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Transfer-matrix formulation of field-assisted tunneling
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A transfer-matrix technique is formulated to treat the scattering of a particle incident on a piecewise constant
potential and interacting with an oscillatory field. A study of tunneling through a single barrier shows in the
transmission probabilities, for absorption or emission of quanta from the field, replicas below the barrier of the
overbarrier field-free transmissivity, with its resonant structure. In the case of resonant tunneling through a
double barrier, an appropriate choice of parameters gives evidence for a change in the regime, with inhibition
of transmission at a resonance energy of the intermediate well when the period of the field approaches the
lifetime of the resonant state. The technique can be extended to treat scattering of a particle by more general
potentials in the presence of an oscillatory perturbation. As an illustrative example, the transmissivity as a
function of a bias potential in a double-barrier structure is calculated.@S1050-2947~99!00405-9#

PACS number~s!: 33.80.2b, 73.40.Gk, 73.20.Dx
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I. INTRODUCTION

The transmissivity of a particle incident on one or mo
barriers and interacting with a time-periodic external field
of interest for the understanding of many physical proces
such as field emission, tunneling chemical reactions,
transmission through semiconductor double-barrier str
tures. The problem has been treated with a large variet
models and methods. We review only some papers which
close to the present approach. Sokolovski and Yu@1# and
Sokolovski @2,3# have applied a semiclassical procedure
obtain the total transmissivity through a double barrier in
presence of a harmonic perturbation. This situation gives
to the well-known resonant tunneling effect. In the abse
of the perturbation, and if the tunneling probabilities throu
each of the barriers are identical, unit transmissivity is o
tained when the incident energy coincides with an energy
the intermediate well. Sokolovski delineated several regim
from a comparison of the three relevant parameters:G21, the
lifetime of the particle trapped in the well with energyER
2 iG/2,v21, proportional to the period of the field; andW,
which measures the coupling of the particle to the fie
WhenW andG are both smaller thanv, a structure appear
in the transmissivity, with peaks separated byv. A simple
explanation is that the particle can tunnel through the dou
barrier device if, by absorption or emission of field quan
its energy fulfills the resonant condition. A drastic chan
occurs in the transmissivity whenv is of the order or smaller
thanG while W is larger than bothv andG. The transmis-
sivity is peaked at energiesER6W. The interpretation is
based on an adiabatic picture. With a low field frequency
particle ‘‘sees’’ a time-dependent double barrier and an e
cient transmissivity occurs only at the turning points of t
barrier motion.

In a series of papers Azbel@4–6# and Azbel and Tsuk-
ernik @7# consider resonant tunneling in the presence o
time-dependent perturbation having a spatial dependenc
volving ad function of position. This form of the interactio
allows extensive analytical derivations and applications e
to complicated structures. Conditions for activation of t
PRA 591050-2947/99/59~5!/3701~9!/$15.00
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transmission through a barrier are established within
model. The adiabatic regime corresponds to the particle
lowing a time-dependent eigenstate until its energy reac
the top of the barrier.

Time-dependent barriers have also been considered
Büttiker and Landauer@8# to test various proposals for th
definition of tunneling traversal times. They stress the m
tiquantum aspect of the scattering and propose a semicl
cal approach to calculate the scattering amplitudes. A rela
subject is the observation of replicas of the main feature
phonon-assisted@9# or plasmon-assisted@10# tunneling in
double-barrier semiconductor structures. Theoretical tre
ments of these effects based on a second-quantization
malism rather than a time-dependent formulation have b
proposed@11,12#. The explanation of the replica phenom
enon is that by emission of a quantum the incident elect
reaches the energy that favors efficient transmissiv
through the structure.

The work that is closest to the present approach is tha
Sacks and Szo¨ke @13#. They provide exact results for th
reflection and transmission coefficients of a number of st
wise constant potentials for an electron interacting with
electromagnetic field of arbitrary intensity. We use their a
proach to revisit the case of a single barrier and to extend
treatment to the double-barrier situation. We have found
convenient to define in this context a generalized trans
matrix. Such matrices have been widely used for the de
mination of transmission and reflection amplitudes in a la
variety of situations@14–17#. They are generally of dimen
sion 2, since at every junction between two regions there
in the absence of a time-dependent perturbation, only
incident wave and one reflected wave on each side of
junction. In the present case, at every discontinuity of
potential, there are, in principle, an infinite number of inc
dent and reflected waves, since an arbitrary number of qu
can be exchanged by the particle and the field. Converge
with respect to the number of channels must be checked
advantage of the transfer matrix is that it can be used eve
the case of an arbitrary potential, since any potential can
considered as the limit of an infinite number of steps of va
3701 ©1999 The American Physical Society
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3702 PRA 59C. PÉREZ del VALLE, R. LEFEBVRE, AND O. ATABEK
ishing widths@18#. We will also make use of this capacity o
the method.

Section II describes the transfer matrix which takes i
account the multiquantum aspect of the scattering of a
ticle incident on the discontinuities present in a stepwise c
stant potential. The final reflection and transmission am
tudes are derived from an overall transfer matrix taking i
account all successive scattering events. The various po
tial arrangements to which the method is applied are sho
in Fig. 1. Tunneling through a single barrier is treated in S
III. The multiquantum aspect of field-assisted processe
stressed. Each peak in the transmissivity has contribut
from several multiphoton processes with a clear interpre
tion in terms of virtual and real exchanges of energy betw
the particle and the field at the two potential discontinuiti
In Sec. IV we consider the double-barrier structure which
one of the basic models in semiconductor research. Altho
we do not consider at this point any bias of the potential,
model is rich enough to investigate carefully the roles play
by the competing different time scales which were identifi
in previous approximate treatments@1–3#. Finally Sec. V
considers application of the method to a potential of a m
complex shape: a biased double-barrier structure, with th
fore consideration of both static and oscillatory elect
fields. Transfer matrices have to be evaluated at all the po
retained in the numerical representation of the potential.

We recall @14,19# that the transmissivity of the one
dimensional~1D! arrangement allows for the calculation

FIG. 1. The different potential arrangements considered in
paper.~a! the rectangular barrier of Sec. III;~b! and~c! two double-
barrier structures examined in Sec. IV;~d! a double barrier with an
applied electric field of 1024 a.u. studied in Sec. V. This corre
sponds to a bias voltage of 0.46 V.
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the tunneling current under the assumption of conserva
of the transverse components of the energy and momen
of the incident electron in the analysis of the 3D situatio
The current has two opposing contributions~from left to
right and from right to left!. Integration over the transvers
components of the wave-vector leads for the current to a
integral over the longitudinal component of the energy, w
the 1D transmissivity under the integral sign~the so-called
Tsu-Esaki formula@14#!.

II. TRANSFER MATRICES AT POTENTIAL
DISCONTINUITIES

The discussion is patterned after that valid for the fie
free case@14,16–18#. The main change is that the transf
matrix has, in principle, infinite dimension, so that truncati
and convergence tests are necessary.

In velocity gauge, in one dimension, the wave equat
for a particle of unit charge coupled to a field is in atom
units @13#,

i
]

]t
c~x,t !5S 2

1

2m

]2

]x2
2

A~ t !px

m
1V~x!D c~x,t !. ~1!

The massm is in units of the free electron mass.V(x) is
the potential energy. The potential vector is supposed to
spatially invariant on the length scale of interest. It is writt
A0cos(vt) so that the associated electric field isE0sin(vt),
with E05vA0 .px is the linear momentum2 i ]/]x. In a re-
gion of constant potentialV the solutions are Gordon-Volkov
waves

c~x,t !5expF i S 6kx2Et6
A0k sin~vt !

mv D G , ~2!

with k5@2m(E2V)#1/2.
Let Xi be the position of thei th discontinuity of the po-

tential. If N is taken as the maximum number of quanta th
can be exchanged~either by absorption or emission! by the
particle and the field as a result of the scattering by the co
plete potential arrangement, the wave function either to
left ~L! and to the right~R! of Xi is written as a combination
of Gordon-Volkov waves traveling in both directions,

CL~x,t !5 (
n52N

n5N

tn
L expF i S kn

Lx2Ent1
A0kn

L sin~vt !

mv D G
1r n

L expF2 i S kn
Lx1Ent1

A0kn
L sin~vt !

mv D G , ~3!

CR~x,t !5 (
n52N

n5N

tn
R expF i S kn

Rx2Ent1
A0kn

R sin~vt !

mv D G
1r n

R expF2 i S kn
Rx1Ent1

A0kn
R sin~vt !

mv D G .
~4!
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En is E1nv, E being the initial energy of the particle. I
VL and VR are the potential values on the left and on t
right of Xi , the wave numbers present in these wave fu
tions are to be calculated as

kn
L,R5@2m~En2VL,R!#1/2. ~5!

The sign ofEn2VL,R determines the open or closed cha
acter of channeln. The positive determination of the squa
root ensures the correct behavior of thenth component of the
wave function.kn is ikn , with kn positive. This can be
checked at a junction between a classical and a nonclas
region. A wave travelling to the right~i.e., multiplied by an
amplitudetn

R) should behave as exp@2kx#. A wave travel-
ling to the left behaves as exp@1kx#. The total number of
amplitudes in any region~between two discontinuities! is
2(2N11). The two wave functions and their derivatives a
to be matched at the discontinuityXi at all times@13#. We
have to find some way to calculate the amplitudestn

R andr n
R

from the knowledge oftn
L andr n

L ~with the usual convention
of a propagation from left to right!. The wave function is
Fourier expanded with the help of the identity:

expS 6 i
A0kn

mv
sin~vt ! D5 (

p52`

p51`

JpS 6
A0kn

mv Dexp~ ipvt !.

~6!
nt

d
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-
s
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-
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By limiting p to go from 2N to 1N and equating the
coefficients on both sides of the same Fourier component
gets a number of equations@2(2N11)# giving the tn

R’s and
the r n

R’s in terms of thetn
L’s and ther n

L’s. Introducing two
column vectors

aL51
t2N
L

•

t0
L

•

tN
L

r 2N
L

•

r 0
L

•

r N
L

2 , aR51
t2N
R

•

t0
R

•

tN
R

r 2N
R

•

r 0
R

•

r N
R

2 , ~7!

the matching condition is now written in matrix form

ML~Xi !a
L5MR~Xi !a

R, ~8!

where the matricesML,R(Xi) are given by the equation
M ~Xi !5S ••• exp@ iknXi #Jp~A0kn /mv! ••• exp@2 iknXi #Jp~2A0kn /mv! •••

••• ••• ••• ••• •••

••• knexp@ iknXi #Jp~A0kn /mv! ••• 2knexp@2 iknXi #Jp~2A0kn /mv! •••

D ~9!
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calculated with either thekn
L’s or thekn

R’s. The left half of the
matrix is made of the coefficients of the Fourier compone
of the transmitted waves~upper part! and their derivatives
~lower part!, while the right half comes from the reflecte
waves.n is the index of a transmission or reflection amp
tude, whilep is the index of a Fourier component.

From Eq.~8! we obtain

aR5@MR~Xi !#
21ML~Xi !a

L5M~Xi !a
L. ~10!

This relation defines the transfer matrixM(Xi) to pass
the discontinuity at positionXi . Let us consider now a gen
eral situation with discontinuities at position
X1 , X2 , . . . ,XP . Calling ain the vector of amplitudes in
the potential-free region on the left andaout the vector of
amplitudes in the right potential-free region, we can write

aout5M~X1!M~X2!•••M~XP!ain. ~11!

Although there are 4(2N11) amplitudes in these 2(2N
11) equations, once we introduce the usual scattering c
ditions, the number of unknowns become equal to the nu
ber of equations. In the vectorain only t0 is kept and made
equal to 1. In the vectoraout, all the amplitudesr n are taken
s

n-
-

equal to zero. The equations determine the 2N11 ampli-
tudes for reflection to the left and the 2N11 amplitudes for
transmission to the right.

A final comment on this technique: it is possible to d
connect@13# the number of amplitudes and the number
Fourier components when going to higher intensities of
field. If the number of Fourier components exceeds the nu
ber of Gordon-Volkov waves, the number of equations b
comes larger than the number of unknowns. A least-squ
procedure allows to define a square transfer matrix eve
such a case and to overcome the numerical difficulties a
ciated with the inversion of large and ill-conditioned mat
ces.

III. REPLICAS OF BARRIER RESONANCE STRUCTURE

The transmissivity of the rectangular barrier is determin
in all introductory books on quantum mechanics~see, for
instance, Merzbacher@20#!. It is characterized by oscillation
at energies above the barrier top which are due to const
tive interference produced by the reflections taking place
the two discontinuities of the potential. We examine now t
effect of a coupling with an oscillatory field. The barrier
such that very little transmissivity is allowed below the to
in order to see clearly the effects of the perturbation. T
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parameters in atomic units are: 1 for the mass, 8 for
barrier widtha, and 2 for the barrier heightV0 . The barrier
is depicted in Fig. 1~a!. The field-free transmissivity up to 3
a.u. is shown in Fig. 2~a!. It shows a pronounced resona
structure above the barrier maximum.

The particle is now coupled to an electric field of max
mum amplitudeE0 equal to 0.1 a.u. The frequency isv
50.4 a.u. The determination ofN ~maximum number of ef-
fectively exchanged quanta! is made by requiring the fulfill-
ment of the rule

(
n5N1

n51N

Rn1 (
n5N2

n51N

Tn51. ~12!

In this equationN1 is the index of the lowest channe
open for reflection~i.e., the first channel with a real wav

FIG. 2. Replicas of overbarrier structure of the tranmissiv
produced by the coupling of an electron to an oscillating elec
field of amplitude 0.1 a.u. The parameters of the barrier@cf. Fig.
1~b!# are in a.u.: 8 for the width, 2 for the height. The frequency
the field isv50.4 a.u.~a! the field-free transmissivity showing th
first two resonances above the barrier.~b! The total transmissivity
in the presence of the field.~c!–~f! The transition probabilities for
absorption of zero, one, two, and three photons. The dotted ver
arrow indicates the position of the first overbarrier resonance.
one-, two-, and three-headed solid arrows display the position
below-barrier replicas of this resonance shifted by one, two,
three quanta. There is clear evidence that the overbarrier structu
translated into an underbarrier structure of the same shape.
e

number in the left asymptotic region! andN2 the correspond-
ing index for transmission~first channel with a real wave
number in the right asymptotic region!. Rn and Tn are the
transition probabilities for reflection or transmission with a
sorption~emission! of n quanta. They are obtained from th
amplitudesr n and tn by the relations

Rn5Ukn
in

k0
Uur n

inu2, Tn5Ukn
out

k0
Uutn

outu2, ~13!

with k05@2mE#1/2. Table I shows how the rule given in Eq
~12! is progressively fulfilled in this example. The energy
that of the first resonance in the field-free transmissivityE
52.07 a.u.). N58 can be considered as giving accura
results.

Figure 2 gives the total transmissivity~b!, but also in
~c!–~f! the transition probabilitiesT0 ,T1 ,T2 , andT3 for ab-
sorption of 0, 1, 2, and 3 quanta. The transition probabilit
T21 ,T22 , andT23 for emission of 1,2, and 3 quanta are n
shown. They are identical, except for a shift, to the abso
tion probabilities, according to the general rules

Rn~E!5R2n~E1nv!, Tn~E!5T2n~E1nv!. ~14!

These relations express the equality of probabilities wh
the initial and final states are permuted. They apply to sy
metric potential arrangements. We now concentrate on
role of the first two resonances of the field-free case, say w
energiesER

1 and ER
2 . The total transmission probability

shows clearly that the structure occurring above the barrie
now also present below it. The peaks are occurring as
pected at energiesER

12v and ER
22v. The spectrum is an

exactreplica of the field-free transmission. There is even
weaker replica at energiesER

122v andER
222v. Figure 2~c!

showsT0 . The same feature is present, but since there is
net absorption or emission of photons, a two-photon proc
must be invoked: the particle incident at energyER

i 2v, with
i 51,2, absorbs a quantum when meeting the left edge of
barrier and emits a quantum when meeting the right ed

TABLE I. Convergence to the fulfillment of the condition on th
sum of reflection and transmission probabilities@Eq. ~12!#. This
series of calculations is performed at an energyE52.07 a.u., in the
neighborhood of the first resonance of the barrier shown as Fig.~a!
and studied in Fig. 2, with the same parameters for the field.RT is
the total reflection probability andTT the total transmission prob
ability. N is the maximum number of exchanged quanta kept in
expression of the wave function@cf Eq. ~7!#. N50 corresponds to
the field-free case.

N RT TT RT1TT

0 0.130 890 7 0.869 109 30 1.000 000 0
1 0.669 104 30 0.506 188 32 1.175 292 6
2 0.509 509 77 0.523 219 60 1.032 272 9
3 0.501 754 77 0.504 865 94 1.006 620 7
4 0.494 172 46 0.506 121 72 1.000 294 2
5 0.494 295 80 0.505 742 23 1.000 038 0
6 0.494 292 00 0.505 716 48 1.000 008 5
7 0.494 284 77 0.505 715 74 1.000 000 5
8 0.494 284 40 0.505 715 63 1.000 000 0
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We now go to Fig. 2~d!, which shows that it isT1 that most
contributes to the replica. The process is a single-photon
The particle incident at energyER

i 2v absorbs a photon to
reach the doorway. This is the situation which comes imm
diately to mind if one thinks of photon-assisted transmissi
However, we observe that not all of the replica is due to t
one-photon mechanism. InT2 @Fig. 2~e!# a replica is also
present, now at energiesER22v. A two-photon process is
involved, the absorption occurring on the left edge of t
barrier. The explanation is the same forT3 , with now impli-
cation of three quanta. However, the probability has drop
considerably.

Similar calculations made with lower electric field amp
tudes at the same frequency (v50.4 a.u.) show that the
replicas are reduced. When the frequency is increased, w
the field amplitude is maintained at the value 0.1 a.u.,
replicas are displaced to lower energies. This is shown
Fig. 3. The replica of the third overbarrier appears clea
now for v.0.8 a.u. The amplitudes of the replicas are
duced. This is expected, since in a multichannel Floquet

FIG. 3. Effect of a change of frequency on the replicas o
rectangular barrier. The barrier parameters are those used for F
As the frequencyv increases a replica of the third overbarrier res
nance appears in the total transmissivity below the top energy o
barrier (2 a.u. in the present case!. The replicas are essentiall
associated with aT1 process: absorption of 1 photon at the fir
discontinuity of the potential gives to the particle an energy in
incidence with one of the resonances above the barrier.
e.

-
.

s

e

d

ile
e
in
y
-
c-

ture, the threshold intervals are increased, while the in
channel couplings are maintained constant.

IV. ANALYSIS OF MULTIPLET STRUCTURE IN
RESONANT DOUBLE BARRIER TUNNELING

It is possible to choose the parameters of a double-ba
structure to produce a wide variation of the resonance wid
associated with the unstable states of the intermediate w
The resonance width is one of the key parameters to un
stand the effect of a time periodic perturbation@2,3# on the
transmission pattern. Figure 4 shows in~a! the field-free
transmission through the double-barrier of Fig. 1~b!. It is
made of two identical barriers of width 1 a.u., of height
a.u., with the intermediate well extending over 6 a.u. Th
are five resonances below the potential maximum, w
widths from ;0.0005 a.u. for the narrowest to 0.0518 a

. 2.
-
he

-

FIG. 4. Transmission through a double-barrier potential@Fig.
1~b!# in the presence of an oscillatory electric field of amplitu
0.01 a.u. Each of the barriers has a width of 1 a.u. and a heigh
3 a.u. The well between the barriers has a width of 6 a.u. T
frequencyv is 0.1 a.u.~a! The field-free transmissivity displaying
the five resonances created by the well;~b! the total transmissivity
showing the multiplets created by each resonance~note the change
in the structure of the multiplets as one goes to resonances o
creasing width!; ~c!–~f! the probabilities for absorption of zero, on
two, and three photons.T0 ~c! is similar to the total transmissivity
~b!, but reduced in scale. Processes with absorption or emissio
photons contribute significantly to the tranmission.
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3706 PRA 59C. PÉREZ del VALLE, R. LEFEBVRE, AND O. ATABEK
for the broadest one. Figure 4~b! gives the total transmissiv
ity for a field of maximum amplitudeE050.01 a.u. and of
frequencyv50.1 a.u. One recognizes easily the differe
multiplets arising from the successive resonances, with p
to peak separation equal to the frequency. Similar multip
have been obtained by Sokolovski@3#. Various processes ca
contribute to a given peak. Consider, for instance, the m
tiplet associated with the field-free resonance occurring
ER50.941 a.u.T0 , T1 , T2 , and T3 are given in Figs.
4~c!–4~f!, respectively. Figure 4~c! shows essentially the
same pattern as in the total transmissivity, but with a red
tion in scale. The central peak inT0 corresponds to a direc
access to the resonant state, while the two peaks atER6v
correspond to two-photon processes~one photon is either
absorbed or emitted to reach the resonant energy, and
reemitted or reabsorbed!. Let us now go to theT1 or T21
processes. OnlyT1 is shown in Fig. 4~d!, T21 being identi-
cal, except for a shift@cf. Eq. ~14!#. The two main peaks are
at ER2v andER . A reasonable explanation is that in the le
peak, absorption of a photon is needed to reachER , while in
the right peak absorption follows the passage through en
ER . The peaks inT21 are at energiesER andER1v. This
restores the symmetry in the multiplet, despite the asym
try of the contributions of bothT1 andT21 . The main peak
of T2 is at energyER2v: absorption of a photon takes plac
before reaching the doorway energy, absorption of a furt
photon takes place afterward. InT22 the main peak is a
energyER1v. The ruleTn(E)5T2n(E1nv) is therefore
at the origin of the symmetry of the successive patterns in
total transmissivity, Fig. 4~b!.

We turn now to another striking feature of the success
multiplets. There is a progressive change with a decrea
contribution of the central peak. This is strongly reminisce
of the change from a nonadiabatic to an adiabatic reg
described by Sokolovski@2,3#, this time occurringin the
same spectrum. The only parameter that changes across
spectrum is the resonance width. We now proceed to a
tailed study of the parameters influencing the structure o
given multiplet. We choose to study the resonance with
ergy 1.651 –i0.029 of thefield-free transmissivity.v is
kept equal to 0.1 a.u. and the amplitude of the field is var
According to Sokolovski, to reach the adiabatic regime,
period of the field should be of the order or longer than
lifetime of the resonant state. We have herev.G, which is
an obvious condition to observe a structure, and we obs
that by increasing the field amplitude the change in the sp
trum is very much like that characterizing the adiabatic
gime @2#. Figure 5 is showing in~a! an enlarged view of the
field-free transmissivity in the region of the resonance. W
now switch on a field with amplitudes 0.002, 0.005, 0.0
0.02, and 0.022 a.u. Only the total transmissivity is show
There is a drastic change of the shape of the multiplet w
the field amplitude. At low field amplitude@Fig. 5~b!# there
is a central peak with a width of the same order as the fie
free width, with only small changes in the wings of the pe
As the field amplitude increases, the expected multip
structure develops. However, the central peak loses prog
sively its intensity. The prominent lateral peaks occur in F
5~d! at ER;6v, in ~e! at ER;62v and finally, for the last
studied intensity, atER;63v. This shows that an adiabati
interpretation extends beyond the limit given by Sokolov
t
ak
ts

l-
at

c-

en

gy

e-

er

e

e
ng
t
e

e
e-
a
-

.
e
e

ve
c-
-

e
,
.
h

-
.
t
s-
.

i

@2,3#. In order to complete the analysis there is to relate
field intensity to a parameter with the dimension of an e
ergy. Since the calculation is done in velocity gauge the c
pling cannot be read directly from the wave equation. Ho
ever, since exchange of energy between the particle and
field takes place only in the region of the double barrier, it
safe to take as a measure of the coupling parameter the p
uct of the electric field amplitude by the total length spann
by the potential structure. This total length being 8 a.u.,
coupling parameter, sayW, is respectively 0.016, 0.04, 0.08
0.16, and 0.176 a.u. for the spectra of Figs. 5~b!–5~f!. The
conditionW.v for a reduction of transmissivity at the reso
nance energy is thus clearly evidenced by this series. Th
is a correlation between the position of the lateral peaks
the coupling. This was the essential message of Ref.@2#.

We end this discussion by a study of the effect of
change of the frequencyv for a given coupling to the field.
Figure 6 is built like the two previous figures, but for
potential structure consisting of two identical barriers
heigth 6 a.u., of width 1 a.u. and separated by a well 12
wide. This potential is shown in Fig. 1. The field amplitud

FIG. 5. Effect of electric field amplitude on the shape of a m
tiplet. The resonance at energy 1.651 a.u. of~a! of Fig. 4 is chosen.
The frequency of the field is stillv50.1 a.u. Only the total tran-
missivity is shown.~a! The fied-free transmissivity;~b!–~f! spectra
for electric field amplitudes equal to 0.002, 0.005, 0.01, 0.02,
0.03. In ~d!–~f! the dominant peaks are at energies approxima
equal toER6v, ER62v, andER63v respectively.n-headed ar-
rows are at positionsER6nv.
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is in all casesE050.005 a.u. The frequency takes the valu
0.11, 0.10, 0.09, 0.08, and 0.07 a.u. Figure 6~a! displays the
field-free transmissivity close to a resonance of ene
5.158 –i0.019 a.u. As the frequency decreases~i.e., as the
frequency gets closer to the width!, the transfer of transmis
sivity away from the center operates again. This shows
different way that the central part of the spectrum can dis
pear because of either a lower frequency or a higher c
pling, two parameters which oppose transmission at
original resonance position.

V. APPLICATION TO A BIASED DOUBLE-BARRIER
POTENTIAL

We now turn to an example related to resonant tunne
in semiconductor devices that was alluded to in the introd
tory section. The pioneering work is that of Tsu and Es
@14# who predicted that the characteristics of a double-bar
structure should be nonlinear. This was very soon confirm
experimentally @21#. The power of the transfer-matri
method can be demonstrated in this situation since, altho
a stepwise constant potential results at first from the gro
of an heterostructure, tunneling of an electron is induced
the application of a static electric field. For critical values
this field the distortion of the double barrier is such as
bring one of the resonant energies in coincidence with
energy of the incoming electron.

Our model is built with parameters met in such devic
Two barriers of width 20 Å or 37.79 a.u. are separated b
well of width 50 Å or 94.48 a.u. The height of the barriers
1 eV or 0.03675 a.u. The effective mass of the electron is
a.u. We will consider coupling to a field of frequencyv
545 meV or 0.001 654 a.u., typical of the frequency of lo

FIG. 6. Effect of a change of frequency on a multiplet. T
electric field amplitude isE050.005 a.u. The two barriers are o
height 6 a.u. and of width 1 a.u. The intermediate well has a w
of 12 a.u.@cf. Fig. 1~c!#. Only the total tranmissivity is shown.~a!
The field-free transmission in the region of a resonance of ene
ER55.1582 i0.019 a.u. The frequencies are 0.11, 0.10, 0.09, 0
and 0.07 a.u. in panels~b!–~f!, respectively.n-headed arrows are a
positionsER6nv.
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gitudinal optical phonons@9#. The oscillatory electric field
has an amplitudeE050.000 005 a.u. so as to produce a co
pling W with an order of magnitude compatible with th
other energies present in the model. The product of the e
tric field amplitude by the overall length of the structu
gives forW 0.000 85 a.u. or 0.023 eV. Although the forma
ism implies consideration of an oscillatory electric field, it
only a matter of interpretation of the coupling parameter
view it as involving a one-mode phonon field. The wa
equation in length gauge derived from Eq.~1! gives
E0x sin(vt) for the coupling to the field. A bilinear coupling
to a one-mode phonon field would be of the formgx(a†
1a). With a time periodic Hamiltonian, a coupling involv
ing sin(vt) has the same effect as (a†1a), which is to
produce a change in the energy of the field by6v. Our
Hamiltonian is therefore a simplified version of that used
Refs. @11# and @22# to study the effect of electron-phono
interaction on resonance tunneling.

Figure 7 gives the transmissivities in the absence o
static field. In the inset the transmissivity of the double b
rier shows that three resonances exist in the well at ener
0.003 52, 0.0138, and 0.0295 a.u. After coupling to the
cillatory field, two satellite peaks appear on both sides of
second resonance at the expense of the central peak.
peaks on the left or the right are essentially of eitherT1 or
T21 character. We turn now to Fig. 8. The transmissiviti

h

y
8,

FIG. 7. Transmissivity of a double-barrier structure with co
pling of an incident electron of effective mass 0.1 a.u. to
oscillatory field. Two barriers of widths 20 Å are separated by
well of width 50 Å. The height of the barriers is 1 eV. The fre
quency is v545 meV and the maximum field amplitudeE0

50.000 005 a.u. The transmissivity is shown as a function of
incident energy in the neighborhood of the second of the th
field-free resonances displayed in the inset.
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are shown as a function of an applied bias static field. T
potential is no longer stepwise constant and is different
every value of the bias field. Figure 1~d! gives an example
belonging to this set of potentials. It is simulated by 1
steps. A check of the results versus the number of steps
shown that this is appropriate for the case at hand. The
culations are done at fixed energy taken equal to 0.00
a.u., that is intermediate between the two resonances o
inset of Fig. 7. The inset of Fig. 8 shows that as the am
tude of the static field increases, the second and third r
nances of the deformed double barrier pass successive
the fixed energy. This occurs for amplitudes of the fie
equal to 0.000 093 and 0.000 27 a.u. The maximum trans
sivities are far from unity, in constrast with the field-fre
case. This is due to the asymmetry of the double-barrier
duced by the static field. The corresponding bias volta
are, respectively, 0.43 and 1.25 V. Finally when both sta
and oscillatory electric fields are present, we observe aga

FIG. 8. A bias potential is applied to distort the potential stru
ture studied in Fig. 7. An example of this distortion is shown F
1~d!. The oscillatory field is the same. Transmissivity is given a
function of the amplitude of the static electric field at a fixed in
dent energy~0.005 52 a.u.!, intermediate between the first two res
nances of the field-free case~inset of Fig. 7!. Replicas appear on
both sides of the resonance, which are due to either absorption~left
peak!, or emission~right peak!. Inset: with no oscillatory field there
are two values of the static electric field amplitudes that bring
two upper resonances of the distorted double barrier in coincide
with the incident energy.
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satellite structure. The second resonance of the inset is
amined. We note that the left peak, corresponding to theT1
process would not be present if, in the absence of any b
the fixed energy is betweenER2v andER , with ER being a
resonance energy of the well.

It is to be stressed that the ability to introduce an arbitr
potential in the study of resonance tunneling, with the el
tron coupled to an oscillating field, may be useful in t
optimization of the parameters of a given device, for instan
to enhance a satellite resonance. There is a great flexibilit
the design of semiconductor heterostructures: the widths
heights of the rectangular barriers can be varied almos
will in a layer of the material AlxGa12xAs. It is even pos-
sible, by gradingx to produce a barrier or a well of a desire
shape@23#. It would be also useful to investigate how th
transmissivity is affected if the changes in effective mas
are taken into account. It is known@24# that this effect de-
stroys the unit transmissivity which is the signature of cert
symmetric or asymmetric structures. The modification
take into account the local character of the effective m
@25# is a minor one in a transfer-matrix technique.

VI. CONCLUSION

We have shown on a number of examples ranging fr
the rectangular barrier to the biased double-barrier poten
that the transfer-matrix approach with inclusion of a co
pling to an oscillatory field has considerable flexibility. Mo
potentials have to be treated through knowledge of their v
ues at a set of points on a grid. The representation a
sequence of stepwise constant potentials is therefore c
mon practice and the present method is applicable. Accu
calculations in the case of the double-barrier potential g
clear evidence that some drastic changes in the transmi
ity occur either when the coupling to the field increases,
when the frequency decreases. In both cases transmissi
the energy of the field-free resonance is inhibited. This c
roborates and extends previous analysis based on app
mate treatments.

Extensions to situations with a more complicated geo
etry ~for instance tunnelling of an electron between tw
quantum dots! can be envisaged if there is the possibility
eliminating all coordinates except the reaction coordina
This elimination leads generally, in the absence of the fie
to a set of coupled equations. Transfer-matrix algorith
have been formulated for such a situation@26#. In the pres-
ence of the field there will be a set of Gordon-Volkov wav
for each channel. The matching technique should be v
similar to that developed in the present work.
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