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Numerical time-dependent Schralinger description of charge-exchange collisions
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An implicit fast Fourier transform algorithm is implemented to solve the time-dependentdiutyeo equa-
tion with application to charge-exchange collisions. Cross sections are calculatedfootHe and compared
with experiment and other theoretical results. A disagreement between previously published theoretical results
is resolved[S1050-29470©9)01605-4

PACS numbg(s): 34.70:+e, 02.70-c

I. INTRODUCTION . COMPUTATIONAL ALGORITHM

Our computational algorithm consists of three operations
carried out in succession for each temporal intelvdiere
atomic units are used throughput

The first work on the numerical solution of the time-
dependent Schrainger equatiofTDSE) to describe charge-
exchange collisions appeared nearly 20 years[agcCom-
putational limitations of this epoch meant that, except for
head-on collisions, which are rotationally symmetric about
the internuclear axis, one had to assume such symmetry in
order to use an uncoupled two-dimensio(D) equation in g d
cylindrical coordinate$1-4], although clearly for finite im- t t
pact parameters rotational symmetry about the internuclear (1_ ZV)X:(1+ EV> @ (1b)
axis is not obtained. The problem is properly treated by ex-
panding in eigenstates of the azimuthal quantum number, a dt
procedure which generates a set of coupled 2D equdtidns (1+ avz) Uit gt=

The partial differential equatiofPDE) solver used in
these calculations was the Peaceman-Rachi®Rl method ) )
[6], which is a generalization of the Crank-Nicolson method"Where the subscripts on the wave function refer to the solu-
suitable for 2D problems. In general the description oftion at prior(t) and advancedt-dt) time points. Operating
charge exchange requires a three-dimensional descriptioRn Ed-(1¢) successively with the left-hand operators of Egs.
which necessitates the use of a 3D algorithm such as th_(étb) and (1a) and using Egs(1b) and(1a) to eliminate the
split-operator fast Fourier transfor(fFT) method[7]. Un- mtermedlat_e functiong and ¢, we arrive at the net advance-
fortunately this algorithm uses an explicit temporal advanceMent algorithm,
leading to nonconservation of energy in Coulombic problems dt dt dt dt
[8] except for values of the temporal incremeittvhich can 2 _ 2 3
turn out to be impractically small in a 3D numerical integra- gV EV) Prar= ( L=Vt V)it o),
tion. Hence this method has historically been used in prob- 2
lems of a non-Coulombic nature which are found in optical
and chemical physics. More recently other groups have usedhich has the desired Crank-Nicolson form and is, as analy-
numerical methods to solve the TD$&,9]. sis shows, second-order accurgitence our last term on the

In this paper we implement a 3D implicit split-operator right side of Eq.(2) indicates that all other terms generated
procedure(ISOP) [10,1]] for charge-exchange collisions. from the operations to eliminate the intermediate functions
Implicit algorithms, in which the Hamiltonian is evaluated are of ordedt® and can be droppédit is not practical to use
both at the advanced and retarded time steps, are more stalflg. (2) directly except in 1D problems; therefore the algo-
against numerical error than explicit algorithms, in which therithm is implemented using Eqg€l), where the first and third
Hamiltonian is evaluated only at the retarded time step. Theteps are carried out in transform space using standard 3D
present implicit method combines the computational spee&FT routines and the middle step is carried out in real space.
of the explicit split-operator procedu&SOP method[7]  The use of FFT procedures to solve Eds) and(1c) avoids
with the numerical stability of the implicit 2D PR method the use of spatial differencing to evaluate the Laplacian, a
[6]. In other words, the implicit nature of the PR 2D method procedure which then requires the laborious use of matrix
is achieved in 3D, thus ensuring the conservation of energinversions to solve the equations. In this way the algorithm
on a relatively coarse temporal giid0O], while at the same resembles ESOF7] but is different from the PR algorithm
time all operations involving the Laplacian are carried out in[6]. On the other hand, the Crank-Nicolson form the net ad-
transform space, using standard FFT routines as in H3QP vancement algorithniEq. (2)] also holds for the PR algo-
thereby avoiding spatial differencing and matrix inversionrithm [6], making possible an implicit temporal advance both
operations. for PR[6] and the present algorith@SOP), but differs from

dt_, dt_,
1+§V o= 1—§V 1/ (1a

dt_,
1—§V X (10
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the net ESOR7] advancement algorithm, which is explicit ~ The target atom is centered in the right-hand grid position
and thus not well suited for Coulombic problems. as already mentioned. As time progresses, atom and ion
move to the left and right, respectively, and pass each other
atz=0 and at the temporal point,,,/2, which is the center
of the interaction region, at impact parameters flom0 to

Here we study H&" on H charge-exchange collisions, for 9 at intervals ofdb=0.75. This spacing i does not fully
which experimental12,13 and previous theoretical results resolve the oscillating behavior at the smallgs at the
[14—17] exist and for which there is disagreement betweerlower velocities (=0.2 and 0.3 however, we find that a
the theoretical results of Ho$&7] and those of other authors Ab of 0.75 is sufficient to resolve the peak to valley verbus
[14-16. The calculations of the other authdrs4—17] are  and thus is expected to be of acceptable accuracy for the
based on time-dependent close-coupling theory, in which thategrated cross section.
Schralinger equation is solved by expanding the wave func- The line perpendicular te, whose distance is the impact
tion in a basis set. Not surprisingly, the source of the disparameter, is directed toward two opposite corners of the
agreement derives from how such basis sets should be chbex, which is a geometrical arrangement which keeps the
sen. The TDSE approach, in the sense that the numericaluclear centers as far as possible from the grid boundaries
solution in principle contains the complete set of states andor a given impact parameter. Af., the channel amplitudes
automatically describes the translation of the electron in there calculated from the overlaps of the numerical wave func-
directions of the target atom or projectile, is well suited totion and the channel eigenfunctions centered to the right
resolve such disagreements. (projectile and left (targe} of the interaction region. For

A classical straight-line trajectory is used to describe theexample, the complex conjugate of ES), centered on the
heavy-particle motion, making the interaction potential timeleft-hand side of the interaction region @&t,,, is the target
dependent. EquatiofiLb) implies that this potential should 1s channel eigenstate. The squared moduli of the amplitudes
be split between the advanced and retarded solutions; hovere the probabilities as a function of impact paraméetdr)
ever, this procedure prevents the factorization of the Hamilfor populating the states, and the cross section is calculated
tonian and the wave-function difference which is necessarjrom 27bP(b) integrated oveb from zero tob,,..
for the truncation error to be of ordatt® in the formal The part of the electronic wave function which reaches
Crank-Nicolson net advancement algorithEg. (2)]. Thus it the grid boundaries is absorbed by means of a negative
has been found to lower the accuracy of the calculation. Foimaginary part—iy added to the potential near the boundary
example, at alt of 0.05 (which is used for most of the cal- edge, wherey is ramped spatially to a maximum value
culations, with smalledt's used on selected runs to confirm y,.,,=2 at the boundary edge using a Gaussian ramp func-
the accuracy of this choizeve have found that energy is tion exg—(i/3)?], wherei=0,1,2,... from the edge, until the
seriously unconserved. Itis also likely, however, that the losstrength of the potential reaches 0.01, at which point it is
of accuracy caused by this procedure is due to the evaluatiamken to be zero. We carried out tests for larger, smaller, and
of the ratio of the singular potentiflEq. (1b)] at two slightly ~ smoother absorptive potentials; these tests indicated that our
different time points(The potential is cut off near the sin- choice is adequate in the sense that we do not observe reflec-
gularity using the procedure described in the Appendix. tion at the boundary walls. The existence of boundaries at the
Therefore, we chose to evaluate the potential at the midpoirdides of the grid box in the numerical TDSE approach re-
of dt, thereby ensuring second-order accurfigg. (2)] and  quires care that the electronic quantum states of the target
conservation of energy to high accuracy on our temporahnd projectile are far enough away from the boundaries not
grid. Trial runs in whichV is evaluated at the advanced or to be significantly absorbed. We have assured ourselves that
retarded times provided empirical evidence of an insensitivihen=2 and 3 levels of the projectile are in this category so
ity of the results to wher® is evaluated within the interval that we can reliably report their cross sections as shown in
dt so long as it is evaluated at a single point and not splifigs. 1-3.
between the advanced and retarded points. Figure 4 shows the ionization cross section. We calculate

The spatial grid used in most of the runs consisted of ahe probability for ionization from the decay of the norm of
rectangular box of dimension 224X 48 a.u. whose height the wave function due to absorption through the boundaries.
is in the direction(alongz) of the heavy-particle trajectories For impact parameters between 8 and 9 we observe that
with 80X 80X 160 grid points, respectively; selected runsbP(b);,,, which is small, begins to show a slight rise, an
used to confirm the accuracy of this choice used a box dieffect which we attribute to the beginning of the absorption
mension of 24K 24X 72 a.u. and 8380x 240 grid points, of the projectilen=3 and the target=2 bound orbitals. Of
respectively. The target atom and projectile ion are posicourse all bound orbitals of higher, although they are
tioned at initial time equidistant from the positive and nega-weakly populated, will contribute to what we have called the
tive z axes, respectively. The initial atomic wave function, “ionization” cross section; the small velocity results of Fig.
which is an eigenfunction of the Hamiltonian outside the4 illustrate this point in that our data points do not go to zero
interaction region, is written using the geometric midpoint ofwith the other data. The error bars on our data reflect our
the nuclei as the electron’s reference frajh], estimate that the uncertainty in our ionization cross section is
about 10%, with the minimum of the error bars measuring
the spurious contribution of bound orbitalsote that these
minima agree with the other data at small velociyd the
maximum reflecting the dependence of the model on box
wherev is the relative collision velocity. size and choice of temporal and spatial grid steps. However,

Ill. THEORETICAL RESULTS

Yie= [(Plse—i(sls+u2/8)t]e—i(v/2)z, (3)
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we believe that the uncertainty in the bound-state cross sec-

tions reported in Figs. 1-3 can reasonably be expected to ket with translation factors. Ho§&7] expands in a molecular

less than 10%. basis set without translation factors, arguing that the channel
In Figs. 1-3 we compare our results with experimentalamplitudes can be decoupled in the asymptotic region from a

[12] and other theoreticgll4—17 results for capture into the diagonalization of a temporal weighted average of channel

n=2 and 3 states of He In Fig. 4 we compare experimen- propagators which he had previously propof&d.

tal [13] and other theoretic4ll6,17] results for target ioniza- One notes that Hose[4 7] calculation underestimates the

tion. The previous theories are described as follows. Errea=2 cross sectiofFig. 1) and overestimates the=3 cross

et al.[14] expand in a molecular basis with a common trans-section(Fig. 2) compared with the measured cross sections

lation factor optimized by a procedure described by them[12] and the theoretical cross sections calculated by others

Fritsch[15] expands in an atomic basis set with translation[14—16 and by the present authors. On the other hand, all of

factors. Winte 14] expands in a triple-centered atomic basisthe theoretical cross sections show good mutual agreement
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for the sum of then=2 and 3 cross section(fig. 3 due to R centered about the singular point of the potential:
the tendency of Hose’s low and high results for 2 and 3, R

respectively, to be mutually compensatory. We believe that J d3r/r=477f r2dr/r=2mR2. (A1)
our results help resolve the theoretical disagreement in favor 0

of the theories which use translation factptd—186. ) )
If we equate the spherical volume to the volume of a recti-

IV. SUMMARY AND CONCLUSIONS linear Carte_sia_\n v_olume element_assuming that the incre-
ments are similar irx, y, andz, we find
We have presented and implemented an implicit FFT P 3
method for solving the Schdinger equation in the time and 37R*=(dx)”,
three spatial dimensions. The method is applied successfully B 13
to charge exchange and ionization in?Heon H collisions. R=dx(3/4m)™".

Generally we believe that the numerical TDSE method, inf e now equate the integral over the singularity in B4l)

the sense that the solution spans the complete spectrum of ihe trapezoidal value of that integral with a cutoffrgf
electronic states, including translation effects, for any instan:

X N imposed in the Coulomb potential, we have
taneous arrangement of the nuclei, helps to eliminate any
element of subjectivity which might somehow persist in 27R?=(1/r,)(dx)3, (A3)
methods which require judgemental decisions in the selec-

tion of a basis set. Indeed, the theoretical disagreement notdtPm which we can now solve for, using the value oR
above is fundamentally of this character. To be sure, thérom Eq.(A2):
numerical solution has its own set of problems such as the

_ 13y
absorbing boundary artifice and, more seriously, the need in M= (2/3m) dx~0.4141x. (A4)
multielectron problems to represent the potential usingrhe Coulomb potential is simply evaluated with
mean-field approximations. The latter point will be the sub-=maxr r,]. The value ofdx in Eq. (A4) is the spatial grid
ject of future work. increment, of course. One notes thats less than half of the
space increment so that the cutoff is immaterial for grids
APPENDIX centered symmetrically about the singularity.

(A2)

A uniformly spaced Cartesian grid with points centered
about the Coulomb singularity defines its own cutoff of the
potential. However, one can see that an arbitrarily positioned The authors wish to thank Gabriel Hose and Charles Cer-
gridwork can create a large error in the numerical represenjan for a helpful discussion. This work was performed under
tation of the potential operator if a grid point lies too near thethe auspices of the U.S. Department of Energy by Lawrence
singular point. We make the following argument for the Livermore National Laboratory under Contract No. W-7405-
modification of the Coulomb field when used with the FFT ENG-48, and Sandia National Laboratory under Contract
grids. Consider the integral over a spherical volume of radiutNo. DE-AC04-94AL85000.
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