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Quantum statistics of atoms in microstructures

Erika Andersson, Ma´rcia T. Fontenelle, and Stig Stenholm
Department of Physics, Royal Institute of Technology, Lindstedtsva¨gen 24, SE-10044 Stockholm, Sweden

~Received 9 November 1998!

This paper proposes groovelike potential structures for the observation of quantum information processing
by trapped particles. As an illustration the effect of quantum statistics at a 50-50 beam splitter is investigated.
For noninteracting particles we regain the results known from photon experiments, but we have found that
particle interactions destroy the perfect bosonic correlations. Fermions avoid each other due to the exclusion
principle and hence they are far less sensitive to particle interactions. For bosons, the behavior can be explained
with simple analytic considerations which predict a certain amount of universality. This is verified by detailed
numerical calculations.@S1050-2947~99!03205-9#

PACS number~s!: 03.75.Dg, 03.67.2a, 03.65.Ge
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I. INTRODUCTION

The duality between wave and particle aspects is one
the central issues of quantum mechanics. Much has b
made of the particle aspects of photons, but the rec
progress in cooling and controlling atomic motion h
brought forward their wave mechanical behavior in a prom
nent way. The new field of atomic optics has emerged@1#.

With modern cooling and trapping techniques, one c
envisage controlled motion of atomic particles in structu
whose mechanical dimensions match the heterostruct
used in electronic circuits. Neutral atoms can be stored
magneto-optical traps, and Ha¨nsch and his group has re
cently shown@2# that such traps can be made very small,viz
of the order of 102mm. This requires high precision in th
fabrication of the solid structures defining the dimensions
the trap. Modern lithographic technology suggests that s
structures could be made even much smaller, and then
can imagine experiments in traps of genuinely microsco
dimensions, where quantum effects would dominate the
ticle dynamics. Ha¨nsch has also suggested that such tr
could be made into channels and structures, thus providi
tool to design arbitrary devices at the surface of a substr

Similar structures can be constructed by combin
charged wires with evanescent wave mirrors@3,4# or mag-
netic mirrors@5#. Such combinations can be used to build
the structures utilized in nanoelectronics. The use of wire
guide atomic motion has been investigated by Denschlag
Schmiedmayer@6#. Schmiedmayer has also discussed the
of such structures to construct quantum dots and quan
wires for atoms@7#.

Alternative ways to achieve guided motion and possi
controlled interaction between atoms is to utilize hollow o
tical fibers with evanescent waves trapping the atoms to
row channels at the center of the fiber@8,9#. These can even
tually be fused to provide couplers similar to those used
optical signal transmission in fibers. Also the pure atom
wave guide achievable by the use of hollow laser modes m
be used.

We see these methods as an opening to novel and i
vative uses of particle traps. By arranging a network
grooves on a surface, we can launch particles~wave packets!
into the various inputs of the system, let them propag
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through the device and interact with its structures and e
other. This may well provide an opportunity to design qua
tum apparatuses, process information, and perform comp
tions. The advantage is that both the structures and the i
states are easy to control in an atomic environment.
equivalent point of view is expressed by Schmiedmayer
Ref. @7#.

A next step in the experimental progress would be to
serve the quantum character of atoms~or possibly ions!. An
essential quantum characteristic of particles is their statist
behavior. The difference between bosons and fermions m
fests itself dramatically in many situations. Optical networ
can be fed by a few photons only, and their quantum asp
have been utilized in experiments ranging from secure co
munication to tests of fundamental issues. Recently Zeilin
and his group@10# have tested the behavior of two-photo
states at beam splitters. Using the overall symmetry prop
ties of the states, they have been able to display both s
metric and antisymmetric behavior.

Similar experiments are in principle possible with ele
trons. In nanostructures, one can fabricate the devices s
lating optical components, but it is far less trivial to laun
single conduction electrons in well controlled states. Yam
moto’s group, however, has been able to show quantum
relations in an experiment which is the analog of a be
splitter for photons@11#.

In this paper we give an example of the multiparticle e
fects observable when particle states are launched along
tential grooves on a surface. The specific phenome
singled out for investigation is the effect of particle statist
at a beam-splitter-like coupling device. The correspond
effect with photons is described in Sec. II as a motivation.
Sec. III we present the details of the model chosen an
simplified analytic treatment demonstrating the main featu
expected of this model. In Sec. IV we carry through a n
merical analysis of the situation, for one particle as a tw
dimensional propagation problem, but for two particles in
paraxial approximation. For noninteracting particles, the
pected behavior is found, but when particle interactions
added, the boson behavior is changed. For fermions the
clusion principle makes them essentially insensitive to
interaction. An unexpected feature is found: the sign of
interaction is irrelevant for the effect. In Sec. V this is e
3841 ©1999 The American Physical Society
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plained within our simple analytic model, and, as a con
quence, a certain universality is proposed: When the inte
tion strength over the tunneling frequency becomes of
order of A3, the noninteracting bosonic behavior is ess
tially destroyed. This is verified by numerical calculation
reported in Fig. 13. Finally Sec. VI presents a discussion
parameter ranges in real materials, where our effects ma
observable, and summarizes our conclusions.

II. MOTIVATION

In order to show the opportunities offered by atomic n
works, we investigate the manifestations of quantum sta
tics on an experiment emulating the behavior of photons
beam splitters. This is a straightforward approach, which
ables us to display the potentialities and limitations of su
treatments.

Our work has been motivated by the statistics displa
by a 50-50 beam splitter, which has been used in the exp
ments by the Zeilinger group@10#. When two particles are
directed into the beam splitter in the incoming modes in F
1, they are piloted into the outgoing modes according to
beam splitter relations

Faout
†

bout
† G5

1

A2
F 1 2 i

2 i 1 GFain
†

bin
† G ; ~1!

see Ref.@12#. When one particle is directed into each incom
ing channel, the state is

uC&5ain
† bin

† u0&, ~2!

where u0& is the vacuum state. Without assuming anythi
about the statistics of the incoming particles, we can exp
the state~2! in terms of the outgoing states by inverting th
relation ~1! as

uC&5
i

2
@~aout

† !21~bout
† !2#u0&1

1

2
@aout

† ,bout
† #u0&. ~3!

From this follows that boson statistics gives

uC&5
i

A2
~ una,out52,nb,out50&1una,out50,nb,out52&);

~4!

the particles emerge together at either output. For fermi
we have

FIG. 1. Schematic drawing of a beam splitter. The incom
modesain ,bin are piloted into the outgoing modesaout ,bout accord-
ing to the beam-splitter relations.
-
c-
e
-
,
f

be

-
s-
n
-

h

d
ri-

.
e

-

ss

s

uC&5aout
† bout

† u0&5una,out51,nb,out51&, ~5!

and they always remain separated.
Weihset al. @10# have been able to verify these properti

experimentally using photons. As the requirements of qu
tum statistics refer only to the total wave functions, th
have been able to realize both the symmetric and the a
symmetric cases, thus offering the behavior of both bos
and fermions.

Photons are ideal for experiments, they do not inter
mutually and they propagate essentially undisturbed
vacuum. As models for quantum systems, they have
drawback that they cannot be localized, their wave pack
are of rather elusive character, and the influence of part
interactions cannot be established. Thus we have chose
discuss the propagation of massive particles through be
splitter-like structures. As explained above, such exp
ments may be performed with atoms or electrons in traps
microscopic dimensions. We can thus investigate the pro
gation of wave packets through these structures, explore
role of quantum statistics and switch on and off the parti
interaction at will.

III. MODEL

We consider particles moving in potential wells whic
form grooves over a two-dimensional surface. These m
cross or couple by tunneling when approaching each ot
thus forming a network of potential channels emulating
linear optical system.

Here we consider two separate channels which run pa
lel for z→6` and approach each other in thex direction, as
shown in Fig. 2. For simplicity we construct the potent
from two harmonic oscillators

U6~x!5
1

2
mv2S x6

1

2
dD 2

, ~6!

so that a double well potential can be obtained by writing

FIG. 2. A contour plot of the beam-splitter potentialŨ( x̃,z̃).

The two channels approach each other atz̃50. The scaled variables

x̃ and z̃ used in the numerical calculations are related tox and z
according to Eq.~19!. The scaled dimensionless oscillator fr

quency isṽ530. The distanced( z̃) between the two valleys is
chosen as in Eq.~26!, with d051.8903 andh51. Two cross sec-

tions of the potential atx̃50 andx̃52.5 are also shown.
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U~x,z!5
U1~x,z!U2~x,z!

U1~x,z!1U2~x,z!

5
1

2
mv2

@x1d~z!/2#2@x2d~z!/2#2

@x1d~z!/2#21@x2d~z!/2#2 . ~7!

If we now choosed(z) in a suitable manner, we ca
achieve the potential behavior shown in Fig. 2. Note tha
the minima, the potentialU(x,z) essentially follows the
shape of the smaller potentialU6 .

We consider a wave packet sitting stationary near the
tom of one well atz50, where the distance between th
wells is at its minimumd0. The particle can then tunne
across the barrier with the rate

T;expF2E A2mU~x,0!dxG'exp@2kAU~0,0!d0#,

~8!

where k is some constant. From Eq.~7! we see that
U(0,0)}d0

2 so that we expect

ln T;2k8d0
21const. ~9!

In order to acquire a heuristic understanding of the ph
ics involved in the coupling of the grooves atz50, we look
at the lowest eigenfunctions of the double well potent
These are expected to be symmetric,cS , with energyES ,
and antisymmetric,cA , with energyEA , as shown in Fig. 3.
We haveEA.ES and hence we write

EA5Ē1\V,
~10!

ES5Ē2\V,

where 2V is the tunneling frequency.
Using the eigenstates we form the localized states

wL5
1

A2
~cS1cA!,

~11!

wR5
1

A2
~cS2cA!,

where the subscriptsL ~R! denote left~right! localization.
We can easily integrate the time evolution by using

energy eigenstates. If we now assume that we start fromwL
at time t50, then

FIG. 3. Symmetric and antisymmetric eigenfunctionscS andcA

of the double well.
t

t-

-

l.

e

C~ t !5exp~2 iHt /\!wL

5
1

A2
exp~2 iĒt/\!~eiVtcS1e2 iVtcA!

5exp~2 iĒt/\!~cosVtwL1 i sinVtwR!. ~12!

This displays the expected flipping back and forth betwe
the two wells. For

Vt05
p

4
~13!

the coupling performs the action of a 50-50 beam splitte
We now move to consider the action of such a poten

configuration on a two-particle initial state. We first choo
the bosonic one

C0
B5

1

A2
@wL~1!wR~2!1wL~2!wR~1!#, ~14!

where the argument denotes the coordinates of the part
This can be expressed as

C0
B5

1

A2
@cS~1!cS~2!2cA~1!cA~2!#, ~15!

which can be evolved in time straightforwardly to give

exp~2 iHt 0 /\!C0
B5

1

A2
exp~2 i2Ēt0 /\!

3@ei2Vt0cS~1!cS~2!

2e2 i2Vt0cA~1!cA~2!#

5
i

A2
exp~2 i2Ēt0 /\!@wL~1!wL~2!

1wR~2!wR~1!#. ~16!

As we see, the bosonic two-particle state works as in Eq.~4!:
both particles emerge together.

In the fermionic case we have

C0
F5

1

A2
@wL~1!wR~2!2wL~2!wR~1!#

5
1

A2
@cA~1!cS~2!2cS~1!cA~2!#. ~17!

Because both statescAcS andcScA evolve with the energy
2Ē, C0

F remains uncoupled to other states. Thus the fer
ons emerge at separate exit channels as expected.

IV. NUMERICAL WORK

A. The Schrödinger equation

The Schro¨dinger equation in the two-dimensional syste
is of the form
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i\
]

]t
C~x,z,t !5F2

\2

2m S ]2

]x2
1

]2

]z2D 1U~x,z!GC~x,z,t !.

~18!

As a preparation for the numerical work, we introduce t
scaling parameterst and j giving the dimensionless vari
ables

x̃5x/j,

z̃5z/j, ~19!

t̃ 5t/t,

p̃5tp/mj.

We apply this to the one-dimensional oscillator Hamiltoni

H5
p2

2m
1

1

2
mv2x2 ~20!

and find the Schro¨dinger equation

i S \t

mj2D ]

] t̃
C5S p̃2

2
1

1

2
ṽ2x̃2DC. ~21!

The dimensionless oscillator frequency is given byṽ5vt.
This shows that choosing the scaling units suitably, we
tune the effective dimensionless Planck constant

\̃5
\t

mj2
. ~22!

To check the consistency of this we calculate

@ x̃,p̃#5S 1

j D S t

mj D @x,p#5 i \̃. ~23!

This gives us a way of controlling the quantum effects in
numerical calculations.

In our numerical calculations we employ the split opera
method@13#

exp@2 i ~T1U !Dt/\#'exp@2 iTDt/\#exp@2 iUDt/\#.

~24!

The corrections to this are given by

@T,U#
Dt2

2\2
5US D t̃ 2ṽ2

4
D S x̃p̃1 p̃x̃

\̃
D U . ~25!

In order to achieve satisfactory numerical accuracy, t
should not be too large; in our calculations, withDt

50.001, ṽ530, and\̃56, the expectation value of expre
sion ~25! is of the order of 1024. DecreasingDt or the grid
spacing has been found not to change our results sig
cantly.
e

n

e

r

is

fi-

In the following discussion, we use the scaled variabl
but for simplicity, we do not indicate this in the notatio
Whenever variables are assigned dimensionless values,
refer to the scaled versions.

In order to achieve beam splitter operation, we let t
distance between the potential wells vary in the followi
way:

d~z!521d02
2

cosh~z/h!
, ~26!

which inserted into Eq.~7! gives a potential surface as show
in Fig. 2. To test its operation as beam splitter, we let a wa
packet approach the coupling region in one of the chann
and follow its progress through the intersection numerica
as a two-dimensional problem. The result is shown in Fig
We see that the parameters chosen lead to ideal 50-50 s
ting of the incoming wave packet. The progress of the wa
packet through the interaction region is steady and ne
uniform, and no backscattering is observed. This sugg
simplifying the situation so that the motion in thez direction

FIG. 4. Time evolution of a two-dimensional Gaussian wa
packet propagating through the 50-50 beam splitter. The fra
shown is centered around the wave packet moving in thez direc-
tion. The dashed lines represent the minima of the potential.
potential is given by the scaled version of Eq.~7! with d(z) as in

Eq. ~26! whereh530. The scaled oscillator frequency isṽ530;

\̃56.
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is replaced by a constant velocity, and the full quantum pr
lem is computed only in thex direction. If the wave packet is
long enough in thez direction, its velocity is well defined
and this should be a good approximation.

The implementation of such a paraxial approach beco
imperative when we want to put two particles into the stru
ture. The full two-dimensional integration would require t
treatment of four degrees of freedom, which is demanding
the computer resources. With the paraxial approximat
two particles can be treated by a two-dimensional numer
approach, which is within the resources available.

To introduce the paraxial approximation, we perform
Galilean transformation of the wave function to a comovi
frame

c~x,z,t !5w~x,§,t !expF i

\ S p0z2
p0

2t

2mD G , ~27!

where

§5z2
tp0

m
. ~28!

The initial momentum in thez direction is denoted byp0.
The new wave function is found to obey the Schro¨dinger
equation

i\
]

]t
w~x,§,t !5F2

\2

2m S ]2

]x2
1

]2

]§2D
1US x,§1

tp0

m D Gw~x,§,t !. ~29!

For a well defined momentump0, the wave packet is very
broad in the§ direction and its derivatives with respect to§
may be neglected. The corresponding degree of freedom

FIG. 5. Time evolution of a wave packet propagating throu
the 50-50 beam splitter in the paraxial approximation. The w
packet is incident in one channel and splits into two equal pa
Parameters are as in Fig. 4, the only difference is that in the po
tial U(x,z), z is replaced bytp0 /m according to the paraxial ap
proximation. The initial wave packet isw0(x)5N exp$2(v/2\)@x
2(11d0/2)#2%.
-

es
-

n
,

al

is-

appears, and it is replaced by a potential sweeping by w
velocity p0 /m. This is what we call the paraxial approxima
tion.

Taking the parameters from the integration in Fig. 4,
can obtain the beam splitting operation also in the para
approximation as shown in Fig. 5. The transfer of the wa
packet from one well to the linear superposition is shown
Fig. 6. This proves that the potential configuration wor
exactly as in the analytic result~12!.

Now the integration is one dimensional for a single p
ticle, and it is easy to investigate the tunneling probability
a function of the parameters. In Fig. 7 we display the tran
tion rateT as a function of the parameterd0

2, which controls
the coupling between the wells. For small values,d0

2,3, we
are in a coherent flipping region; the wave packet is tra
ferred back and forth between the wells and resonant tra
mission occurs. For larger values,d0

2.3, the analytic esti-
mate of a logaritmic dependence in Eq.~9! is seen to hold
approximately. Our calculations work atd051.8903, which
givesT51/2.

B. Effects of quantum statistics

We can now integrate the propagation of a two-parti
wave function by choosing the initial state to be combin
tions of

wL~R!
0 ~x!5N expH 2

v

2\ Fx6S 11
1

2
d0D G2J , ~30!

where the1 (2) refers to the particle entering in the le
~right! channel. For bosons, this is used in the combinat
~14! and integrated in the potential~7!, where thez depen-
dence is replaced by at dependence according to Eq.~29!.
The result is shown in Fig. 8. Att5210, the bosons ente
symmetrically in the two input channels, i.e., they have d
ferent signs for their coordinates. After being mixed at tim

e
s.
n-

FIG. 6. The probabilities, as a function of time, to find th
particle of Fig. 5 in the right~full line! and left~dashed line! valley
of the beam splitter. The particle is incident at the right input a
emerges with equal probability at the left and right outputs. Para
eters as in Fig. 5.
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FIG. 7. Tunneling probability as a function of the square of t
minimum distance between the valleysd0

2. The point of 50-50
beam-splitter operationd051.8903 is indicated with dashed line
For small values ofd0

2, the wave packet is transferred back a
forth between the wells and resonant transmission occurs. For la
values,d0

2.3, the relation~9! is seen to hold approximately.

FIG. 8. Two bosons propagating through the beam split
Snapshots of the two-particle wave functionuCu2 at different times
are shown. On the horizontal axes we see the coordinate of pa
1; the vertical axes refer to particle 2. The two particles are s
incident in different input channels; they mix aroundt50 and fi-
nally exit together. Parameters as in Fig. 5.
t50, they emerge together with equal strength at both ou
channels, i.e., their coordinates have the same sign. This
sult fully reproduces the behavior expected from bosons
50-50 beam splitter.

We can, however, also test the fermionic case by us
the state~17! as the initial one. The result is shown in Fig.
Near t50, the wave packets follow the potential wells, b
they remain separated and emerge at different outputs as
pected. Fermions do not like to travel together.

We have thus been able to verify the properties of a 50
beam splitter on massive particles represented by wave p
ets traveling in potential structures. The calculations in Fi
8 and 9 do not, however, include any particle interactio
We can now proceed to include these, and evaluate t
effect on the manifestations of quantum statistics.

When we introduce the interaction, we have to dec
which type of physical system we have in mind. Conducti
electrons or ions interact through the Coulomb force wher
neutral atom interactions may be described by a force of
Lennard-Jones form. In both cases, the interaction is sing
at the origin, and it has to be regularized there. We do this
introducing the variable

r «5Ar 21«2. ~31!

This makes the interaction energy finite when the partic
overlap, but does not affect the main part of our argumen
other ways.

er

r.

cle
n

FIG. 9. Two fermions propagating through the beam splitt
Snapshots of the two-particle wave functionuCu2 at different times
are shown. On the horizontal axes we see the coordinate of par
1; the vertical axes refer to particle 2. The two particles enter
exit in different input and output channels. Parameters as in Fig
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With this notation the Coulomb interaction is written

VC~r !5
V0

r «
~32!

and the Lennard-Jones interaction is

VLJ~r !5V0F S b

r «
D 12

2S b

r «
D 6G ; ~33!

this contains the additional range parameterb. In both cases,
the strength of the interaction is regulated byV0.

It is straightforward to integrate the Schro¨dinger equation
with the two-particle interaction included, and look how
increase affects the correlations imposed by quantum st
tics. For fermions, the effect is essentially not seen in
parameter ranges we are able to cover. As seen from Fi
the particles never really approach each other, and they
main separated due to their quantum statistics for all tim
the interaction does not affect them.

For bosons the effect is different. We have investiga
their behavior for a range of interaction parameters and
that an increase in the interaction does destroy the sim
behaviors found for noninteracting ones. The result of s
an integration is found in Fig. 10. Compared with Fig. 8 th
shows that now the particles appear in separate channels
about the same probability as in the same channels. Thu
statistical effect has been destroyed. Figure 11 shows
the result emerges during the time evolution; the system t
to achieve the ideal case, but settles to the final state
served in Fig. 10.

Figure 12 shows how an increase in the interact
strength destroys the ideal behavior. This is drawn usin
Lennard-Jones potential, but the behavior is similar for ot
cases we have investigated.

One unexpected feature emerged from our calculatio
The destruction of the ideal behavior turned out to be in
pendent of the sign of the interaction. One may have
pected an attractive interaction between the bosons to
hance their tendency to appear together, but this turned
not to be the case. In order to understand this feature we h
to turn to our simple analytic argument in Sec. III and inve
tigate the interplay between two-particle states and the in
action.

V. STATISTICS VERSUS INTERACTIONS

In order to introduce the particle interaction, we choos
convenient basis for the two-particle states. As the first co
ponent we choose the bosonic state~14!

u15
1

A2
@wL~1!wR~2!1wL~2!wR~1!#. ~34!

In addition, there are two more bosonic states, where
particles enter in the same channels

u25
1

A2
@wL~1!wL~2!1wR~2!wR~1!# ~35!

5
1

A2
@cA~1!cA~2!1cS~1!cS~2!# ~36!
is-
e
9,
e-
s;

d
d
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h

ith
the
w
s

b-
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r
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-
-
n-
ut
ve
-
r-

a
-

e

FIG. 10. Two bosons propagating through the beam split
interaction is included. Snapshots of the two-particle wave funct
uCu2 at different times are shown. On the horizontal axes we see
coordinate of particle 1; the vertical axes refer to particle 2. The t
particles enter in different input channels and mix aroundt50.
With no interaction the two bosons were always emerging toget
as in Fig. 8. Now there is a finite probability also for the bosons
emerge in separate output channels. The interaction is given by
~32!, with V0550 and«51. Other parameters as in Fig. 5.

FIG. 11. The probabilities, as functions of time, to find the tw
bosons of Fig. 10 in different valleys~full line! and in the same
valley ~dashed line!.
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and

u35
1

A2
@wL~1!wL~2!2wR~2!wR~1!#

5
1

A2
@cS~1!cA~2!1cA~1!cS~2!#. ~37!

As the last component we have the fermionic basis func
~17!

u45
1

A2
@wL~1!wR~2!2wL~2!wR~1!#. ~38!

Together the functions$ui% form a complete Bell state bas
for the problem. They are also convenient for the introd
tion of particle interactions. In the statesu1 andu4 the wave
functions overlap only little, and the effect of the interacti
is small. For the statesu2 andu3 they sit on top of each othe
and feel the interaction strongly. We treat this in a Hubba
like fashion@14# by saying that the energy of the latter stat
is changed by the value 2V̄}V0. Because the overlap be
tween wL and wR is small, we have (u1 ,Vu1)'(u4 ,Vu4)
and (u2 ,Vu2)'(u3 ,Vu3), and we can use the definition

2V̄5
1

2
@~u2 ,Vu2!1~u3 ,Vu3!2~u1 ,Vu1!2~u4 ,Vu4!#

'E E w~x!2w~y!2V~ ux2yu!dxdy

2E E w~x!2w~y2d0!2V~ ux2yu!dxdy, ~39!

whereV is either a Coulomb or Lennard-Jones interactio
The first terms give the effective interaction energy wh

FIG. 12. The probabilities, as functions of interaction streng
for two bosons to emerge at different~full line! and same~dashed
line! output channels. The Lennard-Jones interaction is given
Eq. ~33!, with b50.25 and«50.2. Parameters for the potential a
as in Fig. 5.
n

-

-

.
n

both particles sit in the same potential groove. In the sta
u1 andu4 both grooves are occupied and because they ar
their closest atz50, we subtract the mutual interaction e
ergy across the separating barrier to obtain the pure lo
interaction energy. The second line results if we approxim
bothwL andwR by a Gaussianw with the same width. From
Eq. ~16! we see that only the statesu1 andu2 are coupled by
the tunneling rate 2V. Thus if we express the state by

C5a1u11a2u21a3u31a4u4 , ~40!

the state vector@a1 ,a2 ,a3 ,a4# evolves with the Hamiltonian

F 2Ē 22\V 0 0

22\V 2Ē12V̄ 0 0

0 0 2Ē12V̄ 0

0 0 0 2Ē

G
52Ē1V̄1F 2V̄ 22\V 0 0

22\V V̄ 0 0

0 0 V̄ 0

0 0 0 2V̄

G . ~41!

The constant part does not affect the coupling between
states, and the amplitudesa3 anda4 decouple. The remain
ing ones flip at the effective rate

Veff5
1

2
A4V21V̄2/\2. ~42!

This result shows that the new parameter replacingV in Eq.
~10! is Veff , implying that the perfect boson behavior
expected to be destroyed for

V̄

2\V
;A351.73. ~43!

This is in approximate agreement with the result shown
Fig. 12. By inspecting Fig. 11, we can also verify that t
flipping does occur faster when we switch on the interacti
as expected from Eq.~42!.

In the simplified analytic treatment, the only influence
the potential was through its strengthuV̄u. Hence we expect
the results to scale with the parameter (uV̄u/2\V) where
2\V5EA2ES . The probability to emerge in the same ou
put channels should essentially depend on this only; a cer
universality is expected.

In Fig. 13, we have plotted this probability for a variety
potentials including both Coulomb and Lennard-Jones on
As we can see, the behavior is very similar, at (uV̄u/2\V)
'1.7 the probability has decreased to less than 10%
agreement with our expectation. This verifies the degree
universality achieved. For comparison, we also used
simple analytic theory to obtain the points along the curve
this treatment, 2V was assumed to be constant during so
finite coupling timet, according to Eq.~13!. By inspecting
Fig. 6, we conclude thatt should be of the order of unity

,

y
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Here 2\V was chosen to be 8, and the time evolution in t
subspace$u1 ,u2% was calculated. This agrees best with t
numerical results for smallV̄; for larger values ofV̄ the
simple analytic treatment becomes invalid.

VI. DISCUSSION AND CONCLUSIONS

The actual values ofj, t, m, andv depend on the physi
cal system we have in mind. Our calculations are carried
at ṽ530 and\̃56; the momentum in thez direction of the
incoming wave packet isp̃z530 or p̃z51000. If we consider
an atomic beam splitter for Rb atoms, setting the length s
j to 100 nm corresponds to a time scalet of 80 ms accord-
ing to Eq.~22!. A displacement of 400 nm from the center
one valley in thex direction gives a potential energy increa
of roughly 10 mK, i.e., a transverse velocity of 0.15 m
This is to be compared with a typical height of the confini

FIG. 13. The probability, as a function of interaction streng
for two bosons to emerge at the same output channel for sev
different types of interaction~full lines!. We see that the perfec

bosonic behavior is destroyed forV̄/2\V;A351.73. The param-
eter ranges are«50.1 to 1 for the Coulomb interaction andb
50.25 to 0.5,«50.2 to 0.35 for the Lennard-Jones interaction. T
numerical results are compared with that of the analytic treatm
~diamonds!. In this model 2\V was chosen to be 8, and the tim
evolution in the subspace$u1 ,u2% was calculated.
s.

-

P.

A

e

ut

le

.

potential in a hollow optical fiber, a few tens of mK@8,9#.
Taking p̃z51000 yields a beam velocity of 1.3 m/s in thez
direction.

If we consider a mesoscopic electron beam splitter b
on GaAs,j could be of the order of 40 nm, which means th
the closest distanced0 between the valleys is 80 nm. Thi
would correspond tot56 ps, i.e., the electron goes throug
the device in a few picoseconds. Withp̃z530, the kinetic
energy of the electron due to the motion in thez direction
would be of the order of 0.01 eV. A displacement of 100 n
from the center of one valley in thex direction corresponds
to a potential energy increase of roughly 0.05 eV, in co
parison with the bandgap in GaAs, 0.115 eV.

The parameter ranges chosen in our illustrative comp
tions may not be experimentally optimal, but they indica
that the effects are not totally outside the range of real s
tems. Even if our calculations are based on a rather sim
fied model, we find them suggesting effects possible in re
istic setups. The main problem is to prepare the appropr
quantum states, launch them into the structures, and re
their quantum coherence during the interaction. With atom
cooling and trapping techniques, this may be feasible in
near future. For electrons the possibility to retain quant
coherence is still an open question.

We have chosen to discuss the straightforward questio
particle statistics at a beam splitter. This is a simple situat
which, however, presents genuine quantum features. Fo
formation processing and quantum logic slightly more co
plicated networks are needed. Simple gate operation ca
achieved along the lines described in Ref.@15#, which was
formulated in terms of conduction electrons, but similar si
ations can be envisaged for interacting atoms.

In this paper we suggest an analytic model, which can
used to analyze the behavior of particle networks confine
potential grooves in two-dimensional structures as discus
also by Schmiedmayer@7#. For complicated situations, th
full numerical treatment rapidly becomes intractable a
simplified qualitative tools are needed. We hope to have c
tributed to the development of such methods in the pres
paper.
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