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Transfer-matrix formulation of field-assisted tunneling
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A transfer-matrix technique is formulated to treat the scattering of a particle incident on a piecewise constant
potential and interacting with an oscillatory field. A study of tunneling through a single barrier shows in the
transmission probabilities, for absorption or emission of quanta from the field, replicas below the barrier of the
overbarrier field-free transmissivity, with its resonant structure. In the case of resonant tunneling through a
double barrier, an appropriate choice of parameters gives evidence for a change in the regime, with inhibition
of transmission at a resonance energy of the intermediate well when the period of the field approaches the
lifetime of the resonant state. The technique can be extended to treat scattering of a particle by more general
potentials in the presence of an oscillatory perturbation. As an illustrative example, the transmissivity as a
function of a bias potential in a double-barrier structure is calculd&t050-294{®9)00405-9

PACS numbe(s): 33.80—b, 73.40.Gk, 73.20.Dx

[. INTRODUCTION transmission through a barrier are established within this
model. The adiabatic regime corresponds to the particle fol-
The transmissivity of a particle incident on one or morelowing a time-dependent eigenstate until its energy reaches
barriers and interacting with a time-periodic external field isthe top of the barrier.
of interest for the understanding of many physical processes, Time-dependent barriers have also been considered by
such as field emission, tunneling chemical reactions, oButtiker and Landauef8] to test various proposals for the
transmission through semiconductor double-barrier struceefinition of tunneling traversal times. They stress the mul-
tures. The problem has been treated with a large variety afquantum aspect of the scattering and propose a semiclassi-
models and methods. We review only some papers which argal approach to calculate the scattering amplitudes. A related
close to the present approach. Sokolovski and[Yuand  subject is the observation of replicas of the main feature in
Sokolovski[2,3] have applied a semiclassical procedure tophonon-assistedi9] or plasmon-assistefil0] tunneling in
obtain the total transmissivity through a double barrier in thedouble-barrier semiconductor structures. Theoretical treat-
presence of a harmonic perturbation. This situation gives risenents of these effects based on a second-quantization for-
to the well-known resonant tunneling effect. In the absencenalism rather than a time-dependent formulation have been
of the perturbation, and if the tunneling probabilities throughproposed[11,12. The explanation of the replica phenom-
each of the barriers are identical, unit transmissivity is ob-enon is that by emission of a quantum the incident electron
tained when the incident energy coincides with an energy ofeaches the energy that favors efficient transmissivity
the intermediate well. Sokolovski delineated several regimeghrough the structure.
from a comparison of the three relevant parametérs, the The work that is closest to the present approach is that of
lifetime of the particle trapped in the well with enerfdy  Sacks and Si@ [13]. They provide exact results for the
—iT'/2,0™ 1, proportional to the period of the field; an, reflection and transmission coefficients of a number of step-
which measures the coupling of the particle to the field.wise constant potentials for an electron interacting with an
WhenW andI" are both smaller thaw, a structure appears electromagnetic field of arbitrary intensity. We use their ap-
in the transmissivity, with peaks separated &y A simple  proach to revisit the case of a single barrier and to extend the
explanation is that the particle can tunnel through the doubletreatment to the double-barrier situation. We have found it
barrier device if, by absorption or emission of field quanta,convenient to define in this context a generalized transfer
its energy fulfills the resonant condition. A drastic changematrix. Such matrices have been widely used for the deter-
occurs in the transmissivity when is of the order or smaller mination of transmission and reflection amplitudes in a large
thanT" while W is larger than bothw andI". The transmis- variety of situationd14—17. They are generally of dimen-
sivity is peaked at energieBg+=W. The interpretation is sion 2, since at every junction between two regions there is,
based on an adiabatic picture. With a low field frequency thén the absence of a time-dependent perturbation, only one
particle “sees” a time-dependent double barrier and an effiincident wave and one reflected wave on each side of the
cient transmissivity occurs only at the turning points of thejunction. In the present case, at every discontinuity of the
barrier motion. potential, there are, in principle, an infinite number of inci-
In a series of papers Azb@#i—6] and Azbel and Tsuk- dent and reflected waves, since an arbitrary number of quanta
ernik [7] consider resonant tunneling in the presence of aan be exchanged by the particle and the field. Convergence
time-dependent perturbation having a spatial dependence imvith respect to the number of channels must be checked. An
volving a é function of position. This form of the interaction advantage of the transfer matrix is that it can be used even in
allows extensive analytical derivations and applications evethe case of an arbitrary potential, since any potential can be
to complicated structures. Conditions for activation of theconsidered as the limit of an infinite number of steps of van-
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the tunneling current under the assumption of conservation
of the transverse components of the energy and momentum
of the incident electron in the analysis of the 3D situation.
The current has two opposing contributioffsom left to
right and from right to left Integration over the transverse
components of the wave-vector leads for the current to a 1D
integral over the longitudinal component of the energy, with
o the 1D transmissivity under the integral si¢the so-called

0 Tsu-Esaki formuld 14]).
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The discussion is patterned after that valid for the field-
free casg14,16—18. The main change is that the transfer
matrix has, in principle, infinite dimension, so that truncation
and convergence tests are necessary.

In velocity gauge, in one dimension, the wave equation
for a particle of unit charge coupled to a field is in atomic
units[13],
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FIG. 1. The different potential arrangements considered in thethe potential energy. The potential vector is supposed to be

paper.(a) the rectangular barrier of Sec. Ilb) and(c) two double- Spatially invariant on the length scale of interest. It is written
barrier structures examined in Sec. ) a double barrier with an AqCos(wt) so that the associated electric fieldHgsin(wt),

applied electric field of 10* a.u. studied in Sec. V. This corre- with Eg=wAg.py is the linear momentumid/ox. In a re-
sponds to a bias voltage of 0.46 V. gion of constant potential the solutions are Gordon-Volkov
waves

ishing widths[18]. We will also make use of this capacity of
the method.

Section Il describes the transfer matrix which takes into
account the multiquantum aspect of the scattering of a par-
L ket on he sconti s present 2 stepuise O k- [2n(E~ V)]~

P - . ' ampll- ) o X; be the position of theth discontinuity of the po-
tudes are derived from an overall transfer matrix taking into,

. . . tential. If N is taken as the maximum number of quanta that
account all successive scattering events. The various poten:

tial arrangements to which the method is applied are showgo " be exchangetither by absorption or emissipby the

Co ; . o . Barticle and the field as a result of the scattering by the com-
in Fig. 1. Tunneling through a single barrier is treated in Seq. lete potential arrangement, the wave function either to the

lll. The multhuantum_aspect of f|e|_d "?‘S.S'StEd PTOCESSES Ip.g (L) and to the rightR) of X is written as a combination
stressed. Each peak in the transmissivity has contributions o S

; . . Of Gordon-Volkov waves traveling in both directions,
from several multiphoton processes with a clear interpreta-

Aok sin(wt)) (2)

Mw

P(x,t)= exp{ i ( *Tkx—Et=

tion in terms of virtual and real exchanges of energy between

the particle and the field at the two potential discontinuities. L nN L oL Aokt sin(wt)

In Sec. IV we consider the double-barrier structure which is ¥~ (X,t)= Z_N th €XPi| knx—Eqt+ —— ———

one of the basic models in semiconductor research. Although "

we do not consider at this point any bias of the potential, the . L Aokh sin(wt)

model is rich enough to investigate carefully the roles played +ry, EXF{ —i| kyx+ E“HT) )

by the competing different time scales which were identified

in previous approximate treatmert$—3]. Finally Sec. V

considers application of the method to a potential of a more n=N Aokff sin( wt)

complex shape: a biased double-barrier structure, with there- YR(x,t)= > tﬁex;{ i ( Kix— Ent+m—)

fore consideration of both static and oscillatory electric n=-N @

fields. Transfer matrices have to be evaluated at all the points AokR sin( wt)

retained in the numerical representation of the potential. +r§exp{ —i k§x+ Ent+—) .
We recall [14,19 that the transmissivity of the one- Ma

dimensional(1D) arrangement allows for the calculation of 4
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E,isE+nw, E being the initial energy of the particle. If
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By limiting p to go from —N to +N and equating the

VL and VR are the potential values on the left and on thecoefficients on both sides of the same Fourier component one
right of X;, the wave numbers present in these wave funcgets a number of equatiofig (2N+1)] giving thet®'s and

tions are to be calculated as

kyR=[2m(E,—V-R)]M2 (5)

The sign ofE,,— V"R determines the open or closed char-
acter of channeh. The positive determination of the square

root ensures the correct behavior of tith component of the
wave function.k, is ik,, with x, positive. This can be

checked at a junction between a classical and a nonclassical

region. A wave travelling to the righi.e., multiplied by an
amplitudetﬁ) should behave as ekxp kx]. A wave travel-
ling to the left behaves as €xp xx]. The total number of
amplitudes in any regiortbetween two discontinuiti¢sis

2(2N+1). The two wave functions and their derivatives are

to be matched at the discontinui¥; at all times[13]. We
have to find some way to calculate the amplitutfeandr }
from the knowledge of- andr (with the usual convention
of a propagation from left to right The wave function is
Fourier expanded with the help of the identity:

p=-to

Aok
=p:Z_ Jp(iﬁ)exmpwt).

Ak
ex;{ *I mSIﬂ(wt))
(6)

exfd iknXi]Jp(Aok,/Mw)
M(Xj)=
Knexd ik, X 1Jp(Aok, /mw)

calculated with either thk!'s or thek?’s. The left half of the

the r¥s in terms of thet:’s and ther}’s. Introducing two
column vectors

L R

th tRy

L R

tg th

tN t

L_ R_

a=| L |, a=| k| ()

—N —N

L R

o o

L R

Y N

the matching condition is how written in matrix form

ME(Xpa-=MR(X))a?, 8

where the matriceM“R(X;) are given by the equation

exd —iknXi]Jp(— Aok, /mw)

)
—knexH — ikpXi13,( — Agky /M)

equal to zero. The equations determine thé+2L ampli-

matrix is made of the coefficients of the Fourier componentgudes for reflection to the left and théN2-1 amplitudes for

of the transmitted wave@upper part and their derivatives
(lower par}, while the right half comes from the reflected

waves.n is the index of a transmission or reflection ampli-

tude, whilep is the index of a Fourier component.

From Eg.(8) we obtain

af=[MR(X)] M (Xpa-=M(X))at. (10)

This relation defines the transfer mattix(X;) to pass
the discontinuity at positioX;. Let us consider now a gen-
eral  situation with  discontinuites at  positions
X1, Xy, ... Xp. Calling a" the vector of amplitudes in
the potential-free region on the left arsd" the vector of
amplitudes in the right potential-free region, we can write

aout:M(Xl)M(Xz). . .M(Xp)ai”. (11

Although there are 4(8+1) amplitudes in these 2{2

transmission to the right.

A final comment on this technique: it is possible to de-
connect[13] the number of amplitudes and the number of
Fourier components when going to higher intensities of the
field. If the number of Fourier components exceeds the num-
ber of Gordon-Volkov waves, the number of equations be-
comes larger than the number of unknowns. A least-squares
procedure allows to define a square transfer matrix even in
such a case and to overcome the numerical difficulties asso-
ciated with the inversion of large and ill-conditioned matri-
ces.

Ill. REPLICAS OF BARRIER RESONANCE STRUCTURE

The transmissivity of the rectangular barrier is determined
in all introductory books on quantum mechanisee, for
instance, Merzbaché®0]). It is characterized by oscillations
at energies above the barrier top which are due to construc-
tive interference produced by the reflections taking place at

+1) equations, once we introduce the usual scattering corthe two discontinuities of the potential. We examine now the
ditions, the number of unknowns become equal to the numeffect of a coupling with an oscillatory field. The barrier is

ber of equations. In the vecta only t, is kept and made
equal to 1. In the vectaa®", all the amplitudes,, are taken

such that very little transmissivity is allowed below the top
in order to see clearly the effects of the perturbation. The
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1 1 TABLE I. Convergence to the fulfillment of the condition on the
sum of reflection and transmission probabilitigsg. (12)]. This
@ series of calculations is performed at an endtgy2.07 a.u., in the
neighborhood of the first resonance of the barrier shown as F&g. 1
05 - 1 o5t and studied in Fig. 2, with the same parameters for the fiejds

the total reflection probability and; the total transmission prob-
ability. N is the maximum number of exchanged quanta kept in the
expression of the wave functidief Eq. (7)]. N=0 corresponds to
the field-free case.

0.4 0.4 N Ry Tr R+ T+
© @ 0 0.1308907 0.869 109 30 1.0000000
' 1 0.669 104 30 0.506 188 32 1.1752926
E 02 b 1 sl J r\/\/ 2 0.509 509 77 0.523 21960 1.0322729
@ ‘ 3 0.501 75477 0.504 865 94 1.006 6207
= J/\ 4 0.494172 46 0.506 12172 1.000294 2
Z 5 0.494 295 80 0.50574223 1.0000380
E o 0 ‘ ‘ 6 0.494 29200 0.505716 48 1.000 0085
7 0.494 28477 0.50571574 1.000 0005
0.06 : 0.006 8 0.494 284 40 0.50571563 1.0000000

number in the left asymptotic regipandN, the correspond-
ing index for transmissiortfirst channel with a real wave
number in the right asymptotic regiprR, and T,, are the
transition probabilities for reflection or transmission with ab-
sorption(emission of n quanta. They are obtained from the
amplitudesr,, andt,, by the relations

0.03 0.003

in

-
Ko

out|
n

ENERGY(a.u) Ry=|—[rM2, T,= o~ |ta12, (13
0

FIG. 2. Replicas of overbarrier structure of the tranmissivity
produced by the coupling of an electron to an oscillating electricwith ko=[2mE]¥2 Table | shows how the rule given in Eq.
field of amplitude 0.1 a.u. The parameters of the bafér Fig.  (12) is progressively fulfilled in this example. The energy is
1(b)] are in a.u.: 8 for the width, 2 for the height. The frequency of that of the first resonance in the field-free transmissivigy (
the field isw=0.4 a.u.(a) the field-free transmissivity showing the =2.07 a.u.). N=8 can be considered as giving accurate
first two resonances above the barridy. The total transmissivity results.
in the presence of the fieldc)—(f) The transition probabilities for Figure 2 gives the total transmissivify), but also in
absorption of zero, one, two, and three photons. The dotted verticgk)—(f) the transition probabilitie3,,T;,T,, andT5 for ab-
arrow indicates the position of the first overbarrier resonance. Th%orption of 0, 1, 2, and 3 quanta. The transition probabilities
one-, two-, and three-headed solid arrows display the positions 0{—_1’1—_2’ andT_, for emission of 1,2, and 3 quanta are not

below-barrier replicas of this resonance shifted by one, two, an%hown They are identical, except for a shift, to the absorp-
three quanta. There is clear evidence that the overbarrier structurefﬁ)n pr&)babilities accordin'g to the general rljles

translated into an underbarrier structure of the same shape.
parameters in atomic units are: 1 for the mass, 8 for the Ru(B)=R-(E+na), To(B)=T-n(E+nw). (14
barrier widtha, and 2 for the barrier height,. The barrier These relations express the equality of probabilities when
is depicted in Fig. (@. The field-free transmissivity up to 3 the initial and final states are permuted. They apply to sym-
a.u. is shown in Fig. @). It shows a pronounced resonant metric potential arrangements. We now concentrate on the
structure above the barrier maximum. role of the first two resonances of the field-free case, say with
The particle is now coupled to an electric field of maxi- energiesEx and E3. The total transmission probability
mum amplitudeE, equal to 0.1 a.u. The frequency i8  shows clearly that the structure occurring above the barrier is
=0.4 a.u. The determination &f (maximum number of ef-  now also present below it. The peaks are occurring as ex-
fectively exchanged quant& made by requiring the fulfill- pected at energieEi—w and E3—w. The spectrum is an

ment of the rule exactreplica of the field-free transmission. There is even a

NN N weaker replica at energi&s— 2w andE3—2w. Figure Zc)
_ showsT,. The same feature is present, but since there is no
> R+ > T,=1. (12) . Jea
n=N, n=N, net absorption or emission of photons, a two-photon process

must be invoked: the particle incident at eneBy- , with
In this equationN, is the index of the lowest channel i=1,2, absorbs a quantum when meeting the left edge of the
open for reflection(i.e., the first channel with a real wave barrier and emits a quantum when meeting the right edge.
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FIG. 4. Transmission through a double-barrier poterftiag.

FIG. 3. Effect of a change of frequency on the replicas of al(b)] in the presence of an oscillatory electric field of amplitude
rectangular barrier. The barrier parameters are those used for Fig. @.01 a.u. Each of the barriers has a width of 1 a.u. and a height of
As the frequencyn increases a replica of the third overbarrier reso-3 a.u. The well between the barriers has a width of 6 a.u. The
nance appears in the total transmissivity below the top energy of thfrequencyw is 0.1 a.u.(a) The field-free transmissivity displaying
barrier (2 a.u. in the present cas@he replicas are essentially the five resonances created by the wi); the total transmissivity
associated with &, process: absorption of 1 photon at the first showing the multiplets created by each resongnoge the change
discontinuity of the potential gives to the particle an energy in co-in the structure of the multiplets as one goes to resonances of in-
incidence with one of the resonances above the barrier. creasing width (c)—(f) the probabilities for absorption of zero, one,

two, and three photond., (c) is similar to the total transmissivity
We now go to Fig. &), which shows that it iF; that most  (b), but reduced in scale. Processes with absorption or emission of
contributes to the replica. The process is a single-photon onghotons contribute significantly to the tranmission.
The particle incident at energiiz— » absorbs a photon to
reach the doorway. This is the situation which comes immeture, the threshold intervals are increased, while the inter-
diately to mind if one thinks of photon-assisted transmissionchannel couplings are maintained constant.
However, we observe that not all of the replica is due to this
one-photon mechanism. M, [Fig. 2(e)] a replica is also
present, now at energi¢sz;—2w. A two-photon process is
involved, the absorption occurring on the left edge of the

IV. ANALYSIS OF MULTIPLET STRUCTURE IN
RESONANT DOUBLE BARRIER TUNNELING

barrier. The explanation is the same oy, with now impli- It is possible to choose the parameters of a double-barrier
cation of three quanta. However, the probability has droppedtructure to produce a wide variation of the resonance widths
considerably. associated with the unstable states of the intermediate well.

Similar calculations made with lower electric field ampli- The resonance width is one of the key parameters to under-
tudes at the same frequencw£0.4 a.u.) show that the stand the effect of a time periodic perturbatigh3] on the
replicas are reduced. When the frequency is increased, whiteansmission pattern. Figure 4 shows (@ the field-free
the field amplitude is maintained at the value 0.1 a.u., théransmission through the double-barrier of Figb)l It is
replicas are displaced to lower energies. This is shown imade of two identical barriers of width 1 a.u., of height 3
Fig. 3. The replica of the third overbarrier appears clearlya.u., with the intermediate well extending over 6 a.u. There
now for »>0.8 a.u. The amplitudes of the replicas are re-are five resonances below the potential maximum, with
duced. This is expected, since in a multichannel Floquet picwidths from ~0.0005 a.u. for the narrowest to 0.0518 a.u.
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for the broadest one. Figurdb} gives the total transmissiv- 1.0
ity for a field of maximum amplitudé&,=0.01 a.u. and of
frequencyw=0.1 a.u. One recognizes easily the different
multiplets arising from the successive resonances, with peak 06 r
to peak separation equal to the frequency. Similar multiplets
have been obtained by Sokolov$Ri. Various processes can
contribute to a given peak. Consider, for instance, the mul- 02t
tiplet associated with the field-free resonance occurring at
Er=0.941 a.u.Ty, T4, Ty, and T3 are given in Figs.
4(c)—4(f), respectively. Figure () shows essentially the 1.0
same pattern as in the total transmissivity, but with a reduc-

tion in scale. The central peak W, corresponds to a direct > %8
access to the resonant state, while the two pealzatew = o6l
correspond to two-photon process@me photon is either g

absorbed or emitted to reach the resonant energy, and then@ 04
reemitted or reabsorbgdLet us now go to thel; or T_; é o2 |

processes. Onl¥, is shown in Fig. 4d), T_, being identi-

cal, except for a shiffcf. Eq.(14)]. The two main peaks are 0.0
atEgr— w andEg. A reasonable explanation is that in the left
peak, absorption of a photon is needed to rdaghwhile in
the right peak absorption follows the passage through energy 0.8 | . G .

1.0 T T T T

Er. The peaks ifif _, are at energiekEr andEg+ w. This

restores the symmetry in the multiplet, despite the asymme- 08 1 L k I L l
try of the contributions of botff; andT_;. The main peak 04 L l l l l _ L i { ]
of T, is at energyEr— w: absorption of a photon takes place l l
before reaching the doorway energy, absorption of a further 02 r JM\'/\ i

photon takes place afterward. h_, the main peak is at 0.0 S LN N
energyEg+ w. The ruleT,(E)=T_,(E+nw) is therefore 12 14 16 18 20 12 14 16 18 20

at the origin of the symmetry of the successive patterns in the
total transmissivity, Fig. éb).

We turn now to another striking feature of the successive g 5. Effect of electric field amplitude on the shape of a mul-
multiplets. There is a progressive change with a decreasmgmet The resonance at energy 1.651 a.u@bf Fig. 4 is chosen.
contribution of the central peak. This is Strongly reminiscentThe frequency of the field is stib=0.1 a.u. On]y the total tran-
of the change from a nonadiabatic to an adiabatic regimenissivity is shown(a) The fied-free transmissivityh)—(f) spectra
described by SokolovsKi2,3], this time occurringin the  for electric field amplitudes equal to 0.002, 0.005, 0.01, 0.02, and
same spectrumThe only parameter that changes across th®.03. In(d)—(f) the dominant peaks are at energies approximately
spectrum is the resonance width. We now proceed to a dequal toEg+ w, Ex*2w, andEg* 3w respectivelyn-headed ar-
tailed study of the parameters influencing the structure of @ows are at positiongg* nw.
given multiplet. We choose to study the resonance with en-

ergy 1.65140.029 of thefield-fre_e transmissi_vity@ is . [2,3]. In order to complete the analysis there is to relate the
kept equal to 0.1 a.u. and the amplitude of the field is varledfield intensity to a parameter with the dimension of an en-

According to Sokolovski, to reach the adiabatic regime, the . . . . i
period of the field should be of the order or longer than the- V" Since the calculation is done in velocity gauge the cou

lifetime of the resonant state. We have here I, which is pling cannot be read directly from the wave equation. How-

an obvious condition to observe a structure, and we observ, Ver, since exchange_of energy between the partlcle_ an_d _the
ield takes place only in the region of the double barrier, it is

that by increasing the field amplitude the change in the spec-

trum is very much like that characterizing the adiabatic re-Saf€ t0 take as a measure of the coupling parameter the prod-

gime[2]. Figure 5 is showing irfa) an enlarged view of the uct of the elec_:tric field amplitu_de by the total Ie_ngth spanned
field-free transmissivity in the region of the resonance. WePY the potential structure. This total length being 8 a.u., the
now switch on a field with amplitudes 0.002, 0.005, 0.01,coupling parameter, say, is respectively 0.016, 0.04, 0.08,
0.02, and 0.022 a.u. Only the total transmissivity is shown0.16, and 0.176 a.u. for the spectra of Figé)55(f). The
There is a drastic change of the shape of the multiplet witttonditionW> o for a reduction of transmissivity at the reso-
the field amplitude. At low field amplitudgFig. 5(b)] there  nance energy is thus clearly evidenced by this series. There
is a central peak with a width of the same order as the fieldis a correlation between the position of the lateral peaks and
free width, with only small changes in the wings of the peak.the coupling. This was the essential message of [R&f.

As the field amplitude increases, the expected multiplet We end this discussion by a study of the effect of a
structure develops. However, the central peak loses progreshange of the frequency for a given coupling to the field.
sively its intensity. The prominent lateral peaks occur in Fig.Figure 6 is built like the two previous figures, but for a
5(d) atEg~ * w, in (e) at Eg~ = 2w and finally, for the last potential structure consisting of two identical barriers of
studied intensity, aEg~ = 3w. This shows that an adiabatic heigth 6 a.u., of width 1 a.u. and separated by a well 12 a.u.
interpretation extends beyond the limit given by Sokolovskiwide. This potential is shown in Fig. 1. The field amplitude

ENERGY(a.u.)
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FIG. 6. Effect of a change of frequency on a multiplet. The
electric field amplitude i€,=0.005 a.u. The two barriers are of
height 6 a.u. and of width 1 a.u. The intermediate well has a width
of 12 a.u.[cf. Fig. 1(c)]. Only the total tranmissivity is showita)

The field-free transmission in the region of a resonance of energy

Er=5.158-i0.019 a.u. The frequencies are 0.11, 0.10, 0.09, 0.08, 0o A
; ) 0.01 0.015 0.02

and 0.07 a.u. in panel®)—(f), respectivelyn-headed arrows are at ENERGY (a.u)

positionsEg* nw.

FIG. 7. Transmissivity of a double-barrier structure with cou-

is in all case€,=0.005 a.u. The frequency takes the valuesP!ind Of an incident electron of effective mass 0.1 a.u. to an
0.11, 0.10, 0.09, 0.08, and 0.07 a.u. Figufe) @lisplays the oscnlatory field. Tgvo barrler_s of widths 20 _A are separated by a
field-free transmissivity close to a resonance of energ)yve” of V‘{'dth_so - The height of the. bamer.s IS 1 ev. The fre-

5.158-i0.019a.u. As the frequency decreases., as the JueNCY 1S @=45 mev and the maximum field amplitude,

. . =0.000005 a.u. The transmissivity is shown as a function of the
fr.equency gets closer to the widifthe tran‘.sfer Of. transm|s.- incident energy in the neighborhood of the second of the three
sivity away from the center operates again. This shows_ IN Reld-free resonances displayed in the inset.
different way that the central part of the spectrum can disap-
pear because of either a lower frequency or a higher couwitudinal optical phonon$9]. The oscillatory electric field
pling, two parameters which oppose transmission at théas an amplitud&,=0.000005 a.u. so as to produce a cou-
original resonance position. pling W with an order of magnitude compatible with the
other energies present in the model. The product of the elec-
tric field amplitude by the overall length of the structure
gives forw 0.000 85 a.u. or 0.023 eV. Although the formal-
ism implies consideration of an oscillatory electric field, it is

We now turn to an example related to resonant tunnelingpnly a matter of interpretation of the coupling parameter to
in semiconductor devices that was alluded to in the introducview it as involving a one-mode phonon field. The wave
tory section. The pioneering work is that of Tsu and Esakiequation in length gauge derived from E@l) gives
[14] who predicted that the characteristics of a double-barrieEyx sin(wt) for the coupling to the field. A bilinear coupling
structure should be nonlinear. This was very soon confirmetb a one-mode phonon field would be of the foyr(at
experimentally [21]. The power of the transfer-matrix +a). With a time periodic Hamiltonian, a coupling involv-
method can be demonstrated in this situation since, althougihg sin(wt) has the same effect aga{+a), which is to
a stepwise constant potential results at first from the growtlproduce a change in the energy of the field by. Our
of an heterostructure, tunneling of an electron is induced bylamiltonian is therefore a simplified version of that used in
the application of a static electric field. For critical values of Refs.[11] and [22] to study the effect of electron-phonon
this field the distortion of the double barrier is such as tointeraction on resonance tunneling.
bring one of the resonant energies in coincidence with the Figure 7 gives the transmissivities in the absence of a
energy of the incoming electron. static field. In the inset the transmissivity of the double bar-

Our model is built with parameters met in such devicesrier shows that three resonances exist in the well at energies
Two barriers of width 20 A or 37.79 a.u. are separated by #.00352, 0.0138, and 0.0295 a.u. After coupling to the os-
well of width 50 A or 94.48 a.u. The height of the barriers is cillatory field, two satellite peaks appear on both sides of the
1 eV or 0.03675 a.u. The effective mass of the electron is 0.5econd resonance at the expense of the central peak. The
a.u. We will consider coupling to a field of frequenay  peaks on the left or the right are essentially of eitfigror
=45 meV or 0.001 654 a.u., typical of the frequency of lon-T_, character. We turn now to Fig. 8. The transmissivities

V. APPLICATION TO A BIASED DOUBLE-BARRIER
POTENTIAL
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05 ' satellite structure. The second resonance of the inset is ex-
05 . amined. We note that the left peak, corresponding toTthe
process would not be present if, in the absence of any bias,
the fixed energy is betwedfiy— w andEg, with Eg being a
resonance energy of the well.

It is to be stressed that the ability to introduce an arbitrary
potential in the study of resonance tunneling, with the elec-
tron coupled to an oscillating field, may be useful in the
optimization of the parameters of a given device, for instance
to enhance a satellite resonance. There is a great flexibility in
the design of semiconductor heterostructures: the widths and
L J\J heights of the rectangular barriers can be varied almost at

. will in a layer of the material AlGa _,As. It is even pos-
sible, by grading to produce a barrier or a well of a desired
shape[23]. It would be also useful to investigate how the
transmissivity is affected if the changes in effective masses
are taken into account. It is knowR4] that this effect de-
stroys the unit transmissivity which is the signature of certain
symmetric or asymmetric structures. The modification to
take into account the local character of the effective mass
[25] is a minor one in a transfer-matrix technique.

0.25 B

TRANSMISSIVITY
=3
]
o
o
S

VI. CONCLUSION

0 , We have shown on a number of examples ranging from
05 1.0 2.0 the rectangular barrier to the biased double-barrier potential
ELECTRIC FIELD (10 ~a.u.) th_at the transf_er-matri_x approach v_vith inclusio_n _qf a cou-
pling to an oscillatory field has considerable flexibility. Most
FIG. 8. A bias potential is applied to distort the potential struc- potentials have to be treated through knowledge of their val-
ture studied in Fig. 7. An example of this distortion is shown Fig.ues at a set of points on a grid. The representation as a
1(d). The oscillatory field is the same. Transmissivity is given as asequence of stepwise constant potentials is therefore com-
function of the amplitude of the static electric field at a fixed inci- mon practice and the present method is applicable. Accurate
dent energy0.005 52 a.y), intermediate between the first two reso- calculations in the case of the double-barrier potential give
nances of the field-free casimset of Fig. 7. Replicas appear on  clear evidence that some drastic changes in the transmissiv-
both sides of the resonance, which are due to either absoiff#on jr occur either when the coupling to the field increases, or
peak, or emissioriright peal. Inset: with no oscillatory field there \yhan the frequency decreases. In both cases transmission at
are two values of the static eI(_actrlc field amplltudgs t_hat t_)rln_g ’[he[he energy of the field-free resonance is inhibited. This cor-
t\)vl\:%liﬁgei;(r:‘isdsgr?tagr?grsgsf the distorted double barrier in coincidencg, - ates”and extends previous analysis based on approxi-
' mate treatments.

Extensions to situations with a more complicated geom-
are shown as a function of an applied bias static field. Theetry (for instance tunnelling of an electron between two
potential is no longer stepwise constant and is different foquantum dotscan be envisaged if there is the possibility of
every value of the bias field. Figurdd) gives an example eliminating all coordinates except the reaction coordinate.
belonging to this set of potentials. It is simulated by 100This elimination leads generally, in the absence of the field,
steps. A check of the results versus the number of steps has a set of coupled equations. Transfer-matrix algorithms
shown that this is appropriate for the case at hand. The cahave been formulated for such a situati@®]. In the pres-
culations are done at fixed energy taken equal to 0.005 52nce of the field there will be a set of Gordon-Volkov waves
a.u., that is intermediate between the two resonances of tHer each channel. The matching technique should be very
inset of Fig. 7. The inset of Fig. 8 shows that as the amplisimilar to that developed in the present work.
tude of the static field increases, the second and third reso-
nances of the deformed double barrier pass successively at
the fixed energy. This occurs for amplitudes of the field
equal to 0.000 093 and 0.000 27 a.u. The maximum transmis- R. L. thanks Professor N. Moiseyev for stimulating dis-
sivities are far from unity, in constrast with the field-free cussions and hospitality in his group at Technion, Haifa, Is-
case. This is due to the asymmetry of the double-barrier infael. C. P. V. thanks the Basque Government for financial
duced by the static field. The corresponding bias voltageassistance. We acknowledge a grant of computing time from
are, respectively, 0.43 and 1.25 V. Finally when both statidnstitut du Developpement et des Ressources en Informa-
and oscillatory electric fields are present, we observe againtque ScientifiqugIDRIS) under Project No. 980425.
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