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Molecular dynamics and a simplified master equation for spectral line shapes

A. D. May*
Department of Physics, University of Toronto, Toronto, Canada M5S 1A7

~Received 21 September 1998!

Borrowing heavily from the literature, we develop a transport relaxation equation for the off-diagonal
elements of the density matrix. It is applicable to a large range of topics in laser theory, nonlinear optics and
spectral line shapes, etc. Applying this single equation to the case of infrared electric dipole transitions permits
us to recover, quickly and simply, all of the well-known spectral line shapes found in the literature. It also
offers further insight into the process of line mixing, particularly in the weak mixing limit. An outline of a new
treatment of Dicke narrowing and other speed-dependent contributions to spectral profiles is also given in
terms of the transport relaxation equation. The treatment also provides a numerical method for including the
effects of statistical correlation between the evolution of the internal and translational degrees of freedom.
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INTRODUCTION

The static and dynamical properties of dilute gases e
into many areas of physics, including lasers, nonlinear
tics, magnetic resonance, transport phenomena, and
course spectral line shapes~see, for example, Refs.@1–3#!.
However, each area has largely developed its own termi
ogy and approach, a fact that conceals their commona
hinders communication, and impedes the development
broad overview. Here we attempt to rectify the problem. W
do this primarily by an inspection of a number of pioneeri
papers@4–11#, all of which are traceable in some way ba
to Boltzmann or Schro¨dinger.

Even such a simple system as a dilute gas is sufficie
complex that it is futile to try and develop a truly comple
theory based on statistical mechanics, even for a single
of experiment. As a consequence the question becomes
of making approximations that are appropriate for a parti
lar situation or class of experiments. One general approxi
tion made here, and which appears to be widely accepte
the semiclassical treatment of the dynamics, wherein
translational motion is treated classically, and the inter
degrees of freedom quantum mechanically@12#.

A common starting point for almost all many body pro
lems is the Liouville equation for the density matrixr, for
the entire system

]r/]t52~ i /\!@H,r#. ~1!

Through a series of approximations@9#, one contracts the
description to one of free streaming of the molecules of
terest ~the active system! plus relaxation terms associate
with their interaction with the so-called ‘‘bath.’’ In the
theory of spectral line shapes it is all too common to entan
this contraction or ‘‘bath theory’’ with the derivation of
spectral profile. It is this entanglement that hides the conn
tion to other areas of molecular dynamics. We shall ke
them separated. The contracted form of Eq.~1! is a transport
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relaxation equation that may be applied to many problem
molecular physics, including laser theory and nonlinear
tics. Here we present a simplified transport relaxation eq
tion for the density matrix that captures most of the phys
of spectral line shapes.

In the following section we introduce many of the bas
ideas, using an approach common in the theory of las
wherein there is only a single transition of central impo
tance. This is then generalized to include multiple transitio
and an explicit account of translational motion. The fin
transport relaxation equation is then used to rederive m
well-known cases of spectral profiles. In the case of l
mixing, this approach enhances our understanding, part
larly in the case of weak mixing. This is followed by a
outline of a treatment of Dicke narrowing and a discussion
how speed-dependent effects in general may be treated.
paper concludes with some comments~in particular about
the limitations of the approach used here!, and a summary.

ELEMENTARY RELAXATION

In laser theory, the model used for the contracted form
Eq. ~1! is often written as,

]r/]t52~ i /\!@H,r#2Gr, ~2!

where H consists ofH0 , the Hamiltonian for the interna
degrees of freedom of an isolated atom or molecule, p
H1 , the interaction with any applied~optical! field. The re-
laxation operatorG has a form that forces the population
~diagonal elements of the density matrix! towards their
steady-state values and the coherences~off-diagonal ele-
ments! towards zero. As an introduction to the more gene
problem, we follow a well-trodden path and treat the case
electric dipole interaction. In linear spectroscopy or las
theory the interaction,1 2mE would then involve a field
E oscillating only at a single frequencyv. For nonlinear

1In the interest of simplicity, we have ignored the vector nature
the interaction.
3495 ©1999 The American Physical Society
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3496 PRA 59A. D. MAY
effects, in general, multicomponent fields would be cons
ered. The next step consists of solving forr as a power
series in the field~s!. We follow common practice and use th
eigenstates ofH0 as a basis set, when computing the mat
components of Eq.~2!. Hiding an\ in mE, it is easy to show
that thenth-orderjk component ofr is given by

@~]/]t !1 i ~v j2vk!1g jk#~rn! jk

51 iE(
l

@m j l ~rn21! lk2~rn21! j l m lk#, ~3!

wherev j is the energy of thej th level of the free molecule
The quantityg jk is the relaxation rate of the off-diagona
elementr jk , andm j l is a matrix element of the electric d
pole moment. For linear spectroscopy all we need is a s
tion to first order in the field,E. Thus only the zeroth-orde
equilibrium populations~diagonal elements ofr! will appear
on the right-hand side of Eq.~3!. The zeroth-order coher
ences~off-diagonal elements! are zero.

We now solve the equation for a two-level molecule. W
confine our treatment to cw spectroscopy, i.e., to station
fields. Let the field be given by,E5E exp@2i(vt2kz)#1c.c.
There are two levels,a the lower andb the upper. Write the
thermal equilibrium populations (r0)aa and (r0)bb asna and
nb molecules per unit volume, respectively. Equation~3! for
the component (r1)ba then becomes

@~]/]t !1 i ~vb2va!1gba#~r1!ba

5 i $E exp@2 i ~vt2kz!#1c.c.%@na2nb#mba . ~4!

If we look for steady state solutions of the form

~r1!ba5$r2 exp@2 i ~vt2kz!#1r1 exp@1 i ~vt2kz!#%,
~5!

the resulting equations for the amplitudesr2 andr1 are

r25E@na2nb#mba /$2v1vba2 igba%, ~6a!

r15E* @na2nb#mba /$1v1vba2 igba%, ~6b!

wherev andvba5(vb2va) are positive numbers. We se
that only ther2 term may resonate. Making the rotatin
wave approximation, i.e., neglecting the antiresonant ter2

r1 we have, for (r1)ba ,

~r1!ba5$@na2nb#mba /@~vba2v!2 igba#%

3E exp@2 i ~vt2kz!#. ~7!

For (r1)ab5(r1)ba* , it is ther1 term that resonates. As w
shall see in the next paragraph, (r1)ab , which varies asE* ,
will not be required in our treatment of linear spectrosco

2Making the rotating-wave approximation removes nonreson
and microwave absorption from consideration.
-

u-

ry

,

.

We have, at this point, solved Eq.~2! to first order in an
applied field, using a simple form for the relaxation. Now w
make the connection to the spectral profile. First we calcu
the macroscopic polarization~dipole moment per unit vol-
ume! P, usingP5Tr@r1m#. The dipole and density matrice
are@mba 0

0 mab# and@rab 0
0 rba#, where, for conciseness, we hav

dropped the superscript, 1 onr. ThusP, a real quantity, is
just rabmba1rbamab . In order to see the phase shift betwe
the applied field and the polarization, it is simpler to expre
the material polarization in the formP5e0xE, whereP, E,
andx are all now complex. With this convention,P is to be
written asP5rbamab , i.e., the term inrab is to be dropped
because it varies asE* . Thus we find the complex suscept
bility x, for our two-level system, is given by,

x5@na2nb#mbamab /\e0$~vba2v!2 igba%

5N/$~vba2v!2 igba%. ~8a!

whereN is a positive number for systems in thermal equili
rium. For dilute systems, the real part ofx is related to the
index of refraction by,n215x r /2, while the corresponding
absorption coefficient is given by,a5kx i , wherek is the
wave vector in vacuum. Thus it follows that (n221) is given
by the well-known dispersion curve,

n2215~vba2v!N/$~vba2v!21~gba!
2%, ~8b!

while the absorption coefficient is given by the well-know
Lorentzian profile

a5kgbaN/$~vba2v!21~gba!
2%. ~8c!

Thus the simple form chosen for our relaxation equation
led to a dispersion curve for the index of refraction and
Lorentzian profile for the absorption. The half width at ha
maximum of the absorption profile, measured in radians
second, is the relaxation rategba . If gba is complex, there
will also be a frequency shift in radians per second equa
the imaginary part ofgba . Later we will see that these rela
tionships between the real and imaginary parts of the re
ation rategba , and the width or shift, are not always exac
even in the so-called collision-dominated regime.

A GENERAL RELAXATION TRANSPORT EQUATION

It is clear from the preceding sections that a Lorentz
line shape follows directly from the form assumed for E
~2!. For a more general case we need to consider the phy
that is omitted in the example above. As was recognized
Rautian and Sobelman@13# and others~see Ref.@9# and ref-
erences therein!, one must think in terms of molecular distr
bution functions~of which r, as used above, is an example
terms of the internal states! and some generalization of th
Boltzmann equation~which is an equation involving the
translational states!. In other words, what we are seeking is
semiclassical generalization ofr such that it is also a func
tion of r , v, and,t, wherer is a position vector,v the veloc-
ity, and t is the time. Before proceeding with details of

nt
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refined relaxation equation, we make some general c
ments to set the scene for those readers not familiar with
hierarchy of transport relaxation equations that exists in
tistical mechanics.

For structuredparticles, such as molecules with intern
degrees of freedom, we can still write, in a semiclass
treatment,r5r(r ,v,t), but we must now consider the matr
character ofr, i.e., how it depends upon the discrete intern
states. In transport phenomena the transport/relaxation e
tion for the populations ordiagonal elementsof r is known
as the Wang-Chang–Uhlenbeck~W-CU! equation if the in-
ternal states are nondegenerate@14#, and as the Waldmann
Snider~WS! equation@6,7# if spatial degeneracy is included
Tip @9# derived an equation, analogous to the WS equat
for theoff-diagonal elements. In the literature, this is referred
to as a generalized WS equation. It is clear from the int
ductory treatment above that all we need consider for lin
spectroscopy is the off-diagonal elements. Furtherm
since we will continue to ignore the vector nature of t
problem, we can ignore the spatial degeneracy of the sta
Thus our treatment can be at the W-CU level and the fi
transport/relaxation equation to be presented could be
scribed as a generalized W-CU equation.

Central to all Boltzmann-like equations is the treatment
the relaxation termGr. Smithet al. @10# developed an equa
tion equivalent to the generalized WS equation from wh
the dipole absorption spectrum could be determined.
only significant difference between the treatment in Refs.@9#
and @10# ~from the point of view of this paper! is the han-
dling of the relaxation terms. Smithet al. wrote the interac-
tion between the active molecules and the bath explicitly
V01V1 whereV0 is the isotropic part of the interaction tha
is independent of the internal coordinates.V1 depends both
upon the separation of the centers of mass and on the inte
coordinates. This is a well-known decomposition for the
teraction between molecules. This decomposition gener
three types of relaxation terms@see Eq.~3.14!, page 1573, in
Ref. @10#, but readFab as if it wererab#. Type I, of whichg
in Eqs.~3! or ~4! is an example, involve matrix elements
V1 and describe the relaxation of only the internal ‘‘m
tion.’’ Type II involves matrix elements ofV0 and describes
the relaxation of only the translational motion. Type III in
volve bothV0 andV1 and encompasses the statistical cor
lation in the relaxation process between the two types
motion. In Ref.@10#, these three terms are contained in t
first, second, and third lines of the right-hand side of E
~3.14!. ~The basis of this classification will be modified ne
the end of this paper.! We follow Smithet al. @10# except we
separate the question of a relaxation transport equation
the density matrix, from the problem of calculating a spec
profile. This is done by inspection, much in the spirit of t
original derivation of the Boltzmann equation. We now ju
tify, on physical as opposed to mathematical grounds, a
laxation transport equation for the off-diagonal elements
the density matrix that is more refined than in the introd
tory sample calculation above.

Let rba be a general off-diagonal element, with levelb
above levela. It is a function of position and velocity. Be
cause we are adding the translational motion to the den
matrix, we must add the free-streaming term2v•“rba for
the translational motion to the free-streaming ter
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2( i /\)@H,r# for the internal molecular motion. We saw a
ready that a traveling-wave field produced an off-diago
element that varied spatially as exp(ikz). It is the gradient
term acting on such a spatial term that produces the fam
kvz term found in any elementary treatment of Dopp
broadening or in a derivation of the Voigt profile.

In addition to the free-streaming translational term, w
must add the temporal evolution due to collisions with ba
molecules. Two translational relaxation~transport! terms are
to be added. The first is2nr(r ,v,t)ba where, in common
parlance,n is the kinetic collision frequency or the rate
which molecules leave a velocity classr(r ,v,t)ba . The sec-
ond is the rate of return to the velocity class from all t
other velocity classes. We write this as1*A(v
←v8)rba8 dv8 where rba8 5r(r ,v8,t)ba . In equilibrium, the
distribution function is constant. This does not imply that t
velocities of the molecules are constant, only that the rat
which molecules leave a velocity class is dynamically b
anced by a counterflow from other velocity classes. Thuv
and v8 are post-collision and precollision velocities. If th
only escape from a velocity class forrba is to another veloc-
ity class ofrba , then the relationship betweenA andn is

n5E A~v→v8!dv8. ~9!

Neither the forward nor backward translational relaxati
terms should come as a surprise to a reader familiar with
Boltzmann equation@15#. Note, however, in the dynamica
equation forrba , that the translational terms involve differ
ent velocity classes but only a single component of the o
cal ~state! coherence,rba , i.e., the translational relaxatio
terms are both of type II and arise from the isotropic part
the interactionV0 .

Now we consider the local decay terms, i.e., those belo
ing to the first class or type I. There is the usual term d
scribing the decay2gbar(r ,v,t)ba introduced in our simple
relaxation equation, Eq.~3!. In addition, there is the return
contribution from other components of the optical coheren
Being discrete, this term is written as1SdcW(ba
←dc)r(r ,v,t)dc where the sum overdc excludesdc5ba.3

It is the return of coherence that is the source of line mixin
Smith et al. @10# did not separate the two relaxation term
nor did they comment on their physical significance. T
W’s are the off-diagonal elements of the so-called relaxat
matrix, while theg’s are the diagonal elements.~Our defini-
tion differs by a sign from the definition generally found
the literature.! Note that type-I terms involve only a singl
velocity, but all components of the optical coherence a
arise from theV1 term in the interaction.

Before discussing the third type of contribution to th
transport relaxation equation for an off-diagonal term in t
combined density-matrix distribution function, it is worth
while to discuss the various relaxation rates introduced
far. It is bath theory that tells us exactly what microscop
average over the distribution of perturber states is to be
culated. In the usuallinearizedtransport relaxation equation

3Paired subscripts, likeba, are to be treated as a single index.
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3498 PRA 59A. D. MAY
one uses the equilibrium distribution of the perturbers. C
sequently, all relaxation rates are properties of the equ
rium state of the system and are independent of the pe
bation. Clearly only a weak perturbation~absorption! is
imagined.

There are many hundreds of papers dealing with vari
methods and approximations for calculating the rates or w
calculations for specific intermolecular potentials. In this p
per we are not concerned with such details. What does c
cern us is that most of the calculations of broadening
shifting of spectral lines deal with a calculation of theg’s in
the center-of-mass frame of a colliding pair, including
Maxwellian average over both of the active and perturb
molecules. It is then assumed that the real and imagin
parts ofg give the width and shift of an isolated line. How
ever, as we saw above, such a relationship only follows fr
a simple relaxation equation, such as Eq.~3!. Furthermore, a
relaxation rate is an average over the motion of the pertu
ers, but not over the motion of the active molecule. Thus
relaxation rates, which depend upon the relative velocity
the active molecule and the perturber, still depend upon
speed of the active molecule, even after averaging over
perturber motion. This point was clearly made by Nienh
@15#. If the speed dependence is significant for both the
laxation and the transport terms, then the relaxation of
optical coherence and the translational motion are correla
Here it is proposed to describe the internal and transla
motions as ‘‘coupled’’ or ‘‘speed correlated’’ when both m
tions depend upon the speed of the active molecule. We
use the expression ‘‘statistically correlated’’ for the true s
tistical or type-III term~s!. If the motions are correlated eithe
way, the usual simple relationship between the rates
widths or shifts is broken; the correct relation between rel
ation rates and widths and shifts, etc., of a spectral pro
can only be established by solving a transport relaxa
equation.
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We now consider terms that involve statistical correlatio
We give two speculative arguments which suggest that t
may be neglected. First recall, in the semiclassical appro
that the relaxation rates for the internal degrees of freed
are calculated by averaging the effect ofV1 over classical
collision paths, the latter being determined by the isotro
part of the potentialV0 . Now consider two collision trajec-
tories which are mirror images, the normal to the mirr
surface being the apse line~see, for example, Ref.@16#!. The
change in velocity will be the same in size but of oppos
sign. On the other hand, symmetry suggests that the effe
V1 on the internal coordinates will be the same. Thus
each contribution to the change in the internal coordina
there are two equal but opposite changes in the translati
motion. Averaged over all collisions, this argues for ze
statistical correlation. The second argument depends u
the observation that calculations ofg’s using curved but ap-
proximate classical paths do very well in determining widt
and shifts if we ignore speed dependent effects, which
usually small. Such a calculation neglects the statistical c
relation which arises from the fact that changes in the in
nal states and the translational states occur in the same
lision. Both lines of reasoning argue, in spite of the fact th
the two types of changes occur in a single collision, that
result is statistically unimportant. In the main part of this
paper type-III terms are ignored. The same assumptio
implicitly made in most of the model profiles currently i
use. Near the end, we shall show that this assumption is m
one of convenience as the central features of the trans
relaxation equation remain even if such terms turn out to
significant.

This completes the presentation of the model transp
relaxation terms that are to be added to Eq.~2! for the off-
diagonal elements of the density matrix. In the case of lin
spectroscopy and dipole absorption, the final master equa
for this distribution function is
@~]/]t !1 i ~vb2va!1v•“#rba52gbarba1(
dc

W~ba←dc!rdc2nrba

1E A~v←v8!rba8 d3v81 i $E exp@2 i ~vt2kz!#1cc%@raa2rbb#mba , ~10!
in

ion
on

de-
where all of the relaxation rates may be speed dependent
repeat thatr8 stands forr(r ,v8,t). Here the equilibrium
populationsraa and rbb are to be written asnaf 0(v) and
nbf 0(v), where f 0(v) is the Maxwellian distribution func-
tion, normalized to unity. Only one of the terms in the fie
will survive in the rotating wave approximation. Explic
mention of the field terms is the only entanglement of b
theory and spectral line shapes that we have permitted.
two may be disentangled simply by recognizing the fie
terms as a specific example of theba matrix element of the
free-streaming term@H1 ,r0#. Equation~10! was made con-
crete because we have our eye on infrared absorption. In
e

h
he

he

following sections we use our master equation, Eq.~10!, to
rederive most of the well-known model line shapes found
the literature.

TRANSPORT RELAXATION FOR AN ISOLATED LINE

Generalities

For an isolated line, the sum overdc is to be omitted. The
conditions under which this is a reasonable approximat
will be discussed in a section below on line mixing. Equati
~10!, as it stands, contains no statistical correlation. Ifgba is
speed independent, then the translational and internal
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PRA 59 3499MOLECULAR DYNAMICS AND A SIMPLIFIED MASTER . . .
grees of freedom evolve independently. In this caserba can
be written in the time domain asrba5exp(2gbat)r̃(r,v,t).
The proof of this is straightforward, and hinges on being a
to pull thev8-independent factor, exp(2gbat), out from under

the integral sign in the term*A(v←v8)rba8 d3v8, and divid-
ing through the entire equation by the exponential factor.
is well known, a product in time leads to a convolution
frequency space.

Specific single line models

The first case we were tempted to consider was the D
pler profile. Here the collisional relaxation of the trans
tional motion is set to zero but the free-streaming te
v•“ is retained. To derive the Doppler profile one might a
naively set the relaxation of the internal motion to ze
However, this would be unphysical since in the absence
damping there is no phase shift between the driving field
the polarization, and thus there is no absorption. Thus D
pler broadening should physically be considered as the
iting case of a Voigt profile. We treat the Voigt profile i
detail, as it turns out to be rather generic, permitting a ra
and simple treatment of all other isolated line profiles t
are consistent with the relaxation and transport of the
diagonal elements of the density matrix. A shorter, but som
what similar cataloging of profiles was given by Berm
@17#.

For the Voigt profile, the problem reduces to solving t
equation,

@~]/]t !1 i ~vb2va!1v•“#rba

52gbarba1 i $E exp@2 i ~vt2kz!#1c.c.%naf 0~v !mba ,

~11!
he
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where we have set the population of the upper level to ze
We solve the transport relaxation equation in the same m
ner as led to Eq.~7!. Within the rotating wave approximation
the c.c. term involvingE* may be dropped. Consequent
we can approach the solution more directly by writingrba as
pbaE exp@2i(vt2kz)# instead of r2 exp@2i(vt2kz)#. This
leads directly to the equation

@vba2v1kvz# pba5 igba pba1naf 0~v !mba , ~12!

which has the obvious solution

pba5naf 0~v !mba /@vba2v1kvz2 igba#. ~13!

Since all molecules are observed, and the distribution fu
tion pba is the amplitude of the optical coherence for a sing
speed class, the susceptibility is obtained by multiplying
mab /\e0 and integrating over the velocity. If the relaxatio
is speed independent, then the equation may be integr
over thex andy components of the velocity. The result is

x5na~mbamab /\e0!E f 1~vz!dvzY @vba2v1kvz

2 igba#, ~14!

where f 1(vz) is the normalized one-dimensional speed d
tribution function (pv0

2)21/2exp(2vz/v0)
2, and v0

2 equals
2kbT/m. Taking the imaginary part and multiplying by th
wave vector leads to the following expression for the abso
tion coefficient for the speed independent Voigt profile:
na~mbamab /\e0!E gbaf 1~vz!d~kvz!Y @~vba2v1kvz!
21~gba!

2#. ~15!
c-

e,
sla-
lts
While mathematically and physically correct, this is not t
usual convolution expression found in the literature. Ho
ever, note that the integral over thez component of the ve-
locity can also be read as a convolution over the ‘‘Dopp
frequency’’ v85kvz . Keeping the velocity distribution
function explicit in Eq.~15! facilitates a comparison with
other model profiles for isolated lines.

Having worked through one isolated line case in det
we now ‘‘clean up’’ the presentation by writing the profile
as I (v), and expressing them as the imaginary part o
complex function hiding many constants in a prefactorN.
From the development above it is clear that the comp
function is essentiallypba(v), except for the integration ove
the velocity groups.

We now systematically derive several isolated line p
files. First we repeat thespeed-dependent Voigt profile, ex-
cept we write it in complex form. From Eq.~13!, we have,
-

r

l,

a

x

-

I ~v!5N ImH E f 0~v !dvY @~vba2v1kvz!2 igba~v !#J .

~16!

Generally, Eq.~16! cannot be integrated analytically. Se
ond, for thespeed-independent Voigt profile, Eq. ~16! re-
duces to,

I ~v!5N ImH E f 1~vz!dvzY @~vba2v1kvz!2 igba#J .

~17!

Equation~17! contains a standard integral. In a third cas
the Lorentz model, one neglects all aspects of the tran
tional motion, including the free-streaming term. The resu
are derivable directly from Eq.~16!. First we have thespeed-
dependent Lorentz model,
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I ~v!5N ImH E f 0~v !dvY @~vba2v!2 igba~v !#J .

~18!

Again one anticipates that analytical expressions for the
tegral will be found only ifgba is some unique function o
the speed. From Eq.~18!, we then recover the elementary
speed-independent Lorentz modelconsidered in the begin
ning,

I ~v!5N Im$1/@~vba2v!2 igba#%, ~19!

by taking gba constant in Eq.~18! and integrating over the
normalized velocity distribution.

We now treat the case ofpure Doppler broadening. As
pointed out above, we must consider a Voigt profile and t
the limit gba→0. Since the relaxation is eventually to b
removed from the problem, we might just as well start w
the simplest case, the speed-independent Voigt model. H
it is convenient to use the Voigt absorption profile, Eq.~15!,
rather than the complex susceptibility, Eq.~17!. Recall that
-
en

os
o
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n

-

e

re,

the Dirac d function @18# can be written asd(x2x0)
5(1/p)lime→0$e/@(x2x0)21e2#%. Identifying gba in Eq.
~15! with e, kvz with x, and (vba2v) with x0 leads imme-
diately to the well-known Doppler profile,

I ~v!5N exp$2@~vba2v!/kv0#2%. ~20!

The five models above neglect the direct effect of co
sions on the translational motion. We now turn to cases o
isolated line where these effects are no longer neglected.
treat the speed-dependent hard collision model. The hard
lision model is a mathematical model that distributes m
ecules over the Maxwellian distribution function, indepe
dent of precollision velocities. Smithet al. @10# considered
the same problem, and used their formulation of the dip
correlation function to give a sound basis to an earlier cl
sical model developed intuitively by Rautian and Sobelm
@13# to describe Dicke narrowing@19#. Here we use our mas
ter relaxation transport equation as the starting point. Follo
ing the same procedures as above leads directly to the
eral transport relaxation equation for an isolated line,
ational

.

@vba2v1kvz# pba5 igba pba1 inpba2 i E A~v←v8!pba~v8!dv81naf 0~v !mba , ~21!

wheregba and n may both be functions of the speed of the active molecule. In the hard collision model the transl
relaxation terms are given bynrba andn f 0(v)*rba(v8)dv8, wheren is independent ofv ~see, for example, Refs.@13# or @20#!.
Thus our equation forpba becomes

@vba2v1kvz2 igba2 in# pba52 in f 0~v !E pba~v8!dv81naf 0~v !mba . ~22!

Now divide by@vba2v1kvz2 igba2 in#, multiply by the volume element of the velocity,dv, and integrate over the velocity
To keep the nomenclature compact, call*pbadv, pba(k,v). Our equation then becomes,

pba~k,v!52 i pba~k,v!nE f 0~v !dvY @vba2v1kvz2 igba2 in#1nambaE f 0~v !dvY @vba2v1kvz2 igba2 in#.

~23!

Rearranging terms, and defining 1/@vba2v1kvz2 igba(v)2 in# as the complex LorentzianL(vz), we have

pba~k,v!5nambaE f 0~v !L~vz!dvY H11 inE f 0~v !L~vz!dvJ , ~24!
se.
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which when multiplied bymab /\e0 is the complex suscep
tibility. The imaginary part is equal to the speed-depend
hard collision profile given by Rautian and Sobelman@13#
and by Smithet al. @10#.4 The Dicke narrowing of the profile
at high densities arises from the term inn in the denomina-
tor. It is the mathematical~but unphysical! properties of the

4Although the expressions given here appear to differ from th
found in the literature, the apparent difference arises because in
case the real part of a complex function is to be evaluated, w
here it is the imaginary part. Furthermore, many authors refere
their frequencies to the free molecule line center, definingDv5v
2vba . Here we write frequency factors in terms ofvba2v.
t
collision kernel,A(v←v8), that permit an analytical solution
of the transport relaxation equation to be found in this ca
In none of the speed-dependent cases above is the
Lorentzian with a width given by the thermal avera
^g(v)&5* f 0(v)g(v)dv.

There exists another, but rarely quoted, analytical solut
for a spectral profile that includes speed-dependent re
ation and transport. This has been given by Dattagupta
Turski @21#. It deals with the so called Lorentz gas, a syste
of massive~stationary! perturbers of rigid spheres. Sinc
each active molecule maintains its speed in such a mode
is an extreme case of inhomogeneous broadening and s
ing. However, since there is no relaxation between sp
classes, the model has the unphysical property that any s
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distribution function is a stationary solution. It also exhib
problems with respect of convergence to a hydrodyna
~high-density! limit @22#. Perhaps these are the reasons t
model has not been applied to the analysis of experime
data. We confine a discussion of the Lorentz gas to the
pendix.

On the other hand, there exists a model for an isolated
which has been used routinely to treat both transport
relaxation. This is the so-called soft collision model@23#, and
is applicable to the case of very light perturbers with spe
independent broadening. We do not discuss the soft collis
model in this paper for two reasons. The first is that it ha
pens to be far more convenient to do so in the time dom
rather than the frequency domain used here. The second
more cogent reason is that it does not followdirectly from
our transport relaxation equation but rather from a Fokk
Planck approximation@24# to our basic equation. In this
sense, a solution starting from a relaxation transport equa
already exists in the literature@24,22#. ~For a treatment in the
frequency domain, see Refs.@13,22#.!

TRANSPORT RELAXATION FOR A BAND

So far we have used our master equation to treat the
of an isolated line. As first shown by Baranger in three p
neering papers@4#, closely spaced lines in a band may inte
fere or mix. Here we rederive his well-known result.~For
recent review article on spectral line shapes, including
introduction to line mixing, see Ref.@25#.! The standard
treatment of line mixing suppresses all aspects of the tra
lational motion. Starting with the master equation@Eq. ~10!#,
and following the same steps as above, leads to the re
ation equation forpba ,

~vba2v!pba5 igba pba2(
dc

iW~ba←dc!pdc1namba .

~25!

There is a similar equation for each transition, i.e., for ea
componentpdc , etc, of the optical coherence. Thus we ha
a set of coupled linear equations, which in matrix notat
may be written as

@v01 iW2vI #•r5N•m, ~26!

where v0 is a diagonal matrix of free molecule transitio
frequencies,W is the relaxation matrix,I is the unit matrix,
r is a column vector of the componentspba , N is a diagonal
matrix in populations andm is a column vector of transition
dipoles. As defined, the off-diagonal elementWba,dc is posi-
tive and justW(ba←dc). As pointed out earlier, it describe
the back flow of the component,rdc to rba . The diagonal
elementWba,ba is negative and just the complex relaxatio
rategba . It represents the outflow of coherence from theba
component of the optical coherence to all other compone
In the steady state, all parts of the optical coherence osci
at the driving frequencyv, not their natural frequenciesvba ,
vdc , etc.

Now the solution of a set of coupled linear equations
usually expressed as a ratio of determinants, the determi
in the denominator being@v01 iW2vI #. This makes the
calculation of the spectral profile tiresome, since the de
ic
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minants have to be evaluated at each frequency for ev
density. However, as pointed out by Baranger@4# and refined
by Gordon and McGinnis@26#, there is a well-known tech-
nique of diagonalization that simplifies the problem. Lo
for a transformationA such thatG5@v01 iW# becomes di-
agonal, i.e., solve the equation,L5A21GA. Then Eq.~26!
can be written

A21@v01 iW2vI #AA21
•r5@L2vI #A21

•r

5A21@N•m#, ~27!

which has as a solution

r5A@L2vI #21A21@N•m#. ~28!

As the inverse of a diagonal matrix is a diagonal matrix
the inverse elements,@L2vI #21 is just a diagonal matrix of
Lorentzian factors like,Lba51/@(Lba

r 2v)1 iLba
i #. Here we

have anticipated that there is a one-to-one correspond
between the eigenvalues and the componentsba of the opti-
cal coherence. In fact one expectsLba

r to approachvba

2gba
r , andLba

i to approach2gba
i as the density is reduce

toward zero.~We justify this below in the weak mixing
limit.! To construct the susceptibility from Eq.~28!, we need
to multiply r by m†/\e0 . This yields

x5~m†/\e0!A@L2vI #21A21@N•m#. ~29!

Up to this point we have used the language and nom
clature traditionally associated with the density matrix. O
of the reasons for this was to keep a connection open to o
areas of molecular dynamics. However, in line mixing, it
customary to use a contracted notation, labeling the re
ation rates such asW(ba←dc) not by a pair of doubly sub-
scripted quantities, the components of the optical cohere
but rather by the associated line. Thusdc would be replaced
by, say,l, signifying a line or transition. Changing nomen
clature does not pose a problem, since quantities likercd
have been treated as a single quantity. The drawback to
space nomenclature is that there is no way to label diago
elements of the density matrix, and thus the same nomen
ture cannot be kept if one wants to generalize the treatm
to include population dynamics in other transport phenom
or laser theory, etc. We will confine our use of line spa
terminology mostly to this section.

Now A21@N•m# is a column vector. In ‘‘line space’’ no-
tation the mth component of A21@N•m# is given by
Amk

21Nkmk , where repeated subscripts means a sum. S
@L2vI #21 is diagonal with themth component given by
Lba[Lm , the mth component of the column vector@L
2vI #21A21@N•m# is given by,Amk

21NkmkLm5BmLm . Fur-
thermore, (m†/\e0)A is a row vector with themth compo-
nent given byCm5(m j

†/\e0)Ajm . Thus the susceptibility
can be written as

x5$m j
†/\e0!Ajm%$Amk

21NkmkLm%5CmBmLm . ~30!

Since Cm and Bm are complex, the absorption coefficie
Imx can be written as the sum of absorptive and dispers
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parts. This is identical to a well-known form for line mixin
in electric dipole absorption@24#.5

It is also a simple matter to rederive the Rosenkranz
proximation @27# for weak mixing. We return to the set o
starting equations, writing them as

@~vba2v!2 igba# pba1(
dc

iW~ba←dc!pdc5namba .

~31!

The solution to zeroth order in the mixing is found by s
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ting all the W’s equal to zero. This gives back the familia
complex Lorentzian for each component of the optical coh
ence. The solution, to first order inW, may then be found by
inserting the zeroth-order solution forpdc into the equation
for pba , multiplying the result bymba /\e0 and summing
over allpba to find the band susceptibility. This yields a su
of Lorentzians~the symmetric terms referred to above! and
mixing terms~the asymmetric terms referred to above!. In
the case of a two-line spectrum, thetotal complex mixing
term for the band absorption is given by the imaginary p
of
ly in the
rfering,

e

xm52 i @W~ba←dc!/\e0#$ncmabmdc /@~vdc2v!2 igdc#@~vba2v!2 igba#%

2 i @W~dc←ba!/\e0#$namcdmba /@~vba2v!2 igba#@~vdc2v!2 igdc#%. ~32!

This is an expression for the case of weak mixing in a two-line band. Being complex, it expresses the changes not on
absorption profile but also in the dispersion. It may easily be generalized to the complex susceptibility of a weakly inte
multiline band.

The usual Rosenkranz form for weak mixing in the absorption profile may be recovered from Eq.~32!. Near lineba the
factor (vdc2v) may be replaced by (vdc2vba). The damping partigdc may be neglected, and the real part of 1/@(vba

2v)2 igba# is just (vba2v)/@(vba2v)21gba
2 #. Thus near the transitiona→b the mixing term for the absorption may b

approximated as

2@W~ba←dc!/\e0#$ncmabmdc /~vdc2vba!%$~vba2v!/@~vba2v!21gba
2 #%

2@W~dc←ba!/\e0#$namcdmba /~vdc2vba!%$~vba2v!/@~vba2v!21gba
2 #%. ~33!

The usual mixing parameterY is the sum of the coefficients of the common Lorentz dispersive factor (vba2v)/@(vba

2v)21gba
2 #. Setting\e051, we find, in the case of weak mixing,

Yba52$W~ba←dc!ncmabmdc1W~dc←ba!namcdmba%/~vdc2vba!. ~34!
and
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Except for a sign, this is the familiar amplitude of the asy
metric component of the transition,a→b. The sign reversa
comes about because we have written the numerator fo
dispersion curve as (vba2v) rather than in the more com
mon form (v2vba). If v is near the transitionc→d, the
same expressionfor the susceptibility@Eq. ~32!# yields the
mixing parameterYdc . Equation~34! can be used to show
that the asymmetry is such that the intensity between
lines is increased, while the intensity beyond the lines
creases. Thus the two lines appear to coalesce. This is al
considered as the main signature of line mixing. Equat
~34! also shows that mixing is negligible if the lines are w

5In the literature, but not in Baranger’s original paper, there
pears to be a relative sign error in the complex LorentzianLm . This
is of no consequence, if only the imaginary part is to be us
However, if the expressions in the literature are to be interprete
a susceptibility, then causality is not satisfied and the compu
dispersion (n21) will have the wrong sign, i.e., the dispersion w
decrease with increasing frequency if one approaches an absor
line from below resonance. This is clear from Eq.~8b!. The de-
nominator in Eq.~8b! must appear as@(vba2v)2 igba#, not as
@(vba2v)1 igba#.
-
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separated. Finally, this example has illustrated that the b
may be expressed as a sum of symmetric and antisymm
components, and that the eigenvalues have the weak mi
properties anticipated above.

This completes the list of profiles, as found in the liter
ture, that follow directly from our proposed scalar version
the generalized Waldmann-Snider equation. None of th
include the effects of statistical correlation. There exist
least three partly phenomenological theories that address
question of correlation@13,28,29#. At the end of this paper
we will indicate, with certain provisos, how numerical sol
tions may be found not only for an isolated line, but also
any speed-dependent multiline spectrum. With a simple
tension of the transport relaxation equation, even the effe
of statistical correlation may be included. It remains to
seen if such an extension will lead to results in accord or
with those earlier treatments of statistical correlation effe
in spectral profiles@13,28,29#. In the following paragraphs
we outline an approach to Dicke narrowing. It forms a log
cal bridge between the transport relaxation equation u
above and a more general equation that allows for statis
correlation. Details of the approach to Dicke narrowing a
given in the following paper.

In the hard collision model we illustrated the use of t
transport relaxation equation to treat the combined effect

-

.
as
d

ion



el
a
er
y

,
a
m

is

a

v

a
,

n
ua
ne
th
li
o

o
u
a

in
a

di
o

is
en
n
e

se
ha
I

th

o
n
ve

p
th
, a

ur
t

a
n

x

e-
is

.
t be

e
cal
rent

x-

lax-
f
type
al
ion
id
eral
tes
y be
he
per-
ter-

ealt
ral
of
pa-
to a
lied
lace
tu-
an-
rder,

to
iden-
ear

k-

en
e
le

tion

ide
en-
es,
ell
ter

cy of
ion
of

PRA 59 3503MOLECULAR DYNAMICS AND A SIMPLIFIED MASTER . . .
relaxation and transport for an isolated line. As is w
known, at high densities, molecules perform a random w
or diffusional motion through the applied optical field. Und
these conditions the usual Doppler width is replaced b
diffusional width that varies ask2D, whereD is the mass
diffusion constant. SinceD varies inversely with the density
a line narrows with increasing density. This is known
Dicke narrowing@19# and, as mentioned earlier, arises fro
the factorn in the denominator of Eq.~24!. Here we sketch
out a treatment of Dicke narrowing which shows how it
intimately related to the process of line mixing.

The relaxation transport equation for an isolated line m
be written in the form,

~vba2v1kvz!pba5 igba pba1 inpba2 iSW~v←v8!

3pba~v8!1naf 0~v !mba ~35!

where we have written the usual integral as a sum over
locity classesv8, and replaced the collision kernel,A by W in
order to draw attention to the analogy between Dicke n
rowing and line mixing. Sincepba(v) is for a speed class
there is one equation like Eq.~35! for each of them, just as
there was one equation like Eq.~25! for eachpba component
of the optical coherence. Thus writing the equation for o
line in terms of discrete velocity groups yields a set of eq
tions which are formally identical to the equations for o
velocity group and discrete lines. Therefore we can use
same diagonalization technique as that used to solve the
mixing problem, to treat the translational motion for an is
lated line. Just as line mixing leads at high densities t
collapsed band, here exchange between the velocity gro
leads to a collapse of the ordinary Doppler profile. It h
long been recognized that line mixing and Dicke narrow
were related. Here we have established that they are form
identical. Using a hard collision model forW, we establish in
the following paper that one can completely recover by
agonalization, the spectral profile generated using the c
ventional treatment given earlier in this paper.

In the analysis above, there was one all important prov
we must be able to calculate or model the speed depend
of gba , n, and W(v←v8). We have made this assumptio
throughout the paper, and have focused our attention on
tablishing a transport relaxation equation for specific ca
and to solve it to determine a spectral profile. It is clear t
posing a problem and solving it are two different things.
speed dependence is to be included it is safe to say that
are no known analytical solutions that arephysicallyrealis-
tic. Thus numerical techniques must be employed. Here
treatment of Dicke narrowing provides a significant adva
tage. By binning or boxing the speed classes into cells, e
the most general multiline speed-dependent case may be
pressed as a set of coupled linear equations. With the ap
ently unending growth in computer memory and power,
numerical solution by matrix techniques becomes easier
most on a daily basis.

Discretizing the velocity carries another benefit. It enco
ages us to couch our nomenclature and mode of attack on
problem of line shapes in terms of classes of molecules,
to worry about how one classifies the different boxes a
consequently to classify transitions between them. A bo
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labeled with a set of indices~subscripts!. Here we have an
index ba, dc, etc. for the component of the off-diagonal el
ment of the density matrix. Each of these boxes or cells
subdivided by a second indexv, indicating the speed class
For the problems considered in this paper, these mus
further subdivided according to thez component of the ve-
locity and carry an indexvz . For convenience we lump th
last two together into a velocity class. The mathemati
problem is established once the rates between the diffe
boxes are calculated or modeled.~A channel is said to be
open if the rate is significantly different from zero.! We can
now re-examine the classification of the off-diagonal rela
ation rates@the W’s and A in Eq. ~10!# introduced at the
beginning. In the master transport relaxation equation, re
ation rates, diagonal inv, but off-diagonal in component o
the optical coherence, are type I. The reverse terms are
II. Terms off-diagonal both in the component of the optic
coherence and in velocity belong to type III. Our assumpt
that type-III terms were zero simplified the equation but d
not alter its basic characteristics. Thus even the most gen
problem may be solved given the various relaxation ra
between the boxes. Furthermore, the relaxation rates ma
classified in this manner, independent of the form of t
interaction between the active molecules and the bath of
turbers. Thus the assumption about the division of the in
action into aV0 and aV1 term, as used by Smithet al. @10#
and adopted here, may be discarded.

GENERAL COMMENTS

There is one very general aspect that has not been d
with, up to this point, and that is a treatment of spect
profiles in terms of time correlation functions. The use
correlation functions depends upon the fluctuation dissi
tion theorem, which states that the response of a system
fluctuation is the same as its linear response to an app
perturbation. This leads to the spectrum as being the Lap
transform of a time correlation function. Here we have ac
ally calculated the response to an applied field. The adv
tage is that such a treatment can be carried beyond first o
whereas the fluctuation dissipation theorem only applies
the linear response of a system. Nevertheless, one can
tify in our master equation, the main ingredients that app
in a treatment using correlation functions. In Eq.~10!, the
linear perturbation term in the field would be dropped. Ta
ing a Laplace transform introduces anv and a value att
50. These appear in Eq.~12!, the constant fort50 appear-
ing in our equation as the term inna . An extensive review of
time correlation functions, relevant to this paper, was giv
by Berne and Harp@30#. To reiterate, the drawback to the us
of the fluctuation dissipation theorem is that it is applicab
only to the linear response of a system to the perturba
H1 .

As one of the objectives of this paper has been to prov
a basic equation for the relaxation and transport of the d
sity matrix that could be applied generally to line shap
laser physics, nonlinear optics, etc., it is important to sp
out what is included and what is excluded by the mas
equation. As the master equation neglects the degenera
the internal states it is not capable of describing polarizat
effects. For example, it is inadequate for a discussion
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some of the finer details of the transport of the optical coh
ence@31# or of polarization spectroscopy. For this and sim
lar problems one must return to the generalized Waldma
Snider equation@9#. However, the isotropy of space an
vector coupling techniques can always be used to expres
problem in terms of reduced matrix elements and ten
components of the density matrix@30#. In this form the struc-
ture of the equation is not radically different from the stru
ture or form of the equation used here.@Compare for ex-
ample Eq. 2.3 in Ref.@32# with our Eq.~10!.# As pointed out
by Tip @9#, the same claim can be made about the ma
equation for the diagonal components of the density ma
at the Waldmann-Snider level~degenerate states! as com-
pared to that at the Wang-Chang–Uhlenbeck level~nonde-
generate levels!. The use of a scalar transport relaxati
equation does not imply that all ‘‘vector’’ or symmetry prop
erties of the molecules are lost. These properties are o
simply reflected in thevaluesof the components of the re
laxation matrix~see, for example, Ref.@33#!. On the other
hand, there is a large body of physics connected to trans
which may not be treated by our equation. Here we h
assumed a uniform dilute gas. Obviously, additional ter
must be added to account for gradients in temperature
concentration@1,34#. Such terms are routinely included eve
in the lowest member of the hierarchy of transport relaxat
equations, viz. the Boltzmann equation@15#.

While the basic idea for the approach used in this pa
was triggered by Ref.@10#, in fact many of the ideas can b
traced to a very large number of papers. To give accurate
due credit to all of these would require an extensive revie
Such was not the object of this paper. The papers cited w
chosen not only for their contribution but also with the id
that they provide the interested reader with a suitable in
duction to the literature. However, it would be an oversig
not to mention several other papers also dealing with spe
line shapes@35–38# which use approximations to solve
transport relaxation equation. The method suggested ab
for a solution of the general problem is exact in the sa
sense that any numerical treatment is exact.

SUMMARY AND CONCLUSIONS

The main purpose of this paper has been to show ho
transport relaxation equation for a semiclassical dens
matrix distribution can be used to derive spectral profiles
dilute molecular gases. The basic dynamic equation for
rate of the distribution function adds to the free-stream
terms @(H01H1),r# and 2 v̄•¹r, two classes of collision
relaxation processes, one for the internal states and on
the translational states. Each class has two contribution
decay term and a return from other classes. The internal
translational motions may be coupled by the mutual sp
dependence of the two types of relaxation rates. Statis
correlation between the two motions has been neglected
could be incorporated. It was in the treatment of Smithet al.
@10# that the statistical term and the other relaxation p
cesses were clearly identified.

There are a number of advantages to the formalism
sented here. First it separates the microscopic aspects o
problem, the calculation of various relaxation coefficien
from the problem of solving a transport relaxation equat
r-
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for the response of the system to some applied field. Be
couched in terms of a Boltzmann-like equation for the de
sity matrix, it clearly identifies the links between laser phy
ics, nonlinear optics, and the usual transport problems
statistical mechanics. Purely from the point of view of spe
tral line shapes it allows one to treat speed-dependent eff
not only for isolated lines but also in the case of line mixin
Use of the transport relaxation equation for the off-diago
elements of the density matrix has been illustrated by
deriving many well-known results simply and quickly. It als
provided additional insight into the process of line mixing.
technique has been suggested for treating the Dicke nar
ing of an isolated line. From this it followed that the mo
general multiline spectrum, with speed-dependent relaxa
and transport, could be solved, given a model for the sp
dependence of the various relaxation rates and a large c
puter.
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APPENDIX: LORENTZ MODEL

If the perturbers are massive we can consider them to
at rest and the active molecule to move among them wit
constant speed. The Lorentz model is thus an inhomo
neous model for the translational motion. The distributi
function for a ~sub!ensemble of active molecules with
speedv, then depends uponr, t, andu, andf. The latter two
variables describe the direction of motion. The master eq
tion for an isolated line is Eq.~2! of the text. For rigid
spheres perturbed by fixed rigid spheres the transport re
ation terms involvingn andA(v←→v8) are to be replaced
by pvna2(12P)pba wheren is the number density of per
turbers,a is the hard sphere collision radius, andP is merely
an integral operator that integrates over the direction of m
tion @22,39#. Explicitly, operating byP, as used here, is de
fined by the equationPrba5*rba(v,u,f)sinf du df. It dif-
fers by a factor of 4p from the usual definition found in the
literature. Consequently, the transport relaxation equation
an isolated line takes the form,

@vba2v1kvz# pba5 igba pba1 inv~12P!pba

1naf 0~v !mba , ~A1!

where the relaxation rate~kinetic collision frequency for the
subensemble of molecules with a speedv) nv is given by
nv5pvna2. Heren is the number density of perturbers an
a the collision radius. Equation~A1! may be rearranged to
read

pba5naf 0~v !mbaL2 inv~Ppba!L, ~A2!

where L is a complex Lorentzian given byL5@vba2v
1kvz2 i (gba1nv)#21. As part of calculating the total sus
ceptibility, we integrate over the direction of motion. Lat
we will integrate over the speed. The integration over an
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is done by operating on Eq.~A2! with P. Remembering tha
a single averaging removes the angular dependencePP
5P) and thatnv is independent ofu and f we find, after
some rearrangement,

Ppba5naf 0~v !mbaPL/@11 invPL#. ~A3!

The complex susceptibility is then given by

x5NE v2 exp@2~v/v0!2#dv$PL/@11 invPL#%.

~A4!

This agrees with Lindenfeld’s Eq. 4.10 if allowance is ma
for the fact that he has takengba equal to zero@22#. Note that
the integral over the speed is over the entire function in cu
brackets, and does not appear separately in the nume
and the denominator as in the HC model@see Eq.~24! in the
main text#. The rigid sphere, Lorentz gas is thus the ultima
I.
es

-

J.

f
e,
y
tor

speed dependent inhomogeneous line shape. Ifk is taken
along the polar axis thenvz equalsv cosu and the calcula-
tion of the spectral profile is reduced essentially to the eva
ation of PL. After integration over f the remaining
integral,6 B becomes B52p* sinu du/@vba2v1kv cosu
2i(gba1nv)#. Dropping the factor 2p and taking cosu5z as
the variable of integration allows us to writeB in the form
B(k,v,v)5*dz/@ i (gba1nv)1(Dv2kvz)# where the lim-
its are21 to 1. This may easily be evaluated and may
expressed as the ln of a complex function@Eq. ~22!# or the
arctan of a complex number@21,39# or it may be decom-
posed into a ln and arctan of real functions using any st
dard table of integrals.

6B, as written here, differs from that of Ref.@22# by i and an
unimportant numerical factor.
ev.
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