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We numerically study two-photon processes using a set of harmonics from a Ti:sapphire laser and, in
particular, interference effects in the above-threshold ionization spectra. We compare the situation where the
harmonic phases are assumed locked to the case where they have a random distribution. Suggestions for
possible experiments, using realistic parameters, are discUSE150-29479)04305-X]

PACS numbsgs): 32.80.Rm, 32.80.Qk

[. INTRODUCTION electrons which have previously tunneled out through the
effective potential produced by the Coulomb and the laser
High-order harmonic generatighlOHG) refers to the ra-  field. The induced dipole, and hence the process of harmonic
diation emitted during the interaction of a short laser pulsegeneration, corresponds to trajectories in which the electron
with a gas jet. The spectrum of such a radiation consists of geturns to the core with appropriate kinetic energy and re-
series of odd harmonics of the fundamental frequency havingombines, emitting a photon. Each contribution then contains
approximately equal conversion efficiengfateaq, and fol-  a phase factor equal to the real part of the action acquired by
lowed by an abrupt cutoff. A complete description of har-the electron following the respective trajectd8]. Among
monic generation which allows for a direct comparison withall possible trajectories, very few of them are relevant. For
the experiments should include not only the response of ththe harmonics in the cutoff there is only one dominant tra-
single atom to the laser field, but also the propagation of thgectory, corresponding to a single recombination time and,
different harmonics generated through the macroscopic meherefore, the phase of the harmonics in this region remains
dium. Recently, several studies on harmonic generation havecked. On the other hand, for the harmonics lying in the
focused on the properties of the phase of the generated hagptateau, there are typically two relevant trajectories corre-
monic waves, considering both single-atom and propagatiosponding to two different returning times. The phase of such
effects[1]. Within the frame of the single-atom response thea harmonic contains the contributions of these two trajecto-
strength and the phase of each harmonic wave correspond ties and, in particular, their quantum interferences. This
the modulus and the phase acquired by the dipole momemuantum interefence term leads to an apparently random
d(t), or equivalently, the dipole acceleration induced by thephase. In spite of this fact, when one analyzes the harmonic
external laser field. Thus the spectrum of the radiated haremission in time rather than in frequency domain, one ob-
monics can be directly calculated from the Fourier transfornserves a clear periodicity of the signal. Antoieeal. [4]
of the dipole acceleratiof2]: have shown that the time-dependent emission consists of a
train of ultrashort pulses with two dominant pulses per half
cycle, each corresponding to one of the relevant trajectories.
Further studies show that under certain geometrical condi-
tions it should be possible to phase match the contribution of
where A(w) is the amplitude ¢ (w) is the phase of the di- only one of these trajectories. That results in a train of ul-
pole acceleration in the frequency domain, dBdw)|? is  trashort pulses equivalent to those obtained by combining
the strength of the harmonics. The single-atom responsseveral plateau harmonics with their phases locked.
shows that the phase of each harmonifw), is usually From an experimental point of view, determining the rela-
shifted with respect to the fundamental phase and dependive phase of the emitted harmonics is not a straightforward
strongly on the intensity of the laser fief@]. Let us recall task. Its study necessarily involves some type of interference
that the harmonics are said to be phase locked if the phase effects between the different harmonics. Although some pio-
each individual harmonic is a linear function of its ordeso  neering work on interference between harmonics of the same
it can be written asp,=Bqw+{ where Bqw is the linear order has been recently reportgsl-7], a conclusive result
g-dependent term angla constant term identical for all har- on the relative phase has not yet been achieved.
monics. In general, harmonics from the plateau region In this paper we address this question using a combination
present a random phase when compared to each other, aoflsuccessive odd harmonics to study two-photon processes.
only the harmonics from the cutoff region are locked inWhen several harmonics simultaneously irradiate an atom,
phase. This can be intuitively understood using the semiclaghere exist various paths associated with two-photon transi-
sical description of the atom-field interaction in which har-tions ending up in the same final state thus leading to pos-
monic generation results from the recombination of thosesible interference effects. Those effects should be clearly

D(w)zf d(t)e'“dt=A(w)e' *@, (1)
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present in the ionization rates, as well as in the photoelectron
spectra. Similar effects of sensitivity to harmonics phases
have been previously studied in a series of papers on above-
threshold ionizatiodATI) by mixing harmonics and infrared
laser fields[8,9]. Furthermore, two-photon ionization of at-
oms with photons pertaining to the vacuum-ultraviolet—x-
ray-ultraviolet domain have recently been reported for argon
using the third harmonic of a KrF lasgt0], and for helium
using the ninth harmonic of a Ti:sapphire lagad] thus A
giving evidence of its experimental feasibility. In this paper,
we focus on two-photon ionization of atoms by Ti:sapphire
harmonics whose order varies fragp+=11 to q=33.
Essentially, the aim of the paper is to show that measur- ] 2 3 1 5
able quantities such as ionization or the more detailed pho-
toelectron spectrum have a different behavior depending on FIG. 1. Sketch of the processes investigated in the case of the
the relative phases of the harmonics and to study these efixing of three harmonics. Also shown is the corresponding elec-
fects quantitatively. The paper is organized as follows: intron spectrum.
Sec. Il we develop a combinatorial model derived from per-
turbation theory which is able to provide rough scaling lawsclearly if one writes the ionization probability associated
for the total ionization rates as a function of the number ofwith these processétabeled 3 in Fig. 1within perturbation
harmonics present in the field. Section Il reports on numeritheory:
cal above-threshold ionization rates obtained by solving the

ATL

time-dependent Schadinger equatio TDSE) with realistic Prg=PM{ZE Ege! (17 9431 PM (D (E €' ?2)2
polychromatic pulses for atomic H. Section IV is a study of 2 ot oot
quasiresonant multiphoton ionizati¢hPI) in He* also ob- +OM{ZEE,e'(?3t 92, 3

tained by solving TDSE. Finally, in Sec. IV we give con-
cluding remark and we comment on possible experiments. where the subscripts 3, 1, and 2 refer to the biggest, the
smallest, and the intermediate phot@hrefers to the maxi-
Il. COMBINATORIAL MODEL mum field amplitude, and to the phase of the photons. The
transition amplitude matrix elements from the initial state
The model presented in this section provides an estimatqag> to the final state|f) for the three paths are given by
for the ionization probability as a function of the number of
successive odd harmonics included in the laser field. It is (F|zIn)(n|zlg)
based on a combinatorial approach and a perturbative treat- aM (= "mi —g
ment of the atom-field interaction. 9 o I° wgtw;—wptle
Let us first sketch the problem under investigation. We
consider electrons emitted during ionization via a two-
photon process from an atom initially in its ground stdhe b\ (2)— "mi (flzln)nlz|g) @
possible case where some excited intermediate states come fg wgt 0~ oy tie’
into resonance with the absorption of only one photon is
discussed in Sec. IV Since the field considered here con-

sists of a linear combination of successive odd harmonics: M@ = lim M
fg wgt 03— oy tie’

e—0

e—0

E® % Eqcosgoit+ dq), @ where the summation runs over all coupled intermediate
states including the continuum. The special case of ATl can
photons of different energies will be involved in the produc-be numerically extrapolatdd 2] or computed accounting ex-
tion of electrons with different kinetic energies, as is illus- plicitly for the resonant free-free transition matrix elements
trated in Fig. 1. Note that the energies at which electrons argL3]. Since we assume the interaction with a linearly polar-
released appear on the photoelectron spectrum separated &ed field and express it in the length gauge, only the matrix
actly by the energy of two photons of the fundamental fieldelements oz appear in expressiof). The ionization prob-
(w,) which generates the harmonics. Moreover, electrons ability then reads
a particular energy may have been released by the absorption
of photons originated from distinct harmonics. The only re- Prg=[*M %)|2E§E§+ |b|\/|%>|2|5‘2!+ |°M§§>|2E§E§
striction is that whatever the combination of photons is, the
sum of their energies ought to be the same. For example, the +(®M %) CMgé) *+c.c)EZES

roduction of electrons in the central peak of the electron .
:Fstectrum of Fig. 1 results from transitliC:)ns following three +(M{3) MY *E EgES* et 4T 292t cc)
different quantum paths. The amplitudes associated to each bag(2) cpp(2) % E2m% =% aei( byt da—2
quantum path may interfere depending on the relative phase +("Mig’ Mig' *EjESETe (S v e,
of the photons involved. The interference pattern appears (5)
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Interferences in the probability given by E&) are governed counts for the side peaks in the photoelectron spectrum and
by the phase differenc&= ¢+ ¢p3—2¢,, that is, the rela- is obtained by simply adding the probability associated to
tive phase between the harmonics involved in this proces®ach side peaksee Fig. 1 It can be shown that the total
Such a partial probability can be derived for all accessiblgorobabilities read
final states. Note that interferences are always absent in pro-
cesses involving fewer than three different photons, which is
always the case for the processes leading to the two firstand ~ P(PY(N)= a2< 2> n?+N2
two last final stateglike processes labeled 1, 2, 4, and 5 in n=1
Fig. D independently of the total number of harmonics in-
cluded in the field. and
When the incident field is a linear combination of succes-
sive harmonics, there exist several distinct quantum paths
associated to transitions to the same final state. These paths
may interfere depending on the relative phase between the

photons. Obviously, the number of possible interfering pathsxs mentioned earlier, when ordered by increasing final state

increases with the number of different frequencies includegnergy, the two first and two last processes will never show

in the field. . path interferences independently of the total number of har-
To simplify the problem, we will now assume that all monics involved. Also, the process having the largest num-

harmonics have the same strength, thakis=E,=E;=E.  per of interference terms will always be the central diie

As the harmonics we are considering here all come from th%rocess number 3 in Fig).1

plateau part of the spectrum, this assumption is generally To summarize, the total ionization associated with two-

fulfilled. Furthermore, we also assume that all two—photonphoton absorption should vary approximately as\?/& the

transition amplitude matrix elemenftas they are defined in  harmonics are locked in phase, and a¢22f the relative

Eq. (4)] are real and have the same value, .BM1g  phase between them is random. Accordingly, the ionization

="Mg="M¢y=M. Although never fulfilled in general, this rate associated to the central process should val?as the

approximation is reasonable if the first photon absorbeghhase-locked case and aN # the phase distribution is ran-

brings the system into a region free of intermediate resogom.

nances. For the case of our illustrative example, the ioniza- \ye expect that similar scaling properties will characterize

tion probability associated to the central procdabeled 3in  gther processes of interest, such as two-photon above-

Fig. 1) corresponds to threshold ionization, which we shall discuss in the next sec-

— M2F4 . tion. The advantage of studying ATI instead of two-photon
Pig=MET[5+4 cod by + ¢3=262)]. ©) ionization processes is that such processes are free from in-
Let us now analyze the two configurations of harmonict€rmediate resonances that modify the interference pattern, as

phases we are interested in, that is, the phase-locked case af{i Shall discuss in Sec. IV. The disadvantage, on the other
the random distribution of phases. As defined in the Intro@nd, is that the ATI signal might be low and, consequently,
duction, if harmonics are phase locked to each other, theifin® &ffects due to the relative phase of the harmonics might
phase has the forrb,=Bqw+{. Applied to our example be difficult to observe experimentally.

A=+ dp3— 2, simply reduces to zero. Therefore, the co- Finally, it is worth stressing here that the problem consid-
sine ftncti%n in IZEq(G) takes value one. On the othér hand. €red in this section has a lot in common with the problems of

we can interpret the random distribution of phases as a |0§9niz_ation by stochastic laser fields, o!iscussed in the litera-
of coherence between different quantum paths. It is then redUre in the 1970s and 198084]. In particular, the enhance-

sonable to associate the random distribution to the averad@€nt by a factoK! of the K-photon ionization probability
value of Eq.(6) over all possible phases. Since the averagey multimode laser fields has been predicted and observed.

value of the cosine function is zero, all terms in the probabilN our random FEQF?)SG mozdel, the same effect is responsible
ity vanish except the constariphase-independenterms. for the fact thatP'""’=2IN<. On the other hand, the problem

N—-1

,(2N® N
=“(T+§> .

P(RP(N) = a2< MO

3 =a?(2N°—=N). (10

Generalizing these results for an arbitrary numieof inci-  considered in this paper is more general and deals with the
dent harmonics, we obtain that the ionization probability asdifferences induced by random and phase-locked configura-
sociated to the central peak behaves as tions in laser pulses ineal atoms, i.e., it fully accounts for
atomic bound states and continuum structures.
PPYU(N) = a®N? (7)
and Ill. TWO-PHOTON ABOVE-THRESHOLD IONIZATION
. In this section, ATl is investigated using a time-dependent
2N—1 ifNodd nonperturbative approach. It consists in solving the time-

(RP) _ 2 -
P (N)=a”x 2N if N even, (8) dependent Schdinger equation for a hydrogen atom inter-

acting with the combination of several harmonic fields. The
where PL refers to phase-locked configuration, RP to randormethod used to solve the TDSE and to compute the electron
phase configuration, and=ME?. The total two-photon ion-  spectrum is based on the expansion of the total wave func-
ization probability is straightforwardly obtained by integrat- tion on spherical harmonics anB-spline functions(see
ing the electron spectrum over the electron energy ranggL5]). The temporal propagation in the length gauge is well
relative to the two-photon processes. This probability ac-adapted to the rather low intensities considered here. The
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FIG. 2. Electromagnetic field amplitude corresponding to a lin-
ear combination of five odd harmonics ranging from order 11 to 19 FIG. 3. ATI spectrum of H(%) ionized by the selection of
(hw,=1.5¢eV). harmonics defined in Fig. 2. The three different subsets of ATI
peaks correspond to different orders of processes.

electron spectra correspond to electrons emitted in the direc-

tion of the polarization. order processes appear with exponentially decreasing prob-
ability and, therefore, their study has a restricted interest
A. lonization of hydrogen in its ground state from an experimental point of view.

We have limited ourselves to a maximum of five com-
ined harmonics in this study because higher values would
ad to overlapping subsets of ATl peaks as is almost the
se forN=5 where the three-photon process subset partly
erlaps the two-photon subssee Fig. 3.

Let us now focus on the two-photon above-threshold ion-
tion, that is, the central subset of ATl peaks in Fig. 3. The
oblem of interest here is to determine how much the total
ionization associated with two-photon absorption increases

We have computed the electron spectra obtained by shirB
ing a linear combination of successive harmonics on atomi«F
hydrogen in its ground state. The frequencies of the selecte
harmonics are chosen so that absorption of a single photo&,
already brings the system into the continuum. Thus, the two-
photon processes we are interested in belong to the so-call
above-threshold ionization regime. In our approach, the ﬁel%:a
is described semiclassically as

N as we increase the number of harmonics in the field assum-
E(t)=Eof(t) >, codqu t+ bg), a=2(n—1)+do, ing t'hat either all harmonics are locked in phase, or their
n=1 relative phases are random.
(13) We have first simulated the case of phase-locked harmon-

ics. This is achieved by solving the TDSE when all harmonic
phases¢, are set to zero. Figure 4 shows the two-photon
ionization probability as a function of the number of harmon-
ics included in the field. The main result to be read from Fig.

where f(t) is the normalized envelope of the field, in our
case a cosine squared with 5 fs full width at half maximum
(20 cycles of harmonic J1E, is the maximum field ampli-
tude (identical for all harmonidscorresponding to an inten-
sity of 10 Wicn?; o, =1.5 eV is the fundamental photon 1o
energy, andj, indicates the lowest harmonic component in
the polychromatic field. The number of harmonics we con-
sider varies frorN=2 to N=5, so that the odd harmonics
included areH13—H15 for N=2, H13—H17 for N=3,
H11-H17 for N=4, andH11-H19 for N=5. The field
corresponding to the cade=5 is plotted in Fig. 2. The
electron spectrum due to such a field is shown in Fig. 3
where we observe that electrons produced via different order £
processes are clearly distinguishable. The spectrum has to be
read as follows: there are three clear subsets of ATI peaks,
each of them corresponding to a different order process. The 9% L
left-most subset corresponds to order 1, that is, direct photo-
ionization via the absorption of a single photdaX(1 for the [ . ‘ s . .
very first peak andH19 for the fifth. The second subset, 0 1 2 3 4 5 6

which is the one investigated here, embodies all processes of Number of harmonics

order 2. For example, the third peak of that subset results FiG. 4. Two-photon ATI total probabilityfilled circles and
from the simultaneous absorption of either two photons fromwo-photon ATI probability restricted to the central peédpen

the harmonic 13, or one from the harmonic 11 and anothegircles as a function of the number of harmonitisfor the locked
from the harmonic 15. All possible allowed polychromatic phase case. The line and dashed line are power law fitting curves
combinations are included in this type of simulation. Higher-with a respective argument of 3 and 2.1.

obability

Phase locked
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FIG. 6. Same as Fig. 5 but restricted to the central peak. Open

FIG. 5. Two-photon ATI total probability statisti¢§00 runsg as . o
P P y ¢ 3 I;:lrcles: average value. The power law fit gives an argument of 0.7.

a function ofN. The relative phases are random. Open circles refe

to the average value of the distributigpower law fit with an ar- . L. . .
gument of 2.4. Also shown are the maximum, minimum values of A Way to improve the statistical results is to increase the

the distribution and the standard deviatigriangles down, up, and number of harmonics included in the field by using higher-
error bars, respectively order harmonics. This will prevent us from having different

ATI order processes overlapping but also the ionization sig-
4 is that ionization certainly scales as the cubic power of thenal will decrease because the cross section associated to
number of harmonics as predicted by the combinatorial apthese processes decays with increasing photon energy.
proach, Eq(9). Similarly, the ionization probability associ-
ated with the central ATI peak scales$?, in good agree-
ment with Eq.(7).

To simulate the case where the phases are random, we A solution to ease two-photon ionization due to higher
have accumulated the results of 500 different random phadaarmonics is to start from a less bound atomic energy level,
configurations after solving the Schiinger equation for such as H(8), for example.
each of them and we have averaged the results at the end. By choosing harmonic 21%(w, =1.5 eV) as the central
This has been done for each valueNofWe report in Fig. 5 component, we can combine up to seven harmonics. Because
the ionization probability thus obtained together with its sta-of the lower binding energy, we now set the field intensity of
tistical fluctuations. The most interesting result here is theall harmonic components to 10 W/cn?. As expected with
behavior of the average value of the ionizati@pen circles this intensity, the probability for ionization by a two-photon
in Fig. 5. The average value scales B&“ departing sig- process is very low. However, one should keep in mind that
nificantly from the combinatorial estimate that predictd\Ngn  this probability varies as$? in agreement with the process
law [Eqg. (10)]. Let us now examine the statistical fluctua- order, and that the intensity we are using here underestimates
tions. On the one hand, we find that the maximum value oexperimental attainable fluxes.
the ionization(down triangles in Fig. bscales adN?®, very We find that in the phase-locked case, the scaling laws
close to that of the phase-locked case. Obviously, the cortoncerning total ionization associated with two-photon ab-
figurations that lead to such maximal value are the speciggorption shown in Fig. 7 agree very well with the combina-
cases where all phase differences are close to zero as in o@rial estimates expressed in E¢g) and(9).
simulation of the phase-locked configuration. On the other The random phase simulation for H{2has been carried
hand, the most globally destructive phase configuration leadsut by accumulating results from 300 resolutions of the
ing to the minimum value of the ionization probability scales TDSE, each time with a new random distribution of har-
asN*® (up triangles in Fig. 5 We have also investigated the monic phases. In Fig. 8, we show the two-photon AT prob-
ionization probabilities associated to the central two-photorability, obtained by integrating the spectrum over the whole
ATI peak, since it is the transition that involves the largestrange of electron energies corresponding to two-photon ATI
number of interfering quantum paths. The results are preprocesses. In the ca$é=7, the integration runs fronk,
sented in Fig. 6. The average value of the ionization prob=40 eV up toE,=76 eV. Here again, there is a significant
ability scales asN°7) in comparison with the fit>%) ob-  departure of the average value of the ionization probability,
tained for the phase-locked case. Finally, its minimum valuevhich scales as\?%° from the N2 combinatorial law asso-
drops dramatically since interferences now can be comeiated with the random phase configuration.
pletely destructive, that is, there exists a particular configu- Finally, as in the preceding section, we have looked at the
ration of phases able to totally suppress ionization for thignost phase sensitive ATl peak located at the center of the
particular electron energy. This feature is absent in the casgvo-photon ATI subset in the electron spectrum. The ex-
of total two-photon ionization since, as explained before, thepected combinatorial power laws are 2 and 1 for harmonic
four outermost ATI peaks correspond to transitions involvingphases, locked and random, respectively. The quantum me-
only two quantum paths, and therefore are not affected bghanical computation gives the values of 2 and 1.3 for the
any change in phase. respective configurations as is shown in Fig. 9. The lower

B. lonization of hydrogen in the 2s state
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FIG. 7. lonization from H(2): Two-photon ATI total probabil- FIG. 9. Same as Fig. 8 but restricted to the central peak. Open

ity (filled circles anc_i two-photon ATI probability restr_lcted to the circles: average value. The power law fit gives an argument of 1.3.
central peak'open circleg as a function ofN. The relative phases

are locked(zerg. The line and dashed line are power law fitting first subset of peaks in the electron spectra.
curves with a respective value of 2.98 and 2.04. At this point, let us recall that our combinatorial model is
- o . based on the assumption that the total transition amplitude
limit of the d!strlbutlon drops abruptly until it reaches the \vards a given final state is only related to the number of
background induced by the numerical accura@yound jnterfering paths leading to such a final state. This assump-
10 "in Fig. 9).' . . tion, in turn, implies that all the matrix elements involved in
To summarize, we have shown that there is a differenine transitions are considered equal. The results obtained so
behavior in the two-photon ionization probabilities as a func-a, indicate that this is a reasonable assumption for two-
tion of N if one considers the harmonics locked in phase or ifphoton ATI processes where bound-bound transitions do not
the distribution of their phases is random. To a rough extentmay any essential role. However, two-photon ionization pro-
scaling laws can be explained using the idealized Combi”ac'esses(MPl) may involve quasiresonant bound-bound tran-

torial model of Sec. II. sitions. At low intensities, i.e., in the frame of perturbation
theory, the values of the bound-bound transition matrix ele-
IV. TWO-PHOTON IONIZATION ments depend strongly on how close the transition is from a

Esonance. As we shall see, this fact substantially modifies

The preceding section has been devoted to the study J
e results we have encountered so far.

two-photon ATI processes, where absorption from a singlé | der t timize the studv of the interf b

photon already brings the system into the continuum. Nowt n o(rj.f?r Otokf) imize ehs_u y Ot the Inter et_rences e_d

we propose to study direct two-photon harmonic ionization ween dilferent harmonics having, at the same tme, a goo
control of the role of the resonances involved, we choose as

MPI). In contrast with the two-photon ATI cases, ionization o
( ) P model a hydrogenic ion (Hg. Note, however, that the

now requires two harmonic photons, so the interference ef? : ! ; :
: hrgsults we present in this section can be straightforwardly

generalized to any atom or ion and, therefore, have a certain
; . . . ; generic validity.
We numerically solve the TDSE for direct two-photon
. ionization, where the external field is a linear combination of
different harmonic fields, all of them with the same polariza-
tion and intensity. As in the previous sections, we consider
harmonics from a Ti:sapphire lasef ¢, =1.5 eV), set the
] intensity of each harmonic to 2210'? W/cn?, and calcu-
late ionization probabilities as well as photoelectron spectra
for phase-locked and random phase configurations. For our
choice of parameters, the smallest harmonic from Ti:sap-
phire required for two-photon detachment of His the 19th
and the largest one the 35th. Larger harmonics will directly
‘ , ‘ ‘ , , ‘ detach the ion, and smaller ones than the 19th cannot achieve
0 1 2 3 4 5 6 7 8 two-photon detachment.
Number of harmonics Before proceeding further, it is illustrative to show some

FIG. 8. lonization from H(2): Two-photon ATI total probabil-  Of the effects due to atomic resonances in the photoelectron
ity statistics(300 rung as a function oN. The relative phases are SPectrum. To this aim we display the spectrum for a phase-
random. Open circles refer to the average value. The power law f#ocked configuration containin@ N=4 harmonics ranging
gives an argument of 2.5. Also shown are the maximum, minimunfrom 19th to 25th(Fig. 10 and(b) N=6 harmonics ranging

values and the standard deviati¢inangles down, up, and error from 19th to 29th(Fig. 11). In both spectra there are two
bars. distinguishable sets of peaks: the first one corresponds to

1x107"2 |

1x10™

Probability
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FIG. 10. Photoelectron spectrum of Héor a phase-locked con- FIG. 12. Average value of the ionization probability versus the

figuration containing four harmonidérom 19th to 25th. The first number of harmonic components for random phase configuration.
subset corresponds to direct two-photon ionization processes. ﬁéull line corresponds to the combinatorial estimge. (10)] and
higher energies a second subset of peaks corresponding to thre&ec-)ts display the numerical results.

photon process appears.

start by analyzing the random phase configuration where we
two-photon detachment processes, the second one CorMRaye accumulated results from a large number of random
sponds to three-photon proces$Ad1 peaks. From an ex-  phase distributions and we have averaged them at the end. In
perimental point of view, interest in the second subset shoulgtjg 12 we plot the average value of the ionization probabil-
be restricted due to the low probability of three-photon pro-ty versus the number of incident harmoniswhich varies
cesses. _ _ from N=2 toN="7. The lowest harmonic involved is always
The first subset contains\2- 1 different peaks, whertl  {he 19th saN=2 includes harmonics 19-2N=3 includes
is the number of harmonics present in the external field. A$,3rmonics 19-21-23, and so on. The overall behavior of the
mentioned in the previous sections, the central peak of thighization probability obtained numericallydots agrees
subset corresponds, in both cases, to the transition involvingb|ative|y well with the combinatorial approacfull line).
the largest number of different quantum paths. While in Fig. |, Fig. 13 we present the corresponding ionization prob-
10 this peak is the most probable one, in Fig. 11 the centralpijity as a function of the number of harmonikss for the
peak is clearly suppressed in comparison with lower-ordepnase-locked configuration. In the simulation, all the indi-
peaks. The reason for this peak suppression is due to the faghual harmonic phases),, have been set to zero. Again,
that the 27th harmonifonly present in casé)] crosses the  the fyl| line represents the results from the combinatorial
1s-2p resonance quasiresonantly. _ __approach[Eq. (9)], while symbols show our numerical re-
~ Let us now focus on the results corresponding to ionizagyjts. We observe that for low-order incident harmonics, i.e.,
tion probabilities. As in Sec. llI, the two-photon detachmentom the 19th to the 25th, the numerical results agree rela-
probability is calculated by integrating the area below alltyely well with the combinatorial approach. However, when
two-photon processes in the photoelectron spectrum. Wﬁigher harmonics are includeéfom the 27th onwardsthe
combinatorial approach clearly overestimates the ionization
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FIG. 11. Same as Fig. 10 but for an external field containing
now six harmonics component(fom 19th to 29th. Observe that FIG. 13. Same as Fig. 12 but for a locked phase configuration.
the peak distribution in the two-photon ionization processes doe&ull line corresponds to the combinatorial estimfie. (9)] and

not follow the same pattern as before. dots display the numerical results.
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TABLE I. Two-photon transition matrix elements as a function individual matrix elements. It also has consequences for ran-

of the order of each photon. dom phase configurations but there the effects are less dra-
- matic. It is easier to understand the difference between both

Matrix elementss— p—d cases with an example. Consider an incident field containing

19 21 23 25 27 29 31 harmonics 25, 27, and 29. Such an incident field leads to five

possible final electron energy states, which, ordered by in-
19 —-841 -661 —-582 —49.1 —-418 —-358 —309  creasing energy, correspond(tp 25+25 (absorption of two

21 —905 -744 -619 -520 —442 —379 —327 bhotons from harmonic 25 (i) 25+27, 27+25; (iii) 25
+29, 2727, 29+ 25; (iv) 27+ 29, 29+ 27, and finally(v)

23 —-1054 —-86.2 —-714 -599 -50.8 —42.7 -37.5 29+29. Remember that in order to have interference effects
we need at least three different quantum paths contributing to
the process. Therefore, the partial ionization probabilities as-
27 132.1 105.1 85.3 70.5 59.1 50.2 43.1 Sociated to states), (ii), (iv), and(v) are the same regardless
of the relative phase of the harmonics. The partial ionization
29 -206 -199 -169 -145 -125 -109 —-95  probability associated to staféi) which contains contribu-

31 —183.0 —151.7 —125.3 —105.2 —895 —76.8 —66.6 t@ons from three different quantum paths depends on the.rela_—
tive phases of the harmonics. For phase-locked harmonics, it
is proportional to|M (s 29)+ M (271 27)+ M 29+ 25 %. On the

probability obtained numerically. The discrepancy betweerPther hand, if the harmonics have a random phase, the partial
the estimate and the numerical value then becomes dramatf@nization probability associated to the final stéi® is pro-

This discrepancy can be understood by analyzing the rol80rtional o [M o5, 20+ M (0. 25)| “+|M27. 27 . Comparing
of resonances within perturbation theory. Under the paramPOth expressions, we note that it is only in the phase-locked
eters we have used in the simulations, the energy of the 27{@S€ where the sign &l ;7. 27) plays a definite role since it
harmonic is slightly detunedfrom abové from the 1s-2p acts effectively as a destructive interference term. Notice that

resonance. As a result, the matrix elements corresponding € values of the matrix elements corresponding to transi-

25 —168.1 —136.4 —1124 —-940 —-79.5 —68.0 —58.6

transitions of the type tions 2725 and 2% 29 do modify the partial ionization
probabilities associated to the final statiésand(iv), respec-
(f|zln)(n|z|1s) tively, but they do it exactly in the same way for both cases:
M o Eo7*E;j, (12  locked and random phase configurations.

@15 W7~ wn To corroborate our findings we have extended our nu-

merical results up to the 33rd harmonibl€£8). For the
wherei refers to the second photon absorbed, flip their sigrparameters we have used, the photon energy of harmonic 33
compared to those transitions which are far off resonance. is slightly higher than the atomic transitiors-& 3p. Conse-

Let us analyze in more detail the two-photon MPI transi-quently, the matrix elements corresponding to absorption
tions. From the two possible paths starting from the groundrom the ground state of a photon from harmonic 33 will
state leading to photodetachmest»p—s ands—p—d, again flip their sign, and again act as an effective destructive
the second one clearly dominates over the first one. This imterference for locked phase configurations. As a result, the
because transitions that increase their principal quanturdisagreement between the ionization probability and the
number and their angular momentum in the same directiogombinatorial estimate should increase. Our numerical re-
are always favored compared to the othi§]. Therefore, sults support this conclusion.
we focus on two-photon transitions of the type-p—d and In spite of the discrepancy between our numerical results
present the values dfl in Table I. and the combinatorial estimates, it should be stressed here

The table has to be interpreted as follows: rows refer tahat nevertheless the overall behavior of the ionization prob-
the first absorbed photon and columns to the second one. Fability for random and phase-locked configurations remains
example, the first row displays the values of the matrix eledistinct, allowing in principle for a distinction between both
ments corresponding to transitions in which the first ab-cases.
sorbed photon is the 19th harmonic and the second one the We would like to remark here that according to what we
one indicated by the column label, i.e., transition amplitudehave seen, it might also occur that foparticular final state
of the typeX[{f|z|n)}(n|z|1s)/(w s+ w19~ wp) ]E16E; - energy, its associated partial transition probability becomes

As it should be, we observe that the values of the matriXarger for incident harmonics with random phases than for
elementdi) decrease as the energy of the final state increasgshase-locked harmonics. Such a partial peak inversion dem-
and (i) decrease for transitions far from resonances. Immeenstrates that the effects due to atomic resonances can in
diately after a resonance has been crossed, the matrix elseme cases be strong enough to compensate the effects due
ment flips its sign. Thus, with the parameters we have usetb quantum phase interference.
in the simulation, all matrix elements corresponding to the To summarize, we have shown that the overall behavior
absorption from the ground state of a photon from the 27ttof the ionization probability clearly depends on the relative
harmonic[Eq. (12)] flip their sign compared to all the other phase configuration of the incident harmonics. Furthermore,
matrix elements shown in the table. we have shown that for phase-locked configurations and in-

This relative sign flip strongly affects the total ionization cident harmonic fields near resonance, the total ionization
probability in the phase-locked case, for whidh(Pb probability strongly departs from the combinatorial estimate
«|=M;|?, i.e., proportional to the square of the sum of theand it no longer follows thé\® power law[Eq. (9)]. If, on
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the contrary, the incident harmonics are all far from atomicobserve two-photon processes. However, several possibilities
resonances, the combinatorial estimate accurately predicts increase the harmonic fluxes are under investigation,
the exact resultfEgs.(9) and(10)]. We stress, however, that based on shortening the duration of the pump pulsex17]

most two-photon ionization experiments involving a set ofor improving the phase matchif@0]. Furthermore, initial
harmonics are bound to show the effects of resonances. Fétates prepared as coherent superpositions of two or more
nally, for incident harmonics with random phases, the averbound states can potentially increase the harmonic genera-
age value of the ionization probability agrees relatively welltion efficiency in the part of the spectrum we are interested in

with the combinatorial approach, i.e\?. [18,19. Another challenge to be faced in a real experiment
will be the making of multilayer mirrors with different band-
V. CONCLUSIONS widths to vary the number of selected harmonics without

. ] changing their relative phases. In spite of these obstacles, we
In conclusion, we have shown that in two-photon ATI of think that such an experiment is not out of reach and could

hydrogen atoms by multiple orders of high-order harmonicspe yseful in asserting the existence of subfemtosecond har-
measurable quantities such as the ionization yield or the phanonic pulses in the cases of locked phases.

toelectron spectra significantly depend on the relative phase
of the harmonics. It should therefore be possible to deter-
mine experimentally the phase configuration of the high har-
monics and, in particular, if the phases are locked. The A.S. would like to thank Richard Tab for very illumi-
method suggested by the calculation is a measurement ofting ideas concerning Sec. IV and acknowledges financial
these quantities as a function of the number of selected hasupport from DGICYT (Spain Contract No. PB95-0778-
monics. Clearly this is a difficult task. One difficulty lies in C02-02 and the European TMR prograt@ontract No.

the relatively low photon harmonic flux currently achievable: FMRX-CT96-0080. E.C. thanks Pascal Saiés for a care-

10° photons using 100 fs lasers in argon, and pBotons ful reading of the manuscript and P. Lambropoulos for clari-
using 30 fs in neoml]. Such a flux is in general too low to fying discussions.
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