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We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a
peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the
high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close con-
nection with gauge transformations which transform the dynamics into a representation in which the interaction
between the electron and a distant ion is of short range. We describe the implications of this relationship for
solving the time-dependent Dirac equation for extremely relativistic collisi@k050-294{®9)03801-9

PACS numbsgps): 11.80—m, 34.50-s, 25.75--q, 12.20—m

I. INTRODUCTION ing order in the small parametey 2, for the Lorentz-
boosted Coulomb potentidB3—35,27 acting between the
Particle production via electromagnetic processes in peactive electron and a bare nucleus. In this form, the depen-
ripheral collisions of relativistic heavy ions has received sig-dence of the interaction on the transverse electron coordi-
nificant study recently, both experimenta]li—11] and theo- nates separates from the dependence on the longitudinal co-
retically (for reviews, see[12-14), due to anticipated ordinatez and the timet. Moreover, the dependence on the
experimental opportunities at colliding-beam acceleratorslatter arises in combinations identified as the light-front vari-
and the importance of this phenomenon for the operation andbles, e.g.,r-=(z*t)/2, in the form of a zero-range or
performance of such facilities. Also of interest is the oppor-sharp potential. The separability of this interaction in the
tunity to study strong-field QED effects in particle produc- time-dependent, two-center Dirac equation allows for its
tion over a wide range of charge and collision enefy—  closed-form solution26—29. However, this useful form oc-
25]. curs at the high-energy limit only after applying phase trans-
The high-energy limit of peripheral relativistic heavy-ion formations so as to remove the long-rarméependence of
collisions has been recently examined, and closed-form exhe interactior{35-37.
pressions for the amplitudes describing electron-positron pair In this present work we study these phase transformations
production have been obtaing@6—29. These new results and show how they constitute well-defined gauge transfor-
offer significant insight into the understanding of relativistic mations while from a parallel perspective they formally de-
heavy-ion collision dynamic§26—33. In these works, the fine an interaction representation in which the asymptotic
consequences of allowing the collision velocity to approach(i.e., |[t|—«) interaction of an electron with a distant ion is
the speed of light, i.e.3=v/c—1, and thus the collision absorbed into a redefinition of the electronic states. In this
energy to approach infinityy=(1— 8?) ">, have been representation, which we call tilsdort-range representation
investigated. This limit has been motivated by the progresthe asymptotic channel states are free from effects of the
toward new colliding-beam heavy-ion accelerator facilitiesdistant ion, and in the high-energy limit of infinite the
currently in various stages of construction and planning. Thénteraction has zero range. In the high-energy limit, the sepa-
Relativistic Heavy-ion CollidefRHIC) at Brookhaven Na- ration is exact. For finitey, the short-range interaction is an
tional Laboratory will begin operation in 1999, offering col- approximation correct to ordery 2, and so are the
lision velocities in the collider frame oB-~0.9999. The asymptotic channel wave functions. Neither the two-center
Large Hadron CollidenLHC), currently being planned at Dirac equation, nor its boundary conditions, are rigorously
CERN, will offer collision velocities which more closely ap- separable for finitey.
proach the speed of ligh3c~0.9999999. Indeed, in ex- In this context, we review the pioneering work of Eichler
periments recently performed at CERN’s Super Proton Synand co-worker§39-4] referred to by the nam€oulomb-
chrotron[1,4,9,1Q, in which heavy ions collide in a fixed- boundary conditions where the long-range Coulomb or
target mode, the equivalent collider-frame collision velocity Liénard-Wiechert interaction was replaced by an effective
exceeds 0.99 suggesting that the high-energy limit is al- short-range interaction. We show how corrections of order
ready a meaningful and relevant approximation for use iny~2, explicit in our formal definition of the short-range rep-
interpreting the experimental resulta9]. resentation, are implicit in the replacement procedure of the
Of central importance to recent investigations of the high-electron-projectile distance by the target-projectile distance
energy limit is the use of a simplified form, accurate to lead-that was used to obtain the asymptotic channels with these
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Coulomb-boundary conditions.

In Sec. Il we discuss the asymptotic channel solutions for
the two-center Dirac equation for extremely relativistjg (
—1, y—o) heavy-ion collisions. We derive factored forms
for the asymptotic solutions which are accurate to onge,

i.e., they are exact in the high-energy limig-G ). In Sec.

A we consider the case where the electron is asymptoti-
cally referred to the target reference frafne., the electron

is near to the target d$|— ), while in Sec. IIB we con-
sider the case where the electron is asymptotically near to
neither the target nor the projectile ion, and is most naturally
referred to the collidefcenter-of-velocity frame. In Sec. llI

we define and present the short-range representation and de-
rive from it the high-energy or sharp limit for the two-center ) L .
Dirac equation in a simple form. In Sec. IV we show that the_ F'C- 1. Coordinate systems for a relativistic collision between
phase transformation defining the short-range representatigff® /"S- The position of the target ion, with charge, is the
constitutes a gauge transformation. In so doing, we makgngm_of the “”p“m.e“ coor_dl_nates. The position of the p.rojecme
explicit the connection between the Coulomb-boundary cone " W'th. Ch?rgdp’ 'S th.e origin of the dogbly primed Coordmé.‘tes'
ditions and the gauge transformations first used by BaltzThe prO].eCtlle mo.v esf with constant ve locieyparallel to,tha &ds
Rhoades-Brown, and Weneser in numerically solving the<5n a t.l‘a]ecatOI’y. with impact parametbr The elc:actrgne has the
two-center Dirac equation via coupled-channel method§°°rd'n_atg_T with respect to the target frame anflwith respect to
[36,37,35. Alternative treatments of the asymptotic electron- e Projectile frame.

projectile distance and alternative phase choices for the

asymptotic channels are discussed in the appendixes. Z'=y(z-pt), 1)

"_ _
IIl. ASYMPTOTIC SOLUTIONS TO TWO-CENTER t'=y(t=p2),

DIRAC EQUATION - . .
wherer, =(x,y) are the transverse spatial coordinates of the

We study relativistic heavy-ion collisions with a single electron in the target frame. The Lorentz boost implies that
active electron, e.g., we neglect electron-electron interactiongie electron-projectile distance in the projectile framg,
in comparison to the strong electron-ion interactions. An=/(x")Z+ (y")2+ (Z")?, is represented in target-frame coor-
external-field approach to the influence of the ions on thgjjnates as
electron is appropriate for peripheral impact parameters,
hea\{y ions, and _hlgh energies, where, to a very gooq ap- r’F’,(F,t)z \/(r1—5)2+y2(z—,8t)2. )
proximation, the ions travel on parallel, straight-line trajec-
tories, and ion recoil is negligible. We are using natural unitssquivalently, we may refer all coordinates to the projectile
(c=1, me=1, and2=1). The quantitye is the fine- nycleus. The resulting relations are obtained by the replace-
structure constanty and y* are Dirac matrices in the Dirac mentsp—T, g— — 8, andb— —b.
representation, as in Rgfl5]; andl,, 0,, I, and @, are
the two-dimensional and four-dimensional unit and zero ma- 1. Two-center Dirac equation
trices.

The single-center Dirac equation describing the bound
! L and continuum states of the target ion has the following form
A. States referred to a target-fixed inertial frame in the target frame:
Consider first a collision of a heavy, pointlike projectile
ion having chargeZp with a target ion having chargé;. . - A -
We consider the dynamics of a single electron interacting 'E|¢T(r:t)>—[Ho+ Hellg(r,1)), 3
with the external, time-dependent electromagnetic field cre-
ated by the two heavy ionsee Fig. 1. The position of the \yheref, is the free Dirac Hamiltonian, anid; is the inter-
target nucleus is the origin of the electron coordinates, angction of the electron with the target nucleus,
the electron has position vector=r=(x,y,z), and time
coordinatet. The projectile moves with constant velocigy Ho=—ia-V+5°, 4
parallel to thez axis along a trajectory displaced from the
target by the impact parameter The projectile is located at
the origin of the moving inertial frame, and in the projectile
frame the electron’s position vector i&=r"=(x",y",z"), _
and time coordinaté’. Coordinates in the target and projec- By {|4{/(r,t))}, we denote the stationary states of the target
tile inertial frames are related by an inhomogeneous Lorention with quantum numberg(e.g., see for details Reff14]).
transformation(Lorentz boostparallel to thez axis such that The two-center, time-dependent Dirac equation in the tar-
. - - get frame for an electron interacting with both target and
ri=r,—b, projectile ions is

. Zta
Ar=-—"— (5)

rr’
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9 . . . Substituting this ansatz into E(R), multiplying from the left
- — . R
Iat (W (r,t)=[Hot+Hr+Hp(H)]|¥(r,0), 6) by X129 and collecting like terms gives
- . . : . d - I -
where | ¥ (r,t)) is the Dirac spinor wave function of the i—|gR°(r 1) =[Fo+ ]| g7(r ). (13
electron, and at

— Zoay(l4— Bay) With the ansat£11), both the scalar and the vector compo-

A o(t)= 7) nents of the asymptotic interacti¢hO) are canceled exactly,
\/(;l_5)2+ v2(z— Bt)? and Eqg. (13) is identical to Eq.(3). This means that
|cI)T°°(F,t)) of Eqg. (11) factors exactly into a space-time-
is the electron-projectile interaction. dependent phase factor and a single-center target eigenstate
y 471, 0)=[g(r 1))
2. Coulomb-boundary conditions The relativistic asymptotic solutions of the forfhl) are

The interactions appearing in the two-center, time-exactonly in they—-co limit. For large, finitey, the factored
dependent Dirac equation, E@), are of long-range form, so forms are very useful, approximate asymptotic solutions.
that the distortion of the electron’s wave function induced by In the derivation reviewed here, the approximation occurs
a distant ion should not, in principle, be neglectedin using Eq.(8) to obtain Eq.(9), and not in the solution to
[13,14,38. Asymptotic channel wave functions are thereforeEQ. (9). The asymptotic distance, E¢B), is accurate in the
defined as the solution of the two-center Dirac equation fononrelativistic limit 32<1,y~1 [39], but becomes approxi-
asymptotic times. The importance of including the electron’smate for larger values of, when its accuracy is of the order
interaction with asymptotically distant ions has been dis-y~ 2 (see Appendix A
cussed extensively by Eichler and co-workg89—-41 for

relativistic atomic collisions in their work on the asymptotic 3. Asymptotic two-center Dirac equation
solutions known as th€oulomb-boundary conditiontsee Here we present an alternative derivation of the factored
Ref.[14], Sec. 5.3.8 asymptotic channel states. Formally, at the asymptotic limit,

In defining the asymptotic channel solutions for the two-gq. (6) gives an asymptotic two-center Dirac equat|@.
center Dirac equation, Eq(), the asymptotic electron- (15) below] that is exactin the following sense: it is the
projectile separatiomp(r,t—) is approximated in Refs. rigorous mathematical limit of Eq6) as|t|—c. We obtain
[14,41) by the internuclear separatid®’ [see Appendix A, this exact equation and then solvajtproximatelyto order

Eq. (A6)], that is, y 2
R Consider again the case with the electron near to the tar-
rp(r,tj—==)—=R"=b?+ y*(B%z— Bt)°. (8)  get at asymptotic times. In this limit, the electron-projectile

distance is, Eq(A10),

lim ri(r,t)=rp°(r,t)=\b?+2(z— Bt)2. (14

[t]— o0

This approximation transforms E¢) to the form

J - N N N -
i @F(r 1)) =[Ho+ Hr+HE" ()] @F(r.1),  (9) , o ,
This expression differs from E@2) by neglecting the trans-
verse electron coordinarae_yL , while the longitudinal coordi-
natez is retained, since it enters into the Lorentz transforma-
tion (see Appendix A Using this distance to obtain the

where|®R(rt)) is the asymptotic solution, and

Zpay(l4—Bay)

FR=(t)=— (10 asymptotic limit of the electron-projectile interaction, the
P \/b2+ v2(B%z— Bt)? asymptotic, two-center Dirac equation in the target frame is
is anapproximateasymptotic electron-projectile interaction. i%|<b?(?,t))=[lilo+ Hi+ I:IS(t)]|(I)$(F,t)), (15)

Equation(9) can be solved exactly for any value Bf
Consider an ansatz which is a product of a space-time- - - ) _ )
dependent phase factor and a single-center tatea func- where|®(r,t)) is the asymptotic channel solution for an

tion of the electron-target distance electron referred to the target frame, aﬁa(t) is the exact
. asymptotic interaction of the electron with the distant projec-
|(I)$°°(F,t)>:e_iXP(Z:t)|l/IRx(F,t)>, 1y  tile,

—Zpay(ly— Bay)
VbZ+ (- pt)?
For solutions to the asymptotic Dirac equation, Etp),

consider an ansatz which is a product of a space-time-
dependent phase factor and a single-center state,

where the argument of the space-time-dependent phase fac-
tor is

An(t)= (16)

Zpa
B

+\b2+y(B2— Bt)?].
(12) |DZ(r 1)) =e PV y=(r 1)), (17)

Z
XB(z)= "5 In(R'— t') = 2= Inl v(B%2— Bt)
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where the argument of the space-time-dependent phase fa
tor is

Z
XP(Z,t)E%aln[ Wz— B+ T+ &= B02). (19)

Substituting this ansatz into E¢L5), multiplying from the
left by €'X7(2)  and collecting like terms gives

2y (7,0 = | Aot Frr— | — ) Zesyias
R L PN e P
X[y (r.). (19

The scalar component of the asymptotic electron-projectile FIG. 2. Coordinate systems for a relativistic collision between
interaction is canceled exactly. The remaining vector compotwo ions similar to Fig. 1 except that the collidéor center-of-
nent is of order 11,2, and vanishes in th@— < limit. In this velocity) frame is shown in addition. The electron has the coordi-

limit, the remaining equation is identical to the single-centematesr»’C with respect to the collider frame. The projectile and target
Dirac equation for the target ion, E@), and|zjf°°(F,t)> is ions have the collider-frame coordinat&y, , andﬁ}, respectively.
therefore a solution to this single-center equatiqlﬁ,(ﬂt))

- i _ _ r=r! —b/2, 21
—|(r,t)). We conclude again that, in the extreme high- L4 @1
energy limit, the solution to the asymptotic, two-center Dirac 2'=yo(Z' = Bet’), (22)
equation, Eq.(15), factors exactly into an unperturbed,
single-center target eigenstate(r,t)), and a space-time- t"=yc(t' = Bcz'), (23
dependent phase factor,

and
lim [WF(r,t))=e""PE0 yr(r 1)) (20) F = +B12 (24
p—1 + ’
— !_,’_ !

We have discussed two alternative derivations of the fac- 2=7c(2'+ et), @9
tored forms for the asymptotic solutions for the two-center t=ye(t' + Bez’). (26)
Dirac equation and have shown that they provide identical
results in the high-energy limit: Equatiori8) and (15), as As a consequence of the Lorentz boosts, the electron-

well as their respective solutions, Eq4.1) and (20), are  projectile distance in collider-frame coordinates is
identical asB— 1. The physical reason for this is simple. As . S
B—1, the target atom, as seen from the projectile, shrinks to Fp(r' ) =N(r —bI22+92(z — Bct)? (27)
a disk, so that the distinction between theoordinate of the
nucleus and that of the electron disappears.

For large, finitey, both derivations provide slightly dif-
ferent, but equally useful, approximate solutions accurate to
order y~2. Other equally valid choices of the argument of
the phase factor in E¢18) can be made which differ only in
factors of 8% [13,36] (see Appendix B

and the electron-target distance in collider-frame coordinates
is

Fr(F )= V(I +b/2)24 y24(Z +Bct')?. (28)

1. Two-center Dirac equation

The free-particle Dirac equation in the collider frame has

B. Collider frame the form

For electrons distant from both the target and projectile S, - ~
ion at asymptotic times, the collidéie., center-of-velocity |;|¢C(r ")) =Holoe(r',t")), (29
inertial frame is a natural choice. The origin of the collider

frame Is reached_ from the origin of the target frame_, fo_rwherelil(’) is the free Dirac Hamiltonian in the collider frame,
example, by an inhomogeneous Lorentz transformation in

the z direction to a frame of velocityBc=1— ygz and ﬂéz_ia.€/+ Y°. (30)
Lorentz factoryc=(y+1)/2. In the transverse direction,

the origin of the collider frame is located equidistant from The set{|¢’c(j')(F’,t’)>} represents the Dirac plane-wave
the target and projectile trajectoriésee Fig. 2 The position eigenstates with quantum numbers namely, the three

vector of the electron in the collider frame ig.=r" components of the momentum, the sign of the energy, and
=(x",y’,z"), and the associated time 5. Coordinates in the spin.

the projectile and target frames are each related to the coor- The two-center, time-dependent Dirac equation in the col-
dinates in the collider frame by equal, but oppositely di-lider frame for an electron interacting with both target and
rected, Lorentz transformations in tkealirection, projectile ions is
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d > N ~ ~ - Pt sy — Zpa '
i;lllf’(r’,t’)):[H(’)JrH}(t’)+H{g(t’)]|‘1"(r’,t’)>, xc(Z',t )=7ln[7c(z—ﬂct )
@D + 027+ (2 - Bet')2]
where|\P’(F’,t’)> is the Dirac spinor wave function of the Zra ,
Nrery } : - ——In[yc(z+Bct’)
electron, H(t') is the electron-target interaction, and B

HA(t') is the electron-projectile interaction, , -
P(t) pro) +(0122+2(Z + BtH?]. (39

—Zrayc(l4+ Beay) Substituting Eq(39) into Eq. (35), multiplying from the left

Hrlt)= \/(Fi+5/2)2+ 7%(2’+,3Ct’)2, (32 by e*ixct)and collecting like terms gives
; A
. —Zpayc(la—Becay) '_,|¢’, (r',t")
Hp(t')= J . 3y at
rl—b/2)%+y2(z' — Bct')? .
(ry )<+ el Bct') e, 1 ZrayBed,
2. Asymptotic two-center Dirac equation 0 y>—1 \/( b/2)2+ 7%(2’ +Bct")?
Consider, in the collider frame, at asymptotic times, an .
electron distant from both the target and projectile ions. The _( 1 ) ZpayBca; |67 (F )
electron-projectile and electron-target distances then have the y2—1 \/( b/2)2+ y(z:(z, — Bct')?

following asymptotic limits:
(40)

lim rp(r' ) =rp”(r',t') = J(b/2)2+ y&(z' — Bct')?,

It’lﬂoc

As in the target-centered case, the scalar component of the
(34) singular asymptotic electron-projectile and electron-target in-
teractions vanish exactly, and the vector component vanishes
, ey o > in the Bc—1 limit. In this limit, the remaining equation is
!|m rr(r ) =r7(r' t) = V(b/2) %+ y&(z' + Bct')?. identical to the free Dirac equation, Eq29), and

= | “(r' ")) —|pe(r’,t')) is a Dirac plane-wave eigenstate.
Using these distances, the asymptotic, two-center Dira¥V€ conclude that in the extreme, high-energy limit, the an-
equation is satz in Eq.(38) with the Dirac plane wave is the exact solu-
tion to the asymptotic, two-center Dirac equation, E2p),

d N ~ ~ ~ > ; 190021 I\ — A i X(Z )t (T
I—|D"(r",t))=[Ho+H™(t") + Hp" (1) ][O (r" 1), ﬁ"mll‘Pc (r',t))=e @ Dge(r' t)). (4D
at’ s

(35

Ill. SHORT-RANGE REPRESENTATION
where|®c™(r",')) is the Dirac spinor wave function of the The factored forms of the asymptotic solutions to the two-

electron asymptotic channel solutiorki™(t") is the  center Dirac equation, EqéL1), (20), and(41), obtained in
asymptotic electron-target interaction, ahth"(t’) is the  the preceding section, invite the definition of a new represen-

asymptotic electron-projectile interaction, tation for the time-dependent Dirac equation. In this section
we introduce this representation, which we call gteort-
A —Zraye(l 4+ Bea,) range repres.entatiqmvi'thin the context of computing am-
H (t')= , (36)  plitudes for direct reactions first in the target frame, and then
V(0/2)24 y2(2' + Bet’)? the collider frame.

In nonrelativistic[39] as well as in relativistic collisions
_7 (L= Bedy) [40,41], it has been previously shown to be useful to intro-
A1) = pa¥c(la—Bea; 37) duce a formulation that substitutes the long-range Coulomb
\/ 24 2/ _ 1 12 or Lienard-Wiechert interaction by an effective short-range
(b/2)*+%(2' = Bt') or Lienard-Wiechert . |
interaction, jointly with an appropriate phase transformation,
For the solutions of Eq(35), consider an ansatz of a thus rendering formal scattering theory applicable. The es-
X . . sence of these approaches has been to replace the electron-
space-time-dependent phase factor times a Dirac plane-wave .~ . )
projectile separation for an electron close to the target and
state : e .
asymptotically far from the projectile, by the internuclear
- et R separationR” given by the expressiof8). Then, with an
[DC(r' t'))y=e XD g (r' 1)), (38  ansatz like Eq(11), the approximate asymptotic electron-
projectile interaction(10) can be removed completely from
where the Hamiltonian, so that fdiinite electron-projectile separa-
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tions, one has to deal withshort-range interactiorbtained A= lim (d)“(tf)ll](tf )] (t))). (48)
from the original long-range one by the replacement b k BRI
tg—o
1 1 1
r7—>r7— E (42 Referencg 13] considered these states in the target inertial
P P

frame. Yet, the definitions presented here apply to the pro-

The effects of subtracting the asymptotic long-range pariectile or collider frame as well. In direct reactions, the initial
have been demonstrated numerically for direct and rear@‘rld final phanne!s |n_Eq48) are both sqlutlons. of the same
rangement collisions using perturbation theory and coupled"flsymptotIC Ham|ltpn|an _as§00|at9d \.N'th. a single collision
channel methodB41]. partner(e.g., atomic excitation or ionizatipnin rearrange-

We have shown in the preceding section and in Appendb[“ent collisions, the initial and final channels may be solu-
A that in the relativistic regim&” differs from a more rig- tions of different asymptotic Hamiltonians associated with

orous asymptotic limit for the electron-projectile separationOlifferent collision partnerse.g., charge exchanpe
(14) or (A10), by terms of the order of 4?. This approach

revealed that a complete and exact removal of the asymptotic B. Short-range Dirac equation
electron-projectile interaction is possible only in tfe-1 In this section we discuss the short-range representation
limit [see Egs(19) and (B3)]. for the Dirac equation within the context of computing tran-

For finite relativistic energies, terms of the ordenA/ sition amplitudes fordirect reactionsin the high-energy
remain in either the scalar or vector components of theimit.
electron-projectile asymptotic interaction, but are small for
large v. In the following, we are concentrating on the high- 1. Equation of motion: Target frame
energy limit, in which the description becomes simple and

. In the following we consider the limis— 1, so that the
unique.

asymptotic channels for a target-frame electron interacting
-~ . with a nearby target ion and a distant projectile ion has the

A. Exact transition amplitudes exact, factored solution of Eq(20). We substitute this
Following the notation of Ref.13], let |\p](+)(tf)> be the asymptotic solution into the expression for the exact transi-

exact outgoing-wave solution evolving from an initial chan- tion amplitudes for direct reactions in the target frame, Eq.
nel solution|®*(t;)), i.e (48), for the initial statg and final statek,
j y .Gy

lim W) =| (1)), 43 A= lim (e @y Oty ) e @0 ypd(t)).
t——oo tj——oo
tf—>oo
and|®; (t;)) be the final asymptotic channel. Then, by defi- (49
nition, the exact transition amplitude is given in thpost

Rearranging the exponential factors in the expression so that
they are applied directly to the evolution operator, one ob-

A= lim (@ (t) [P (tp)). (49 tains
t —® . ~ . .
f A= lim (gt e Xm0t e @[ (L)).
The prior form of the amplitude is defined &t — as the -2

projection of the exact incoming wave solutibﬂ!}’)(ti» ti—e
evolving backward in time from the final chanrd;(t;)),

form as

(50)
The transition amplitude, E@50), is suggestive of a new

€ representation for the dynamics through the operation of the
lim| (1)) =|Dg(t)), (45)  space-time-dependent phase,
t—oo - f -
[P O(r,t))=e" PV W (1 1)), (51)

onto the initial channel solutio;*(t;)),
O g - - Uty t)=e =00 (t; t)e xr=W, (52)
A= lim (T7(t)| 0] (). (46) ! '
ti— —oo

where| W (r t)) is the wave function, and O(t; .t;) is the
The post and prior forms of the amplitude may be unifiegtime-evolution operator in the new representation. Substitut-
ing Eq.(52) into Eqg.(50) gives the exact amplitude for direct

using the time-evolution operatdi(t;,t;) to relate the full reactions in the new representation,

outgoing-wave(incoming-wave solution to its initial(final)

state as A= lim (0|0t i), (63
[W{(t)) =0t 1) D] (1)), o
. (47) ” .
(1) =07t 1) | D (). Note that Eq.(53) has the form of a transition amplitude

computed between initial and final channels which are undis-
Inserting Eqs(47) into Eq. (44) or Eq. (46), one obtains torted single-center eigenstates of the target ion, as would be
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the case if the interaction between the electron and the disn this limit, Wp(t) factors into a product of a Diraé func-

tant projectile was of short range. tion of argument {—z) and a logarithmic function of the
To understand better its utility, we transform the two- transverse coordinatésimilar to the potential induced by a

center Dirac equation into the short-range representation. Béine of charge (see Refs[34,26,27), i.e.,

ginning with Eq.(6), and making the substitution

_ N ~ (r,—b)?
[P (1)) =e X0 1)), (54) LlTl Wp(t)—(l_aZ)Zpag(t_Z)|n|:T :
gives, after multiplying from the left bg X729 the equa- 1<y (59

tion of motion,

We refer to this as theharp limit of the electron-projectile
interaction in the short-range representation as the interaction
has zero range in the light-front coordinate =(t—2z)/2.

This behavior reflects the fact that the peak transverse elec-

whereWp(t) is the time-dependent electron-projectile inter- fic field produced by a moving charge increases propor-

i%|‘1’<S’)<rit>>=[ﬂo+HT+\7vp(t>]|~1f<s>(rit>>, (55)

action in the new representatif8s], tional to y while the durationAt~b/(yg) of the collision
decreases as i/ The interaction in this sharp limit has the
R i —Zpay(l,—(1B)a,) character of an electromagnetic shock front which develops
Wp(t)=Hp(t)— 5 . (56)  as the speed of the source of the electromagnetic figld,
VoZ+y2(z— Bt)? approaches the propagation spesaf the field[42].

The short-range, two-center Dirac equation, Ezp), in
the sharp limit[i.e., using the interaction in Eq59)], has
been recently used by Baltz to compute the high-energy limit
lim Wo(t)=Hp(t) — F5(t). (57)  of the impact-parameter-dependent probabilities for bound-
g1 free electron-positron pair production in peripheral, relativis-
tic heavy-ion collisiong26]. In reflecting on this achieve-
A ) o o ) _ . ment, it is important to recall that the derivation of E§5)
Wp(t) is the original electron-projectile interaction with its gien here assumes asymptotic channels which correspond to
long-range, asymptotic space-time dependence subtracte§rect reactions onlyAsymptotic channels which correspond
The cancell_atlon is e_xact only in ttfé—»_l I|m|t._OtherW|se, to the electron being distant from the target as either
there remains a residual long-range interaction of the order ., t,— +o are not considered in this description. As a
1/_7/2. As a result of this very useful characteristic,'we NaMeEresylt, thecharge-transfer mechanistor bound-free pair
this new representation trghort-range representatiomhe  ,-5quction[43,44 is not included in the solutions given in
phase transformation used to define the short-range represggas. [26]. The extreme high-energy behavior of the charge-

tation, Eq.(51), exactly cancels the phase distortion factoryanster mechanism for pair production has not received de-
contained in the asymptotic solution to the two-center Diraggijjeq study.

equation in the extreme, high-energy limit, EQ0). The — ap analogous short-range representation may be defined
result is a representation of the two-center Dirac equatiofy girect reactions in the projectile frame, with similar in-
appropriate for direct reactions in extremely relativistic (rpretation. The construction of the short-range representa-
heavy-ion collisions in which the electron-projectile interac-yion in the collider frame is also similar, but differs in that
tion has short range and the initial and final states are effeGye asymptotic interaction of the electron with both projectile
tively single-center eigenstates of the target idvote that  anq target ions must be considered. We discuss the collider-
the transverse-coordinate dependencé\p{t) remains of frame case in the next section.

long-range(i.e., 1) form. However, the transverse coordi-

nates do not contribute to the interaction of the electron with 2. Equation of motion: Collider frame

a distant ion at asymptotic timgs. Consider the extreme, high-energy limiic—1 of the
The electron-ion interaction in the short-range representayo-center Dirac equation in the collider frame, Egl), so

tion simplifies further if, in addition to th@—1 limit, one  that the asymptotic channels for an electron interacting with

requires that the transverse electron coordinateand the distant target and projectile ions has the factored form of Eq.

In the high-energy limit3—1, and

impact parameteb are small compared tg, i.e., (41). We substitute this exact solution into the expression for
R the exact transition amplitudes for the collider frame for the
[r |, b<y. (58 initial statej and final statek,
|
A= lim (e xc@ g 0tn)| 0 (t] 1))~ xe@ W) g (t!)). (60)

t—o—o

tf,—mo

Rearranging the exponential factors in the expression so that they are applied directly to the evolution operator, one obtains
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A= lim (p¥(t))|et X W0 (1] 1] )e X W] gV (t))). (61)
t)——o

t;%w

Defining the short-range representation in the collider frame, (r' +b/2)2
A L ) lim  Wi(t')=(1+ &) Zrad(t' +2')In| —————|,
WO t"))y=e"xcZ W (7 t")), (62 Bl (b/2)
~ . ! Iy A P ! ri’b<’yc
Uty ,t))=e" e 100 (tf ,t))e~'xc= W) (63 (69)

gives the formal expression for the exact transition amplitude

P
between plane-wave states in the collider frame using the |im Wh(t')=(1—a,)Zpad(t’ —2')In M

short-range representation, el (b/2)?
: ’ AT oy 1(j ’ r] b<re
A= lim (6DI0 Ot (1)) (64 B
tiffw The short-range, two-center Dirac equation, E§), in the
= sharp limit[using Eqs(69)] has recently been used to com-

To obtain the two-center Dirac equation in the collider pute the high-energy limit of the free electron-positron pair-

. h P roduction amplitudes in peripheral relativistic heavy-ion
frame in the short-range representation, we begin with Eq'.3 o )
(31), and make the substitution collisions[27—29. As in the case of the target-frame equa-

tion considered previously, the amplitudes derived from Eq.
(66) and given in Refs[27-3Q correspond to direct reac-
tions only. For the present case in the collider frame, only
asymptotic electron states distant from both target and pro-
jectile ions are considere@!5]. The contribution of other
asymptotic channels to the high-energy limit of free-pair pro-
duction requires further investigation.

(W (r )y =e @ W S ). (65)

After multiplying from the left bye*xc(@' )| the equation
of motion has the form

. d - ~, A - -
|E|\If’<5)(r’,t’))=[H6+W}(t’)+W§,(t’)]|‘l"<s)(r’,t’)),
(66) IV. GAUGE TRANSFORMATIONS

In discussing the two-center Dirac equation in the target
game, Eq.(6), for relativistic heavy-ion collisions, Baltz and
co-workers have regarded the phase transformation(5&y.
used here to define the short-range representation, as a gauge
transformation[36,37,35,26 Eichler and co-workers have
also remarked that the phase factors obtained in solving for

whereW:(t") andWp(t’) are the time-dependent electron-
target and electron-projectile interactions in the short-rang
representation,

Wit )=t - —Zrayc(l4+ (1Bc)ay)

V(b/2)2+ (2" + Bct')?’ the asymptotic channel solutions of H&) and used to ob-
. (67)  tain a short-range effective interaction can be interpreted as
—Zpayc(l4,— (UBc)ay) gauge transformationsee e.g.[13,14). In this section we

Wh(t")=Fp(t')—

show explicitly that the phase transformation used to define
the short-range representation is equivalent to a gauge trans-
formation, and highlight the relatedness of these two view-

V(bI2)2+ (2 — Bct')?

In the high-energy limitB-.—1, and

points.
lim \M(t’)zﬂ}(t’)—ﬂ}“(t’) (68) In investigating the phase transformation, E§l), as a
Bo—1 gauge transform, it is convenient to write the two-center
Dirac equation explicitly in terms of the electromagnetic
lim Wh(t)=F5at" ) — AL (). four-vector interactio’A*. Beginning with Eq(6), we write
Bc—1 the electron-projectile interaction Hamiltonian a&sp(t)

As in Eq. (55), the asymptotic dependence of the time—:AO_aZAZ’ where

dependent interaction has been canceled exdutlthe 8

—1 limit). Likewise, the phase distortion in the asymptotic - —Zpay
ons | - Ao(r ) =———,
channel solutions is canceled by the phase transformation ri(rt)
defining the short-range representation, and the asymptotic (70
channels are effectively the Dirac plane waves. R R
Applying the sharp limit of Eq.58) to Egs. (68), we Ag(r,t)=BAo(r,1),

obtain the following factored forms for the time-dependent
interaction[34,26,27: so that the two-center Dirac equation is written in the form
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d R - . R in defining the short-range representation modifies the
e WD) =[HotHrt Ag(t) — azA ()] W (r,1)). asymptotic states since it behaves asymptotically as
(71)
. _ —Zpa | 2y|z—pBt|
We now rederive the two-center Dirac equation in the short- tﬂT@XP(Z,t)— B In b2 ' (79)

range representation, E@55), by substituting the phase
transformation in Eq(51) into Eq.(71) and multiplying from n
the left bye™'X?, to obtain lim yp(z,t)=

t——o

ZPCK

In[2y|z—pt|]. (76)

J - N N . -
s (WO, 0)=[Ho+Hr+ A () — A7 (O] W (r,1)), Implicit in using the short-range representation gauge
(72) in the high-energy limit is that the phase transformation, Eq.
(51), defining the representation, exactly cancels the phase
where the components of the four-vector interaction in thelistortion of the asymptotic channels induced by the distant

short-range representation are projectile ion[see EQ.(20)]. As a result, the asymptotic
channel solutions for direct reactions in the short-range rep-
A=A (F dxp(z,t) resentation are the undistorted, single-center atomic states,
o (HO=Ao(r, )= o |4;(r,1)). In other words, by using undistorted atomic states
(73)  as asymptotic channels in the short-range representation, as
. . axp(z,t) was done in Ref[26], one is, in effect, using the factored
AS(rt)=A,r )+ e form for the asymptotic channel solutions, E@O0), of
Eichler and co-workers.
or, more explicitly,
V. CONCLUSIONS
/7 +\— _ 1 _ 1 A primary goal of this work was to place on a clear and
Ay(r,t)=—Zpay - —, . ; A . . Je
ro(rt)  r'a(r,t) firm theoretical foundation the “sharp Dirac equation,” i.e.,

(74) the two-center Dirac equati¢s), in both the target and the

1 182 ] collider frames, in the short-range representation, in the ex-

ra(rt)  rpe(rt)

treme relativistic(sharp limit. The reason this is of primary
importance is that the extreme relativistic limit of the two-
center Dirac equation in the short-range representation for
With the interaction written in the form of Egq$73), the  heavy-ion collisions simplifies remarkably, and allows for
phase transformation in Eq51) clearly accomplishes a closed-form solutions for pair-production amplitudes in this
gauge transformation. limit.

In general, gauge transformations leave physical quanti- With these goals in mind, we have described the relation-
ties, such as thesmatrix amplitudes, invariant, whereas ship between asymptotic solutions to the two-center, time-
other guantities, such as wave functions, propagators, amdependent Dirac equation for a single electron in peripheral
asymptotic channel solutions, may depend on the gaugeelativistic heavy-ion collisions, and pha&& gaugg trans-
Clearly, the invariance of physical quantities relies on arformations designed to remove the long-range asymptotic
exact formulation. From a practical point of view, however, interaction from the equation of motion. Direct reactions are
approximations are often needed. A widely applied methodentral to the discussion. “Charge-transfer” mechanisms for
consists in the expansion of the time-dependent wave fungair production[43,44] have been omitted here, and should
tion in terms of a basis set of channel functions, such that thbe subsequently considered in the high-energy limit.
time-dependent Dirac equati@8) is equivalent to an infinite We have shown that the asymptotic channel solutions fac-
set of coupled equations for the time-dependent expansiotorize into a space-time-dependent phase and an eigenstate of
coefficients. For practical reasons, this set is truncated at e appropriate time-independent Hamiltonian, in the limit
finite number of states. While the complete set is, of course—1. For collision velocities less than the speed of light,
invariant under gauge transformations, a finite set usually ithis factorization is approximate with accuracy of the order
not. In fact, a gauge transformation may not only modify thel/y?>. We have also shown that as a result of this factoriza-
effective interaction, but it also affects the convergence proption a gauge transformation may be performed to a new rep-
erty of the expansiori46]. Therefore both effects should resentation in which the asymptotic dynamics are included in
always be considered simultaneously and, actually, can béme states. In this representation, the asymptotic interaction
utilized to speed up convergenp#l]. between the electron and a distant ion is of short-range form,

Within an exact treatment, which is our main subject, aand the asymptotic solutions are undistorted, stationary solu-
distinction has been made in Ref86,47,48 between gauge tions of a time-independent Hamiltonian. Under such condi-
transformations which leave the asymptotic channels invaritions, a formally correct formulation of scattering theory may
ant (or trivially modified as a result of the gauge function be constructed. In addition, this short-range representation
being constant at asymptotic times, and those which modifjras advantages for the convergence of numerical calculations
boundary conditions since the gauge function is not constan0,41,36,37,4P
asymptotically. Indeed, the gauge transformation considered The factorization of the asymptotic solutions in tife

AT )= ~Zpayp
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—1 limit also provides a significant simplification in the dy- —c. The electron-projectile distance in the projectile’s rest
namics. A further simplification is achieved if the magnitudeframe,
of the transverse coordinate and the impact parametér
are constrained to be much smaller thanin this limit, the Y \/ﬁ
time-dependent interaction factors into a logarithmic func- rp=V(ry)"+(2")% (A1)
tion of the transverse coordinate, and a Digftinction of a
light front variable,r.. = (z*t)/2, describing an electromag- is represented in terms of the target-frame coordinates as
netic shock on the light fronit34,35,27. The identification
of the separable form has allowed for the closed-form solu- R —
tion of amplitudes for electron-positron pair production in ra(r, ) =V(r, —b)2+ y2(z— B2, (A2)
the high-energy limit of heavy-ion collisioi26-29.

A connection with the previous pioneering work of

1o gn g : ;
Eichleret al, on the Coulomb-boundary conditions was aIsoWhere{ri 2t} and_{rl 21 are _the space-tlme coordi-
tes of the electron in the projectile frame and in the target

made in this paper. We have elucidated and discussed f ; . .
relatedness of the Coulomb-boundary approach and whai2me: respectively, which are related by an inhomogeneous

Baltz and co-workers have recently accomplished via thé-Créntz transformation as in Eqel). We would like to ob-
machinery of gauge transformations. We have shown that jffin an asymptotici.e., |t|—ee) limit for rp when the inter-
the high-energy limit these two approaches are in agreemerftuclear separatior”,
and differ mostly in their language.
The replacement strategy previously developed by Eichler R(t")= \/W (A3)
and co-workers was designed to remove the long-range part
by a gauge or phase transformation. This treatment is fully )
symmetric with respect to the target and projectile frame, ha$ large compared to the separations between the electron and

the correct nonrelativistic limit, and has been successful in &€ target. _

number of calculations. We note, however, that there is no We now discuss the problem of the asymptotic electron-
unique way to derive “replacements.” When the purpose isProjectile separation in two different versions.

to have a good basis set for numerical calculation, a replace-

ment procedure is a useful and adequate approximation. On 1. Internuclear separation

the other hand, if one is treating the problem in a formal
approach, as was recently done for the high-energy collisio
limit in Refs. [26—29, the rigorous definition of the short-

Following the arguments given in Refd.3,14], we sub-
Qtitute the internuclear separatioR” for the asymptotic
; . S . electron-projectile separation, which should be a good ap-
range representation as presented here is of significant '"b'roximation for very large positive or negative times. For-

portance. . . mally, this corresponds to taking
In regard to using the factored solution as an accurate, but

approximate, asymptotic channel solution for calculation of R
high-energy collision phenomena, one should keep in mind r.—0, z—-0 (A4)
that the factored solution, e.g., the phase factor times a

single-center eigenstate, is an exact solution to the twoy, the target frame. Once thieplacements performed, we
center Dirac equation for asymptotically large timeslyin - considerR” as aparameter of the systenescribing the in-
the limit S— 1. For large, but finitey, the factored solution  ternyclear motion and no longer the position of the electron,
is an approximate solution to the asymptotic Dirac equationpat is we leave the Lorentz transformation

accurate to order 4?. Hence, choosing between factors of ' ’

B in the argument of the phase is largely a matter of personal ,
taste. t"=y(t—Bz), (A5)

ACKNOWLEDGMENTS relating the projectile-frame time to the target-frame time for
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Lockheed-Martin Energy Research, under Contract No. DEtion with the coordinate$A4). In this respect, the replace-

AC05-960R22464 .Wlth the U.S. Department of Energy, a”dmentre’F’,ﬂ R” with R” given by Egs(A3) and(A5), i.e.,
by the National Science Foundation through a grant for the
Institute for Theoretical Atomic and Molecular Physics at

Harvard University and the Smithsonian Astrophysical Ob- rp— b2+ y%(B%z— Bt)?, (AB)
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is not theformally derivableasymptotic limit. According to
APPENDIX A: ASYMPTOTIC ELECTRON-ION DISTANCE Eq. (A4), formal consistencgan only be achieved by replac-
ing t"—9t, i.e.,

In this appendix we discuss the asymptotic limit of the
electron-projectile distance needed to describe the interaction
of an electron with a projectile ion at asymptotic times rp— b+ y* Bt (A7)
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However, Eq(A7) is not useful for our purpose, because theand has the correct nonrelativistic limit. The second is for-

zdependence is required to describe the magnetic compongj) ally rigorously derivable by keeping the longitudinal elec-

o ) L nic coordinate and hence encounters no problems when
I?'Irg;re]i/ ([alle()c]:tromagnetlc Interaction at asymptotic times forapplying Lorentz transformations in a straightforward fash-

C ion. Both approaches differ in a term of the order of?lin
In the nonrelativistic limit3?<1,y~1, whent”~t, no . o :
inconsistency occurs, and E¢A3) or (A6) immediately the asymptotic electron-projectile separation and agree for

. B—1. As discussed in Sec. Il A and in Appendix B, discrep-
leads to the usual and successfully applied replacefaSit ancies of this order propagate into the factored forms of the

asymptotic channel solutions and the asymptotic interaction

rp—R=b%+ g%2% (A8)  when they are applied for large, but finitg,
2. Longitudinal electron-projectile separation APPENDIX B: PHASE CHOICES

To obtain a formally rigorousz dependence for the FOR ASYMPTOTIC CHANNELS

asymptotic limit of the electron-projectile distancg for an In Sec. IIA we have discussed two versions, E@sl)
electron near to the target but distant from the projectile, onand(17), for separating asymptotic wave functions by intro-
should not use,—R”, but should maintain the dependence ducing the phased2) and(18), respectively. These phases,

on the z coordinate, that is, retain the exact longitudinal differing only in factorsg?, arise from different choices for
electron-projectile distance. Even|i|<g|t| in the labora- the asymptotic electron-ion distan¢gee Appendix A For

tory at asymptotic times, we do not set it to zero. This meansur present purposes, choosing among these different phase
that instead of Eq(A4), we take arguments is largely a matter of personal taste since only in
the y—o limit does the asymptotic interaction vanish ex-
actly in the short-range representation. For large finite values
of v, terms of the order of 3? remain. In order to illustrate

the consequences of phase choices, consider yet another

while z is retained. This procedure guarantees that Lorentproduct ansatz for the solution of the asymptotic two-center
transformations can be consistently applied. The resultingbirac equation in the target frame,

formally correctasymptotic limit of the electron-projectile
distance is

r,—0, (A9)

| DF(r D)y =e A=y (r 1)), (BD)
lim rio(r,H)=r5°(r,t)=vb%+%(z— Bt)%.  (A10)
e
This, no doubt, is a better approximation to Ef2) than Ar(z,t)=ZpaBIn[ y(z— Bt) + Jb*+ 72(2—,3t)2]-(82)

re—R". In order to compare it with EqA6), we may write

- _ Substituting this ansatz into E@L5), multiplying from the
lim rp(r,)=vb*+y*[(y 2+ 92— Bt1%. (All) et by €79 and collecting like terms gives

‘t‘ﬁmo

o -
Note that, compared to EqA6), an additional term with 'EW/T(H))
1/y? appears. This term reflects the difference between tak-
ing the longitudinal electron-projectile separation and the in-

ternuclear separation. One sees this difference more explic-  _ g . — i Zpay | (Ft))
itty by considering the ratiap/R” in the limit y>1, |Z| O T 32 bt A—p02]
<pBJt|, andb<y|t|. Keeping terms proportional to't, we (B3)
obtain
With the phase choice in E¢B2), the vector component of
rh z the asymptotic electron-projectile interaction is canceled ex-
ENI— E (A12)  actly, and the remaining scalar component is of ordef.1/

In contrast, with the phase choice made in EtB), which
differs from Eq.(B2) only by a factor of 3, the scalar
Indeed, for very large values of, the target atom as seen component cancels exactly, and the vector component is of
from the projectile shrinks to a disk, so that the electranic order 1A2.
coordinate almost coincides with tlze=0 coordinate of an One may always perform a gauge transformation such
electron located at the target nucleus. that a single componer{pr a single linear combination of
We here have discussed two different approaches focomponentgsof the four-vector electromagnetic interaction is
identifying the asymptotic electron-projectile separation. Theexactly zero for all times. Such a gauge condition is known
first is based on a substitution by the internuclear separatioms anaxial gauge(see Refs[15,50). The novelty of the
which implies a formal inconsistency if interpreted as a trueshort-range representation in tfge-1 limit is that in it the
electronic separation instead of a parameter describing thédull, asymptotic interactior(both scalar and vector compo-
projectile motion. However, it appears physically reasonablaents is zero.
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