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Resonances and the continuum level density
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A method is suggested to find positions and widths of resonances with the use of an arbitrary real square
integrable basis. The procedure is based on the fact that the parameters of a resonance are related to the
continuum level density. The method is a generalization of the box quantizedL2-stabilization technique of
Mandelshtam, Ravuri, and Taylor@Phys. Rev. Lett.70, 1932~1993!#. For illustration, the method is applied to
the s-wave potential scattering case.@S1050-2947~99!05205-1#

PACS number~s!: 34.10.1x, 31.15.2p
ro
d
a

ri
d-

s
d

lea

th
m
a
if

Th
un
ai
nc
is

m

si
in

ve
k

th
f
th

.
r
u

le
,

b

to

lor
Our
en-
he
m.
ors
s a
the

he
re
en-

he
to
e

t
lsh-

a
ear

e
to
uss

. A

-
e

on-
I. INTRODUCTION

Since resonances have a great effect on the physical p
erties of quantum systems, much effort has been devote
the calculation of the parameters of a resonance. There
several theoretical and numerical approaches to desc
resonance states@1–3#. The methods that use only boun
state-type techniques are especially important since very
phisticated models and computer codes are developed to
with bound-state problems in atomic, molecular, and nuc
physics. The so-calledL2-stabilization method@4–10# re-
sembles most closely a bound-state-type calculation. In
approach a square integrable basis is selected; then Ha
tonian matrices are diagonalized several times. The repe
diagonalizations correspond to different matrix sizes or d
ferent values for the nonlinear parameter of the basis.
diagonalizations immediately give the energies of the bo
states. The distribution of the remaining eigenvalues cont
information about the positions and widths of the resona
states in a hidden way. The unfolding of this information
termed theL2-stabilization procedure.

The L2-stabilization method has been substantially i
proved recently by Mandelshtam, Ravuri, and Taylor@11#.
Their method is based on the calculation of the level den
of the system. Because it is assumed that the system is
box the level density has the formr(E)5( id(E2Ei),
whereEi is an eigenvalue of the system. The Diracd func-
tions of r(E) are smoothed by an appropriate average o
the size of the box. The resonances pop up as sharp pea
the smoothed level density. It was realized@12–14# that the
resonances show up more clearly if the level density of
free box system is subtracted fromr(E). The parameters o
the resonances can also be calculated using the smoo
level counting function@12,13#. Since the method of Ref
@11# assumes that the system is in a box, this severely
stricts the functions that can be taken as a basis. The pop
basis functions of the quantum chemistry and the nuc
physics are excluded. In order to use an arbitrary basis
approximation was considered@13,15#. The smoothing of the
Dirac d functions of the level density has been carried out
an average over the nonlinear parameter of the basis@15,16#.

The aim of this paper is to show that it is possible
PRA 591050-2947/99/59~5!/3556~6!/$15.00
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generalize the method of Mandelshtam, Ravuri, and Tay
in such a way that the box quantization can be avoided.
method is based on the notion of the continuum level d
sity. The continuum level density is the generalization of t
level density for Hamiltonians with a continuous spectru
This quantity is defined with the help of the Green operat
of the interacting and the free systems. Our method ha
sound mathematical foundation since it is shown that
continuum level density is connected to the scatteringS ma-
trix. We show that if we expand the eigenfunctions of t
full and the free Hamiltonians on an arbitrary real squa
integrable basis, then the approximate continuum level d
sity has the form( id(E2ei)2( id(E2ei

0), whereei andei
0

are the eigenvalues of the full Hamiltonian matrix and t
free Hamiltonian matrix, respectively. We also have
smooth the Diracd functions, but we carry this out using th
Strutinsky smoothing procedure@17#. Our approach is simi-
lar to the method of Ref.@11#. There is, however, a grea
difference between our method and the method of Mande
tam, Ravuri, and Taylor. We neither put the system into
box nor use the approximation that a basis with a nonlin
parameter can be considered as a ‘‘soft’’ box.

The outline of the paper is the following. In Sec. II w
define the continuum level density and show its relation
the parameters of a resonance. In Secs. III and IV we disc
the basis-set calculation of the continuum level density
numerical example is given in Sec. V.

II. THE CONTINUUM LEVEL DENSITY

For simplicity we consider the radial Schro¨dinger equa-
tion. The kinetic energy operator in the partial wavel is
denoted byT̂l and the potentialV̂l depends only on the co
ordinate r. The level density of a Hamiltonian with pur
point spectrum is related to the Green-operatorĜ(E) of the
system by the trace formula@18#

r~E!52
1

p
Im$Tr@Ĝ~E1 i0!#%. ~1!

If the Hamiltonian in addition to the bound states has a c
3556 ©1999 The American Physical Society
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tinuous spectrum, the continuum level densityD l(E) is de-
fined @19# with the help of the Green operators of the inte
acting and the free system,

D l~E!52
1

p
Im$Tr@Ĝl~E1 i0!2Ĝl

0~E1 i0!#%. ~2!

In Eq. ~2! the full and free Green operators are given by
expressionsĜl(z)5(z2Ĥ l)

21 and Ĝl
0(z)5(z2T̂l)

21, re-

spectively. The notationĜ(E1 i0) stands for the limit
lime→10 Ĝ(E1 i e), and Tr@Ĝ(E1 i0)# means the trace o
the operatorĜ(E1 i0). Note that it is not possible to tak
the trace in Eq.~2! term by term becauseĤ l and T̂l have a
continuous spectrum.

For spherically symmetric systems it can be sho
@20,21# that D l(E) is proportional to the derivative of th
scattering phase shiftd l(E),

D l~E!5
1

p

dd l~E!

dE
. ~3!

This form of the continuum level density was introduced
Beth and Uhlenbeck@22#. Since the behavior of the phas
shift around a resonance is known@23#, D l(E) in the vicinity
of a resonance, characterized by the positionEr and width
G r , can be turned into the form

D l~E,Er ,G r !5D l
r~E,Er ,G r !1D l

bg~E!. ~4!

The background termD l
bg(E) is a slowly changing function

of the energy. The resonance part has a Breit-Wigner sh

D l
r~E,Er ,G r !5

1

p

G r /2

~E2Er !
21G r

2/4
, ~5!

and produces a sharp peak in the continuum level den
We can use this fact to determine the parameters of the r
nance.

The continuum level density can be defined for thre
dimensional problems as well. In that case there is coup
between the different partial waves and in Eq.~2! we have to
use the full Green operators. The corresponding continu
level densityD(E), according to the result of Ref.@24#, can
be related to the on-shell scatteringS matrix S(E,k̂,k̂8),

D~E!5
1

2ip
TrFS~E,k̂,k̂8!*

d

dE
S~E,k̂,k̂8!G . ~6!

As resonances are the poles of theS matrix, the continuum
level density can also be related to the resonances in
three-dimensional case. In the case of spherical symm
this relation is simple. Here theS matrix is of the following
form @25#:

S~E,k̂,k̂8!5(
l ,m

Ylm~ k̂!exp„2id l~E!…Ylm~ k̂8!* ~7!

and substituting Eq.~7! into Eq. ~6! immediately gives back
Eq. ~3!.
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III. BASIS-SET CALCULATION OF THE CONTINUUM
LEVEL DENSITY

The continuum level density can be determined using
expression~3!. However, the application of Eq.~3! requires
that the Schro¨dinger equation with the scattering bounda
condition be solved. In this section we show that a suita
modified, smoothed continuum level density can be cal
lated using a basis-set method based on purelyL2 functions.

In order to solve the eigenvalue problem ofĤ l , we ex-
pand the eigenfunctions on a given orthonormal basisf i . If
N basis functions are used, then the eigenvalues are d
mined by diagonalizing theN3N Hamiltonian matrixHn,m

5^fn ,Ĥ lfm&. This procedure shows that the eigenval
problem of the approximate Hamiltonian

Ĥ l
N5 P̂NĤl P̂N ~8!

is solved, where

P̂N5(
i 51

N

uf i&^f i u. ~9!

If N→`, then P̂N tends to the unit operator andĤ l
N ap-

proachesĤ l . Similar to the approximate Hamiltonian, a
approximate kinetic energy operator can be introduced
the definition

T̂ l
N5 P̂NT̂l P̂N . ~10!

With the help of the operatorsĤ l
N and T̂l

N , an approximate
continuum level density can be defined in analogy with E
~2!,

D l
N~E!52

1

p
Im$Tr@~E1 i02Hl

N!212~E1 i02Tl
N!21#%.

~11!

Since bothĤ l
N and T̂l

N have a pure point spectrum,D l
N(E)

can be turned into the following form:

D l
N~E!5(

i 51

N

d~E2ei !2(
i 51

N

d~E2ei
0!, ~12!

where ei denotes the result of the diagonalization of t
Hamiltonian matrix andei

0 corresponds to the eigenvalues

the N3N kinetic energy matrixTn,m5^fn ,T̂lfm&.
To compare the exact density with the approximate o

we have to smooth the Diracd functions in Eq.~12!. The
smoothed density is defined by the Strutinsky proced
@17#. If we have an oscillating functiong(E) ~or an expres-
sion containing Diracd functions!, then a smoothed function
ḡ(E) can be introduced by the convolution integral

ḡ~E!5
1

G E
0

`

wS E82E

G D P2MS E82E

G Dg~E8!dE8, ~13!

whereG is the range parameter of the smoothing. The fo
ing function is the product of a weight functionw(E) and a
curvature correction polynomialP2M(E) of order 2M . The
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3558 PRA 59A. T. KRUPPA AND K. ARAI
popular choice for the weight function is the Gaussia
w(E)5exp(2E2)/Ap, although other forms are also ava
able @27#, for example the Lorentzian shapew(E)
51/@2p(E211/4)#. Due to the curvature correction polyno
mial, the smoothing leaves an arbitrary polynomial of ord
M unchanged@26,27#.

Using the Strutinsky smoothing toD l
N(E), we get the

smoothed approximate continuum level density as a dif
ence of two densities,

D̄ l
N~E!5(

i

N
1

G
wS E2ei

G D P2MS E2ei

G D
2(

i

N
1

G
wS E2ei

0

G D P2MS E2ei
0

G D . ~14!

We mention that Eq.~14! is valid for three-dimensiona
problems as well. In that case the angular momentum s
script on the left-hand side should be omitted and the eig
valuesei andei

0 should be interpreted as the eigenvalues
the full Hamiltonian matrix and the full kinetic energy ma
trix, respectively.

IV. CALCULATION OF THE PARAMETERS
OF RESONANCES

Because only the smoothed continuum level density
be calculated with the help of Eq.~14!, it is therefore impor-
tant to know the result of the smoothing of the exact dens
The parameters of the resonance state can be extracted
the comparison of the numerically calculated smoothed d
sity with the smoothed exact density.

For the weight function in Eq.~13! we take the Lorentzian
form. The advantage of the Lorentzian form is that t
smoothing of the Breit-Wigner shape can be calculated a
lytically in terms of elementary transcendental function
The smoothed exact density in the vicinity of a resona
reads

D̄ l~E,Er ,G r !5D̄ l
r~E,Er ,G r !1D̄ l

bg~E!, ~15!

where the smoothed Breit-Wigner shape is

D̄ l
r~E,Er ,G r !5

G rb

2p2 H ~E2Er !
22

~G22G r
2!

4 J
3H p

2
1tan21S 2E

G D J 1
Gb

2p2

3H ~E2Er !
21

~G22G r
2!

4 J
3H p

2
1tan21S 2Er

G r
D J

1
GG r

4p2 ~E2Er !b lnF4E21G2

4Er
21G r

2G ~16!

and
,

r

r-

b-
n-
f

n

.
om
n-

a-
.
e

b5@~E2Er !
21~G2G r !

2/4#21@~E2Er !
21~G1G r !

2/4#21.

~17!

Here and in the rest of the paper the curvature correctio
neglected because it does not alter the main considerati

The smoothed continuum level density exhibits a sh
peak around a resonance. We can use this fact to calcu
the parameters of the resonance. Let us denote the locatio
the peak byEpeak. We select a region aroundEpeak and in
this regionn points$e i u i 51, . . . ,n% are equidistantly distrib-
uted and then the shape of the peak is fitted using Eqs.~15!–
~17!. We minimize the expression

(
i

n

@D̄ l
N~e i !2D̄ l~e i ,Er ,G r !#

2 ~18!

with respect toEr , G r , and the parameters of the bac
ground. The smoothed background termD̄ l

b(E) is described
by a first-order polynomial inE. In the numerical calculation
we have chosen a narrow intervalEpeak2G/2,E,Epeak
1G/2 for the fit in order to avoid the influence of othe
resonances. In this way, ifG is small enough, the one-leve
smoothed Breit-Wigner expression~16! is enough to de-
scribe the smoothed density aroundEr . We will refer to this
procedure as the least-square fit of the peak.

In the next section we will compare our method with a
other basis-set method that is based on the theory of
complex scaling~for review see, for example,@28,29#!. Here
the resonances are determined to be the complex ei
values of a non-self-adjoint operatorĤ l(Q)5exp(22iQ)T̂l

1V̂@r exp(iQr)#, where V̂l(r ) is the potential in coordinate
space. The scaling parameterQ can be chosen arbitrary bu
in such a way as to uncover the resonance, i
arg@Gr /(2Er)#,Q,p/4. Basis-set calculation can be carrie
out in the framework of the complex scaling theory. In th
approach the eigenvalue problem of theN3N complex sym-
metric matrixH(Q) i , j5exp(22iQ)Ti,j1^fi ,V̂l@r exp(iQ)#fj&
has to be solved.

V. NUMERICAL EXAMPLE

To show our method in practice and to compare it w
the complex scaling method, we consider the poten
V̂0(r )57.5r 2 exp(2r) in the partial wavel 50 and we use
atomic units. This problem was studied in Ref.@11#. For the
basis functions we take the Slater-type orthonormal functi
Nn exp(2ar/2)Ln

2(ar ). In Fig. 1 we show the smoothed ap
proximate continuum level density. There are two guidi
principles for the selection of the range parameter. It is
vious thatG has to be larger than the average spacing of
eigenvaluesei located in the energy region of interest. If w
chooseG small, then the individual eigenvalues appear
peaks in the smoothed density~see the solid line for largeE
in Fig. 1!. It is also clear that we must not chooseG large
because then we oversmooth and all structures of the l
density are washed out. For our purpose it is best to chooG
as small as possible, but we have to avoid the appearanc
the peaks corresponding to the individual energy eigen
ues. Our experience is that two or three times the aver
spacing ofei is good for the range parameter. If we chooseG
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properly, a sharp peak appears at the energy that rou
corresponds toEr .

In Fig. 2 we show the position of the peak of the appro
mate continuum level densityEpeakas a function of the range
parameter of the smoothing. The value ofEpeakis stable only
in two digits if G changes. If a resonance had been co
pletely isolated and the back-ground term had had noE de-
pendence aroundEr on the energy scaleG, thenEpeakshould
have been independent ofG. If we look carefully at Fig. 1 we
will realize that there is another resonance aroundE55.0
with a large width. There is a small bump right to the sha
peak in Fig. 1. We checked this assumption solving the
dial Schrödinger equation with the Siegert boundary con
tion using the code of Ref.@30#. In the numerical integration
the potential was cut off atr 516. According to this calcula-
tion, the narrow resonance is located atEr53.426 39 and the
width is G r50.025 54. Furthermore, there are two more re
nances in this region. The second resonance is at 4.86 an

FIG. 1. The smoothed continuum level density. Three differ
range parameters for the smoothing are used. The basis is ch
terized bya56 andN5180.

FIG. 2. The position of the peak of the continuum level dens
Epeak ~use the left side scale! is shown as a function of the range o
the smoothing. The least-squares fits of the resonance positionEr

fit

~use the left side scale! and the resonance widthG r
fit ~use the right

side scale! are also displayed. The parameters of the basis are g
in Fig. 1.
ly

-

-

p
-

-

-
its

width is 1.77, the third resonance is located at 5.32 w
width 1.98. The presence of the second and the third re
nances explains the behavior ofEpeak. Since the resonance
are close to each other, if we smooth with largeG, then the
second and third resonance will have an enhanced effec
the density in the energy region of the first resonance an
will modify the position of the peak.

We may overcome this difficulty using the least-square
of the peak procedure described in the preceding section
Fig. 2, the least-square fit of the resonance positionEr

fit and
the resonance widthG r

fit are displayed as a function ofG. It is
remarkable that on a large region ofG the estimated values
of the parameters of the resonance hardly change. In this
we demonstrated that the position and the width of the re
nance can be determined independently from the range
rameter of the smoothing. From Fig. 2 we can conclude t
there is a resonance atEr

fit53.426 with widthG r
fit50.025.

These numbers agree perfectly with the exact values.
In Fig. 3 we investigate the convergence behavior of o

procedure. The quantitiesEpeak, Er
fit , andG r

fit are displayed
in Fig. 3~a! and Fig. 3~b! as a function of the basis size. Fo
the nonlinear parameter of the basis we useda56 and for
the range of the smoothing we tookG50.6. The position and
the width of the resonance are determined using the le
square fit procedure described above. As is expected,
peak of the smoothed density and the resonance pos
converge to different numbers due to the presence of
other resonances. The resonance position 3.42 given in
@11# is reproduced even at the smallest basis sizeN570.
Note the scale of the figure: the oscillations present in
curvesEr

fit andG r
fit in Fig. 3 are in the fifth and third digits

Convergence can be achieved even in these digits if we u
not too large basis. The value of the parametera of the basis
plays a role only at small basis sizes where the oscillat
pattern is present. Using Fig. 3, we can determine a v
accurate value for the parameters of the studied resona

t
ac-

en

FIG. 3. The peak of the smoothed densityEpeak and the least-
squares fits of the resonance positionEr

fit ~a! and the resonance
width G r

fit ~b! are displayed as a function of the size of the basis. T
nonlinear parameter of the basis wasa56 and the range of the
smoothing wasG50.6.
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For the position we get 3.4263, and for the width we g
0.0255, in full agreement with the exact results.

In Fig. 4 we investigate the convergence behavior of
complex scaling method. We used the same nonlinear
rameter for the Laguerre basis as before. The scaling pa
eter wasQ50.05 rad andQ50.1 rad. For the smallerQ
value the convergence behavior of the complex sca
method is similar to our method. For largerQ values the
complex scaling method converges very quickly. It might
possible to speed up the convergence of our method if
parametrization of the continuum level density around
resonance can be improved. We note, however, that the c

FIG. 4. The real part~upper figure! and the width~lower figure!
of the resonance energy as a function of the basis size for
different values of the complex scaling parameter. The nonlin
parameter of the basis wasa56.
e

11
t

e
a-
m-

g

e
e

a
m-

plex scaling method uses a nonstandard, non-self-adj
representation of the Hamiltonian. In contrast, our meth
uses only the outputs of the most standard real basis-set
culation. Comparing our method with theL2-stabilization
technique and with the improved approach of Mandelshta
Ravuri, and Taylor, we may conclude the following.

We do not have to calculate the tedious stabilization p
and our smoothing procedure does not require the repe
digonalization of the Hamiltonian matrix.

VI. CONCLUSION

To sum up, we have shown that theL2 stabilization
method based on box quantization can be generalized t
arbitrary real square integrable basis. Our method is base
the fact that the continuum level density is connected to
scatteringS matrix. The Strutinsky averaging procedure
applied to calculate smoothed quantities. We showed tha
smoothed continuum level density can be related to the
genvalues of the Hamiltonian matrix and to the eigenval
of the kinetic energy matrix in a very simple way. Since t
exact continuum level density has a Breit-Wigner sha
around a resonance, the smoothed exact density can be
culated analytically. With the help of our method, the po
tion and width of a resonance can be determined using
arbitrary real square integrable basis, which means tha
the models and computer codes that are developed for bo
states and based on the basis-set method are at our dis
to calculate resonances.
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