(2 1 35
2 \/E[QDL( )eL(2)+ er(2) pr(1)] (39 t

1 FIG. 11. The probabilities, as functions of time, to find the two

1 2)+ (1 2 36 bosons of Fig. 10 in different valley§ull line) and in the same
ﬁm( V¥a(2)+¥s(1)ds(2)] (36) valley (dashed ling
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1 both particles sit in the same potential groove. In the states
u; andu, both grooves are occupied and because they are at
their closest az=0, we subtract the mutual interaction en-
0.8 ergy across the separating barrier to obtain the pure local
E;. interaction energy. The second line results if we approximate
= 0.6 both ¢, and pg by a Gaussiar with the same width. From
:_5‘ ) Eq. (16) we see that only the stateis andu, are coupled by
< the tunneling rate Q. Thus if we express the state by
o)
8 0.4 ¥=a,u;+a,u,+asuz+asuy, (40)
= 0.2 the state vectdra; ,a,,az,a,] evolves with the Hamiltonian
2E  —2hQ 0 0
0 —2hQ 2E+2v O 0
0 0 2E+2v O
0 0 0 2E

FIG. 12. The probabilities, as functions of interaction strength,

for two bosons to emerge at differetitll line) and same&dashed -V —-2r0 O 0

line) output channels. The Lennard-Jones interaction is given by ) v 0 0

Eqg. (33), with b=0.25 ande =0.2. Parameters for the potential are —2E4+V4+ (41)
as in Fig. 5. 0 0 v 0|

and 0 0 0 —-v

1 The constant part does not affect the coupling between the
U3=T[(,D|_(1)QD|_(2)—(,DR(Z)QDR(:L)] states, and the amplitudes anda, decouple. The remain-
2 ing ones flip at the effective rate

1
- 1 —
= E[lﬂs(l)lﬂA(z)WLlﬁA(l)lﬂs(Z)]- (37 Qeﬁ:?/492+\/2/h2_ (42)
As the last component we have the fermionic basis functiorrhjs result shows that the new parameter replaéinign Eq.
(17) (10) is Q, implying that the perfect boson behavior is
L expected to be destroyed for
UAZE[(PL(]-)‘PR(Z)_(PL(Z)QDR(]-)]- (38) v
TV J3=1.73. (43)

Together the functionéu;} form a complete Bell state basis
for the problem. They are also convenient for the introduc-This is in approximate agreement with the result shown in
tion of particle interactions. In the statas andu, the wave  Fig. 12. By inspecting Fig. 11, we can also verify that the
functions overlap only little, and the effect of the interaction flipping does occur faster when we switch on the interaction,
is small. For the statas, andug they sit on top of each other as expected from Ed42).
and feel the interaction strongly. We treat this in a Hubbard- |n the simplified analytic treatment, the only influence of
like fashion[14] by sayinglhat the energy of the latter states;po potential was through its strendN_A|. Hence we expect
is changed by the value\2:V,. Because the overlap be- {he results to scale with the parametéV|(22Q) where
tween ¢ and ¢ is small, we have yy,Vu)~(us,VUs)  230=E,—E,. The probability to emerge in the same out-
and (Uz,Vuz)~(us,Vus), and we can use the definition ;¢ channels should essentially depend on this only: a certain
1 universality is expected.
2V = =[(Uy,VUy) + (U3,VUz) — (Ug,VUuy) — (Ug,VUy) ] In Fig. 13, we have plotted this probability for a variety of
2 potentials including both Coulomb and Lennard-Jones ones.
As we can see, the behavior is very similar, Bf|(2:Q)
%f f @(X)?e(y)?V(]x—y|)dxdy ~1.7 the probability has decreased to less than 10% in
agreement with our expectation. This verifies the degree of
) ) universality achieved. For comparison, we also used the
—J j @(X)*p(y—do)?V(|x—y|)dxdy, (39 simple analytic theory to obtain the points along the curve. In
this treatment, 2 was assumed to be constant during some
whereV is either a Coulomb or Lennard-Jones interaction finite coupling timet, according to Eq(13). By inspecting
The first terms give the effective interaction energy whenFig. 6, we conclude that should be of the order of unity.
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1 T T T T T T T potential in a hollow optical fiber, a few tens of m8,9].

Taking p,= 1000 yields a beam velocity of 1.3 m/s in tke
direction.

If we consider a mesoscopic electron beam splitter built
on GaAs,¢ could be of the order of 40 nm, which means that
the closest distancd, between the valleys is 80 nm. This
would correspond ta=6 ps, i.e., the electron goes through

the device in a few picoseconds. Wifly=30, the kinetic
energy of the electron due to the motion in theirection
would be of the order of 0.01 eV. A displacement of 100 nm
from the center of one valley in thedirection corresponds
to a potential energy increase of roughly 0.05 eV, in com-
o parison with the bandgap in GaAs, 0.115 eV.
0 L 1 1 L 1 d i The parameter ranges chosen in our illustrative computa-
0 0.5 1 1.5 tions may not be experimentally o_ptimal, but they indicate
) ) that the effects are not totally outside the range of real sys-
V/Zﬁg tems. Even if our calculations are based on a rather simpli-
fied model, we find them suggesting effects possible in real-
FIG. 13. The probability, as a function of interaction strength, iStic setups. The main problem is to prepare the appropriate
for two bosons to emerge at the same output channel for severfluantum states, launch them into the structures, and retain
different types of interactiorifull lines). We see that the perfect their quantum coherence during the interaction. With atomic
bosonic behavior is destroyed fo24 0~ 3=1.73. The param- cooling and trapping techniques, this may be feasible in the
eter ranges are=0.1 to 1 for the Coulomb interaction artld  Near future. For electrons the possibility to retain quantum
=0.2510 0.55=0.2 to 0.35 for the Lennard-Jones interaction. The coherence is still an open question.
numerical results are compared with that of the analytic treatment We have chosen to discuss the straightforward question of
(diamonds. In this model Z{) was chosen to be 8, and the time particle statistics at a beam splitter. This is a simple situation,
evolution in the subspadei, ,u,} was calculated. which, however, presents genuine quantum features. For in-
formation processing and quantum logic slightly more com-
Here 2.Q) was chosen to be 8, and the time evolution in theplicated networks are needed. Simple gate operation can be
subspacdqu,,u,} was calculated. This agrees best with theachieved along the lines described in Réf5], which was
numerical results for smal/: for larger values ofv the formulated in terms of conduction electrons, but similar situ-

probability
S o o
B~ fo ) oo

©

[\S}
T
@,
1

simple analytic treatment becomes invalid. ations can be envisaged for interacting atoms.
In this paper we suggest an analytic model, which can be
VI. DISCUSSION AND CONCLUSIONS used to analyze the behavior of particle networks confined to

potential grooves in two-dimensional structures as discussed
The actual values of, 7, m, andw depend on the physi- also by Schmiedmay€df7]. For complicated situations, the
cal system we have in mind. Our calculations are carried oufull numerical treatment rapidly becomes intractable and
at w=30 and% =6; the momentum in the direction of the  simplified qualitative tools are needed. We hope to have con-
incoming wave packet ip,= 30 orp,=1000. If we consider tributed to the development of such methods in the present

an atomic beam splitter for Rb atoms, setting the length scalBaPer:
£ to 100 nm corresponds to a time scalef 80 us accord-

ing to Eq.(22). A displacement of 400 nm from the center of

one valley in thex direction gives a potential energy increase  One of us(S.S) thanks Dr. Jog Schmiedmayer for inspir-
of roughly 10 mK, i.e., a transverse velocity of 0.15 m/s.ing discussions. M.T.F. thanks Dr. Patrick J. Bardroff for
This is to be compared with a typical height of the confiningfruitful discussions.
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