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Numerical time-dependent Schro¨dinger description of charge-exchange collisions
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An implicit fast Fourier transform algorithm is implemented to solve the time-dependent Schro¨dinger equa-
tion with application to charge-exchange collisions. Cross sections are calculated for He21 on H and compared
with experiment and other theoretical results. A disagreement between previously published theoretical results
is resolved.@S1050-2947~99!01605-4#

PACS number~s!: 34.70.1e, 02.70.2c
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I. INTRODUCTION

The first work on the numerical solution of the tim
dependent Schro¨dinger equation~TDSE! to describe charge
exchange collisions appeared nearly 20 years ago@1#. Com-
putational limitations of this epoch meant that, except
head-on collisions, which are rotationally symmetric abo
the internuclear axis, one had to assume such symmetr
order to use an uncoupled two-dimensional~2D! equation in
cylindrical coordinates@1–4#, although clearly for finite im-
pact parameters rotational symmetry about the internuc
axis is not obtained. The problem is properly treated by
panding in eigenstates of the azimuthal quantum numbe
procedure which generates a set of coupled 2D equations@5#.

The partial differential equation~PDE! solver used in
these calculations was the Peaceman-Rachford~PR! method
@6#, which is a generalization of the Crank-Nicolson meth
suitable for 2D problems. In general the description
charge exchange requires a three-dimensional descrip
which necessitates the use of a 3D algorithm such as
split-operator fast Fourier transform~FFT! method@7#. Un-
fortunately this algorithm uses an explicit temporal advan
leading to nonconservation of energy in Coulombic proble
@8# except for values of the temporal incrementdt which can
turn out to be impractically small in a 3D numerical integr
tion. Hence this method has historically been used in pr
lems of a non-Coulombic nature which are found in opti
and chemical physics. More recently other groups have u
numerical methods to solve the TDSE@8,9#.

In this paper we implement a 3D implicit split-operat
procedure~ISOP! @10,11# for charge-exchange collisions
Implicit algorithms, in which the Hamiltonian is evaluate
both at the advanced and retarded time steps, are more s
against numerical error than explicit algorithms, in which t
Hamiltonian is evaluated only at the retarded time step. T
present implicit method combines the computational sp
of the explicit split-operator procedure~ESOP! method@7#
with the numerical stability of the implicit 2D PR metho
@6#. In other words, the implicit nature of the PR 2D meth
is achieved in 3D, thus ensuring the conservation of ene
on a relatively coarse temporal grid@10#, while at the same
time all operations involving the Laplacian are carried out
transform space, using standard FFT routines as in ESOP@7#,
thereby avoiding spatial differencing and matrix inversi
operations.
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II. COMPUTATIONAL ALGORITHM

Our computational algorithm consists of three operatio
carried out in succession for each temporal interval~where
atomic units are used throughout!,

S 11
dt

8i
¹2Dw5S 12

dt

8i
¹2Dc t , ~1a!

S 12
dt

2i
VDx5S 11

dt

2i
VDw, ~1b!

S 11
dt

8i
¹2Dc t1dt5S 12

dt

8i
¹2Dx, ~1c!

where the subscripts on the wave function refer to the so
tion at prior~t! and advanced (t1dt) time points. Operating
on Eq.~1c! successively with the left-hand operators of Eq
~1b! and ~1a! and using Eqs.~1b! and ~1a! to eliminate the
intermediate functionsx andw, we arrive at the net advance
ment algorithm,

S 11
dt

4i
¹22

dt

2i
VDc t1dt5S 12

dt

4i
¹21

dt

2i
VDc t1O~dt3!,

~2!

which has the desired Crank-Nicolson form and is, as an
sis shows, second-order accurate@hence our last term on th
right side of Eq.~2! indicates that all other terms generat
from the operations to eliminate the intermediate functio
are of orderdt3 and can be dropped#. It is not practical to use
Eq. ~2! directly except in 1D problems; therefore the alg
rithm is implemented using Eqs.~1!, where the first and third
steps are carried out in transform space using standard
FFT routines and the middle step is carried out in real spa
The use of FFT procedures to solve Eqs.~1a! and~1c! avoids
the use of spatial differencing to evaluate the Laplacian
procedure which then requires the laborious use of ma
inversions to solve the equations. In this way the algorit
resembles ESOP@7# but is different from the PR algorithm
@6#. On the other hand, the Crank-Nicolson form the net
vancement algorithm@Eq. ~2!# also holds for the PR algo
rithm @6#, making possible an implicit temporal advance bo
for PR @6# and the present algorithm~ISOP!, but differs from
3544 ©1999 The American Physical Society
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PRA 59 3545NUMERICAL TIME-DEPENDENT SCHRÖDINGER . . .
the net ESOP@7# advancement algorithm, which is explic
and thus not well suited for Coulombic problems.

III. THEORETICAL RESULTS

Here we study He21 on H charge-exchange collisions, fo
which experimental@12,13# and previous theoretical resul
@14–17# exist and for which there is disagreement betwe
the theoretical results of Hose@17# and those of other author
@14–16#. The calculations of the other authors@14–17# are
based on time-dependent close-coupling theory, in which
Schrödinger equation is solved by expanding the wave fu
tion in a basis set. Not surprisingly, the source of the d
agreement derives from how such basis sets should be
sen. The TDSE approach, in the sense that the nume
solution in principle contains the complete set of states
automatically describes the translation of the electron in
directions of the target atom or projectile, is well suited
resolve such disagreements.

A classical straight-line trajectory is used to describe
heavy-particle motion, making the interaction potential tim
dependent. Equation~1b! implies that this potential should
be split between the advanced and retarded solutions; h
ever, this procedure prevents the factorization of the Ham
tonian and the wave-function difference which is necess
for the truncation error to be of orderdt3 in the formal
Crank-Nicolson net advancement algorithm@Eq. ~2!#. Thus it
has been found to lower the accuracy of the calculation.
example, at adt of 0.05 ~which is used for most of the cal
culations, with smallerdt’s used on selected runs to confir
the accuracy of this choice! we have found that energy i
seriously unconserved. It is also likely, however, that the l
of accuracy caused by this procedure is due to the evalua
of the ratio of the singular potential@Eq. ~1b!# at two slightly
different time points.~The potential is cut off near the sin
gularity using the procedure described in the Append!
Therefore, we chose to evaluate the potential at the midp
of dt, thereby ensuring second-order accuracy@Eq. ~2!# and
conservation of energy to high accuracy on our tempo
grid. Trial runs in whichV is evaluated at the advanced
retarded times provided empirical evidence of an insens
ity of the results to whereV is evaluated within the interva
dt so long as it is evaluated at a single point and not s
between the advanced and retarded points.

The spatial grid used in most of the runs consisted o
rectangular box of dimension 24324348 a.u. whose heigh
is in the direction~alongz! of the heavy-particle trajectorie
with 803803160 grid points, respectively; selected ru
used to confirm the accuracy of this choice used a box
mension of 24324372 a.u. and 803803240 grid points,
respectively. The target atom and projectile ion are po
tioned at initial time equidistant from the positive and neg
tive z axes, respectively. The initial atomic wave functio
which is an eigenfunction of the Hamiltonian outside t
interaction region, is written using the geometric midpoint
the nuclei as the electron’s reference frame@18#,

c1s5@w1se
2 i ~«1s1v2/8!t#e2 i ~v/2!z, ~3!

wherev is the relative collision velocity.
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The target atom is centered in the right-hand grid posit
as already mentioned. As time progresses, atom and
move to the left and right, respectively, and pass each o
at z50 and at the temporal pointtmax/2, which is the center
of the interaction region, at impact parameters fromb50 to
9 at intervals ofdb50.75. This spacing inb does not fully
resolve the oscillating behavior at the smallerb’s at the
lower velocities (v50.2 and 0.3!; however, we find that a
Db of 0.75 is sufficient to resolve the peak to valley versub
and thus is expected to be of acceptable accuracy for
integrated cross section.

The line perpendicular toz, whose distance is the impac
parameter, is directed toward two opposite corners of
box, which is a geometrical arrangement which keeps
nuclear centers as far as possible from the grid bounda
for a given impact parameter. Attmax the channel amplitudes
are calculated from the overlaps of the numerical wave fu
tion and the channel eigenfunctions centered to the r
~projectile! and left ~target! of the interaction region. For
example, the complex conjugate of Eq.~3!, centered on the
left-hand side of the interaction region attmax, is the target
1s channel eigenstate. The squared moduli of the amplitu
are the probabilities as a function of impact parameterP(b)
for populating the states, and the cross section is calcul
from 2pbP(b) integrated overb from zero tobmax.

The part of the electronic wave function which reach
the grid boundaries is absorbed by means of a nega
imaginary part2 ig added to the potential near the bounda
edge, whereg is ramped spatially to a maximum valu
gmax52 at the boundary edge using a Gaussian ramp fu
tion exp@2(i/3)2#, wherei 50,1,2,... from the edge, until the
strength of the potential reaches 0.01, at which point it
taken to be zero. We carried out tests for larger, smaller,
smoother absorptive potentials; these tests indicated tha
choice is adequate in the sense that we do not observe re
tion at the boundary walls. The existence of boundaries at
sides of the grid box in the numerical TDSE approach
quires care that the electronic quantum states of the ta
and projectile are far enough away from the boundaries
to be significantly absorbed. We have assured ourselves
then52 and 3 levels of the projectile are in this category
that we can reliably report their cross sections as shown
Figs. 1–3.

Figure 4 shows the ionization cross section. We calcu
the probability for ionization from the decay of the norm
the wave function due to absorption through the boundar
For impact parameters between 8 and 9 we observe
bP(b) ion , which is small, begins to show a slight rise, a
effect which we attribute to the beginning of the absorpti
of the projectilen53 and the targetn52 bound orbitals. Of
course all bound orbitals of highern, although they are
weakly populated, will contribute to what we have called t
‘‘ionization’’ cross section; the small velocity results of Fig
4 illustrate this point in that our data points do not go to ze
with the other data. The error bars on our data reflect
estimate that the uncertainty in our ionization cross sectio
about 10%, with the minimum of the error bars measur
the spurious contribution of bound orbitals~note that these
minima agree with the other data at small velocity! and the
maximum reflecting the dependence of the model on b
size and choice of temporal and spatial grid steps. Howe
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we believe that the uncertainty in the bound-state cross
tions reported in Figs. 1–3 can reasonably be expected t
less than 10%.

In Figs. 1–3 we compare our results with experimen
@12# and other theoretical@14–17# results for capture into the
n52 and 3 states of He1. In Fig. 4 we compare experimen
tal @13# and other theoretical@16,17# results for target ioniza-
tion. The previous theories are described as follows. E
et al. @14# expand in a molecular basis with a common tra
lation factor optimized by a procedure described by the
Fritsch @15# expands in an atomic basis set with translat
factors. Winter@14# expands in a triple-centered atomic ba

FIG. 1. Cross section in a.u.~i.e., square bohr! for capture into
the n52 level of the projectile versus collision velocity in a.u.

FIG. 2. Cross section in a.u.~i.e., square bohr! for capture into
the n53 level of the projectile versus collision velocity in a.u.
c-
be

l

a
-
.

set with translation factors. Hose@17# expands in a molecula
basis set without translation factors, arguing that the chan
amplitudes can be decoupled in the asymptotic region fro
diagonalization of a temporal weighted average of chan
propagators which he had previously proposed@19#.

One notes that Hose’s@17# calculation underestimates th
n52 cross section~Fig. 1! and overestimates then53 cross
section~Fig. 2! compared with the measured cross sectio
@12# and the theoretical cross sections calculated by oth
@14–16# and by the present authors. On the other hand, a
the theoretical cross sections show good mutual agreem

FIG. 3. Cross section sum in a.u.~i.e., square bohr! for capture
into then52 and 3 levels of the projectile versus collision veloci
in a.u.

FIG. 4. Cross section for ionization of the target in a.u.~i.e.,
square bohr! versus collision velocity in a.u.



ha
v

F
d
fu

i
m
an
an
in
le
ot
th
th
d
in
b

ed
he
ne
e
h
e
T
iu

cti-
cre-

ids

er-
er

nce
5-
act
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for the sum of then52 and 3 cross sections~Fig. 3! due to
the tendency of Hose’s low and high results forn52 and 3,
respectively, to be mutually compensatory. We believe t
our results help resolve the theoretical disagreement in fa
of the theories which use translation factors@14–16#.

IV. SUMMARY AND CONCLUSIONS

We have presented and implemented an implicit F
method for solving the Schro¨dinger equation in the time an
three spatial dimensions. The method is applied success
to charge exchange and ionization in He21 on H collisions.
Generally we believe that the numerical TDSE method,
the sense that the solution spans the complete spectru
electronic states, including translation effects, for any inst
taneous arrangement of the nuclei, helps to eliminate
element of subjectivity which might somehow persist
methods which require judgemental decisions in the se
tion of a basis set. Indeed, the theoretical disagreement n
above is fundamentally of this character. To be sure,
numerical solution has its own set of problems such as
absorbing boundary artifice and, more seriously, the nee
multielectron problems to represent the potential us
mean-field approximations. The latter point will be the su
ject of future work.

APPENDIX

A uniformly spaced Cartesian grid with points center
about the Coulomb singularity defines its own cutoff of t
potential. However, one can see that an arbitrarily positio
gridwork can create a large error in the numerical repres
tation of the potential operator if a grid point lies too near t
singular point. We make the following argument for th
modification of the Coulomb field when used with the FF
grids. Consider the integral over a spherical volume of rad
ett
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R centered about the singular point of the potential:

E d3r /r 54pE
0

R

r 2dr/r 52pR2. ~A1!

If we equate the spherical volume to the volume of a re
linear Cartesian volume element assuming that the in
ments are similar inx, y, andz, we find

4
3 pR35~dx!3,

~A2!
R5dx~3/4p!1/3.

If we now equate the integral over the singularity in Eq.~A1!
to the trapezoidal value of that integral with a cutoff ofr x
imposed in the Coulomb potential, we have

2pR25~1/r x!~dx!3, ~A3!

from which we can now solve forr x using the value ofR
from Eq. ~A2!:

r x5~2/9p!1/3dx'0.414dx. ~A4!

The Coulomb potential is simply evaluated withr
5max@r,rx#. The value ofdx in Eq. ~A4! is the spatial grid
increment, of course. One notes thatr x is less than half of the
space increment so that the cutoff is immaterial for gr
centered symmetrically about the singularity.
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