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Molecular dynamics and a simplified master equation for spectral line shapes

A. D. May*
Department of Physics, University of Toronto, Toronto, Canada M5S 1A7
(Received 21 September 1998

Borrowing heavily from the literature, we develop a transport relaxation equation for the off-diagonal
elements of the density matrix. It is applicable to a large range of topics in laser theory, nonlinear optics and
spectral line shapes, etc. Applying this single equation to the case of infrared electric dipole transitions permits
us to recover, quickly and simply, all of the well-known spectral line shapes found in the literature. It also
offers further insight into the process of line mixing, particularly in the weak mixing limit. An outline of a new
treatment of Dicke narrowing and other speed-dependent contributions to spectral profiles is also given in
terms of the transport relaxation equation. The treatment also provides a numerical method for including the
effects of statistical correlation between the evolution of the internal and translational degrees of freedom.
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PACS numbds): 32.70.Jz

INTRODUCTION relaxation equation that may be applied to many problems in
molecular physics, including laser theory and nonlinear op-
The static and dynamical properties of dilute gases entelics. Here we present a simplified transport relaxation equa-
into many areas of physics, including lasers, nonlinear option for the density matrix that captures most of the physics
tics, magnetic resonance, transport phenomena, and of spectral line shapes.
course spectral line shapésee, for example, Ref$l-3)). In the following section we introduce many of the basic
However, each area has largely developed its own terminoldeas, using an approach common in the theory of lasers,
ogy and approach, a fact that conceals their commonalitywherein there is only a single transition of central impor-
hinders communication, and impedes the development of tance. This is then generalized to include multiple transitions
broad overview. Here we attempt to rectify the problem. Weand an explicit account of translational motion. The final
do this primarily by an inspection of a number of pioneeringtransport relaxation equation is then used to rederive many
paperg4-11], all of which are traceable in some way back well-known cases of spectral profiles. In the case of line
to Boltzmann or Schidinger. mixing, this approach enhances our understanding, particu-
Even such a simple system as a dilute gas is sufficientlyarly in the case of weak mixing. This is followed by an
complex that it is futile to try and develop a truly complete outline of a treatment of Dicke narrowing and a discussion of
theory based on statistical mechanics, even for a single typegow speed-dependent effects in general may be treated. The
of experiment. As a consequence the question becomes opaper concludes with some commeifits particular about
of making approximations that are appropriate for a particuthe limitations of the approach used herend a summary.
lar situation or class of experiments. One general approxima-
tion made here, and which appears to be widely accepted, is ELEMENTARY RELAXATION
the semiclassical treatment of the dynamics, wherein the
translational motion is treated classically, and the internal In laser theory, the model used for the contracted form of

degrees of freedom quantum mechanicallg]. Eq. (1) is often written as,
A common starting point for almost all many body prob- )
lems is the Liouville equation for the density matyix for dpldt=—(ilf)[H,p]-Tp, 2

the entire system . o .
where H consists ofHg, the Hamiltonian for the internal

aplat=—(il#)[H,p]. (1)  degrees of freedom of an isolated atom or molecule, plus,
H,, the interaction with any applietbptica) field. The re-
Through a series of approximatiofig], one contracts the laxation operatoi” has a form that forces the populations
description to one of free streaming of the molecules of in-(diagonal elements of the density majritowards their
terest (the active systeinplus relaxation terms associated Steady-state values and the coherengef§-diagonal ele-
with their interaction with the so-called “bath.” In the mMents towards zero. As an introduction to the more general
theory of spectral line shapes it is all too common to entangi®roblem, we follow a well-trodden path and treat the case of
this contraction or “bath theory” with the derivation of a €lectric dipole interaction. In linear spectroscopy or laser
spectral profile. It is this entanglement that hides the connedheory the interactioh, —u€ would then involve a field
tion to other areas of molecular dynamics. We shall keep’ oscillating only at a single frequency. For nonlinear

them separated. The contracted form of Eq.is a transport

1in the interest of simplicity, we have ignored the vector nature of
*Electronic address: dmay@physics.utoronto.ca the interaction.
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effects, in general, multicomponent fields would be consid- We have, at this point, solved E(P) to first order in an
ered. The next step consists of solving feras a power applied field, using a simple form for the relaxation. Now we
series in the fiels). We follow common practice and use the make the connection to the spectral profile. First we calculate
eigenstates ofl, as a basis set, when computing the matrixthe macroscopic polarizatio@@ipole moment per unit vol-
components of Eq2). Hiding anz in u&, it is easy to show ume P, usingP=Tr[p'u]. The dipole and density matrices

that thenth-orderjk component of is given by are[ﬂi Hao] and[pob "ba], where, for conciseness, we have
. dropped the superscript, 1 gn ThusP, a real quantity, is
[(9/dt) +i(wj— o)+ vi] (pMjk just papinat Prattan- IN order to see the phase shift between
the applied field and the polarization, it is simpler to express
= +i52 [Mu(Pn_l)m—(Pn_l)uMkL (3)  the material polarization in the forlR=€yx¢&, whereP, &,
|

and y are all now complex. With this conventioR,is to be
written asP = ppaiap, i.€., the term inp,;, is to be dropped
wherew; is the energy of théth level of the free molecule. because it varies a&*. Thus we find the complex suscepti-
The quantity y;. is the relaxation rate of the off-diagonal bility x, for our two-level system, is given by,
elementp;, and u is a matrix element of the electric di-

pole moment. For linear spectroscopy all we need is a solu- X=[Na—Nplttpattan! €l (Wpa— ©) =i Ypat

tion to first order in the field. Thus only the zeroth-order _

equilibrium populationgdiagonal elements gf) will appear =N/{(wpa— ) =i Vpa}- (83

on the right-hand side of E(3). The zeroth-order coher-

ences(off-diagonal elemenjsare zero. whereN is a positive number for systems in thermal equilib-

We now solve the equation for a two-level molecule. Werjym. For dilute systems, the real part gfis related to the
fields. Let the field be given byy=E exf —i(wt—ka]+c.c.  apsorption coefficient is given byy=ky;, wherek is the
There are two levelsa the lower andb the upper. Write the  \yaye vector in vacuum. Thus it follows that{— 1) is given

thermal equilibrium populationsof).a and (0°)sp asnz and by the well-known dispersion curve,
n, molecules per unit volume, respectively. Equati8hfor

the componentd!),. then becomes
Ponentva n2—1=(wpa— 0)N/{(0pa— @)+ (52)2},  (8D)

+i — + 1
L9190+ (@~ wa) + Ybal(pT)ba while the absorption coefficient is given by the well-known
=i{Eexg —i(wt—k2z)]+c.cln,—nylups. (4  Lorentzian profile

If we look for steady state solutions of the form a=KypaNH{(©pa— ©)2+ (75) 2. 80

N . + .
(P)pa=1p" exf —i(wt=kz)]+p exp[+|(wt—kz)]}(,5) Thus the simple form chosen for our relaxation equation has
led to a dispersion curve for the index of refraction and a
the resulting equations for the amplitudes andp™ are Lorentzian profile for the absorption. The half width at half
maximum of the absorption profile, measured in radians per
second, is the relaxation ratg,,. If y,, iS complex, there

p~=E[Na—Nplupa/{~ @+ wpa=ivba), ®3 il also be a frequency shift in radians per second equal to
the imaginary part ofy,,. Later we will see that these rela-
p T =E*[Ny—Nplppal{+ ©+ 0pa—ivpal, (6b) tionships between the real and imaginary parts of the relax-

ation ratey,,, and the width or shift, are not always exact,
wherew and w,,= (w,— w,) are positive numbers. We see even in the so-called collision-dominated regime.
that only thep™ term may resonate. Making the rotating
wave approximation, i.e., neglecting the antiresonant l?erm, A GENERAL RELAXATION TRANSPORT EQUATION

p* we have, for p1),.,
It is clear from the preceding sections that a Lorentzian

N . line shape follows directly from the form assumed for Eq.
(P9)ba= 1[N Nolbal[(@pa= @) =i Vbal} (2). For a more general case we need to consider the physics
X E exd —i(wt—k2)]. (7)  thatis omitted in the example above. As was recognized by
Rautian and Sobelmdd 3] and othergsee Ref[9] and ref-
1 Ik N erences therejnone must think in terms of molecular distri-
For (p%)ap=(p")pa, itis thep term that resonates. AS We  inn functiongof which p, as used above, is an example in
shall see in the next paragraph, Ja», Which varies as™,  tarms of the internal stateand some generalization of the
will not be required in our treatment of linear spectroscopy.ggjtzmann equationwhich is an equation involving the
translational statg@sln other words, what we are seeking is a
semiclassical generalization pfsuch that it is also a func-
2Making the rotating-wave approximation removes nonresonantion of r, v, and,t, wherer is a position vectory the veloc-
and microwave absorption from consideration. ity, and t is the time. Before proceeding with details of a
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refined relaxation equation, we make some general com-(i/#)[H,p] for the internal molecular motion. We saw al-
ments to set the scene for those readers not familiar with theeady that a traveling-wave field produced an off-diagonal
hierarchy of transport relaxation equations that exists in staelement that varied spatially as eiz]. It is the gradient
tistical mechanics. term acting on such a spatial term that produces the familiar

For structuredparticles, such as molecules with internal kv, term found in any elementary treatment of Doppler
degrees of freedom, we can still write, in a semiclassicabroadening or in a derivation of the Voigt profile.
treatmentp= p(r,v,t), but we must now consider the matrix N addition to the free-streaming translational term, we
character op, i.e., how it depends upon the discrete internalMust add the temporal gvoluuon dug to collisions with bath
states. In transport phenomena the transport/relaxation equ&iolecules. Two translational relaxatigmansport terms are
tion for the populations odiagonal elementsf p is known {0 be added. The first is-»p(r,v,t)p, Where, in common
as the Wang-Chang—Uhlenbe@®/-CU) equation if the in- par_lance,v is the kinetic colllspn frequency or the rate at
ternal states are nondegenergld], and as the Waldmann- Which molecules leave a velocity clagér,v,t)p,. The sec-
Snider(WS) equation[6,7] if spatial degeneracy is included. ond is the rate of return to the veIQC|ty clgss from all the
Tip [9] derived an equation, analogous to the WS equationdther  velocity classes. We write this ast JA(v
for the off-diagonal elementsn the literature, this is referred V') ppdv’ where py.=p(r,v’,t)pa. In equilibrium, the
to as a generalized WS equation. It is clear from the introdistribution function is constant. This does not imply that the
ductory treatment above that all we need consider for lineavelocities of the molecules are constant, only that the rate at
spectroscopy is the off-diagonal elements. Furthermoreyhich molecules leave a velocity class is dynamically bal-
since we will continue to ignore the vector nature of theanced by a counterflow from other velocity classes. Thus
problem, we can ignore the spatial degeneracy of the stategnd v’ are post-collision and precollision velocities. If the
Thus our treatment can be at the W-CU level and the finabnly escape from a velocity class fpg, is to another veloc-
transport/relaxation equation to be presented could be déty class ofpy,, then the relationship betweenand v is
scribed as a generalized W-CU equation.

Central to all Boltzmann-like equations is the treatment of
the relaxation ternt’p. Smithet al.[10] developed an equa- V:f A(v—v')dv’. 9)
tion equivalent to the generalized WS equation from which
the dipole absorption spectrum could be determined. Th
only significant difference between the treatment in Rgfb.
and[10] (from the point of view of this papgiis the han-
dling of the relaxation terms. Smitkt al. wrote the interac-

Rleither the forward nor backward translational relaxation
terms should come as a surprise to a reader familiar with the
Boltzmann equatio15]. Note, however, in the dynamical

tion between the active molecules and the bath explicitly a§9Uation forp,,, that the translational terms involve differ-
ent velocity classes but only a single component of the opti-

Vo+ V1 whereV is the isotropic part of the interaction that : . .
cal (statg coherencepy,, i.€., the translational relaxation

is independent of the internal coordinat®s. depends both both of i 'and arise f he i . f
upon the separation of the centers of mass and on the intern'ﬁrm_S are both of type 1l and arise from the isotropic part o
the interactionvy,.

coordinates. This is a well-known decomposition for the in- N der the local d . h bel
teraction between molecules. This decomposition generates ow we consider the local decay terms, |.e., those belong-

three types of relaxation ternisee Eq(3.14), page 1573, in ing to the first class or type I. There is the'usual tgrm de-
Ref.[10], but readF,;, as if it werep,,]. Type I, of whichy scribing the decay- y,.p(r,V,t)p, introduced in our simple

in Egs.(3) or (4) is an example, involve matrix elements of relax_atio_n equation, Eq3). In addition, there _is the retum
Vv, and describe the relaxation of only the internal “mo- contribution from other components of the optical coherence.

tion.” Type Il involves matrix elements 0¥, and describes Be(ljng discrete, hth's rt]erm IS \gdrltten | %ﬁgdi’\léb%
the relaxation of only the translational motion. Type Ill in- €)p(r.v,t)qc where the sum ovetic excludesdc=ba.

volve bothV, andV, and encompasses the statistical corre ltis the return of coherence that is the source of line mixing.

lation in the relaxation process between the two types O§mith'et al. [10] did not separgte the T[WO n.ala>'<§1tion terms,
motion. In Ref.[10], these three terms are contained in the"or did they comment on their physical significance. The
first, second, and :chird lines of the right-hand side of Eq.WS are the off-diagonal elements of the so-called relaxation

(3.14). (The basis of this classification will be modified near r.natrix., while theyis are the diagor)all .elemem(@ur defini- .
the end of this paperWe follow Smithet al.[10] except we tion phffers by a sign from the defmmgn generally fou_nd In
separate the question of a relaxation transport equation f&P? I|§erati;1rta). '\I:Ote that type-| tferrrr:s mvplv? onrlly a single d
the density matrix, from the problem of calculating a spectralve, ocity, u:] a comppnehnts_ of t € optical coherence an
profile. This is done by inspection, much in the spirit of the @rise from theV, term in the interaction.

original derivation of the Boltzmann equation. We now jus- Before d;scus_smg the .th|r? type (f)]quontrlblfnon tc_) thhe
tify, on physical as opposed to mathematical grounds, a ret_ransport re axa.tlon quathn or an oft-diagona tgrm In the
ombined density-matrix distribution function, it is worth-

laxation transport equation for the off-diagonal elements of°" . i : .
the density matrix that is more refined than in the introduc-While to discuss the various relaxation rates introduced so
tory sample calculation above far. It is bath theory that tells us exactly what microscopic
Let py, be a general off-diégonal element. with lewe| average over the distribution of perturber states is to be cal-
a 1

above levela. It is a function of position and velocity. Be- culated. In the usudinearizedtransport relaxation equation,
cause we are adding the translational motion to the density

matrix, we must add the free-streaming terav- V py, for
the translational motion to the free-streaming term, SPaired subscripts, likba, are to be treated as a single index.



3498 A. D. MAY PRA 59

one uses the equilibrium distribution of the perturbers. Con- We now consider terms that involve statistical correlation.
sequently, all relaxation rates are properties of the equilibWe give two speculative arguments which suggest that they
rium state of the system and are independent of the pertumay be neglected. First recall, in the semiclassical approach,
bation. Clearly only a weak perturbatio@bsorption is  that the relaxation rates for the internal degrees of freedom
imagined. are calculated by averaging the effect\6f over classical
There are many hundreds of papers dealing with variousollision paths, the latter being determined by the isotropic
methods and approximations for calculating the rates or witlpart of the potentiaV,. Now consider two collision trajec-
calculations for specific intermolecular potentials. In this pa-tories which are mirror images, the normal to the mirror
per we are not concerned with such details. What does corsurface being the apse litsee, for example, Ref16]). The
cern us is that most of the calculations of broadening andhange in velocity will be the same in size but of opposite
shifting of spectral lines deal with a calculation of this in sign. On the other hand, symmetry suggests that the effect of
the center-of-mass frame of a colliding pair, including aV,; on the internal coordinates will be the same. Thus for
Maxwellian average over both of the active and perturbingeach contribution to the change in the internal coordinates
molecules. It is then assumed that the real and imaginarthere are two equal but opposite changes in the translational
parts of y give the width and shift of an isolated line. How- motion. Averaged over all collisions, this argues for zero
ever, as we saw above, such a relationship only follows fronstatistical correlation. The second argument depends upon
a simple relaxation equation, such as B). Furthermore, a the observation that calculations ¢& using curved but ap-
relaxation rate is an average over the motion of the perturbproximate classical paths do very well in determining widths
ers, but not over the motion of the active molecule. Thus theand shifts if we ignore speed dependent effects, which are
relaxation rates, which depend upon the relative velocity olusually small. Such a calculation neglects the statistical cor-
the active molecule and the perturber, still depend upon theelation which arises from the fact that changes in the inter-
speed of the active molecule, even after averaging over theal states and the translational states occur in the same col-
perturber motion. This point was clearly made by Nienhuislision. Both lines of reasoning argue, in spite of the fact that
[15]. If the speed dependence is significant for both the rethe two types of changes occur in a single collision, that the
laxation and the transport terms, then the relaxation of theesult is statistically unimportant. In the main part of this
optical coherence and the translational motion are correlateghaper type-lil terms are ignored. The same assumption is
Here it is proposed to describe the internal and translatioimplicity made in most of the model profiles currently in
motions as *“coupled” or “speed correlated” when both mo- use. Near the end, we shall show that this assumption is more
tions depend upon the speed of the active molecule. We wilbne of convenience as the central features of the transport
use the expression “statistically correlated” for the true sta-relaxation equation remain even if such terms turn out to be
tistical or type-Ill ternts). If the motions are correlated either significant.
way, the usual simple relationship between the rates and This completes the presentation of the model transport
widths or shifts is broken; the correct relation between relaxrelaxation terms that are to be added to E).for the off-
ation rates and widths and shifts, etc., of a spectral profileliagonal elements of the density matrix. In the case of linear
can only be established by solving a transport relaxatiorspectroscopy and dipole absorption, the final master equation
equation. for this distribution function is

[(9/dt) +i(wp— @a) +V-V]ppa=— YbaPba™ % W(ba«—dc)pgc—vppa

+ j A(V<—V’)pl;ad3U "+i{Eexd —i(wt—kz)]+ccl[paa— pobl4bas (10

where all of the relaxation rates may be speed dependent. Wellowing sections we use our master equation, &), to
repeat thatp’ stands forp(r,v’,t). Here the equilibrium rederive most of the well-known model line shapes found in
populationsp,, and p,,;, are to be written as,fo(v) and the literature.

nyfo(v), wherefy(v) is the Maxwellian distribution func-

tion, normalized to unity. Only one of the terms in the field TRANSPORT RELAXATION FOR AN ISOLATED LINE

will survive in the rotating wave approximation. Explicit
mention of the field terms is the only entanglement of bath
theory and spectral line shapes that we have permitted. The For an isolated line, the sum ovéc is to be omitted. The
two may be disentangled simply by recognizing the fieldconditions under which this is a reasonable approximation
terms as a specific example of tha matrix element of the will be discussed in a section below on line mixing. Equation
free-streaming termiH, ,p°]. Equation(10) was made con- (10), as it stands, contains no statistical correlationy,f is
crete because we have our eye on infrared absorption. In trgpeed independent, then the translational and internal de-

Generalities
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grees of freedom evolve independently. In this cagecan  where we have set the population of the upper level to zero.
be written in the time domain ag,,=exp(—wa)p(rot).  We solve the transport relaxation equation in the same man-
The proof of this is straightforward, and hinges on being ablener as led to Eq(7). Within the rotating wave approximation
to pull thev’-independent factor, exp(y,.t), out from under the c.c. term involvingE* may be dropped. Consequently
the integral sign in the terniA(v—Vv')p;d%’, and divid- ~We can approach the'solution more direc'gly by writpng as
ing through the entire equation by the exponential factor. AgbaE €Xd —i(wt—k37)] instead of p~ exf —i(wt—k3z)]. This
is well known, a product in time leads to a convolution in leads directly to the equation
frequency space.
[wba_w+kvz]/7/ba:i7ba/lba+ Nafo(v) upa, (12
Specific single line models

The first case we were tempted to consider was the Dopwhich has the obvious solution
pler profile. Here the collisional relaxation of the transla-
tional motion is set to zero but the free-streaming term
v-V is retained. To derive the Doppler profile one might also
naively set the relaxation of the internal motion to zero.
However, this would be unphysical since in the absence oSince all molecules are observed, and the distribution func-
damping there is no phase shift between the driving field antion .y, is the amplitude of the optical coherence for a single
the polarization, and thus there is no absorption. Thus Dopspeed class, the susceptibility is obtained by multiplying by
pler broadening should physically be considered as the limu,,/% €y and integrating over the velocity. If the relaxation
iting case of a Voigt profile. We treat the Voigt profile in is speed independent, then the equation may be integrated
detall, as it turns out to be rather generic, permitting a rapicver thex andy components of the velocity. The result is
and simple treatment of all other isolated line profiles that
are consistent with the relaxation and transport of the off-
diagonal t_alements of_the density_ matrix. A s_horter, but some- = na(MbaMab/hfo)J fl(vz)dvz/ [wpa— 0+ kv,
what similar cataloging of profiles was given by Berman
17 ~i%bal, (14

For the Voigt profile, the problem reduces to solving the
equation,

/’ha= Nafo(v) upa/[ Wpa— @+ kv, =i ypal. (13

wheref(v,) is the normalized one-dimensional speed dis-
[(aldt)+i(wp— wa)+V-V]ppa tribution function @rv3) ~*2exp(—v,/vg)?, and v3 equals
_ . v 2k, T/m. Taking the imaginary part and multiplying by the
=~ Yoappa T H{E eXd —i(wt=k2)]+C.Cinafo(v)Mbar  \yave vector leads to the following expression for the absorp-
(11)  tion coefficient for the speed independent Voigt profile:

na(/"«ba:uab/heo)J ')’bafl(vz)d(kvz)/ [(wba_w+kvz)2+(')’ba)2]- (15

While mathematically and physically correct, this is not the
usual convolution expression found in the literature. How- | (@)=N Im[f fo(v)dV/ [(wpa— o+ kvz)_i')’ba(v)]]-
ever, note that the integral over taecomponent of the ve- (16)
locity can also be read as a convolution over the “Doppler
frequency” o'=kv,. Keeping the velocity distribution Generally, Eq.(16) cannot be integrated analytically. Sec-
function explicit in Eq.(15) facilitates a comparison with ond, for the speed-independent Voigt profil&q. (16) re-
other model profiles for isolated lines. duces to,
Having worked through one isolated line case in detail,
we now “clean up” the presentation by writing the profiles ]
as | (w), and expressing them as the imaginary part of a |(“’):N|m[f f1(02)dUZ/ [(‘“ba_“’+kvz)_'7ba]]'
complex function hiding many constants in a prefadir (17
From the development above it is clear that the complex
function is essentially,,(v), except for the integration over Equation(17) contains a standard integral. In a third case,
the velocity groups. the Lorentz model, one neglects all aspects of the transla-
We now systematically derive several isolated line pro-tional motion, including the free-streaming term. The results
files. First we repeat thepeed-dependent Voigt profilex-  are derivable directly from Eq16). First we have thepeed-
cept we write it in complex form. From E¢13), we have,  dependent Lorentz model



3500 A. D. MAY PRA 59

) the Dirac § function [18] can be written ass(x—Xxg)
(w)=NImi | fo(v)dv /' [(0pa= @) =ivpa(v)];- = (Um)lim,_ ol el[ (x—xXo)2+ €2]}. Identifying ypa in EQ.
(18) (15 with ¢, kv, with x, and (w,,— ) with X, leads imme-

. o ) ] _ diately to the well-known Doppler profile,
Again one anticipates that analytical expressions for the in-

tegral will be found only ify,, is some unique function of I (@)=N exp{—[(wpa—w)/kvo]?}. (20
the speed. From E@18), we then recover the elementary or
speed-independent Lorentz modeinsidered in the begin-
ning,

The five models above neglect the direct effect of colli-
sions on the translational motion. We now turn to cases of an
isolated line where these effects are no longer neglected. We

H(w)=NIm{1[(wpa— ®)—iYpal}, (19)  treat the speed-dependent hard collision model. The hard col-
lision model is a mathematical model that distributes mol-
by taking y,, constant in Eq(18) and integrating over the ecules over the Maxwellian distribution function, indepen-
normalized velocity distribution. dent of precollision velocities. Smitht al. [10] considered

We now treat the case qfure Doppler broadeningAs  the same problem, and used their formulation of the dipole
pointed out above, we must consider a Voigt profile and takeorrelation function to give a sound basis to an earlier clas-
the limit y,,—0. Since the relaxation is eventually to be sical model developed intuitively by Rautian and Sobelman
removed from the problem, we might just as well start with[13] to describe Dicke narrowindl9]. Here we use our mas-
the simplest case, the speed-independent Voigt model. Hersr relaxation transport equation as the starting point. Follow-
it is convenient to use the Voigt absorption profile, ELp), ing the same procedures as above leads directly to the gen-
rather than the complex susceptibility, HE47). Recall that eral transport relaxation equation for an isolated line,

[ps= 0+ K] 001 Voot 71 | AV a0 )Y+ fo0) 21
where y,, and v may both be functions of the speed of the active molecule. In the hard collision model the translational

relaxation terms are given byp,,, andvfo(v) [ppa(v’)dv’, wherevis independent of (see, for example, Refgl3] or [20]).
Thus our equation fge,, becomes

[Wpa— @+ Kv,—iYpa—iv] spa=—ivio(v) f/‘ba(v 1AV’ +n,fo(v) wpa- (22

Now divide by[ wp,— @ +kv,—iy,,—iv], multiply by the volume element of the velocityy, and integrate over the velocity.
To keep the nomenclature compact, gadl,,dv, ~,5(k,w). Our equation then becomes,

/zba(k,w)Z—i/zba(k,w)vf fo(v)dv/ [wba—w-i—kvz—i'yba—iv]-i-na,u,baf fo(v)dv/ [Wpa— 0+ Kv,—iypa—iv].
(23)

Rearranging terms, and definind &f,— o+ kv,—ivypa(v) —iv] as the complex Lorentziad(v,), we have

/fba(k.w):”a,ubaj fo(v)ﬁ(vz)dv/ [1+in fo(v)ﬁ(vz)dv], (24)

which when multiplied byu,,/% €4 is the complex suscep- collision kernel A(v«V’), that permit an analytical solution
tibility. The imaginary part is equal to the speed-dependenbf the transport relaxation equation to be found in this case.
hard collision profile given by Rautian and Sobelnfd8] In none of the speed-dependent cases above is the line
and by Smitret al.[10].* The Dicke narrowing of the profile Lorentzian with a width given by the thermal average
at high densities arises from the termainn the denomina-  (y(v))=[fq(v)y(v)dv.
tor. It is the mathematicabut unphysical properties of the There exists another, but rarely quoted, analytical solution
for a spectral profile that includes speed-dependent relax-
ation and transport. This has been given by Dattagupta and
4Although the expressions given here appear to differ from thosd Urski[21]. It deals with the so called Lorentz gas, a system
found in the literature, the apparent difference arises because in off massive (stationary perturbers of rigid spheres. Since
case the real part of a complex function is to be evaluated, whil€ach active molecule maintains its speed in such a model, it
here it is the imaginary part. Furthermore, many authors referencts an extreme case of inhomogeneous broadening and shift-
their frequencies to the free molecule line center, defiing=w  INg. However, since there is no relaxation between speed
— wp,. Here we write frequency factors in terms of ,— w. classes, the model has the unphysical property that any speed
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distribution function is a stationary solution. It also exhibits minants have to be evaluated at each frequency for every
problems with respect of convergence to a hydrodynamidensity. However, as pointed out by Barang8rand refined
(high-density limit [22]. Perhaps these are the reasons thidy Gordon and McGinni$26], there is a well-known tech-
model has not been applied to the analysis of experimentalique of diagonalization that simplifies the problem. Look
data. We confine a discussion of the Lorentz gas to the Apfor a transformatiorA such thatG=[ wy+iW] becomes di-
pendix. agonal, i.e., solve the equatioh,=A"'GA. Then Eq.(26)

On the other hand, there exists a model for an isolated linean be written
which has been used routinely to treat both transport and

relaxation. This is the so-called soft collision mof23], and A {wg+iW—owlJAA L. p=[A-wl]A 1 p
is applicable to the case of very light perturbers with speed- —AIN 5
independent broadening. We do not discuss the soft collision - [N pl, (27

model in this paper for two reasons. The_flrst is _that it hap.'which has as a solution
pens to be far more convenient to do so in the time domain

rather than the frequency domain used here. The second and

more cogent reason is that it does not follawectly from p=A[A—wl] }ATN- u]. (28
our transport relaxation equation but rather from a Fokker-

Planck approximatior{24] to our basic equation. In this As the inverse of a diagonal matrix is a diagonal matrix of
sense, a solution starting from a relaxation transport equatiotie inverse elementgA — wl]~* is just a diagonal matrix of

already exists in the literatuf@4,27. (For a treatment in the Lorentzian factors likel.p,= 1[(Ap,— @) +i Aiba]. Here we

frequency domain, see Refd.3,27.) have anticipated that there is a one-to-one correspondence
between the eigenvalues and the componbatsf the opti-
TRANSPORT RELAXATION FOR A BAND cal coherence. In fact one expects,, to approachwy,

— 9., andAL, to approach- ., as the density is reduced

So far we have used our master equation to treat the casgarg zero.(We justify this below in the weak mixing

of an isolated line. As first shown by Baranger in three pio'limit.) To construct the susceptibility from E€28), we need
neering paperp4], closely spaced lines in a band may inter- to multiply p by u'/%e,. This yields
fere or mix. Here we rederive his well-known resulEor 0

recent review article on spectral line shapes, including an

introduction to line mixing, see Ref25].) The standard x=(u'1f€g) ATA— 0l ] ' AN p]. (29
treatment of line mixing suppresses all aspects of the trans- ] .

lational motion. Starting with the master equat{y. (10)], Up to this point we have used the language and nomen-

and following the same steps as above, leads to the relaglature traditionally associated with the density matrix. One
ation equation fog,, of the reasons for this was to keep a connection open to other

areas of molecular dynamics. However, in line mixing, it is
. , customary to use a contracted notation, labeling the relax-
(0pa= ®)pa=1"Yba ba~ %;, IW(ba—dc)rqct Naptpa- ation rates such a#/(ba—dc) not by a pair of doubly sub-
(25) scripted quantities, the components of the optical coherence,
but rather by the associated line. Thidswould be replaced
There is a similar equation for each transition, i.e., for eactby, say,l, signifying a line or transition. Changing nomen-
component., etc, of the optical coherence. Thus we haveclature does not pose a problem, since quantities fike
a set of coupled linear equations, which in matrix notationhave been treated as a single quantity. The drawback to line

may be written as space nomenclature is that there is no way to label diagonal
_ elements of the density matrix, and thus the same nomencla-
[wo+iW—wl] - p=N-pu, (26)  ture cannot be kept if one wants to generalize the treatment

i i . . toinclude population dynamics in other transport phenomena
where @, is a diagonal matrix of free molecule transition o |ser theory, etc. We will confine our use of line space
frequenciesW is the relaxation matrix| is the unit matrix, terminology mostly to this section.

p is a column vector of the componepis,, N is a diagonal Now A~Y[N- u] is a column vector. In “line space” no-
matrix in populations angl is a column vector of transition tation the mth component of A"Y[N-u] is given by
dipoles. As defined, the off-diagonal elem&Mp, qc IS pOSi-  A—1N, . where repeated subscripts means a sum. Since
tive and justW(ba«<dc). As pointed out earlier, it describes [A—wl]"! is diagonal with themth component given by

the back flow of the componengg. 10 pya. The diagonal | ") " the mth component of the column vectdrA
elementW,, ,, is negative and just the complex relaxation —ol] YA N- ] is given by,A- N u L =B L. Fur-
rate 4. It represents the outflow of coherence from bze thermore, fu!/%eg)A is a row \’/ergtkor withnj[hemr'?h néompo-
component of the optical coherence to all other components. . g o
In the steady state, all parts of the optical coherence oscillatre]ent given bYCrm= (/71 €0)Ajm - Thus the susceptibility
at the driving frequencw, not their natural frequencies,,, can be written as
WqcH etc.

Now the solution of a set of coupled linear equations is )(={,ujT/ﬁ eO)Ajm}{Ar_nﬁNkMkLm}zCmBmLm. (30
usually expressed as a ratio of determinants, the determinant
in the denominator beinfwy+iW—wl]. This makes the Since C,, and B,, are complex, the absorption coefficient

calculation of the spectral profile tiresome, since the detertmy can be written as the sum of absorptive and dispersive
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parts. This is identical to a well-known form for line mixing ting all the Ws equal to zero. This gives back the familiar
in electric dipole absorptiof24].° complex Lorentzian for each component of the optical coher-
It is also a simple matter to rederive the Rosenkranz apence. The solution, to first order W, may then be found by
proximation[27] for weak mixing. We return to the set of inserting the zeroth-order solution feg into the equation
starting equations, writing them as for ,,, multiplying the result byuy,/fieg and summing
over all»,, to find the band susceptibility. This yields a sum
. . of Lorentzians(the symmetric terms referred to abowand
[(wpa— w)_l'yba]/‘ba"_% iW(ba—dc) qc=Napba- mixing terms(the asymmetric terms referred to abpvin
(31) the case of a two-line spectrum, thetal complex mixing
term for the band absorption is given by the imaginary part
The solution to zeroth order in the mixing is found by set-of

Xm= —i1[W(ba«dc)/h 60]{ncﬂabﬂdc/[(‘l’dc_ ) —iygcl[(wpa— @) —i 'yba]}
—i [W(dC<—ba)/ﬁeo]{nal’vcdﬂba/[(wba_ ) =i ypal[(wgc— @) —i 7dc]}- (32

This is an expression for the case of weak mixing in a two-line band. Being complex, it expresses the changes not only in the
absorption profile but also in the dispersion. It may easily be generalized to the complex susceptibility of a weakly interfering,
multiline band.

The usual Rosenkranz form for weak mixing in the absorption profile may be recovered frof@2Ed\ear lineba the
factor (wyq.— @) may be replaced bydy.— w,,). The damping partyy. may be neglected, and the real part df(d,,
— ) =i Ypal IS just (wpa— ©)/[(wpa— w)%+ yﬁa]. Thus near the transitioa— b the mixing term for the absorption may be
approximated as

—[W(ba—dc)/fiep]{Ncrapttac/ (@de— wha) H(@pa— 0)/[ (@pa— @)+ ¥5,1}
- [W(chba)/ﬁ 60]{na/-‘/cdlu*ba/(“’dc_ wba)}{(“)ba_ w)/[(wba_ a))2+ yga]}' (33)

The usual mixing paramete¥ is the sum of the coefficients of the common Lorentz dispersive factgy< w)/[(wpa
—w)%+ yﬁa]. Setting# eg=1, we find, in the case of weak mixing,

Ypa= _{W(baHdC)nc:U’abMdc'i' W(dc—ba) na:“cd:uba}/(wdc_ Wpa)- (34

Except for a sign, this is the familiar amplitude of the asym-separated. Finally, this example has illustrated that the band
metric component of the transitioa,—b. The sign reversal may be expressed as a sum of symmetric and antisymmetric
comes about because we have written the numerator for tHgomponents, and that the eigenvalues have the weak mixing
dispersion curve asuf,,— ) rather than in the more com- Properties anticipated above. _ _

mon form (w—wy,). If  is near the transitiom—d, the This completes the list of profiles, as found in the litera-

: - . ture, that follow directly from our proposed scalar version of
same expressmft;{r theEsusc_eptlglllllty[Eq.QBZ)] ylgzlds t::e the generalized Waldmann-Snider equation. None of them
mixing parameterY .. Equation(34) can be used t0 ShOW o ge the effects of statistical correlation. There exist at

that the asymmetry is such that the intensity between thgast three partly phenomenological theories that address the
lines is increased, while the intensity beyond the lines dequestion of correlatiofil3,28,29. At the end of this paper
creases. Thus the two lines appear to coalesce. This is alwayg will indicate, with certain provisos, how numerical solu-
considered as the main signature of line mixing. Equatiortions may be found not only for an isolated line, but also for
(34) also shows that mixing is negligible if the lines are well any speed-dependent multiline spectrum. With a simple ex-
tension of the transport relaxation equation, even the effects
of statistical correlation may be included. It remains to be
seen if such an extension will lead to results in accord or not

5In the literature, but not in Baranger's original paper, there ap->"- h th i f istical lati ff
pears to be a relative sign error in the complex Lorentrign This with those earlier treatments of statistical correlation effects

is of no consequence, if only the imaginary part is to be usedn SPectral profileg13,28,29. In the following paragraphs
However, if the expressions in the literature are to be interpreted a4 Outline an approach to Dicke narrowing. It forms a logi-
a susceptibility, then causality is not satisfied and the compute§@l bridge between the transport relaxation equation used
dispersion ¢ —1) will have the wrong sign, i.e., the dispersion will @bove and a more general equation that allows for statistical
decrease with increasing frequency if one approaches an absorpti&®rrelation. Details of the approach to Dicke narrowing are
line from below resonance. This is clear from Egb). The de-  given in the following paper.

nominator in Eq.(8b) must appear af(wpa— @) —ivypal, NOt as In the hard collision model we illustrated the use of the
[(wpa— ) +ivpal- transport relaxation equation to treat the combined effects of
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relaxation and transport for an isolated line. As is welllabeled with a set of indicesubscripts Here we have an
known, at high densities, molecules perform a random walkndexba, d¢ etc. for the component of the off-diagonal ele-
or diffusional motion through the applied optical field. Under ment of the density matrix. Each of these boxes or cells is
these conditions the usual Doppler width is replaced by @&ubdivided by a second index indicating the speed class.
diffusional width that varies ak?D, whereD is the mass For the problems considered in this paper, these must be
diffusion constant. SincP varies inversely with the density, further subdivided according to treecomponent of the ve-

a line narrows with increasing density. This is known aslocity and carry an index,. For convenience we lump the
Dicke narrowing[19] and, as mentioned earlier, arises fromlast two together into a velocity class. The mathematical
the factorv in the denominator of Eq24). Here we sketch problem is established once the rates between the different
out a treatment of Dicke narrowing which shows how it isboxes are calculated or modeld@ channel is said to be

intimately related to the process of line mixing. open if the rate is significantly different from zerd&Ve can
The relaxation transport equation for an isolated line maynow re-examine the classification of the off-diagonal relax-
be written in the form, ation rates[the W's and A in Eq. (10)] introduced at the
beginning. In the master transport relaxation equation, relax-
(wpa— 0t Kv ) ha=1Vpa spat i Lpa— 1ZW(V—V") ation rates, diagonal in, but off-diagonal in component of
the optical coherence, are type I. The reverse terms are type
X a(V') + Nafo(0) tpa (35 Il Terms off-diagonal both in the component of the optical

coherence and in velocity belong to type IIl. Our assumption

where we have written the usual integral as a sum over vehat type-lil terms were zero simplified the equation but did
locity classes’, and replaced the collision kernalby Win not alter its basic characteristics. Thus even the most general

order to draw attention to the analogy between Dicke narProblem may be solved given the various relaxation rates
rowing and line mixing. Sincepy(v) is for a speed class, PEWeen the boxes. Furthermore, the relaxation rates may be
there is one equation like EG35) for each of them, just as _classme_d in this manner, _mdependent of the form of the
there was one equation like E@5) for eachy,, component interaction between the actllve molecules a.m.d.the bath qf per-
of the optical coherence. Thus writing the equation for Oneturk_Jers_. Thus the assumption about the d|V|S|_0n of the inter-
line in terms of discrete velocity groups yields a set of equa@ction into aVo and av;, term, as used by Smitét al. [10]
tions which are formally identical to the equations for one@nd adopted here, may be discarded.
velocity group and discrete lines. Therefore we can use the
same diagonalization technique as t_hat used to solve thg line GENERAL COMMENTS
mixing problem, to treat the translational motion for an iso-
lated line. Just as line mixing leads at high densities to a There is one very general aspect that has not been dealt
collapsed band, here exchange between the velocity groupgth, up to this point, and that is a treatment of spectral
leads to a collapse of the ordinary Doppler profile. It hasprofiles in terms of time correlation functions. The use of
long been recognized that line mixing and Dicke narrowingcorrelation functions depends upon the fluctuation dissipa-
were related. Here we have established that they are formalliyon theorem, which states that the response of a system to a
identical. Using a hard collision model foy, we establish in  fluctuation is the same as its linear response to an applied
the following paper that one can completely recover by di-perturbation. This leads to the spectrum as being the Laplace
agonalization, the spectral profile generated using the cortransform of a time correlation function. Here we have actu-
ventional treatment given earlier in this paper. ally calculated the response to an applied field. The advan-
In the analysis above, there was one all important provisotage is that such a treatment can be carried beyond first order,
we must be able to calculate or model the speed dependenediereas the fluctuation dissipation theorem only applies to
of ypa, v, andW(v«—V'). We have made this assumption the linear response of a system. Nevertheless, one can iden-
throughout the paper, and have focused our attention on e#fy in our master equation, the main ingredients that appear
tablishing a transport relaxation equation for specific case#) a treatment using correlation functions. In E¢0), the
and to solve it to determine a spectral profile. It is clear thatinear perturbation term in the field would be dropped. Tak-
posing a problem and solving it are two different things. Ifing a Laplace transform introduces anand a value at
speed dependence is to be included it is safe to say that there0. These appear in E¢12), the constant fot=0 appear-
are no known analytical solutions that grhysicallyrealis-  ing in our equation as the termim, . An extensive review of
tic. Thus numerical techniques must be employed. Here ouiime correlation functions, relevant to this paper, was given
treatment of Dicke narrowing provides a significant advan-by Berne and Harfi30]. To reiterate, the drawback to the use
tage. By binning or boxing the speed classes into cells, eveof the fluctuation dissipation theorem is that it is applicable
the most general multiline speed-dependent case may be eanly to the linear response of a system to the perturbation
pressed as a set of coupled linear equations. With the appatt; .
ently unending growth in computer memory and power, the As one of the objectives of this paper has been to provide
numerical solution by matrix techniques becomes easier, ah basic equation for the relaxation and transport of the den-
most on a daily basis. sity matrix that could be applied generally to line shapes,
Discretizing the velocity carries another benefit. It encourHaser physics, nonlinear optics, etc., it is important to spell
ages us to couch our nomenclature and mode of attack on tlwut what is included and what is excluded by the master
problem of line shapes in terms of classes of molecules, anequation. As the master equation neglects the degeneracy of
to worry about how one classifies the different boxes andhe internal states it is not capable of describing polarization
consequently to classify transitions between them. A box ieffects. For example, it is inadequate for a discussion of
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some of the finer details of the transport of the optical coherfor the response of the system to some applied field. Being
ence[31] or of polarization spectroscopy. For this and simi- couched in terms of a Boltzmann-like equation for the den-
lar problems one must return to the generalized Waldmanrsity matrix, it clearly identifies the links between laser phys-
Snider equatior9]. However, the isotropy of space and ics, nonlinear optics, and the usual transport problems of
vector coupling techniques can always be used to express tistatistical mechanics. Purely from the point of view of spec-
problem in terms of reduced matrix elements and tensotral line shapes it allows one to treat speed-dependent effects
components of the density matfi®0]. In this form the struc- not only for isolated lines but also in the case of line mixing.
ture of the equation is not radically different from the struc-Use of the transport relaxation equation for the off-diagonal
ture or form of the equation used hef€ompare for ex- elements of the density matrix has been illustrated by re-
ample Eq. 2.3 in Ref.32] with our Eq.(10).] As pointed out  deriving many well-known results simply and quickly. It also
by Tip [9], the same claim can be made about the masteprovided additional insight into the process of line mixing. A
equation for the diagonal components of the density matristechnique has been suggested for treating the Dicke narrow-
at the Waldmann-Snider levétiegenerate statesis com- ing of an isolated line. From this it followed that the most
pared to that at the Wang-Chang—Uhlenbeck ldneinde- general multiline spectrum, with speed-dependent relaxation
generate levejs The use of a scalar transport relaxationand transport, could be solved, given a model for the speed
equation does not imply that all “vector” or symmetry prop- dependence of the various relaxation rates and a large com-
erties of the molecules are lost. These properties are ofteputer.
simply reflected in thevaluesof the components of the re-
laxation matrix(see, for example, Ref33]). On the other ACKNOWLEDGMENTS
hand, there is a large body of physics connected to transport ) ]
which may not be treated by our equation. Here we have The author wishes to acknowledge a number of very fruit-
assumed a uniform dilute gas. Obviously, additional termdul discussions with F. McCourt, S. Hess, and W.-K. Liu.
must be added to account for gradients in temperature drinancial support of the Natura! Sciences and Engineering
concentratiori1,34]. Such terms are routinely included even Research Council of Canada is also gratefully acknowl-
in the lowest member of the hierarchy of transport relaxatiorfdged.
equations, viz. the Boltzmann equatigib].
While the basic idea for the approach used in this paper APPENDIX: LORENTZ MODEL
was triggered by Ref10], in fact many of the ideas can be
traced to a very large number of papers. To give accurate an&
Stch was not the object of this paper. The papers cied wefi2/Sta Speed. The Lorentz model s thus an inhomoge-
chosen not only for their contribution .but also with the ideaﬁeou.S model for the translational motion. The d|str|put|on
function for a (subensemble of active molecules with a

that they provide the interested reader with a suitable intro-
duction to the literature. However, it would be an oversightSpeedU’ then depends upant, ande, and¢. The latter two

; . . vra\riables describe the direction of motion. The master equa-
not to mention several other papers also dealing with spectrfﬁon for an isolated fine is Eq(2) of the text. For rigid

line shapes[35—3@ Wh|ch_use approximations to solve a spheres perturbed by fixed rigid spheres the transport relax-
transport relaxation equation. The method suggested above. : . )
ation terms involvingy and A(v<——vV') are to be replaced

for a solution of the general problem is exact in the same’ 2(1_p h i< th ber density of ber-
sense that any numerical treatment is exact. y muna’(1-P)m, wheren is the number density of per
turbers,a is the hard sphere collision radius, aRds merely
an integral operator that integrates over the direction of mo-
SUMMARY AND CONCLUSIONS tion [22,3q EXplICItly, Operating byP, as used here, is de-
fined by the equatioR py,,= [ ppa(v, 0, ¢)sinddode. It dif-

The main purpose of this paper has been to show how ers by a factor of 4 from the usual definition found in the
transport relaxation equation for a semiclassical densitytiterature. Consequently, the transport relaxation equation for
matrix distribution can be used to derive spectral profiles inan isolated line takes the form,
dilute molecular gases. The basic dynamic equation for the

If the perturbers are massive we can consider them to be
rest and the active molecule to move among them with a

rate of the distribution function adds to the free-streaming [wpa— @+ Kv,] 2pa=1Vpa, mativ,(1—P)rp,
terms[(Hy+H;),p] and —v-Vp, two classes of collision nafo(v) (A1)
relaxation processes, one for the internal states and one for aloll)tba;

the translational states. Each class has two contributions, \ghere the relaxation ratéinetic collision frequency for the
decay term and a return from other classes. The internal ang,pensemble of molecules with a spesdv, is given by
translational motions may be coupled by the mutual speeg — mvna’. Heren is the number density of perturbers and

dependgnce of the two types of relaxation rates. Statistic%{”the collision radius. EquatiopAl) may be rearranged to
correlation between the two motions has been neglected byt

could be incorporated. It was in the treatment of Sraitfal.
[10] that the statistical term and the other relaxation pro- sva=Nafo(v) pal —1v,(Prpa) £, (A2)
cesses were clearly identified.

There are a number of advantages to the formalism prewhere £ is a complex Lorentzian given bY=[wp,— o
sented here. First it separates the microscopic aspects of thekv,—i(ypat v,)]1~ 1. As part of calculating the total sus-
problem, the calculation of various relaxation coefficientsceptibility, we integrate over the direction of motion. Later
from the problem of solving a transport relaxation equationwe will integrate over the speed. The integration over angle
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is done by operating on E¢A2) with P. Remembering that speed dependent inhomogeneous line shapé. iff taken
a single averaging removes the angular dependefd® ( along the polar axis then, equalsv cosé and the calcula-
=P) and thaty, is independent ob and ¢ we find, after  tion of the spectral profile is reduced essentially to the evalu-
some rearrangement, ation of PL. After integration over ¢ the remaining
. integral® B becomes B= 27 sin ddl wy,— w+kv cosd
Fba=nNafo(v) wpaP LI[1+1v, PL]. (A3) —i(yat¥,)]. Dropping the factor 2 and taking cog=z as

The complex susceptibility is then given by the variable of integration allows us to wriin the form

B(k,w,v)=[dZ[i(ypat+v,) + (Aw—kvz)] where the lim-

its are —1 to 1. This may easily be evaluated and may be

expressed as the In of a complex functi@y. (22)] or the
(A4)  arctan of a complex numbg®1,39 or it may be decom-
posed into a In and arctan of real functions using any stan-
dard table of integrals.

X= NJ' vZexd — (vlvg)?]dv{PL/I[1+iv,PL]}.

This agrees with Lindenfeld’s Eq. 4.10 if allowance is made
for the fact that he has taken,, equal to zerg22]. Note that
the integral over the speed is over the entire function in curly

brackets, and does not appear separately in the numerator

and the denominator as in the HC mofiste Eq(24) in the ®B, as written here, differs from that of Ref22] by i and an
main texi. The rigid sphere, Lorentz gas is thus the ultimateunimportant numerical factor.
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