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Transient nutation signal locking
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A method of making the dephasing tinig, measurement in an ensemble of inhomogeneously broadened
two-level systems is proposed. This method has its origin in the spin-locking technique developed in NMR. It
is shown that in spite of inhomogeneous broadening it is possible to lock the induced polarization in phase with
the driving field. The amplitude of the locked polarization can be as large as half of the first maximum of the
nutation signal, i.e., of the polarization bump just after the pulse switch on. Decay of the locked polarization is
caused by thd& 5, dephasing or by the dephasing of the in-phase component of polarization.
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PACS numbd(s): 42.50.Md, 76.60.Lz

[. INTRODUCTION change between spin system and thermal bath in the rotating
reference fram¢28]. Therefore it is interesting to consider
Ultrahigh resolution spectroscopy often encounters theénother pulse scheme which could detecomponent decay
problem of resolution of the absorption lines hidden by in-having a strong effect on hole burning. For a nuclear spin
homogeneous scattering of their resonant frequencies. Thgystem without inhomogeneous broadening this pulse se-
problem is usually solved by pulse excitation. Different pulsequence is knowj29—-31]. This is a spin-locking sequence
sequences produce echo signals providing the informatiomaking spin polarization in phase with a driving field. In Fig.
about absorption line structure and homogeneous broadenirdgd) is shown the first stage of the spin locking when the
of line components. Steady state excitation has an effect onr@sonant pulse of amplitudé; and durationT turns the spin
homogeneous absorption line, resulting in saturation broadnagnetizatiorM around thex axis by an angler/2. As a
ening, Mollow splitting[1-7], and dephasing suppression result the magnetization becomes parallel to yrexis. The
[8—14). The last is attributed to the fast Rabi oscillationsX,y,z axes depict a rotating reference frafiRRP chosen
averaging the effect of the local fluctuating fields responsiblesuch that the circular polarized field; exp{wt) (the field
for polarization decay. As the homogeneous absorption lingotating around the axis with the frequencyw) becomes
is changed under the excitation, actual dephasing behavior @bnstan{32]. The initial magnetizatioM is created by the
the driven polarization is of interest from the point of view,
for example, of the hole burning stu@¥2,15-21, of lasing z
without inversion[22—24], and of nonlinear interaction of @
the resonant fields with solid25]. M, /2
Dephasing of the driven polarization cannot be detected
by a conventional echo inducing sequence. In its turn anoma-
lous saturation seen in experimefs-13] provides only in-
direct proof of the dephasing suppression as the saturated
linewidth is sensitive to the ratid,/T,,, whereT; is a
relaxation time of the population difference afd, is a H,
homogeneous dephasing time of theomponent of polar-
ization, i.e., the component which is in phase with a driving
field. Usually in solidsT, is much longer thaff,, and when (b)
the ratioT,/T,, tends to 1 at elevated excitation, one can
conclude thafl,, becomes as long &K;.
Direct measurement of the dephasing time in pulse ex-
periments[26,27] has demonstrated different results. Tran- M,
sient nutation deca}26] detected the increase of the dephas- y
ing rate with the increase of the driving field amplitude, H,
whereas rotary echi@7] did not find any dependence on the
field excitation. /2
However, both experiments detect the decay rate obthe x
component of the polarization, i.e., the component which is  FiG. 1. (a) The first step of the spin-locking sequence when
/2 shifted relative to the driving field phase. Meanwhile, dgriving field H, rotates the magnetizatidvl, around thex axis by
according to Redfield’s theory of the spin temperature of thean anglen/2. (b) The second step of the spin-locking sequence
driven magnetization, only the T, relaxation rate must when the phase of the driving field has an abraf phase shift to
change essentially as just this rate describes the energy exake the driving field and spin polarization in phase.
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static magnetic fieldH, which lies along the axis. This field
vanishes in RRF if the frequency of the driving field is equal
to wo=yHy /%, wherey is the gyromagnetic ratio. The en-
ergyf wg is a spin splitting in the laboratory frame caused by
Hg. This splitting vanishes too in RRF.

At the second stage of the spin locking the driving field
phase is shifted through an angté2 during very short time
ot [see Fig. 1b)]. Finally H, lies alongM, and the latter
will not nutate. Thus the magnetization is locked by the driv-
ing field. The field creates spin splittingH, in RRF. Spin
states separated by this splitting may come to equilibrium
with environment only by the energy exchange. Therefore X
any dephasing process conserving the enéfgryexample,
the part of the dipole-dipole interaction inducing flip-flop (b)
processescannot destroy the locked polarizatidh, [28].
Moreover, if the energy scale of any other dephasing inter-
action not conserving the spin energy is smaller than the spin
splitting then this dephasing cannot destroy the locked mag-
netization as well. This condition on the interaction energy
scale or corresponding reservoir bandwidth is satisfied when
the local field responsible for dephasing is smaller thign
At the mentioned condition the dephasing tifg, of in-
phase polarization becomes as longrag28]. While T, is
no longer a dephasing tim@s it is related to the energy
exchange process in the RREhe timeT,, is still related to
the dephasing processes since it is a time of the coherence
decay of the new spin states in the RRF as well as of the spin
states in the laboratory frame. It is clearly seen from Fig. 1 4
where magnetization along tlyeaxis corresponds to the co- Her
herence of the spin states split by the static magnetic ffigld FIG. 2. Spin-precession picture at different detunifssitive
(parallel to thez axis) and this magnetization also represents(a) and. négative{b)] in the rotating reference fram@RP), where

';(r)letr::é))r(learxeigce of the spin states split by the fi¢ld(parallel H,y= y(@o— @) andHey= VHZ+ HZ.

The effect of theT,,, lengthening was employed by Hart- _ . _ S
mann and Hahii30] in double nuclear magnetic resonance Ha= ¥A is positive[Fig. 2a)] and negativgFig. 2b)], and
to increase the sensitivity of the method. It was tested withe is @ frequency of the driving field. Polarization nutates
potassium chlorate, the sample in which potassium nuclei taround the effective fiele .= VHZ2+HZ and depending on
be detectedeither 3°K or 'K) had 3°Cl nuclei as abundant the sign of the tuning parameter its projection onxtais is
neighbors yielding a large NMR signal. The dipole field duealways positive or negative. Moreover, the maximum value
to the spinsS (the potassium nucledetermines a portion of of polarization projection on thg axis is smaller tharM.
the local field acting upon the spingthe 3°Cl nuclej. If a  Then spin locking of the resonant componént 0 does not
radio-frequency pulse is applied to the spisvithin the  stop the nutation of other components after the second stage.
echo memory timd, of the spind, thel echo is attenuated Nutation of these components on different frequencies
a certain amount because the local field due to the spias Heg/y results in signal damping which is similar to transient
scrambled. The spi resonance is therefore indicated. The nutation decay.
sensitivity of this method increases wh@&n is effectively In this paper we show that this ringing on different fre-
replaced byT; due to the magnetization locking in the rotat- quencies does not decay to zero, in contrast to transient nu-
ing frame. Then during the tim@, the spinsS can be tation. An appreciable part of the polarization does stop ring-
brought into resonance interaction with the spipsafter ing with time and then decays with the rateT3/. The
which a degradation in the magnetization of thgystem is amplitude of the locked signal can be as large as half of the
observed. Finally, it was shown that a minimum of the first bump of transient nutation signal
10'-10' nuclear Bohr magnetons/éreould be detected in
diamagnetic crystals in the temperature range of 4-20 K by

(2)

this method. Vo= \ﬁKM

For optical transitions the difference betweBy, andT,, NT Nog 0
relaxation times has been discussed in p&pat.

When the absorption line is inhomogeneously broadened,
the polarization of all spectral components cannot be alignethere y=yH, is Rabi frequency and is a dispersion of
along the driving field amplitude simultaneously by any Gaussian inhomogeneous broadening.
pulse sequence. Figure 2 shows two spectral components So, inhomogeneous broadening does not prevent spin
with different values of resonant detuning= w,— w, where  locking (SL) but only decreases it. This technique could help
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to detect dephasing timé&,, during the excitation, the pa- Au(T) v(T)
rameter which is important for hole burning and saturation u(t)y= singt+ > (x%+ A2 cosgt)
studies. 9

Axw(T)

IIl. SPIN DYNAMICS AT THE SPIN-LOCKING SEQUENCE g (1—cosgt), (10

First we consider the solution of the Bloch equations

singt
v(t)=[Av(T) +)(W(T)]T —u(T)cosgt, (11)

U+Av+Uu/Ty,=0, 1)
S AU— W4 0/Ts =0 5 where timet is measured from the end of the phase shift.
v AUm Wi, =0, 2) For excitation at the center of a symmetric, inhomoge-
. neous absorption ling(A), the average response of the par-
w+ xv +(W—wg)/T;=0 (3) ticles
for the spin-locking sequence dropping the decay terms with (u(t))= fw u(A,H)f(A)dA (12)
Tou, T2y, Ty relaxation times ofi, v, w components. This . '

solution helps to clarify spin dynamics at the SL sequence. In

the next section we consider the kinetics of the locked polar- o

ization. Equations(1)—(3) follow from the density-matrix <U(t)>:f v(A,1)f(A)dA (13
equations of motion for a two-level particle. The Bloch vec- o
tor amplitudesu, v, andw are related to the density-matrix
elements by,=3(u+iv)e'*!, the dipole polarization term,
and p,,— p11=W, the population difference term. There is a
correspondence betwe&p, S, S, spin components and|

v, w Bloch-vector components, respectively. Equilibrium

has zero contribution of the odd components which are pro-
portional to the functionsi(A,T), Av(A,T), andAw(A,T).
Then substitution of Eqg10) and (11) into Egs.(12) and
(13) gives the result

Eggul\l/la;!on differencaw, is related to the initial magnetiza- () =Wof (0)[Mo(T) +M,(t)—My(1)
(1) At the end of the first stage of the spin-locking se- —My(t+T)+M4(t+T)], (14

guence the pulse of the duratidnchanges the Bloch-vector
components as follows: 1
(v (1)) =wof(0)| M (1) —M(t)+ EMz(H‘T)

wT)=-— WO—AX(l—cong) (4) 1
g’ ’ + EMz(t—T)}, (15)
v(T)= MsingT, (5) where
9 = [y 2k-1
) 5 Mk(t):j_x<§) sin(gt)dA (16)
W(T):WOHE +|=| cosgT|, (6)

and the distributionf(A) is taken to be flat. The function

" . M (t) is well known (see, for exampld,34]), i.e.,
whereg=\/A2+X2. Here we assume the initial conditions () ( ple.34])

u(0)=v(0)=0 andw(0)=w, before the excitation. M (1) =7 xJo( xt) (17)
(2) At the second stage the field phase is turned through ! 0 '

an angler/2 during very short timet, and as a result where Jo(x) is a zeroth-order Bessel function. The second

function M,(t) has been calculated and analyzed in Ref.

u(T+dt)=o(T), (7)  [35]. This function can be expressed as follows:
v(T+6t)=—u(T), (8) M (t) = mx[xt—K(t)], (18
W(T+ 8t =w(T). g “Where
t
We notice that by definition the component is always in K(t)zxzf (t=7)Jo(x7)d7=xt[L() =1 (x1)], (19
phase with the driving field and the component isw/2 0
shifted. .
(3) The evolution of the particle polarization after the L(t)=Xf Jo(xndr (20)
phase shift is described by equations 0
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FIG. 3. Transient nutation decay of the averagedomponent
just after the spin-locking sequence terminated at tim@, where
x/2m=100 kHz as well as in the next plots belowl
=1.76 usec, andSy= mxf(0)w,.

andJ,(x) is a first-order Bessel function. Finally, we get the

expression for transient response of the system after the se

ond stage of spin locking,

(u(t))=mxf(0)Wo[ Jo(x(t+T))—Jo(xt)

+K(t+T)—K(t)—K(T)], (21)
1
(v(t))= WXf(O)Wo[Jo(Xt)+ K(t)— EK(HT)
1
—Esgr(t—T)K(lt—Tl) : (22)

where sgn{—T) is the sign of the difference—T.

The mean value of the component remarkably coincides
with that which appears in rotary ecli@6] and stimulated
nutation echd35]. Its dependence on tinteand durationT
of the preparative time interval was analyzed in detail in
Refs.[35,36. This component decays to zero with time. The

example of its behavior is shown in Fig. 3. Figure 4 showsP
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FIG. 4. Time evolution of the averagedcomponent just after
spin-locking sequence. Parameters of excitation are the same as
Fig. 3.
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FIG. 5. The dependence of the locked polarization amplitude on
the duration of the first preparative pul$e

the timet dependence of the mean value of theomponent

(in all plots we take the same value of Rabi frequency
x/27=100 kHz as an examplelt is seen that this compo-
ent does not decay to zero. The value to which it tends is
etermined by the function

(u(e))=mxf(0)Wo[ xT—K(T)]

sinceJy(xt) tends to zero with argument increase and other
terms likeK(t+T) andK(t) have asymptote

K(7)=x7+0,(1Wx7)

at largey 7, whereO,(1/\/y7) is a small value of the order
1/1/x 7 [35].

For the homogeneous system of the two-level particles it
is possible to choose the length of the first stdgeorre-
sponding to the rf+ 1) preparative pulse area wheyT
=(n+3)7 andn=0,1,2 ... . After the 7/2 phase shift of
the driving field the polarization of the particles will be
aligned along the field amplitude or opposite it depending on
the parity of the numben. Pulses with evem (locking
ulse$ make polarization parallel and pulses with ad¢hn-
tilocking pulse$ make it antiparallel to the driving field am-
plitude after the second stage= 0 is supposed to be even

When the absorption line is inhomogeneously broadened
it is impossible to increase to infinity the preparative pulse
areayT, as according to Eq$23) and (24) the locked po-
larization will decrease. Moreover, inhomogeneous broaden-
ing also changes the locking and antilocking pulse areas.
They do not exactly equaln@+ 3) 7. Figure 5 shows the
dependence of the locked polarization amplitude, 28),
on preparing pulse duration. Withincrease the locked po-
larization amplitude increases and then decreases with oscil-
lations. First maximum

(23

(24)

(U(°))max= mxf(0)wyx0.524 (25
takes place wheyT=0.353r, which is less thanr/2. This
maximum value is about half of the first nutation maximum
after the simple pulse switch on. The minimum value of the
antilocked signal is

in

(U(©))min=— mxf(0)wyx 0.364 (26)
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when xyT=1.2937 (which is less than 14 too). These es- L1 T T T T
timations show that inhomogeneous broadening does not
prevent polarization locking. 'r 7

The dependence of the functig®3) on the preparing
pulse ared = T can be analyzed analytically as was done
in Ref. [35]. The amplitude of the locked polarization
reaches an extremum each time when the derivative of Eq.
(23) with respect to pulse are@ is equal to zero,

(u())e=0. (27

The latter condition is reduced to

S(t)/s‘)

(U(=))e=mxf(0)Wo[1-L(®)]=0, (28)

where

0.3 1 1 ] 1

0
L(O)= Jo Jo(x)dx. t (nsec)

) ) ) FIG. 6. Time evolution of the averaged polarization, E2f),

0=0=<1. The value 1 is reached &~1.108. Then this
function oscillates slightly near the value 1 with a dampedsignal rises. By the value of the first nutation signal bump

amplitude. Therefore EQq(28) becomes zero whenever gne can estimate the value of the locked polarization before
L£(®)=1. This occurs at®;~1.108, ©®,~4.063, ®3 the unlocking phase shift.

~7.15, etc(see Ref[34]). Maximum and minimum values | et us consider the case when the locking time interval
of the locked polarization between two phase shifts of the driving field is long enough
to reach the nonoscillating state brt,,., whereyt,,.>1.
(U(e))exr= mxF(O)Wo[ O = K(O)] (29 just after the unlocking phase shift we have
satisfy the equation singt
vunuoc(t)=T[AU(O)+XW(0)]+v(0)cosgt, (32

(U(®))exr= TXF(0) WO J1(Oy), (30)
where wheret is measured after the second phase shift and
e 0)=v(te), 33
’C<®>=f (8 —x)3o(x)dlx U(0) =0 (tiec (33
0
v(0)=—u(tpe), (34

and®, are the pulse areas whéi{®,)=1. Substitution, for

example, ®;=1.1 and ®,=4.05 into Eq. (30), gives w(0)=w(tj) (35
0.52 V¢y and —0.36 Vy values of the locked and an-

tilocked polarizations, respectively, wheh;y is a first ~ are the initial conditions just after this phase shiftt;,) and
bump of the polarization in conventional transient nutation(tioc) components are described by Ed40) and (11)
With @, increase, these extremum areas move to coincid@heret is substituted by, and

with zeros of theJ;(®) function. Therefore the product

0,J,(0,) tends to zero whe®, tends to infinity. _oxu(m) Axv(T)
The experiment on spin locking is planned to be carried W(tioc) = g Sin(Gtioc) - g2 [1~codgtinc)]
out with the equipment described[ig6]. It detects the value
w(T) .,
S() = \{u®)7+ {0 (D)2 (3D gz (AT codglid) ] €9

the plot of which is shown in Fig. 6.

In the next section we consider the relaxation decay of thd aking into account that odd terms in respect to the detuning
locked and antilocked polarization which takes place withA give zero contribution to the average response of the two-
the rateT,,,. level particles as well as that,.>1 and then the contribu-

In the optical domain it is difficult to detect thecompo-  tion of the oscillating terms as sigi,) and cosftqc) is
nent directly. For example, the signal measured by the optismall one can obtain the average response
cal detector is induced mainly hy component. Therefore in
order to detect the value of locked polarization it is useful to _ ”
apply the unlocking procedure. For example, the nef& (Vuniod 1)) =f(0) ffoov“”""(A’t)dA’ S
shift of the field phase converts the locked polarization
(u(+))y=(uy) into thev component. Then the nutation where
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Y A2 (@) 1= T T T T
Vunlod A1) =Wo = { [A%+ x? cos(t.ﬂ)](—) sin(gt)
g3 g 08k \\ _
—x? Sir\(gT)COS(gt)]' (39) s “~\ 7
04
Equation(37) is reduced to
0.2
<vum04t>>=f(0>wO{ M)~ 2Mo(0)+ Ma(t) + My(t—T) oS
1 (V()/So 02
_E[Ms(t+T)+M3(t_T)]], (39) """""
0.4
where 06

77)(2'[ 5 5
Ms()=—5 {[6—(xt)“131(xt) — xtIo(xt) +[3— (x1)“]

(b) 15

X[1-L()]}
Just after the unlocking phase shift we have )
(Vuniod +0))=F(0)We[ mx =Mo(T)], (40)
where 03
(Vunloc(t)>/so
Ma(T)=mx[0—K(0)]. (41 E—
. . — . S
For the sequence with maximum polarization locking ( _<.V_‘.‘_’?Z._°..
=0,) the first bump of the nutation signal
-0.5
(Vuniod +0)) =f(0)womxx0.48 (42
is two times smaller than its value just after the simple pulse -1
switch on. Figure {& shows the comparison of the nutation
signal (39) at ® =0, with the conventional nutation signal.
When the locked polarization decays due toThg irrevers- © .
ible dephasing process, then the teviy(T) decreases also Y
and the(v ynod +0)) value rises up td (0)wymy. 08
The sequence resulting in antilockin® € ®,) gives the o6t
first maximum of the nutation signal
04
<Uunloc(+0)>:f(O)WO"TXX]--36- (43 02
Vunloc(t)}/S
The comparison of Eq(39) at ® =0, with conventional (e O}f% oF
nutation signal is shown in Fig.(@). In this case the relax- T
ation process decreases the first nutation maximum. Figure ~——
7(c) shows the nutation decay, E(B9), when the locking 04
pulse area i =0;. As 05 is big enough the last depen- 06 . . . . . . .
dence demonstrates the signal neaiT which is similar to L e S
the nutation echo. t (usec)

FIG. 7. Comparison of the conventional nutation sigidalshed-
lll. KINETICS OF THE LOCKED POLARIZATION dotted ling with that induced by unlocking phase shift of the driv-
f’ng field (solid ling). Preparative pulse areas afe=0, (a), ©
=0, (b), and® =03 (c), whereT=11.4 usec for caséc). Here
(v(t)) is a conventional nutation signal after the pulse switches on.

Just after the phase shift of the driving field the transien
signal appearésee Figs. 3, 4 and)6lt damps in a time scale
of the order of 1¥. Then only the locked component of
polarization survives. The resonant frequency scattering does
not destroy this component, which becomes time indeperlarization only. One can show that according to H4$) and
dent. On a time scale comparable to the relaxation tifygs (11) the locked part of the polarization comes from ti{g)
andT,, the locked polarization will decay also. To simplify component and is proportional 19(T) excited by the pre-
our consideration we study the relaxation of the locked pojparing pulse. Therefore we consider i) solution of Egs.
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(1)—(3) and only its part originated from(T) [i.e., the sec-

ond term in the right hand side of E(LO0)].

We assume thal>T,,,T,, and drop the population
difference decay term in Egél)—(3). Solution of the Bloch
equations is facilitated by application of the Laplace trans-

form [37]
u(p)=foocu(t)e*ptdt. (44)
The mentioned part afi(p) is
Uioc(P) = D((p))[IO(IO"‘F )+ X%, (45)
where
D(p)=(p+Ty[p(p+I,)+x*]+pA? (46

and for the simplicity of the notations we ukg=1/T,, and
FU = 1/T2U .

The solution of the equation (p) =0 gives three poles of
the Laplace transforng45) needed to calculate the inverse

Laplace transform

1 c+ioo
uloc(t) I Iptuloc(p)dp- (47)
WhenT',=T",=0 they are
p1=0, py3==ig. (48)

Application of the inverse Laplace transformation to Et)
using poleg48) yields time dependent behavior

(49

Ujoe(t) = L(>(2+A2 cosgt)
g?

[compare the latter with solutiofl0)]. Polesp, 3 give the

second, oscillating term in brackets, whereas the pmle
yields a nonoscillating term which corresponds to the locked
polarization. We do not consider the oscillating part which

decays due to ringing on different frequencgesThus, the
true locked component originates from the pple

We consider the strong excitation whgsI",,I',. Then
by iteration procedure we find

2
X
pl__ru(a) (50)
and finally
3 2
X . X
Upoe(t) = a) wosm(gT)exp(—FuEt). (51

The exact calculation of the average respof&B is
rather complicated. When the preparing pulse &eas small
(®<1), one can use the approximation

3 2
X X
u,oc(t)z(—> waTex;{ - Fu—2t>
9 9

(52
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FIG. 8. Decay of the locked polarization. Solid line is a plot
of the computer averaging of thg,(t) component. Dotted line
is a plot of Eqg.(53) normalized onS,, i.e., Fi(t)=S;lq(t/
2T,,)exp(—t/2T,,), where S;=M,(T)/(7x). Simple exponential
decayF,(t) =S; exp(—t/T,,) (dashed-dotted lines also presented
for comparison.T,,=120 usec is taken as an example a@d
=0.125.

as at large\ (|A|> x)u.(t) becomes small due to the frac-
tion (x/g)3. Then, one can calculate the integfaR) ex-
actly,

Tt Tt
(Uioe(1)) = ot (0)x O 0(7) exp( - 7) . (53

wherely(x) is the modified Bessel function of zero order.
The plots of the functior{53) with computer calculation of
the integral(12) at ®=0.125 are shown in Fig. 8n all plots
below we takeT,,=120 wusec as an exampldt is seen that
the deviations between them are small. At long tinigt(
>1) the function

| It It £4
o2 /"2 4
approaches the asymptote
L (55
't .

When preparative pulse area is lai@=-1), one can use
the expansion into a series

(u)k

(Uppe(1)) =wof(0)e Tt 2<T>+21

(T)} .
(56)

where

w 32k
Nk(T):J ng+3sm(gT)dA (57

The integrals(57) are complicated, such as, for example,
N1(T)=M,(T)—M3(T). However, any term of this expres-
sion can be calculated analytically using the relations

k

—1)"k!
Nk(T)—E( )

(k n)ln' n+2(T)

(58)
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® 1 . , T FIG. 10. Decay of the locked polarization @t=0,.

terms. Pure exponential decay of the locked polarization is
also presented. It is seen that the two order fall of the signal
is close to the pure exponential one. Then the approximated

Kmioe(0)/So| 1
 om

[Ep(®)] 1107 calculation[when only the first term in square brackets of
————— B Eqg. (56) is taken into accoultdiversifies the numerical re-
[Fsm] sult. Therefore one can use the first domain where the signal

10 decreases 100 times to detdgt, by simple fitting with ex-
tx1077 ponent exp{I't). The long time tail of the signal is not
gt o L L pl appropriate for this measurement because of nonexponential
decay.
t (useo) It should be emphasized that whénis close to 1, this

exponential fitting becomes poésee Fig. 10 Therefore to
measureT ,,, one has to use the preparing pulse with the first
the absolute value of Eq56), where the first ten terms of the fantllocklng E:JISE. are®d27h4. :I;t.th|s case (tjhe |oc]|(«=1g S|gnal
expansion series are taken into account, i.e., it is a ploE gft)| :CS ap_prec_:la Y Ilg gn h e mting prohce f.ure IO i e elcay
=[(Upe(t) Y/ So|, Where(up(t)) is calculated from Eq(56) at the unction is simple. On the contrary, the first locking pulse

FIG. 9. Decay of the locked polarization &=®,. The nota-
tions are the same as in Fig. 8. Dashed [ineFig. 9b)] is a plot of

mentioned condition. area®,;~1.1is too close to 1, giving the essential deviation
from the exponential decay. In this case the fitting procedure
M”(T)=— x*M,_4(T) (59) is complicated and them,, measurement becomes obscure.
n n— 1
where it is assumed that &!1. Therefore the expression IV. CONCLUSION

(56) can help only_ to estimate the valuewvhen deviation We proposed a method d,, relaxation time measure-
from the exponential decay becomes pronounced. At the %hent for the system of two-level particles with inhomoge-

tremum pulse areas the first term of the expansion is neous broadening. The condition on the preparing pulse du-

0 Y ration giving the best signal and providing the simple data
Nl(—k) = WX?"[JZ(k)ijJl(@k)]_ analysis is derived. Experimental work is in progress.
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