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Resonances and the continuum level density
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A method is suggested to find positions and widths of resonances with the use of an arbitrary real square
integrable basis. The procedure is based on the fact that the parameters of a resonance are related to the
continuum level density. The method is a generalization of the box quaritizethbilization technique of
Mandelshtam, Ravuri, and Tayl@Phys. Rev. Lett70, 1932(1993]. For illustration, the method is applied to
the swave potential scattering cag&1050-29479)05205-1]

PACS numbdrs): 34.10+x, 31.15-p

[. INTRODUCTION generalize the method of Mandelshtam, Ravuri, and Taylor
in such a way that the box quantization can be avoided. Our
Since resonances have a great effect on the physical propiethod is based on the notion of the continuum level den-
erties of quantum systems, much effort has been devoted ®&ity. The continuum level density is the generalization of the
the calculation of the parameters of a resonance. There alevel density for Hamiltonians with a continuous spectrum.
several theoretical and numerical approaches to describBhis quantity is defined with the help of the Green operators
resonance statgd—3]. The methods that use only bound- of the interacting and the free systems. Our method has a
state-type techniques are especially important since very s¢ound mathematical foundation since it is shown that the
phisticated models and computer codes are developed to deg@ntinuum level density is connected to the scatteBmga-
with bound-state problems in atomic, molecular, and nucleaffix. We show that if we expand the eigenfunctions of the
physics. The so-called ?-stabilization method4—-10 re-  full and the free Hamiltonians on an arbitrary real square
sembles most closely a bound-state-type calculation. In thigitegrable basis, then the approxmate continuum level den-
approach a square integrable basis is selected; then Haméity has the forn®,; 5(E—e,) — 3; 8(E—€?), wheree; ande’
tonian matrices are diagonalized several times. The repeatede the eigenvalues of the full Hamlltoman matrix and the
diagonalizations correspond to different matrix sizes or dif-free Hamiltonian matrix, respectively. We also have to
ferent values for the nonlinear parameter of the basis. Themooth the Dirad functions, but we carry this out using the
diagonalizations immediately give the energies of the boundtrutinsky smoothing procedufé?7]. Our approach is simi-
states. The distribution of the remaining eigenvalues containgr to the method of Refl11]. There is, however, a great
information about the positions and widths of the resonancelifference between our method and the method of Mandelsh-
states in a hidden way. The unfolding of this information istam, Ravuri, and Taylor. We neither put the system into a

termed thel 2-stabilization procedure. box nor use the approximation that a basis with a nonlinear
The L2-stabilization method has been substantially im-parameter can be considered as a “soft” box.
proved recently by Mandelshtam, Ravuri, and Taylbt]. The outline of the paper is the following. In Sec. Il we

Their method is based on the calculation of the level densitglefine the continuum level density and show its relation to
of the system. Because it is assumed that the system is inthe parameters of a resonance. In Secs. Ill and IV we discuss
box the level density has the form(E)=X;8(E—E;), the basis-set calculation of the continuum level density. A
whereE; is an eigenvalue of the system. The Dirdifunc-  numerical example is given in Sec. V.
tions of p(E) are smoothed by an appropriate average over
the size of the box. The resonances pop up as sharp peaks in Il. THE CONTINUUM LEVEL DENSITY
the smoothed level density. It was realiZd@—14 that the
resonances show up more clearly if the level density of the For simplicity we consider the radial Schiliager equa-
free box system is subtracted frgmiE). The parameters of tion. The kinetic energy operator in the partial wavés
the resonances can also be calculated using the smoothgénoted by'”rI and the potentia17| depends only on the co-
level counting function(12,13. Since the method of Ref. ordinater. The level density of a Hamiltonian with pure
[11] assumes that the system is in a box, this severely ré;,int spectrum is related to the Green-oper&i¢E) of the
stricts the functions that can be taken as a basis. The popula{giem by the trace formuldg]
basis functions of the quantum chemistry and the nuclear
physics are excluded. In order to use an arbitrary basis, an 1
approximation was consider¢#i3,15. The smoothing of the p(E)=—=Im{TI{G(E+i0)]}. 1)
Dirac ¢ functions of the level density has been carried out by ™
an average over the nonlinear parameter of the Hhasid§g.

The aim of this paper is to show that it is possible tolf the Hamiltonian in addition to the bound states has a con-
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tinuous spectrum, the continuum level densiiy(E) is de-
fined [19] with the help of the Green operators of the inter-
acting and the free system,

A(E)= —% IM{TIG(E+i0)—GXAE+i0)]}. (2

In Eq. (2) the full and free Green operators are given by the,

expressionsG (z)=(z—H,) ! and GX(2)=(z—T)) ", re-
spectively. The notatiorfB(E+i0) stands for the limit
lim, ..o G(E+ie), and TEG(E+i0)] means the trace of
the operatoG(E+i0). Note that it is not possible to take

the trace in Eq(2) term by term becausd, and T, have a
continuous spectrum.
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[ll. BASIS-SET CALCULATION OF THE CONTINUUM
LEVEL DENSITY

The continuum level density can be determined using the
expression3). However, the application of E@3) requires
that the Schrdinger equation with the scattering boundary
condition be solved. In this section we show that a suitable
modified, smoothed continuum level density can be calcu-
lated using a basis-set method based on purélfunctions.

In order to solve the eigenvalue problem Ebf, we ex-
pand the eigenfunctions on a given orthonormal basislf
N basis functions are used, then the eigenvalues are deter-
mined by diagonalizing th& X N Hamiltonian matrixH,

=(¢n,H ). This procedure shows that the eigenvalue
problem of the approximate Hamiltonian

For spherically symmetric systems it can be shown

[20,21] that A,(E) is proportional to the derivative of the
scattering phase shi#(E),

1 d&(E)
Al(E)=; dE

)

HNY=PyH Py (8

is solved, where

N
ﬁ’N=i§1 | i) il 9)

This form of the continuum level density was introduced by R R
Beth and Uhlenbeck22]. Since the behavior of the phase If N—o, then Py tends to the unit operator an‘d{\‘ ap-

shift around a resonance is knoya8], A,(E) in the vicinity

of a resonance, characterized by the positignand width

I',, can be turned into the form
A(EE,,T)=A[(E,E, ,T')+APYE). (4)

The background termFg(E) is a slowly changing function

proachesH, . Similar to the approximate Hamiltonian, an
approximate kinetic energy operator can be introduced by
the definition

-’l\-’?: l’:\)N-’I\-| ﬁN . (10)

With the help of the operatord]¥ and TN, an approximate

of the energy. The resonance part has a Breit-Wigner shapggntinuum level density can be defined in analogy with Eq.

1 r,/2

"(E,E, I)=——————,
(EETD) 7 (E—E,)2+T?/4

5

and produces a sharp peak in the continuum level density.

),

ANE)= —% IM{TI(E+i0—HY) 1= (E+i0-T}) 1]}
(19

We can use this fact to determine the parameters of the reso-

nance.

Since bothAN and T\ have a pure point spectrum,‘(E)

The continuum level density can be defined for three-can be turned into the following form:

dimensional problems as well. In that case there is coupling

between the different partial waves and in E2).we have to

use the full Green operators. The corresponding continuum

level densityA (E), according to the result of Reff24], can
be related to the on-shell scatteriSgnatrix S(E,k,k’),

L
2im

d

A(E)= S(E,R,R’)*d—ES(E,R,R’) . (6)

As resonances are the poles of tenatrix, the continuum

N N
A{“(E)=i§1 5(E—ei)—;1 S(E—e?), (12)
where e; denotes the result of the diagonalization of the
Hamiltonian matrix aneleiO corresponds to the eigenvalues of
the NX N kinetic energy matrisT, n="{én, T dm).

To compare the exact density with the approximate one,
we have to smooth the Diraé functions in Eq.(12). The
smoothed density is defined by the Strutinsky procedure

level density can also be related to the resonances in tHa7]. If we have an oscillating functiog(E) (or an expres-
three-dimensional case. In the case of spherical symmetrsion containing Dirad functions, then a smoothed function

this relation is simple. Here th® matrix is of the following
form [25]:

S<E,R,R'>=§ Y m(K)exp(2i 8,(E)Yim(k)*  (7)

and substituting Eq(7) into Eq. (6) immediately gives back
Eq. (3).

g(E) can be introduced by the convolution integral

!

TEYZ 1 fw E'-E -
9B)=7 A i T
wherel is the range parameter of the smoothing. The fold-
ing function is the product of a weight functiam(E) and a
curvature correction polynomidt,y,(E) of order 2VI. The

PZM( )g(E’)dE’, (13
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popular choice for the weight function is the Gaussian,g=[(E—E,)?+(I'—T,)%4] {(E—E,)?+(I'+T,)%/4]" L.
W(E) =exp(—E?/\r, although other forms are also avail- 17)
able [27], for example the Lorentzian shape(E)

=1/[27(E?+ 1/4)]. Due to the curvature correction polyno- Here and in the rest of the paper the curvature correction is

mial, the smoothing leaves an arbitrary polynomial of orderneglected because it does not alter the main considerations.
M unchanged26,27. The smoothed continuum level density exhibits a sharp

Using the Strutinsky smoothing tAN(E), we get the peak around a resonance. We can use this fact to calculate
smoothed approximate continuum level density as a differ{he parameters of the resonance. Let us denote the location of
ence of two densities, the peak byE ... We select a region arourifl,e. and in

this regionn points{e¢;|i=1, . .. n} are equidistantly distrib-
uted and then the shape of the peak is fitted using @&s-
) (17). We minimize the expression

1 (E—g E—e
ANME)=2 FW( Fe)PZM( Fe

E—e?) (E—e? > [AM(e)—A(g ,E, T2 (18)
2M i

N1
—Z Fw( - - ) (14)

with respect toE,, I',, and the parameters of the back-

We mention that Eq(14) is valid for three-dimensional ground. The smoothed background teE?(E) is described

problems as well. In that case the angular momentum sull, o first-order polynomial ifE. In the numerical calculation
script on the left-hand side should be omitted and the eigenye have chosen a narrow interval —TI2<E<E oy
Blnea pea

0 . .
valuese; ande;” should be interpreted as the eigenvalues of . /> for the fit in order to avoid the influence of other
the full Hamiltonian matrix and the full kinetic energy ma- yasonances. In this way, If is small enough, the one-level

trix, respectively. smoothed Breit-Wigner expressiofl6) is enough to de-
scribe the smoothed density arougd. We will refer to this
IV. CALCULATION OF THE PARAMETERS procedure as the least-square fit of the peak.
OF RESONANCES In the next section we will compare our method with an-

) ] other basis-set method that is based on the theory of the
Because only the smoothed continuum level density cagomplex scalingfor review see, for exampl§28,29). Here
be calculated with the help of EQl4), it is therefore impor-  the resonances are determined to be the complex eigen-

tant to know the result of the smoothing of the exact density calfadini ~ _ PP
The parameters of the resonance state can be extracted fré’r%lues of a non-self-adjoint operatéh(®)=exp(-2iO)T

the comparison of the numerically calculated smoothed den? VI €xP(Or)], whereV,(r) is the potential in coordinate
sity with the smoothed exact density. space. The scaling paramet@rcan be chosen arbitrary bgt
For the weight function in Eq13) we take the Lorentzian N SUch a way as to uncover the resonance, i.e.,
form. The advantage of the Lorentzian form is that the®dl+/(2E)]<@<m/4. Basis-set calculation can be carried
smoothing of the Breit-Wigner shape can be calculated and2ut in the framework of the complex scaling theory. In this
lytically in terms of elementary transcendental functions.appr_oaCh the eigenvalue prob!em of tdeCN complex sym-
The smoothed exact density in the vicinity of a resonancenetric matrixH(0); ;=exp(—2i0)T;;+(¢; ,\Vi[r exp(®)]¢;)

reads has to be solved.
A\(E,E, .T,)=Al(E,E, .I',)+APYE), (15) V. NUMERICAL EXAMPLE
o . To show our method in practice and to compare it with
where the smoothed Breit-Wigner shape is the complex scaling method, we consider the potential
) o Vo(r)=7.52exp(-r) in the partial wavd =0 and we use
A(EE, T,)= Fr_ﬂ[(E_E )2 (re—T7 ] atomic units. This problem was studied in Rif1]. For the
Y ' 4 basis functions we take the Slater-type orthonormal functions
N, exp(ar/2)L2(ar). In Fig. 1 we show the smoothed ap-
% Zﬂan—l %)]JFE; proximate continuum level density. There are two guiding
2 r 2w principles for the selection of the range parameter. It is ob-
(F2—T2) vious thatl" has to be larger than the average spacing of the
X1 (E—E,)2+ r ] eigenvalueg; located in the energy region of interest. If we
4 choosel’ small, then the individual eigenvalues appear as
peaks in the smoothed densigee the solid line for large
AT L tant _” in Fig. 1). It is also clear that we must not chooBdarge
2 I because then we oversmooth and all structures of the level
E24 T2 density are washed out. For our purpose it is best to chBose
+ ;(E— E)BIn-—r—| (16) as small as possible, but we have to avoid the appearance of
4 4E;+T7 the peaks corresponding to the individual energy eigenval-

ues. Our experience is that two or three times the average
and spacing ofe; is good for the range parameter. If we chobse
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FIG. 1. The smoothed continuum level density. Three different 0028 e~ Te0 170
range parameters for the smoothing are used. The basis is charac- N

terized bya=6 andN=180.
FIG. 3. The peak of the smoothed dendiy,., and the least-

properly' a Sharp peak appears at the energy that roughﬁﬂuares fits of the resonance pOSItIEﬁ (a) and the resonance
corresponds te, . width Ffr” (b) are displayed as a function of the size of the basis. The

In Fig. 2 we srhow the position of the peak of the approXi_nonlinear parameter of the basis was-6 and the range of the
mate continuum level densif,e,as a function of the range smoothing wad'=0.6.

parameter of the smoothing. The valueEgtis stable only  width is 1.77, the third resonance is located at 5.32 with
in two digits if I' changes. If a resonance had been comwyidth 1.98. The presence of the second and the third reso-
pletely isolated and the back-ground term had hadrte-  npances explains the behavior Bfey. Since the resonances
pendence around, on the energy scalE, thenEeqcshould  are close to each other, if we smooth with laigethen the
have been independentBf If we look carefully at Fig. 1 we  second and third resonance will have an enhanced effect on
will realize that there is another resonance aro&e5.0  the density in the energy region of the first resonance and it
with a large width. There is a small bump right to the sharpwill modify the position of the peak.
peak in Fig. 1. We checked this assumption solving the ra- we may overcome this difficulty using the least-square fit
dial Schralinger equation with the Siegert boundary condi-of the peak procedure described in the preceding section. In
tion using the code of Ref30]. In the numerical integration Fig. 2, the least-square fit of the resonance posififinand
the potential was cut off at= 16. According to this calcula-  the resonance widtﬁ{“ are displayed as a function Bf It is
tion, the narrow resonance is located=at=3.426 39 and the o markable that on a large region Bfthe estimated values
width isI',=0.025 54. Furthermore, there are two more reso the parameters of the resonance hardly change. In this way
nances in this region. The second resonance is at 4.86 and {3 demonstrated that the position and the width of the reso-
nance can be determined independently from the range pa-
rameter of the smoothing. From Fig. 2 we can conclude that
there is a resonance &'"'=3.426 with widthI'™=0.025.
These numbers agree perfectly with the exact values.
. In Fig. 3 we investigate the convergence behavior of our
8460 procedure. The quantitieSeq, Ef*, andT™ are displayed
-~ peak of the density in Fig. 3(@) and Fig. 3b) as a function of the basis size. For
EEmREpeen - ¥ 1 0.020 the nonlinear parameter of the basis we uaed6 and for
P the range of the smoothing we tobk=0.6. The position and
3.440 | the width of the resonance are determined using the least-
e “ Jooss square fit procedure described above. As is expected, the
N peak of the smoothed density and the resonance position
i converge to different numbers due to the presence of the
P S T | M other resonances. The resonance position 3.42 given in Ref.
04 05 06 07 F(Oa-su) 09 10 11 12 [11] is reproduced even at the smallest basis $ize70.
h Note the scale of the figure: the oscillations present in the
FIG. 2. The position of the peak of the continuum level densityCUfVGSEEIt andT'" in Fig. 3 are in the fifth and third digits.
Epeak (Use the left side scalés shown as a function of the range of Convergence can be achieved even in these digits if we use a
the smoothing. The least-squares fits of the resonance poBffon not too large basis. The value of the parametef the basis
(use the left side scalend the resonance widif (use the right ~ plays a role only at small basis sizes where the oscillatory
side scalgare also displayed. The parameters of the basis are givepattern is present. Using Fig. 3, we can determine a very
in Fig. 1. accurate value for the parameters of the studied resonance.

3.480

3470 [ resonance width

4 0.025

(a.u.)

§ 3.450 |

E"and E

3.420




3560 A. T. KRUPPA AND K. ARAI PRA 59

N ' ' plex scaling method uses a nonstandard, non-self-adjoint
2.4266 | I ---- &=0.05rad | representation of the Hamiltonian. In contrast, our method
) [ ©-0.10 rad uses only the outputs of the most standard real basis-set cal-
— 34265 | L;: _ culation. Comparing our method with tHe?-stabilization
2 ‘,EE;'EE; technique and with the improved approach of Mandelshtam,
o 34264 | DAL _ Ravuri, and Taylor, we may conclude the following.
e We do not have to calculate the tedious stabilization plot
3.4263 | ‘EE!: '3' - and our smoothing procedure does not require the repeated
J’ digonalization of the Hamiltonian matrix.
3.4262 - . :
E VI. CONCLUSION
00248 r |, ce-- T
10,0250 - .E - ZS;‘,’SEﬁ ] To sum up, we have show_n that the? stabiliz_ation
- " method based on box quantization can be generalized to an
s -0.0252 ¢ W ;!, 1 arbitrary real square integrable basis. Our method is based on
« -0.0254 | a'gl:itiﬁ e 1 the fac_t that the _continuum Ie_veI density i; connected to 'ghe
0.0256 - E“*fi:n';;r " E scatteringS matrix. The Strutinsky averaging procedure is
00258 L 4 5;3 ] applied to calculate smoothed quantities. We showed that the
'R ) smoothed continuum level density can be related to the ei-
00260, 50 100 140 180 genvalues of the Hamiltonian matrix and to the eigenvalues
N of the kinetic energy matrix in a very simple way. Since the

FIG. 4. The real partupper figure and the width(ower figurd exact continuum level density has a Brelt—W]gner shape
of the resonance energy as a function of the basis size for tvvé‘round a resonance, the smoothed exact density can be cal-

different values of the complex scaling parameter. The nonlineafulated analytically. With the help of our method, the posi-

parameter of the basis was=6. tion and width of a resonance can be determined using an
arbitrary real square integrable basis, which means that all

For the positon we get 3.4263, and for the widh we getg 2 T e 00RO e ot our cisposal

0.0255, in full agreement with the exact results. P

In Fig. 4 we investigate the convergence behavior of thet0 calculate resonances.

complex scaling method. We used the same nonlinear pa-
rameter for the Laguerre basis as before. The scaling param-
eter was®=0.05rad and®=0.1rad. For the smalle® This work is part of the intergovernmental scientific and
value the convergence behavior of the complex scalingechnological cooperation between Hungary and Japan, and
method is similar to our method. For largér values the is supported by OMFB, Hungary, and the Science and Tech-
complex scaling method converges very quickly. It might benology Agency, Japan. K.A. wishes to thank the Japan Soci-
possible to speed up the convergence of our method if thety for the Promotion of Science for Young Scientists for a
parametrization of the continuum level density around agrant. A.T.K. is grateful for support from the Hungarian
resonance can be improved. We note, however, that the cor®TKA under Grant No. T026244.
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