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Asymptotic channels and gauge transformations of the time-dependent Dirac equation
for extremely relativistic heavy-ion collisions
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We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a
peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the
high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close con-
nection with gauge transformations which transform the dynamics into a representation in which the interaction
between the electron and a distant ion is of short range. We describe the implications of this relationship for
solving the time-dependent Dirac equation for extremely relativistic collisions.@S1050-2947~99!03801-9#

PACS number~s!: 11.80.2m, 34.50.2s, 25.75.2q, 12.20.2m
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I. INTRODUCTION

Particle production via electromagnetic processes in
ripheral collisions of relativistic heavy ions has received s
nificant study recently, both experimentally@1–11# and theo-
retically ~for reviews, see@12–14#!, due to anticipated
experimental opportunities at colliding-beam accelerato
and the importance of this phenomenon for the operation
performance of such facilities. Also of interest is the opp
tunity to study strong-field QED effects in particle produ
tion over a wide range of charge and collision energy@15–
25#.

The high-energy limit of peripheral relativistic heavy-io
collisions has been recently examined, and closed-form
pressions for the amplitudes describing electron-positron
production have been obtained@26–29#. These new results
offer significant insight into the understanding of relativis
heavy-ion collision dynamics@26–32#. In these works, the
consequences of allowing the collision velocity to approa
the speed of light, i.e.,b[v/c→1, and thus the collision
energy to approach infinity,g[(12b2)21/2→`, have been
investigated. This limit has been motivated by the progr
toward new colliding-beam heavy-ion accelerator facilit
currently in various stages of construction and planning. T
Relativistic Heavy-ion Collider~RHIC! at Brookhaven Na-
tional Laboratory will begin operation in 1999, offering co
lision velocities in the collider frame ofbC'0.9999. The
Large Hadron Collider~LHC!, currently being planned a
CERN, will offer collision velocities which more closely ap
proach the speed of light,bC'0.999 999 9. Indeed, in ex
periments recently performed at CERN’s Super Proton S
chrotron @1,4,9,10#, in which heavy ions collide in a fixed
target mode, the equivalent collider-frame collision veloc
exceeds 0.99c, suggesting that the high-energy limit is a
ready a meaningful and relevant approximation for use
interpreting the experimental results@29#.

Of central importance to recent investigations of the hig
energy limit is the use of a simplified form, accurate to lea
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ing order in the small parameterg22, for the Lorentz-
boosted Coulomb potential@33–35,27# acting between the
active electron and a bare nucleus. In this form, the dep
dence of the interaction on the transverse electron coo
nates separates from the dependence on the longitudina
ordinatez and the timet. Moreover, the dependence on th
latter arises in combinations identified as the light-front va
ables, e.g.,t6[(z6t)/2, in the form of a zero-range o
sharp potential. The separability of this interaction in th
time-dependent, two-center Dirac equation allows for
closed-form solution@26–29#. However, this useful form oc-
curs at the high-energy limit only after applying phase tra
formations so as to remove the long-rangez dependence of
the interaction@35–37#.

In this present work we study these phase transformat
and show how they constitute well-defined gauge trans
mations while from a parallel perspective they formally d
fine an interaction representation in which the asympto
~i.e., utu→`) interaction of an electron with a distant ion
absorbed into a redefinition of the electronic states. In t
representation, which we call theshort-range representation,
the asymptotic channel states are free from effects of
distant ion, and in the high-energy limit of infiniteg the
interaction has zero range. In the high-energy limit, the se
ration is exact. For finiteg, the short-range interaction is a
approximation correct to orderg22, and so are the
asymptotic channel wave functions. Neither the two-cen
Dirac equation, nor its boundary conditions, are rigorou
separable for finiteg.

In this context, we review the pioneering work of Eichl
and co-workers@39–41# referred to by the nameCoulomb-
boundary conditions, where the long-range Coulomb o
Liénard-Wiechert interaction was replaced by an effect
short-range interaction. We show how corrections of or
g22, explicit in our formal definition of the short-range rep
resentation, are implicit in the replacement procedure of
electron-projectile distance by the target-projectile dista
that was used to obtain the asymptotic channels with th
346 ©1999 The American Physical Society
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Coulomb-boundary conditions.
In Sec. II we discuss the asymptotic channel solutions

the two-center Dirac equation for extremely relativistic (b
→1, g→`) heavy-ion collisions. We derive factored form
for the asymptotic solutions which are accurate to orderg22,
i.e., they are exact in the high-energy limit (g→`). In Sec.
II A we consider the case where the electron is asympt
cally referred to the target reference frame~i.e., the electron
is near to the target asutu→`), while in Sec. II B we con-
sider the case where the electron is asymptotically nea
neither the target nor the projectile ion, and is most natur
referred to the collider~center-of-velocity! frame. In Sec. III
we define and present the short-range representation an
rive from it the high-energy or sharp limit for the two-cent
Dirac equation in a simple form. In Sec. IV we show that t
phase transformation defining the short-range representa
constitutes a gauge transformation. In so doing, we m
explicit the connection between the Coulomb-boundary c
ditions and the gauge transformations first used by Ba
Rhoades-Brown, and Weneser in numerically solving
two-center Dirac equation via coupled-channel meth
@36,37,35#. Alternative treatments of the asymptotic electro
projectile distance and alternative phase choices for
asymptotic channels are discussed in the appendixes.

II. ASYMPTOTIC SOLUTIONS TO TWO-CENTER
DIRAC EQUATION

We study relativistic heavy-ion collisions with a sing
active electron, e.g., we neglect electron-electron interact
in comparison to the strong electron-ion interactions.
external-field approach to the influence of the ions on
electron is appropriate for peripheral impact paramet
heavy ions, and high energies, where, to a very good
proximation, the ions travel on parallel, straight-line traje
tories, and ion recoil is negligible. We are using natural un
(c51, me51, and \51). The quantity a is the fine-
structure constant,ǎ and ǧm are Dirac matrices in the Dira
representation, as in Ref.@15#; and I 2 , 02 , I 4 , and 04 are
the two-dimensional and four-dimensional unit and zero m
trices.

A. States referred to a target-fixed inertial frame

Consider first a collision of a heavy, pointlike projecti
ion having chargeZP with a target ion having chargeZT .
We consider the dynamics of a single electron interact
with the external, time-dependent electromagnetic field c
ated by the two heavy ions~see Fig. 1!. The position of the
target nucleus is the origin of the electron coordinates,
the electron has position vectorrWT5rW5(x,y,z), and time
coordinatet. The projectile moves with constant velocityb
parallel to thez axis along a trajectory displaced from th
target by the impact parameterbW . The projectile is located a
the origin of the moving inertial frame, and in the project
frame the electron’s position vector isrWP9 5rW95(x9,y9,z9),
and time coordinatet9. Coordinates in the target and proje
tile inertial frames are related by an inhomogeneous Lore
transformation~Lorentz boost! parallel to thez axis such that

rW'9 5rW'2bW ,
r
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z95g~z2bt !, ~1!

t95g~ t2bz!,

whererW'5(x,y) are the transverse spatial coordinates of
electron in the target frame. The Lorentz boost implies t
the electron-projectile distance in the projectile frame,r P9
[A(x9)21(y9)21(z9)2, is represented in target-frame coo
dinates as

r P9 ~rW,t !5A~rW'2bW !21g2~z2bt !2. ~2!

Equivalently, we may refer all coordinates to the project
nucleus. The resulting relations are obtained by the repla
mentsP↔T, b→2b, andbW→2bW .

1. Two-center Dirac equation

The single-center Dirac equation describing the bou
and continuum states of the target ion has the following fo
in the target frame:

i
]

]t
ucT~rW,t !&5@Ĥ01ĤT#ucT~rW,t !&, ~3!

whereĤ0 is the free Dirac Hamiltonian, andĤT is the inter-
action of the electron with the target nucleus,

Ĥ0[2 i ǎ•¹W 1ǧ0, ~4!

ĤT[2
ZTa

r T
. ~5!

By $ucT
( j )(rW,t)&%, we denote the stationary states of the tar

ion with quantum numbersj ~e.g., see for details Ref.@14#!.
The two-center, time-dependent Dirac equation in the

get frame for an electron interacting with both target a
projectile ions is

FIG. 1. Coordinate systems for a relativistic collision betwe
two ions. The position of the target ion, with chargeZT , is the
origin of the unprimed coordinates. The position of the projec
ion, with chargeZP , is the origin of the doubly primed coordinate
The projectile moves with constant velocityb parallel to thez axis

on a trajectory with impact parameterbW . The electrone2 has the

coordinaterWT with respect to the target frame andrWP9 with respect to
the projectile frame.
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i
]

]t
uC~rW,t !&5@Ĥ01ĤT1ĤP~ t !#uC~rW,t !&, ~6!

where uC(rW,t)& is the Dirac spinor wave function of th
electron, and

ĤP~ t ![
2ZPag~ I 42bǎz!

A~rW'2bW !21g2~z2bt !2
~7!

is the electron-projectile interaction.

2. Coulomb-boundary conditions

The interactions appearing in the two-center, tim
dependent Dirac equation, Eq.~6!, are of long-range form, so
that the distortion of the electron’s wave function induced
a distant ion should not, in principle, be neglect
@13,14,38#. Asymptotic channel wave functions are therefo
defined as the solution of the two-center Dirac equation
asymptotic times. The importance of including the electro
interaction with asymptotically distant ions has been d
cussed extensively by Eichler and co-workers@39–41# for
relativistic atomic collisions in their work on the asymptot
solutions known as theCoulomb-boundary conditions~see
Ref. @14#, Sec. 5.3.3!.

In defining the asymptotic channel solutions for the tw
center Dirac equation, Eq.~6!, the asymptotic electron
projectile separationr P9 (rW,t→`) is approximated in Refs
@14,41# by the internuclear separationR9 @see Appendix A,
Eq. ~A6!#, that is,

r P9 ~rW,utu→`!→R95Ab21g2~b2z2bt !2. ~8!

This approximation transforms Eq.~6! to the form

i
]

]t
uFT

R`~rW,t !&5@Ĥ01ĤT1ĤP
R`~ t !#uFT

R`~rW,t !&, ~9!

whereuFT
R`(rW,t)& is the asymptotic solution, and

ĤP
R`~ t ![2

ZPag~ I 42bǎz!

Ab21g2~b2z2bt !2
~10!

is anapproximateasymptotic electron-projectile interaction
Equation~9! can be solved exactly for any value ofb.

Consider an ansatz which is a product of a space-ti
dependent phase factor and a single-center state~i.e., a func-
tion of the electron-target distance!,

uFT
R`~rW,t !&5e2 ixP

R
~z,t !ucR`~rW,t !&, ~11!

where the argument of the space-time-dependent phase
tor is

xP
R~z,t ![

ZPa

b
ln~R92bt9!5

ZPa

b
ln@g~b2z2bt !

1Ab21g2~b2z2bt !2#.

~12!
-
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ac-

Substituting this ansatz into Eq.~9!, multiplying from the left

by eixT
R(z,t), and collecting like terms gives

i
]

]t
ucR`~rW,t !&5@Ĥ01ĤT#ucR`~rW,t !&. ~13!

With the ansatz~11!, both the scalar and the vector comp
nents of the asymptotic interaction~10! are canceled exactly
and Eq. ~13! is identical to Eq. ~3!. This means that
uFT

R`(rW,t)& of Eq. ~11! factors exactly into a space-time
dependent phase factor and a single-center target eigen
ucR`(rW,t)&5ucT(rW,t)&.

The relativistic asymptotic solutions of the form~11! are
exact only in theg→` limit. For large, finiteg, the factored
forms are very useful, approximate asymptotic solutions.

In the derivation reviewed here, the approximation occ
in using Eq.~8! to obtain Eq.~9!, and not in the solution to
Eq. ~9!. The asymptotic distance, Eq.~8!, is accurate in the
nonrelativistic limitb2!1,g'1 @39#, but becomes approxi
mate for larger values ofg, when its accuracy is of the orde
g22 ~see Appendix A!.

3. Asymptotic two-center Dirac equation

Here we present an alternative derivation of the facto
asymptotic channel states. Formally, at the asymptotic lim
Eq. ~6! gives an asymptotic two-center Dirac equation@Eq.
~15! below# that is exact in the following sense: it is the
rigorous mathematical limit of Eq.~6! as utu→`. We obtain
this exact equation and then solve itapproximately, to order
g22.

Consider again the case with the electron near to the
get at asymptotic times. In this limit, the electron-project
distance is, Eq.~A10!,

lim
utu→`

r P9 ~rW,t ![r P9
`~rW,t !5Ab21g2~z2bt !2. ~14!

This expression differs from Eq.~2! by neglecting the trans
verse electron coordinaterW' , while the longitudinal coordi-
natez is retained, since it enters into the Lorentz transform
tion ~see Appendix A!. Using this distance to obtain th
asymptotic limit of the electron-projectile interaction, th
asymptotic, two-center Dirac equation in the target frame

i
]

]t
uFT

`~rW,t !&5@Ĥ01ĤT1ĤP
`~ t !#uFT

`~rW,t !&, ~15!

where uFT
`(rW,t)& is the asymptotic channel solution for a

electron referred to the target frame, andĤP
`(t) is the exact

asymptotic interaction of the electron with the distant proje
tile,

ĤP
`~ t ![

2ZPag~ I 42bǎz!

Ab21g2~z2bt !2
. ~16!

For solutions to the asymptotic Dirac equation, Eq.~15!,
consider an ansatz which is a product of a space-tim
dependent phase factor and a single-center state,

uFT
`~rW,t !&5e2 ixP~z,t !uc`~rW,t !&, ~17!
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where the argument of the space-time-dependent phase
tor is

xP~z,t ![
ZPa

b
ln@g~z2bt !1Ab21g2~z2bt !2#. ~18!

Substituting this ansatz into Eq.~15!, multiplying from the
left by eixT(z,t), and collecting like terms gives

i
]

]t
uc`~rW,t !&5F Ĥ01ĤT2S 1

g221
D ZPagbǎz

Ab21g2~z2bt !2G
3uc`~rW,t !&. ~19!

The scalar component of the asymptotic electron-projec
interaction is canceled exactly. The remaining vector com
nent is of order 1/g2, and vanishes in theg→` limit. In this
limit, the remaining equation is identical to the single-cen
Dirac equation for the target ion, Eq.~3!, and uc`(rW,t)& is
therefore a solution to this single-center equation,uc`(rW,t)&
→ucT(rW,t)&. We conclude again that, in the extreme hig
energy limit, the solution to the asymptotic, two-center Dir
equation, Eq.~15!, factors exactly into an unperturbe
single-center target eigenstate,ucT(rW,t)&, and a space-time
dependent phase factor,

lim
b→1

uCT
`~rW,t !&5e2 ixP~z,t !ucT~rW,t !&. ~20!

We have discussed two alternative derivations of the f
tored forms for the asymptotic solutions for the two-cen
Dirac equation and have shown that they provide ident
results in the high-energy limit: Equations~9! and ~15!, as
well as their respective solutions, Eqs.~11! and ~20!, are
identical asb→1. The physical reason for this is simple. A
b→1, the target atom, as seen from the projectile, shrink
a disk, so that the distinction between thez coordinate of the
nucleus and that of the electron disappears.

For large, finiteg, both derivations provide slightly dif-
ferent, but equally useful, approximate solutions accurat
order g22. Other equally valid choices of the argument
the phase factor in Eq.~18! can be made which differ only in
factors ofb2 @13,36# ~see Appendix B!.

B. Collider frame

For electrons distant from both the target and projec
ion at asymptotic times, the collider~i.e., center-of-velocity!
inertial frame is a natural choice. The origin of the collid
frame is reached from the origin of the target frame,
example, by an inhomogeneous Lorentz transformation
the z direction to a frame of velocitybC5A12gC

22 and
Lorentz factorgC5A(g11)/2. In the transverse direction
the origin of the collider frame is located equidistant fro
the target and projectile trajectories~see Fig. 2!. The position
vector of the electron in the collider frame isrWC8 5rW8
5(x8,y8,z8), and the associated time ist8. Coordinates in
the projectile and target frames are each related to the c
dinates in the collider frame by equal, but oppositely
rected, Lorentz transformations in thez direction,
ac-
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rW'9 5rW'8 2bW /2, ~21!

z95gC~z82bCt8!, ~22!

t95gC~ t82bCz8!, ~23!

and

rW'5rW'8 1bW /2, ~24!

z5gC~z81bCt8!, ~25!

t5gC~ t81bCz8!. ~26!

As a consequence of the Lorentz boosts, the electr
projectile distance in collider-frame coordinates is

r P9 ~rW8,t8!5A~rW'8 2bW /2!21gC
2 ~z82bCt8!2, ~27!

and the electron-target distance in collider-frame coordina
is

r T~rW8,t8!5A~rW'8 1bW /2!21gC
2 ~z81bCt8!2. ~28!

1. Two-center Dirac equation

The free-particle Dirac equation in the collider frame h
the form

i
]

]t8
ufC8 ~rW8,t8!&5Ĥ08ufC8 ~rW8,t8!&, ~29!

whereĤ08 is the free Dirac Hamiltonian in the collider frame

Ĥ08[2 i ǎ•¹W 81ǧ0. ~30!

The set $ufC8
( j 8)(rW8,t8)&% represents the Dirac plane-wav

eigenstates with quantum numbersj 8, namely, the three
components of the momentum,jW, the sign of the energy, an
the spin.

The two-center, time-dependent Dirac equation in the c
lider frame for an electron interacting with both target a
projectile ions is

FIG. 2. Coordinate systems for a relativistic collision betwe
two ions similar to Fig. 1 except that the collider~or center-of-
velocity! frame is shown in addition. The electron has the coor

natesrWC8 with respect to the collider frame. The projectile and targ

ions have the collider-frame coordinates,RW P8 , andRW T8 , respectively.
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i
]

]t8
uC8~rW8,t8!&5@Ĥ081ĤT8~ t8!1ĤP8 ~ t8!#uC8~rW8,t8!&,

~31!

whereuC8(rW8,t8)& is the Dirac spinor wave function of th
electron, ĤT8(t8) is the electron-target interaction, an

ĤP8 (t8) is the electron-projectile interaction,

ĤT8~ t8![
2ZTagC~ I 41bCǎz!

A~rW'8 1bW /2!21gC
2 ~z81bCt8!2

, ~32!

ĤP8 ~ t8![
2ZPagC~ I 42bCǎz!

A~rW'8 2bW /2!21gC
2 ~z82bCt8!2

. ~33!

2. Asymptotic two-center Dirac equation

Consider, in the collider frame, at asymptotic times,
electron distant from both the target and projectile ions. T
electron-projectile and electron-target distances then have
following asymptotic limits:

lim
ut8u→`

r P9 ~rW8,t8![r P9
`~rW8,t8!5A~b/2!21gC

2 ~z82bCt8!2,

~34!

lim
ut8u→`

r T~rW8,t8![r T
`~rW8,t8!5A~b/2!21gC

2 ~z81bCt8!2.

Using these distances, the asymptotic, two-center D
equation is

i
]

]t8
uFC8

`~rW8,t8!&5@Ĥ081ĤT8
`~ t8!1ĤP8

`~ t8!#uFC8
`~rW8,t8!&,

~35!

whereuFC8
`(rW8,t8)& is the Dirac spinor wave function of th

electron asymptotic channel solution,ĤT8
`(t8) is the

asymptotic electron-target interaction, andĤP8
`(t8) is the

asymptotic electron-projectile interaction,

ĤT8
`~ t8![

2ZTagC~ I 41bCǎz!

A~b/2!21gC
2 ~z81bCt8!2

, ~36!

ĤP8
`~ t8![

2ZPagC~ I 42bCǎz!

A~b/2!21gC
2 ~z82bCt8!2

. ~37!

For the solutions of Eq.~35!, consider an ansatz of
space-time-dependent phase factor times a Dirac plane-w
state

uFC8
`~rW8,t8!&5e2 ixC8 ~z8,t8!uf8`~rW8,t8!&, ~38!

where
n
e
he

c

ve

xC8 ~z8,t8![
ZPa

b
ln@gC~z2bCt8!

1A~b/2!21gC
2 ~z82bCt8!2#

2
ZTa

b
ln@gC~z1bCt8!

1A~b/2!21gC
2 ~z81bCt8!2#. ~39!

Substituting Eq.~39! into Eq. ~35!, multiplying from the left

by e1 ixC8 (z8,t8), and collecting like terms gives

i
]

]t8
uf8`~rW8,t8!&

5F Ĥ081S 1

g221
D ZTagbCǎz

A~b/2!21gC
2 ~z81bCt8!2

2S 1

g221
D ZPagbCǎz

A~b/2!21gC
2 ~z82bCt8!2G uf8`~rW8,t8!&.

~40!

As in the target-centered case, the scalar component of
singular asymptotic electron-projectile and electron-target
teractions vanish exactly, and the vector component vanis
in the bC→1 limit. In this limit, the remaining equation is
identical to the free Dirac equation, Eq.~29!, and
uf8`(rW8,t8)&→ufC8 (rW8,t8)& is a Dirac plane-wave eigenstat
We conclude that in the extreme, high-energy limit, the a
satz in Eq.~38! with the Dirac plane wave is the exact sol
tion to the asymptotic, two-center Dirac equation, Eq.~35!,

lim
bC→1

uFC8
`~rW8,t8!&5e2 ixC8 ~z8,t8!ufC8 ~rW8,t8!&. ~41!

III. SHORT-RANGE REPRESENTATION

The factored forms of the asymptotic solutions to the tw
center Dirac equation, Eqs.~11!, ~20!, and~41!, obtained in
the preceding section, invite the definition of a new repres
tation for the time-dependent Dirac equation. In this sect
we introduce this representation, which we call theshort-
range representation, within the context of computing am
plitudes for direct reactions first in the target frame, and th
the collider frame.

In nonrelativistic@39# as well as in relativistic collisions
@40,41#, it has been previously shown to be useful to intr
duce a formulation that substitutes the long-range Coulo
or Liénard-Wiechert interaction by an effective short-ran
interaction, jointly with an appropriate phase transformati
thus rendering formal scattering theory applicable. The
sence of these approaches has been to replace the ele
projectile separation for an electron close to the target
asymptotically far from the projectile, by the internucle
separationR9 given by the expression~8!. Then, with an
ansatz like Eq.~11!, the approximate asymptotic electron
projectile interaction~10! can be removed completely from
the Hamiltonian, so that forfinite electron-projectile separa
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tions, one has to deal with ashort-range interactionobtained
from the original long-range one by the replacement

1

r P9
→

1

r P9
2

1

R9
. ~42!

The effects of subtracting the asymptotic long-range p
have been demonstrated numerically for direct and re
rangement collisions using perturbation theory and coup
channel methods@41#.

We have shown in the preceding section and in Appen
A that in the relativistic regimeR9 differs from a more rig-
orous asymptotic limit for the electron-projectile separat
~14! or ~A10!, by terms of the order of 1/g2. This approach
revealed that a complete and exact removal of the asymp
electron-projectile interaction is possible only in theb→1
limit @see Eqs.~19! and ~B3!#.

For finite relativistic energies, terms of the order 1/g2

remain in either the scalar or vector components of
electron-projectile asymptotic interaction, but are small
largeg. In the following, we are concentrating on the hig
energy limit, in which the description becomes simple a
unique.

A. Exact transition amplitudes

Following the notation of Ref.@13#, let uC j
(1)(t f)& be the

exact outgoing-wave solution evolving from an initial cha
nel solutionuF j

`(t i)&, i.e.,

lim
t→2`

uC j
~1 !~ t !&5uF j

`~ t !&, ~43!

anduFk
`(t f)& be the final asymptotic channel. Then, by de

nition, the exact transition amplitude is given in thepost
form as

Ak j
~1 !5 lim

t f→`
^Fk

`~ t f !uC j
~1 !~ t f !&. ~44!

The prior form of the amplitude is defined att→2` as the
projection of the exact incoming wave solutionuC j

(2)(t i)&
evolving backward in time from the final channeluFk

`(t f)&,
i.e.,

lim
t→`

uCk
~2 !~ t !&5uFk

`~ t !&, ~45!

onto the initial channel solutionuF j
`(t i)&,

Ak j
~2 !5 lim

t i→2`
^Ck

~2 !~ t i !uF j
`~ t i !&. ~46!

The post and prior forms of the amplitude may be unifi
using the time-evolution operatorÛ(t f ,t i) to relate the full
outgoing-wave~incoming-wave! solution to its initial~final!
state as

uC j
~1 !~ t f !&5Û~ t f ,t i !uF j

`~ t i !&,
~47!

uCk
~2 !~ t i !&5Û†~ t f ,t i !uFk

`~ t f !&.

Inserting Eqs.~47! into Eq. ~44! or Eq. ~46!, one obtains
rt
r-
d-

ix

tic

e
r

d

Ak j5 lim

t f→`

t i→2`

^Fk
`~ t f !uÛ~ t f ,t i !uF j

`~ t i !&. ~48!

Reference@13# considered these states in the target iner
frame. Yet, the definitions presented here apply to the p
jectile or collider frame as well. In direct reactions, the initi
and final channels in Eq.~48! are both solutions of the sam
asymptotic Hamiltonian associated with a single collisi
partner~e.g., atomic excitation or ionization!. In rearrange-
ment collisions, the initial and final channels may be so
tions of different asymptotic Hamiltonians associated w
different collision partners~e.g., charge exchange!.

B. Short-range Dirac equation

In this section we discuss the short-range representa
for the Dirac equation within the context of computing tra
sition amplitudes fordirect reactions in the high-energy
limit.

1. Equation of motion: Target frame

In the following we consider the limitb→1, so that the
asymptotic channels for a target-frame electron interac
with a nearby target ion and a distant projectile ion has
exact, factored solution of Eq.~20!. We substitute this
asymptotic solution into the expression for the exact tran
tion amplitudes for direct reactions in the target frame, E
~48!, for the initial statej and final statek,

Ak j5 lim

t f→`

t i→2`

^e2 ixT~z,t f !cT
~k!~ t f !uÛ~ t f ,t i !ue2 ixT~z,t i !cT

~ j !~ t i !&.

~49!

Rearranging the exponential factors in the expression so
they are applied directly to the evolution operator, one o
tains

Ak j5 lim

t f→`

t i→2`

^cT
~k!~ t f !ue1 ixT~z,t f !Û~ t f ,t i !e

2 ixT~z,t i !ucT
~ j !~ t i !&.

~50!
The transition amplitude, Eq.~50!, is suggestive of a new

representation for the dynamics through the operation of
space-time-dependent phase,

uC~S!~rW,t !&[e1 ixP~z,t !uC~rW,t !&, ~51!

Û ~S!~ t f ,t i ![e1 ixP~z,t f !Û~ t f ,t i !e
2 ixP~z,t i !, ~52!

whereuC (S)(rW,t)& is the wave function, andÛ (S)(t f ,t i) is the
time-evolution operator in the new representation. Substi
ing Eq.~52! into Eq.~50! gives the exact amplitude for direc
reactions in the new representation,

Ak j5 lim

t f→`

t i→2`

^cT
~k!~ t f !uÛ ~S!~ t f ,t i !ucT

~ j !~ t i !&. ~53!

Note that Eq.~53! has the form of a transition amplitud
computed between initial and final channels which are un
torted single-center eigenstates of the target ion, as woul
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the case if the interaction between the electron and the
tant projectile was of short range.

To understand better its utility, we transform the tw
center Dirac equation into the short-range representation.
ginning with Eq.~6!, and making the substitution

uC~rW,t !&5e2 ixT~z,t !uC~S!~rW,t !&, ~54!

gives, after multiplying from the left bye1 ixT(z,t), the equa-
tion of motion,

i
]

]t
uC~S!~rW,t !&5@Ĥ01ĤT1ŴP~ t !#uC~S!~rW,t !&, ~55!

whereŴP(t) is the time-dependent electron-projectile inte
action in the new representation@35#,

ŴP~ t ![ĤP~ t !2
2ZPag„I 42~1/b!ǎz…

Ab21g2~z2bt !2
. ~56!

In the high-energy limit,b→1, and

lim
b→1

ŴP~ t ![ĤP~ t !2ĤP
`~ t !. ~57!

ŴP(t) is the original electron-projectile interaction with i
long-range, asymptotic space-time dependence subtra
The cancellation is exact only in theb→1 limit. Otherwise,
there remains a residual long-range interaction of the o
1/g2. As a result of this very useful characteristic, we na
this new representation theshort-range representation. The
phase transformation used to define the short-range repre
tation, Eq.~51!, exactly cancels the phase distortion fac
contained in the asymptotic solution to the two-center Di
equation in the extreme, high-energy limit, Eq.~20!. The
result is a representation of the two-center Dirac equa
appropriate for direct reactions in extremely relativis
heavy-ion collisions in which the electron-projectile intera
tion has short range and the initial and final states are ef
tively single-center eigenstates of the target ion.@Note that
the transverse-coordinate dependence ofŴP(t) remains of
long-range~i.e., 1/r') form. However, the transverse coord
nates do not contribute to the interaction of the electron w
a distant ion at asymptotic times.#

The electron-ion interaction in the short-range represe
tion simplifies further if, in addition to theb→1 limit, one
requires that the transverse electron coordinatesrW' and the
impact parameterb are small compared tog, i.e.,

urW'u, b!g. ~58!
is-
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In this limit, ŴP(t) factors into a product of a Diracd func-
tion of argument (t2z) and a logarithmic function of the
transverse coordinates~similar to the potential induced by
line of charge! ~see Refs.@34,26,27#!, i.e.,

lim

r' ,b!g
b→1

ŴP~ t !5~12ǎz!ZPad~ t2z!lnF ~rW'2bW !2

b2 G .

~59!

We refer to this as thesharp limit of the electron-projectile
interaction in the short-range representation as the interac
has zero range in the light-front coordinatet2[(t2z)/2.
This behavior reflects the fact that the peak transverse e
tric field produced by a moving charge increases prop
tional to g while the durationDt'b/(gb) of the collision
decreases as 1/g. The interaction in this sharp limit has th
character of an electromagnetic shock front which devel
as the speed of the source of the electromagnetic fieldb,
approaches the propagation speedc of the field @42#.

The short-range, two-center Dirac equation, Eq.~55!, in
the sharp limit@i.e., using the interaction in Eq.~59!#, has
been recently used by Baltz to compute the high-energy li
of the impact-parameter-dependent probabilities for bou
free electron-positron pair production in peripheral, relativ
tic heavy-ion collisions@26#. In reflecting on this achieve
ment, it is important to recall that the derivation of Eq.~55!
given here assumes asymptotic channels which correspon
direct reactions only. Asymptotic channels which correspon
to the electron being distant from the target as eithert i→
2` or t f→1` are not considered in this description. As
result, thecharge-transfer mechanismfor bound-free pair
production@43,44# is not included in the solutions given i
Ref. @26#. The extreme high-energy behavior of the charg
transfer mechanism for pair production has not received
tailed study.

An analogous short-range representation may be defi
for direct reactions in the projectile frame, with similar in
terpretation. The construction of the short-range represe
tion in the collider frame is also similar, but differs in tha
the asymptotic interaction of the electron with both project
and target ions must be considered. We discuss the colli
frame case in the next section.

2. Equation of motion: Collider frame

Consider the extreme, high-energy limitbC→1 of the
two-center Dirac equation in the collider frame, Eq.~31!, so
that the asymptotic channels for an electron interacting w
distant target and projectile ions has the factored form of
~41!. We substitute this exact solution into the expression
the exact transition amplitudes for the collider frame for t
initial statej and final statek,
obtains
Ak j5 lim

t f8→`

t i8→2`

^e2 ixC8 ~z8,t f8!fC8
~k!~ t f8!uÛ8~ t f8 ,t i8!ue2 ixC8 ~z8,t i8!fC8

~ j !~ t i8!&. ~60!

Rearranging the exponential factors in the expression so that they are applied directly to the evolution operator, one
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Ak j5 lim

t f8→`

t i8→2`

^fC8
~k!~ t f8!ue1 ixC8 ~z8,t f8!Û8~ t f8 ,t i8!e2 ixC8 ~z8,t i8!ufC8

~ j !~ t i8!&. ~61!
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Defining the short-range representation in the collider fram

uC8~S!~rW8,t8!&[e1 ixC8 ~z8,t8!uC8~rW8,t8!&, ~62!

Û8~S!~ t f8 ,t i8![e1 ixC8 ~z8,t f8!Û8~ t f8 ,t i8!e2 ixC8 ~z8,t i8! ~63!

gives the formal expression for the exact transition amplitu
between plane-wave states in the collider frame using
short-range representation,

Ak j5 lim

t f8→`

t i8→2`

^fC8
~k!~ t f8!uÛ8~S!~ t f8 ,t i8!ufC8

~ j !~ t i8!&. ~64!

To obtain the two-center Dirac equation in the collid
frame in the short-range representation, we begin with
~31!, and make the substitution

uC8~rW8,t8!&5e2 ixC8 ~z8,t8!uC8~S!~rW8,t8!&. ~65!

After multiplying from the left bye1 ixC8 (z8,t8), the equation
of motion has the form

i
]

]t
uC8~S!~rW8,t8!&5@Ĥ081ŴT8~ t8!1ŴP8 ~ t8!#uC8~S!~rW8,t8!&,

~66!

whereŴT8(t8) andŴP8 (t8) are the time-dependent electro
target and electron-projectile interactions in the short-ra
representation,

ŴT8~ t8![ĤT8~ t8!2
2ZTagC„I 41~1/bC!ǎz…

A~b/2!21g2~z81bCt8!2
,

~67!

ŴP8 ~ t8![ĤP8 ~ t8!2
2ZPagC„I 42~1/bC!ǎz…

A~b/2!21g2~z82bCt8!2
.

In the high-energy limit,bC→1, and

lim
bC→1

ŴT8~ t8![ĤT8~ t8!2ĤT8
`~ t8!, ~68!

lim
bC→1

ŴP8 ~ t8![ĤP8 ~ t8!2ĤP8
`~ t8!.

As in Eq. ~55!, the asymptotic dependence of the tim
dependent interaction has been canceled exactly~in the b
→1 limit!. Likewise, the phase distortion in the asympto
channel solutions is canceled by the phase transforma
defining the short-range representation, and the asymp
channels are effectively the Dirac plane waves.

Applying the sharp limit of Eq.~58! to Eqs. ~68!, we
obtain the following factored forms for the time-depende
interaction@34,26,27#:
e,

e
e

q.

e

-

on
tic

t

lim

r'8 ,b!gC

bC→1

ŴT8~ t8!5~11ǎz!ZTad~ t81z8!lnF ~rW'8 1bW /2!2

~b/2!2 G ,

~69!

lim

r'8 ,b!gC

bC→1

ŴP8 ~ t8!5~12ǎz!ZPad~ t82z8!lnF ~rW'8 2bW /2!2

~b/2!2 G .

The short-range, two-center Dirac equation, Eq.~66!, in the
sharp limit@using Eqs.~69!# has recently been used to com
pute the high-energy limit of the free electron-positron pa
production amplitudes in peripheral relativistic heavy-i
collisions @27–29#. As in the case of the target-frame equ
tion considered previously, the amplitudes derived from E
~66! and given in Refs.@27–30# correspond to direct reac
tions only. For the present case in the collider frame, o
asymptotic electron states distant from both target and p
jectile ions are considered@45#. The contribution of other
asymptotic channels to the high-energy limit of free-pair p
duction requires further investigation.

IV. GAUGE TRANSFORMATIONS

In discussing the two-center Dirac equation in the tar
frame, Eq.~6!, for relativistic heavy-ion collisions, Baltz an
co-workers have regarded the phase transformation, Eq.~51!,
used here to define the short-range representation, as a g
transformation@36,37,35,26#. Eichler and co-workers have
also remarked that the phase factors obtained in solving
the asymptotic channel solutions of Eq.~6! and used to ob-
tain a short-range effective interaction can be interpreted
gauge transformations~see e.g.,@13,14#!. In this section we
show explicitly that the phase transformation used to de
the short-range representation is equivalent to a gauge tr
formation, and highlight the relatedness of these two vie
points.

In investigating the phase transformation, Eq.~51!, as a
gauge transform, it is convenient to write the two-cen
Dirac equation explicitly in terms of the electromagne
four-vector interactionAm. Beginning with Eq.~6!, we write
the electron-projectile interaction Hamiltonian asĤP(t)
5A02ǎzAz, where

A0~rW,t ![
2ZPag

r P9 ~rW,t !
,

~70!

Az~rW,t ![bA0~rW,t !,

so that the two-center Dirac equation is written in the for
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i
]

]t
uC~rW,t !&5@Ĥ01ĤT1A0~ t !2ǎzAz~ t !#uC~rW,t !&.

~71!

We now rederive the two-center Dirac equation in the sh
range representation, Eq.~55!, by substituting the phas
transformation in Eq.~51! into Eq.~71! and multiplying from
the left bye2 ixP, to obtain

i
]

]t
uC~S!~rW,t !&5@Ĥ01ĤT1A0

~S!~ t !2ǎzAz
~S!~ t !#uC~S!~rW,t !&,

~72!

where the components of the four-vector interaction in
short-range representation are

A0
~S!~rW,t ![A0~rW,t !2

]xP~z,t !

]t
,

~73!

Az
~S!~rW,t ![Az~rW,t !1

]xP~z,t !

]z
,

or, more explicitly,

A0
~S!~rW,t !52ZPagF 1

r P9 ~rW,t !
2

1

r 9P
`~rW,t !

G ,

~74!

Az
~S!~rW,t !52ZPagbF 1

r P9 ~rW,t !
2

1/b2

r P9
`~rW,t !

G .

With the interaction written in the form of Eqs.~73!, the
phase transformation in Eq.~51! clearly accomplishes a
gauge transformation.

In general, gauge transformations leave physical qua
ties, such as theS-matrix amplitudes, invariant, wherea
other quantities, such as wave functions, propagators,
asymptotic channel solutions, may depend on the ga
Clearly, the invariance of physical quantities relies on
exact formulation. From a practical point of view, howeve
approximations are often needed. A widely applied meth
consists in the expansion of the time-dependent wave fu
tion in terms of a basis set of channel functions, such that
time-dependent Dirac equation~6! is equivalent to an infinite
set of coupled equations for the time-dependent expan
coefficients. For practical reasons, this set is truncated
finite number of states. While the complete set is, of cou
invariant under gauge transformations, a finite set usuall
not. In fact, a gauge transformation may not only modify t
effective interaction, but it also affects the convergence pr
erty of the expansion@46#. Therefore both effects shoul
always be considered simultaneously and, actually, can
utilized to speed up convergence@41#.

Within an exact treatment, which is our main subject
distinction has been made in Refs.@36,47,48# between gauge
transformations which leave the asymptotic channels inv
ant ~or trivially modified! as a result of the gauge functio
being constant at asymptotic times, and those which mo
boundary conditions since the gauge function is not cons
asymptotically. Indeed, the gauge transformation conside
t-
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in defining the short-range representation modifies
asymptotic states since it behaves asymptotically as

lim
t→1`

xP~z,t !5
2ZPa

b
lnF2guz2btu

b2 G , ~75!

lim
t→2`

xP~z,t !5
1ZPa

b
ln@2guz2btu#. ~76!

Implicit in using the short-range representation~or gauge!
in the high-energy limit is that the phase transformation, E
~51!, defining the representation, exactly cancels the ph
distortion of the asymptotic channels induced by the dist
projectile ion @see Eq.~20!#. As a result, the asymptotic
channel solutions for direct reactions in the short-range r
resentation are the undistorted, single-center atomic sta
uc j (rW,t)&. In other words, by using undistorted atomic sta
as asymptotic channels in the short-range representatio
was done in Ref.@26#, one is, in effect, using the factore
form for the asymptotic channel solutions, Eq.~20!, of
Eichler and co-workers.

V. CONCLUSIONS

A primary goal of this work was to place on a clear a
firm theoretical foundation the ‘‘sharp Dirac equation,’’ i.e
the two-center Dirac equation~s!, in both the target and the
collider frames, in the short-range representation, in the
treme relativistic~sharp! limit. The reason this is of primary
importance is that the extreme relativistic limit of the tw
center Dirac equation in the short-range representation
heavy-ion collisions simplifies remarkably, and allows f
closed-form solutions for pair-production amplitudes in th
limit.

With these goals in mind, we have described the relati
ship between asymptotic solutions to the two-center, tim
dependent Dirac equation for a single electron in periphe
relativistic heavy-ion collisions, and phase~or gauge! trans-
formations designed to remove the long-range asympt
interaction from the equation of motion. Direct reactions a
central to the discussion. ‘‘Charge-transfer’’ mechanisms
pair production@43,44# have been omitted here, and shou
be subsequently considered in the high-energy limit.

We have shown that the asymptotic channel solutions
torize into a space-time-dependent phase and an eigensta
the appropriate time-independent Hamiltonian, in the lim
b→1. For collision velocities less than the speed of lig
this factorization is approximate with accuracy of the ord
1/g2. We have also shown that as a result of this factori
tion a gauge transformation may be performed to a new r
resentation in which the asymptotic dynamics are included
the states. In this representation, the asymptotic interac
between the electron and a distant ion is of short-range fo
and the asymptotic solutions are undistorted, stationary s
tions of a time-independent Hamiltonian. Under such con
tions, a formally correct formulation of scattering theory m
be constructed. In addition, this short-range representa
has advantages for the convergence of numerical calculat
@40,41,36,37,49#.

The factorization of the asymptotic solutions in theb
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→1 limit also provides a significant simplification in the d
namics. A further simplification is achieved if the magnitu
of the transverse coordinater' and the impact parameterb
are constrained to be much smaller thang. In this limit, the
time-dependent interaction factors into a logarithmic fun
tion of the transverse coordinate, and a Diracd function of a
light front variable,t65(z6t)/2, describing an electromag
netic shock on the light front@34,35,27#. The identification
of the separable form has allowed for the closed-form so
tion of amplitudes for electron-positron pair production
the high-energy limit of heavy-ion collisions@26–29#.

A connection with the previous pioneering work
Eichleret al., on the Coulomb-boundary conditions was al
made in this paper. We have elucidated and discussed
relatedness of the Coulomb-boundary approach and w
Baltz and co-workers have recently accomplished via
machinery of gauge transformations. We have shown tha
the high-energy limit these two approaches are in agreem
and differ mostly in their language.

The replacement strategy previously developed by Eic
and co-workers was designed to remove the long-range
by a gauge or phase transformation. This treatment is f
symmetric with respect to the target and projectile frame,
the correct nonrelativistic limit, and has been successful
number of calculations. We note, however, that there is
unique way to derive ‘‘replacements.’’ When the purpose
to have a good basis set for numerical calculation, a repla
ment procedure is a useful and adequate approximation
the other hand, if one is treating the problem in a form
approach, as was recently done for the high-energy collis
limit in Refs. @26–29#, the rigorous definition of the short
range representation as presented here is of significant
portance.

In regard to using the factored solution as an accurate,
approximate, asymptotic channel solution for calculation
high-energy collision phenomena, one should keep in m
that the factored solution, e.g., the phase factor time
single-center eigenstate, is an exact solution to the t
center Dirac equation for asymptotically large times,only in
the limit b→1. For large, but finiteg, the factored solution
is an approximate solution to the asymptotic Dirac equat
accurate to order 1/g2. Hence, choosing between factors
b in the argument of the phase is largely a matter of perso
taste.
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APPENDIX A: ASYMPTOTIC ELECTRON-ION DISTANCE

In this appendix we discuss the asymptotic limit of t
electron-projectile distance needed to describe the interac
of an electron with a projectile ion at asymptotic timesutu
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→`. The electron-projectile distance in the projectile’s re
frame,

r P9 5A~rW'9 !21~z9!2, ~A1!

is represented in terms of the target-frame coordinates a

r P9 ~rW,t !5A~rW'2bW !21g2~z2bt !2, ~A2!

where $rW'9 ,z9,t9% and $rW' ,z,t% are the space-time coord
nates of the electron in the projectile frame and in the tar
frame, respectively, which are related by an inhomogene
Lorentz transformation as in Eqs.~1!. We would like to ob-
tain an asymptotic~i.e., utu→`) limit for r P9 when the inter-
nuclear separationR9,

R9~ t9!5Ab21b2~ t9!2, ~A3!

is large compared to the separations between the electron
the target.

We now discuss the problem of the asymptotic electr
projectile separation in two different versions.

1. Internuclear separation

Following the arguments given in Refs.@13,14#, we sub-
stitute the internuclear separationR9 for the asymptotic
electron-projectile separation, which should be a good
proximation for very large positive or negative times. Fo
mally, this corresponds to taking

rW'→0, z→0 ~A4!

in the target frame. Once thisreplacementis performed, we
considerR9 as aparameter of the systemdescribing the in-
ternuclear motion and no longer the position of the electr
that is, we leave the Lorentz transformation,

t95g~ t2bz!, ~A5!

relating the projectile-frame time to the target-frame time
an arbitrary electron position, intact. This constitutes an
consistency, if the position of the target nucleus with resp
to the projectile nucleus is interpreted as an electronic p
tion with the coordinates~A4!. In this respect, the replace
ment rWP9→R9 with R9 given by Eqs.~A3! and ~A5!, i.e.,

r P9→Ab21g2~b2z2bt !2, ~A6!

is not theformally derivableasymptotic limit. According to
Eq. ~A4!, formal consistencycan only be achieved by replac
ing t9→gt, i.e.,

r P9→Ab21g2b2t2. ~A7!
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However, Eq.~A7! is not useful for our purpose, because t
z dependence is required to describe the magnetic compo
of the electromagnetic interaction at asymptotic times
largeg @40#.

In the nonrelativistic limitb2!1,g'1, when t9't, no
inconsistency occurs, and Eq.~A3! or ~A6! immediately
leads to the usual and successfully applied replacement@39#

r P→R5Ab21b2t2. ~A8!

2. Longitudinal electron-projectile separation

To obtain a formally rigorousz dependence for the
asymptotic limit of the electron-projectile distancer P9 for an
electron near to the target but distant from the projectile,
should not user P9→R9, but should maintain the dependen
on the z coordinate, that is, retain the exact longitudin
electron-projectile distance. Even ifuzu!butu in the labora-
tory at asymptotic times, we do not set it to zero. This me
that instead of Eq.~A4!, we take

rW'→0, ~A9!

while z is retained. This procedure guarantees that Lore
transformations can be consistently applied. The result
formally correct asymptotic limit of the electron-projectile
distance is

lim
utu→`

r P9 ~rW,t ![r P9
`~rW,t !5Ab21g2~z2bt !2. ~A10!

This, no doubt, is a better approximation to Eq.~A2! than
r P9→R9. In order to compare it with Eq.~A6!, we may write

lim
utu→`

r P9 ~rW,t !5Ab21g2@~g221b2!z2bt#2. ~A11!

Note that, compared to Eq.~A6!, an additional term with
1/g2 appears. This term reflects the difference between
ing the longitudinal electron-projectile separation and the
ternuclear separation. One sees this difference more ex
itly by considering the ratior P9 /R9 in the limit g@1, uzu
!butu, andb!gutu. Keeping terms proportional toz/t, we
obtain

r P9

R9
'12

z

g2t
. ~A12!

Indeed, for very large values ofg, the target atom as see
from the projectile shrinks to a disk, so that the electroniz
coordinate almost coincides with thez50 coordinate of an
electron located at the target nucleus.

We here have discussed two different approaches
identifying the asymptotic electron-projectile separation. T
first is based on a substitution by the internuclear separa
which implies a formal inconsistency if interpreted as a tr
electronic separation instead of a parameter describing
projectile motion. However, it appears physically reasona
ent
r

e

l

s

tz
g,

k-
-
ic-

or
e
n,
e
e
le

and has the correct nonrelativistic limit. The second is f
mally rigorously derivable by keeping the longitudinal ele
tronic coordinate and hence encounters no problems w
applying Lorentz transformations in a straightforward fas
ion. Both approaches differ in a term of the order of 1/g2 in
the asymptotic electron-projectile separation and agree
b→1. As discussed in Sec. II A and in Appendix B, discre
ancies of this order propagate into the factored forms of
asymptotic channel solutions and the asymptotic interac
when they are applied for large, but finite,g.

APPENDIX B: PHASE CHOICES
FOR ASYMPTOTIC CHANNELS

In Sec. II A we have discussed two versions, Eqs.~11!
and~17!, for separating asymptotic wave functions by intr
ducing the phases~12! and~18!, respectively. These phase
differing only in factorsb2, arise from different choices fo
the asymptotic electron-ion distance~see Appendix A!. For
our present purposes, choosing among these different p
arguments is largely a matter of personal taste since onl
the g→` limit does the asymptotic interaction vanish e
actly in the short-range representation. For large finite val
of g, terms of the order of 1/g2 remain. In order to illustrate
the consequences of phase choices, consider yet an
product ansatz for the solution of the asymptotic two-cen
Dirac equation in the target frame,

uFT
`~rW,t !&5e2 iLT~z,t !ucT~rW,t !&, ~B1!

where

LT~z,t ![ZPab ln@g~z2bt !1Ab21g2~z2bt !2#.
~B2!

Substituting this ansatz into Eq.~15!, multiplying from the
left by eiLT(z,t), and collecting like terms gives

i
]

]t
ucT~rW,t !&

5F Ĥ01ĤT2S 1

g2D ZPag

Ab21g2~z2bt !2G ucT~rW,t !&.

~B3!

With the phase choice in Eq.~B2!, the vector component o
the asymptotic electron-projectile interaction is canceled
actly, and the remaining scalar component is of order 1/g2.
In contrast, with the phase choice made in Eq.~18!, which
differs from Eq. ~B2! only by a factor ofb2, the scalar
component cancels exactly, and the vector component i
order 1/g2.

One may always perform a gauge transformation s
that a single component~or a single linear combination o
components! of the four-vector electromagnetic interaction
exactly zero for all times. Such a gauge condition is kno
as anaxial gauge~see Refs.@15,50#!. The novelty of the
short-range representation in theb→1 limit is that in it the
full, asymptotic interaction~both scalar and vector compo
nents! is zero.
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