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Properties of the Goedecker-Umrigar functional for the many-electron problem
and its generalization

A. Holas
Institute of Physical Chemistry of the Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw, Poland

~Received 3 November 1998!

The calculational scheme for an approximate ground-state energy of a many-electron system, recently
proposed by Goedecker and Umrigar~GU! @Phys. Rev. Lett.81, 866 ~1998!#, is analyzed in terms of the
reduced-density-matrix approach. Its underlying object, the GU density-matrix functional, is generalized, pos-
sibly leading to improved energies. Properties of the solutions of the ground-state problem obtained from the
original and the generalized GU functionals are established.@S1050-2947~99!08605-9#

PACS number~s!: 31.15.Ew, 71.10.2w
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I. INTRODUCTION

Determination of the ground-state~GS! energy of many-
fermion systems is a problem frequently encountered in v
ous investigations in atomic, molecular, condensed ma
and nuclear physics. Therefore, reliable and efficient ca
lational schemes for its solution are of great value and in
est. Many such schemes are already available that diffe
accuracy and computational complexity, such as the Hart
Fock approach or the density-functional theory~see, e.g.,
@1#! with various levels of sophistication for the exchang
correlation energy functional. Nevertheless there is a n
for more accurate approaches. A very promising recent
culational scheme of Goedecker and Umrigar~GU! @2# rep-
resents a successful step forward in developing the so-ca
reduced-density-matrix approach to the GS problem~see,
e.g., the proceedings@3#!. My aim is to provide a better un
derstanding of this scheme within the general density-ma
approach, because the GU paper@2# concentrated mainly on
demonstrating the effectiveness of the scheme. The pre
analysis results also in generalization of the underlying
density-matrix functional.

To be specific, I am going to consider in this paper, sim
larly as GU in@2#, anN-electron system with one- and two
body interactions, described by the Hamiltonian

Ĥ~x1 , . . . ,xN!5(
i 51

N

ĥ1~xi !1 (
i 51

N21

(
j 5 i 11

N

h2~xi ,xj !,

~1.1!

wherexi[$r isi%[ i denotes the space-spin coordinate ofith
electron,h2( j ,i)5h2( i,j ).0. In applications,

ĥ1~1!5 t̂~r1!1vext~r1! ~1.2!

is a sum of the kinetic energy~differential operator! and the
external potential~local operator, e.g., due to Coulombic in
teractions with fixed nuclei!, while

h2~1,2!5
e2

k0 ur12r2u
~1.3!

is the electron-electron repulsion energy.
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II. REDUCED-DENSITY-MATRIX APPROACH

In the reduced-density-matrix approach, one obtains
GS energyEGS by varying an expression for the energy ov
reduced density matrices rather than wave functions. At
level of the N-body density matrices~NDM’s!, these two
ways are equivalent, because, according to the variatio
principle,EGS can be obtained from the following minimiza
tions with respect to$Cl ,Cl% or with respect toNDM’s gN ,
which belong to the setP(N,N) of the ensemble-N-
representable DM’s:

EGS5 min
$Cl ,Cl%PEq.~2.5!

(
l

Cl^CluĤuCl&

5 min
gNPP~N,N!

$E1@ ğ1@gN##1E2@ ğ2@gN##%

5$ . . . %ugN5g
N
GS. ~2.1!

Here ~see, e.g.,@1#!

ğp~1 . . . p;18 . . . p8;@gN# !

5S N
p D E d~p11!•••dN

3gN„1 . . . N;18 . . . p8~p11! . . . N… ~2.2!

is thep-body density matrix~pDM! obtained by reduction of
an arbitraryNDM gN , thusğp is a functional ofgN ,

E1@g1#5E d1 ĥ1~1!g1~1;18!U
1851

~2.3!

and

E2@g2#5E d1d2h2~12!g2~12;12! ~2.4!

are functionals ofg1 and g2, involving the one-body and
two-body operators ofĤ, *dj means(sj

*d3r j . In the
3454 ©1999 The American Physical Society
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present paper,g1 ,g2 ,gN denote arbitrary 1DM, 2DM,NDM,
possibly lacking N representability. The propertygN
PP(N,N) is defined by

gN~1 . . . N;18 . . . N8!5(
l

ClCl~1 . . . N!Cl* ~18 . . . N8!,

~2.5a!

Cl>0, (
l

Cl51, ^CluCm&5dlm , ~2.5b!

Cl~ . . . i . . . j . . . !52Cl~ . . . j . . . i . . . !. ~2.5c!

Obviously, for the minimizergN
GS in Eq. ~2.1!, only the GS

wave functions enter Eq.~2.5a!. Therefore, if the GS is de
generate, the minimizer is not unique.

Since the expression for the energy involves only 1D
and 2DM, Eq.~2.1! can be rewritten as the following mini
mization with respect to ensemble-N-representable reduce
2DM’s:

EGS5 min
g2PP~N,2!

$E1†ǧ1@g2#‡1E2@g2#%, ~2.6!

where the 1DMǧ1, a functional of 2DMg2, defined as

ǧ1~1;18;@g2# !5
2

~N21!
E d2g2~12;182! ~2.7!

represents a reduction of the 2DMg2, which is consistent
with the general reduction rule, Eq.~2.2!. By definition, the
relationg2PP(N,2) means that

g25ğ2@gN# with gNPP~N,N!, ~2.8!

see Eq.~2.5!. Unfortunately, all sufficient conditions to de
fine the setP(N,2), equivalent to one described in Eq.~2.8!
with Eq. ~2.5!, but solely in terms of constraints imposed o
the form of 2DM’s, are unknown, as yet.

Nevertheless, if only some selected constraints~among
them Hermiticity and proper normalization! are imposed on
2DM’s during minimization in Eq.~2.6!, then, as observed
by Coleman@4# and Garrod and Percus@5#, the lower bound
to the GS energy is obtained

EGS.EGS
A~N,2!5 min

g2PA~N,2!

$E1†ǧ1@g2#‡1E2@g2#%. ~2.9!

Here A(N,2) denotes the set of 2DM’s which satisfy th
mentioned constraints, whileA(N,2).P(N,2) must hold.
The last relation justifies the direction of inequality in E
~2.9! @compare with Eq.~2.6!#. In order to perform the mini-
mization in Eq.~2.9!, one usually expands the trial 2DMg2
in some basis set of spin orbitals. The expansion coefficie
play the role of variational parameters. Various authors
fine theirA(N,2) by a set of constraints imposed on the
parameters~see, e.g.,@4–16#, and references therein!. Tests
show that in some cases quite tight lower bounds are ge
ated.
ts
-

e

er-

Contrary to the 2DM case, the necessary and suffic
conditions@4# for 1DM to be ensemble-N-representable,g1

PP(N,1), i.e.,g15ğ1@gN# with gNPP(N,N), are known,
namely that its spectral resolution is in the form

g1~1;18!5(
i

ni f i~1! f i* ~18!, ~2.10a!

0<ni<1, ~2.10b!

(
i

ni5N, ^f i uf j&5d i j , ~2.10c!

whereni ,f i(1) are called natural occupation numbers a
natural spin orbitals. Due to the explicit knowledge
P(N,1), another reduced-density-matrix approach to the
problem can be defined~see Levy @17#, and references
therein for earlier papers! by performing minimization in Eq.
~2.6! in two steps, internal overg2, external overg1:

EGS5 min
g1PP~N,1!

$E1@g1#1E2†g̃2
min@g1#‡%, ~2.11!

where the functionalg̃2
min of g1 is defined by minimization of

E2 over g2:

E2†g̃2
min@g1#‡5 min

g2PP~N,2!`ǧ1[g2] 5g1

E2@g2# ~2.12!

constrained by the requirement forg2 to be reducible@see
Eq. ~2.7!# to the giveng1. So this requirement is satisfie
also by the minimizer:

ǧ1†g̃2
min@g1#‡5g1 . ~2.13!

Due to this fact, the argument of theE1 term in Eq.~2.11! is
so simple@compare Eq.~2.6!#.

III. EXTENDED GOEDECKER-UMRIGAR APPROACH

Unfortunately, the definition~2.12! does not provide the
form of g̃2

min@g1# for computational purposes, because t
sufficient conditions forg2PP(N,2) are unknown. Never-
theless, a useful approach to the GS energy problem ca
obtained from Eq.~2.11! if some approximation to the
g̃2

min@g1# functional, based on intuition and heuristic arg
ments, is constructed. This is done by GU@2#. Their approxi-

mation, denoted now asg̃2
$1/2%8@g1#, may be defined as the

orbital-self-interaction-free part (iÞ j terms! of the following
~extended here! GU functional:

g̃2
$1/2%5g̃2

$1/2%81g̃2
$1/2%9 ~3.1a!

written in terms of natural occupations and orbitals ofg1,
Eq. ~2.10!, as
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g̃2
$1/2%~12;1828;@g1# !5 1

2 (
i j

@ninjf i~1!f i* ~18!f j~2!f j* ~28!

2ni
1/2nj

1/2f i~1!f i* ~28!f j~2!f j* ~18!#,

~3.1b!

where its orbital-self-interaction part (j 5 i terms! is

g̃2
$1/2%9~12;1828;@g1# !

52 1
2 (

i
@~12ni !nif i~1!f i~2!f i* ~18!f i* ~28!#. ~3.1c!

In fact, GU defined only the diagonal elements of the 2D

functional, theirs(12)5g̃2
$1/2%8(12;12), since that is all that

is required to determineE2 from Eq. ~2.4!.
The definition~3.1b! of g̃2

$1/2% can be rewritten more com
pactly in terms ofg1

a—the a power ofg1[g1
1, for a.0:

g1
a~1;18!5(

i
ni

a f i~1! f i* ~18!, ~3.2a!

which, due to the properties shown in Eq.~2.10!, satisfies the
usual multiplication rule

~g1
a* g1

b!~1;18![E d19 g1
a~1;19!g1

b~19;18!5g1
a1b~1;18!,

~3.2b!

namely,

g̃2
$1/2%~12;1828;@g1# !

5 1
2 @g1

1~1;18! g1
1~2;28!2g1

1/2~1;28! g1
1/2~2;18!#. ~3.3!

It is convenient to define the functionals for the norms
1DM and 2DM as

N1@g1#5E d1g1~1;1!, ~3.4!

N2@g2#5E d1d2g2~12;12!. ~3.5!

The norm of the ensemble-N-representableg1, Eq. ~2.10!,
satisfies obviously

N1@g1#5N. ~3.6!

It can be checked immediately from Eq.~3.3!, using Eqs.
~3.2b! and ~3.6!, that the result of reducingg̃2

$1/2%@g1# to
1DM, Eq. ~2.7!, coincides with the argumentg1,

ǧ1†g̃2
$1/2%@g1#‡5g1 . ~3.7!

This means thatg̃2
$1/2%@g1#, the approximation tog̃2

min@g1#,

obeys the same requirement asg̃2
min@g1# does, Eq.~2.13!.

Since GU defined only the diagonal elements ofg̃2
$1/2%8 , they
f

were able to recognize this attribute on the diagonal on
From the property shown in Eq.~3.7! follows immediately
the normalization ofg̃2

$1/2% to the number of pairs in the sys
tem @2#:

N2†g̃2
$1/2%@g1#‡5 1

2 ~N21!N for any g1PP~N,1!.

~3.8!

GU were aware of this, but they state in their paper that th

prefer to useg̃2
$1/2%85g̃2

$1/2%2g̃2
$1/2%9 , Eq. ~3.1a!, which vio-

lates Eqs.~3.7! and~3.8!, although the numerical error, e.g

N2†2g̃2
$1/2%9@g1#‡5(

i

1
2 ~12ni !ni , ~3.9!

is very small for most systems where the natural occupati
ni are close either to zero or to one. But this may not be t
in the case of systems with a degenerate GS.

In my opinion, Eqs.~3.7! and ~3.8! are so fundamenta

that g̃2
$1/2% , rather thang̃2

$1/2%8 , should be preferred as th

approximation tog̃2
min . But the GU opinion is opposite@2#,

although no arguments are given. By excluding theg̃2
$1/2%9

term, they choose to have no orbital self-interactions in th
functional. When discussing this problem, GU state that th
functional is not perfectly electron self-interaction free, an
therefore, leads to the incorrect value of the calculated
energy for the hydrogen atom. I propose a different view
this subject. Since the electron self-interactions are exclu
from the Hamiltonian~1.1! ~summations restricted byj Þ i ),
the exact reduced-density-matrix approach~2.11! to a system
described by this Hamiltonian ought to be regarded as e
tron self-interaction free. The errors of the calculated G
energy for H and other atoms, observed by GU, are due

the approximate nature of the functionalg̃2
$1/2%8@g1#, used

instead of the exact~but unknown! g̃2
min@g1#. It should be

noted that this approximate 2DM functional~and also its
extensiong̃2

$1/2%@g1#) is capable of producing exact resul
for one-electron systems, provided the spectral resolution
the trialg1 in Eq. ~2.10! is limited to only one natural orbital

Then both g̃2
$1/2%8@g1# and g̃2

$1/2%@g1# behave as the exac

g̃2
min—they vanish~thus showing absence of the electro

electron interaction forN51). But an exact density-matrix
approach to any one-electron system is represented by
~2.11! with g̃2

min50 inserted~and no limit on the number o
natural orbitals!. However, if a dissociation of a many
electron molecule into one-electron atoms~ions! is investi-

gated within the approximation based ong̃2
$1/2%8@g1# or

g̃2
$1/2%@g1#, approximate solutions are obtained forN51 frag-

ments~i.e., with nonvanishing 2DM! rather than the above
mentioned exact versions. It is worth noting thatg̃2

min is an
implicit function of N, because its definition, Eq.~2.12!, in-
volvesN.

IV. GENERALIZATION OF THE GU FUNCTIONAL

The GU choice of the power 1/2 in the definition~3.3! of
the approximation tog̃2

min@g1# can be generalized to an arb
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trary power a.0 by defining the following approximate
functional:

g̃2
$a%~12;1828;@g1# !

5 1
2 $g1

1~1;18! g1
1~2;28!2 1

2 @g1
a~1;28! g1

12a~2;18!

1g1
12a~1;28! g1

a~2;18!#%, for 0,a< 1
2 ~4.1!

~it is sufficient to takea< 1
2 becauseg̃2

$12a%5g̃2
$a%). Obvi-

ously, fora5 1
2 , this definition reduces to that in Eq.~3.3!. It

is easy to verify that the 2DM functionalg̃2
$a%@g1#, Eq. ~4.1!,

obeys the requirement satisfied byg̃2
min@g1# in Eq. ~2.13!.

Actually, the same requirement is satisfied by a linear co
bination of theg̃2

$a% terms with different powersa:

g̃2
$a%5(

k
a1kg̃2

$a2k% ~4.2a!

provided its coefficients are related by the equation

(
k

a1k51. ~4.2b!

It will be convenient to rewrite Eq.~4.2! in terms of 2K
independent parametersa5$a1k ,a2k%k51

K , namely

g̃2
$a%5S 12 (

k51

K

a1kD g̃2
$1/2%1 (

k51

K

a1k g̃2
$a2k% , ~4.3a!

where

2`,a1k,1`, 0,a2k, 1
2 , ~4.3b!

by choosinga2051/2 anda10512(k51
K a1k . At K50 the

definition~4.3! reduces to the definition~3.3! of the extended
GU functional.

Thus the generalized GU functionalg̃2
$a% satisfies the basic

requirement ~2.13! imposed on the exact functiona
g̃2

min@g1#, i.e.,

ǧ1†g̃2
$a%@g1#‡5g1 , ~4.4!

and also satisfies some necessary conditions forg2
PP(N,2) @i.e., relations following from Eq.~2.8! with Eq.
~2.5!#:

~i! preservation of the homogeneous scaling@2#,

g̃2,l
$a%@g1#5g̃2

$a%@g1,l#, ~4.5a!

where the definition of the scaledpDM, for l.0,

gp,l~r1 ,s1 ,r2 ,s2 , . . . ;r18 ,s18 , . . . !

5l3pgp~lr1 ,s1 ,lr2 ,s2 , . . . ;lr18 ,s18 , . . . !

~4.5b!

is induced by the scalingr→lr of the space@the proof of
Eq. ~4.5a! relies on the identity

g1,l
a ~r1 ,s1 ;r18 ,s18!5l3g1

a~lr1 ,s1 ;lr18 ,s18!, ~4.5c!
-

which stems from Eqs.~3.2a! and ~2.10! providedg1 scales
as in Eq.~4.5b!#,

~ii ! Hermiticity

g2~12;1828!5g2* ~1828;12!, ~4.6!

~iii ! normalization

N2@g2#5 1
2 ~N21!N, ~4.7!

~iv! symmetry

g2~21;2818!5g2~12;1828!. ~4.8!

But g̃2
$a% violates the antisymmetry

g2~21;1828!52g2~12;1828!. ~4.9!

The non-negativity of the diagonal element

g2~12;12!>0 ~4.10!

may be also violated for some arguments12. Namely, for
x25x1 one has from Eq.~4.1! for each term of the combina
tion ~4.3! the negative value

g̃2
$a%~11;11;@g1# !

5 1
2 $g1

1~1;1!2@g1
a~1;1! g1

12a~1;1!#1/2%

3$g1
1~1;1!1@g1

a~1;1! g1
12a~1;1!#1/2%,0, ~4.11!

becauseg1
b(1;1).g1

1(1;1).0 for 0,b,1 @see Eqs.~3.2a!
and ~2.10!#. By continuity, this diagonal element shou
remain negative also forx2 close to x1. However,
g̃2

$a%(12;12) is positive for most arguments12, because it
integrates to a positive number, Eq.~4.7! with Eq. ~3.5!. It
should be noted that certaina1k of Eq. ~4.3a! may be chosen
negative, thus allowing the combinationg̃2

$a%(11;11;@g1#) to
become positive in some range ofx1. This would reduce~or
even remove! the range of arguments12 whereg̃2

$a% violates

the necessary condition~4.10!, as compared withg̃2
$1/2% .

V. ENERGIES RESULTING FROM GU SCHEMES

Consideringg̃2
$a%@g1# written explicitly in terms of natural

orbitals ofg1, one can split it similarly as in Eq.~3.1a!

g̃2
$a%5g̃2

$a%81g̃2
$a%9 , ~5.1!

and find that its orbital-self-interaction part is independent
the collective parametera, namely

g̃2
$a%95g̃2

$1/2%9 . ~5.2!

For the energies corresponding to the considered approx
tions to g̃2

min @compare Eq.~2.11!#:

EGS'EGS
$a%5 min

g1PP~N,1!

$E1@g1#1E2†g̃2
$a%@g1#‡%

5$•••%ug15g
1
$a%, ~5.3!
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EGS'EGS
$a%85 min

g1PP~N,1!

$E1@g1#1E2† g̃2
$a%8@g1#‡%

5$•••%ug15g
1
$a%8, ~5.4!

the following relation holds:

EGS
$a%,EGS

$a%8 , for any a, ~5.5!

because the above inequality is equivalent to

E1@g1
$a%#1E2†g̃2

$a%@g1
$a%#‡<E1@g1

$a%8#1E2†g̃2
$a%@g1

$a%8#‡

,E1@g1
$a%8#1E2†g̃2

$a%8@g1
$a%8#‡.

~5.6!

Here, the first inequality reflects the fact thatg1
$a% is the mini-

mizer in Eq.~5.3!, while the second inequality follows from

g̃2
$a%85g̃2

$a%2g̃2
$1/2%9 , Eqs. ~5.1! and ~5.2!, and then from

E2@2g̃2
$1/2%9#.0, see Eq.~2.4! with a positive integrand,

sinceh2.0 and2g̃2
$1/2%9(12;12).0 @Eq. ~3.1c! with ni sat-

isfying Eq. ~2.10b!#.

VI. RELATION WITH THE HARTREE-FOCK
APPROXIMATION

The observation made by GU@2#, that their functional
coincides with the unrestricted Hartree-Fock~UHF! func-
tional if the occupation numbers are constrained to be 1 o
will be used now to establish a relation between the
energies in the generalized GU and the UHF approximatio
So, the 1DMg1

UHF , derivable from a determinantal wav
function of the UHF approach, can be defined by Eq.~2.10!
supplemented with the constraints

~12ni !ni50, i 51,2, . . . . ~6.1!

Such 1DM is idempotent,g1
UHF,a5g1

UHF,1 @compare Eq.

~3.2!#, therefore Eqs.~4.1! and ~4.3! result in g̃2
$a%@g1

UHF#

5g̃2
$a%@g1

UHF#5g2
UHF—the 2DM derived from the same UH

wave function~see, e.g.,@1#!. This means that the UHF uppe
bound to the GS energy can be obtained from the follow
minimization:

EGS,EGS
UHF5 min

g1PP~N,1!`~12ni !ni50
$E1@g1#1E2†g̃2

$a%8@g1#‡%

~6.2!

@it is sufficient to involve in Eq.~6.2! the 2DM g̃2
$a%8 rather

than g̃2
$a% , because, under the constraints~6.1!, g̃2

$a%950, see

Eqs. ~5.2! and ~3.1c!#. One sees that bothEGS
UHF and EGS

$a%8

result from the minimization of the same functional@Eq.
~6.2! and Eq.~5.4!# with respect tog1, variations of which
being more restricted in Eq.~6.2!. Therefore the following
inequality holds

EGS
$a%8,EGS

UHF, for any a. ~6.3!

See also Eq.~5.5!.
0,
S
s.

g

VII. VIRIAL EQUATIONS

An interesting identity can be derived by means of sc
ing, Eq. ~4.5b!. Since the scaled minimizer of Eq.~5.3!

g1,l
$a%~r1 ,s1 ;r18 ,s18!5l3g1

$a%~lr1 ,s1 ;lr18 ,s18! ~7.1!

belongs to the setP(N,1) @Eq. ~2.10! with f i ,l(r ,s)
5l3/2f i(lr ,s), ni ,l5ni#, and atl51 it coincides with the
original minimizer, the resultingEGS

$a% can be obtained also
from the following minimization:

EGS
$a%5 min

0,l,`
$E1@g1,l

$a% #1E2†g̃2
$a%@g1,l

$a% #‡%5$•••%ul51 ,

~7.2a!

and, therefore,

d

dl
$•••%ul5150 ~7.2b!

must hold. By taking into account Eqs.~2.3!, ~1.2!, and~7.1!,
the form of theE1 term of Eq.~7.2a! is found

E1@g1,l
$a% #5l2 T@g1

$a%#1V@vext,l ,g1
$a%#, ~7.3a!

where

vext,l~r !5vext~l21r !, ~7.3b!

T@g1#5E dx1S 2
\2

2mD“2~r1!g1~r1 ,s1 ;r18 ,s1!U
r
185r1

5E dx1

\2

2m
“~r1!•“~r18!g1~r1 ,s1 ;r18 ,s1!U

r
185r1

,

~7.3c!

V@v,g1#5E dx1 v~r1!g1~x1 ;x1!, ~7.3d!

and, by taking Eqs.~2.4!,~1.3!,~4.5a!,~4.5b!, the form of the
electron-electron interaction term is found

E2†g̃2
$a%@g1,l

$a% #‡5lE2†g̃2
$a%@g1

$a%#‡. ~7.3e!

Therefore, the necessary condition~7.2b! for the minimum
leads to

2 T@g1
$a%#1V@vext8 ,g1

$a%#1E2†g̃2
$a%@g1

$a%#‡50, ~7.4a!

where@see Eq.~7.3b!#

vext8 ~r !5
]

]l
vext,l~r !U

l51

52r•“vext~r !, ~7.4b!

i.e., an identity of the same form as the virial equation~see,
e.g.,@18#! satisfied by the exact solution, Eq.~2.1!,

2 T†ğ1@gN
GS#‡1V†vext8 ,ğ1@gN

GS#‡1E2†ğ2@gN
GS#‡50.

~7.5!
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It should be noted that when the external potential res
from the Coulombic interaction of electrons with a sing
nucleus, vext(r )52Ze2/(k0r ), then vext8 5vext, and this
should be inserted into Eqs.~7.4a! and ~7.5!.

If the external potential of Eq.~1.2! is specified as result
ing from the Coulombic electron-nuclei interactions,

vext~r !5ven~r ;R![(
l 51

M
2Zle

2

k0 ur2Rl u
,

R5~R1 , . . . ,RM !5~R11,R12, . . . ,RM3!, ~7.6!

whereZl andRl are the atomic number and the~fixed! po-
sition vector of lth nucleus, then the energies discuss

above, likeEGS, EGS
$a% , EGS

$a%8 , EGS
UHF, and the corresponding

DM minimizers gN
GS, g1

$a% , g1
$a%8 , g1

UHF , all depend onR,
e.g.,EGS

$a%5EGS
$a%(R), g1

$a%5g1
$a%(R). In addition to scaling of

the electronic coordinates, as in Eq.~4.5b!, one can introduce
simultaneous scaling of the nuclear coordinates

gp,z~r1 ,s1 ,r2 ,s2 , . . . ;r18 ,s18 , . . . ;R!

5z3pgp~zr1 ,s1 ,zr2 ,s2 , . . . ;zr18 ,s18 , . . . ;zR!.

~7.7a!

This new scaling, similarly as in Eq.~4.5a!, is also preserved
by the model 2DM functionalg̃2

$a%@g1#:

g̃2,z
$a%@g1#5g̃2

$a%@g1,z#. ~7.7b!

Continuing the analogy with the previous scaling, one c
write

EGS
$a%~R!5 min

0,z,`
$T@g1,z

$a%#1V@ven~ .;R!,g1,z
$a%#

1E2†g̃2
$a%@g1,z

$a%#‡%

5$•••%uz51 . ~7.8!

Note that the expectation value of the original Hamiltonian
minimized in Eq.~7.8!, therefore the nuclear positions inven
are not scaled. After transforming variables of integration
the termsT, V, andE2 of Eq. ~7.8! one obtains

EGS
$a%~R!5 min

0,z,`
$z2 T@g1

$a%~zR!#1z V@ven~ .;zR!,g1
$a%~zR!#

1z E2†g̃2
$a%@g1

$a%~zR!#‡%5$•••%uz51 , ~7.9a!

so the condition, necessary for the minimum,

d

dz
$•••%U

z51

50, ~7.9b!

leads to
ts

d

n

s

n

2 T@g1
$a%~R!#1V@ven~ .;R!,g1

$a%~R!#1E2†g̃2
$a%@g1

$a%~R!#‡

1
d

dz
EGS

$a%~zR!U
z51

50, ~7.10!

or, equivalently,

T@g1
$a%~R!#1EGS

$a%~R!1(
a

Ra

]

]Ra
EGS

$a%~R!50.

~7.11!

It should be noted that the summation in Eq.~7.11! involves
the independent nuclear coordinates only~e.g., relative to the
first atom and allowing for arbitrary rotation of the molecu
as a whole!. One can consider also the total energy of t
molecule

WGS
$a%~R!5EGS

$a%~R!1Enn~R!, ~7.12!

which includes the nucleus-nucleus interaction energy

Enn~R!5(
l ,k

M
ZlZke

2

k0 uRl2Rku
. ~7.13!

By taking into account that

d

dz
Enn~zR!U

z51

52Enn~R!, ~7.14!

Eq. ~7.11! can be rewritten as

T@g1
$a%~R!#1WGS

$a%~R!1(
a

Ra

]

]Ra
WGS

$a%~R!50.

~7.15!

This identity is of the same form as another virial equati
~see, e.g.,@1#! satisfied by the exact solution, Eq.~2.1!:

T@ ğ1@gN
GS~R!##1WGS~R!1(

a
Ra

]

]Ra
WGS~R!50,

~7.16a!

where

WGS~R!5EGS~R!1Enn~R!. ~7.16b!

It is worth noting that the virial equations~7.4a! and ~7.11!,
satisfied by the solutiong1

$a% , EGS
$a% of Eq. ~5.3! for arbitrarya,

are satisfied also by the solutions of Eqs.~5.4! and ~6.2!,
because the scaling properties of the corresponding 2D
are the same as ofg̃2

$a% .

VIII. OPTIMIZATION OF PARAMETERS

As shown in Sec. IV, all important properties, Eqs.~4.4!–
~4.8!, of the generalized GU functionalg̃2

$a%@g1#, which jus-
tify its role as an approximation to the exact function
g̃2

min@g1#, are satisfied for anya. So, for an approximate
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solution ~5.3! of the GS problem for an arbitrary many
electron system by means of the one-body-density-matrix
proach~2.11!, a whole family of approximate 2DM function
als parametrized bya can be used. In order to apply it to
particular system characterized byvext, h2, andN, some op-
timum collective parametera5ā@vext,h2 ,N# should be cho-
sen.

There are known identities which are satisfied by
1DM and 2DM reduced from the exact GS solutiongN

GS, but,
in general, are violated by the approximate DM’sg1

$a% and

g2
$a%[g̃2

$a%@g1
$a%#, corresponding to the solution of Eq.~5.3!.

A requirement to minimize these ‘‘violations’’ can be use
to defineā. I expect that the corresponding energy deviat

uEGS
$ā%2EGSu will be also close to optimum~minimum with

respect to variations ofa). Of course, this conjecture shou
be confirmed by tests.

For a givenN-electron system, letQ@g1 ,g2# denotes a
functional with the following property:

Q@g1 ,g2#>Q†ğ1@gN
GS#,ğ2@gN

GS#‡50 ~8.1!

~examples will be given!. Then the proposed algorithm t
obtain, by means of the generalized GU functional, the b
approximation to the GS solution for a given system is
following: ~i! perform minimizations in Eq.~5.3! for a cho-
sen set of points in the space of the parametersa. This de-
fines the DM’sg1

$a% andg2
$a% as functions of thesea; ~ii ! find

in the space of the parametersa a pointā—the minimizer in
the following minimization:

min
a

Q@g1
$a% ,g2

$a%#5Q@g1
$ā% ,g2

$ā%# ~8.2!

@probably some interpolation between the points of the s
~i! would be sufficient to determineā#; ~iii ! perform the

minimization in Eq.~5.3! for a5ā; the obtainedEGS
$ā% is the

best approximation toEGS, while the DM’sg1
$ā% andg2

$ā% are

the best approximations toğ1@gN
GS# and ğ2@gN

GS#.
To be practical, only a few parameters should be involv

in this algorithm. For instance, values of a small numberK of
parametersa2k are chosen and fixed, e.g.,K52, a2151/6,
a2252/6, @see Eq.~4.3!#, and then,K real parametersa1k are
to be optimized.

The virial theorems, Eqs.~7.5! and ~7.16a!, may serve as
examples of the above-mentioned identities. Unfortunat
they are useless for constructingQ@g1 ,g2#, because theyare
satisfiedby g1

$a% , g2
$a% , Eqs.~7.4a! and~7.15!, for arbitrarya.

However, the virial equation~7.5! is a member of a wide
class of identities known as the hypervirial theorems~see,
e.g., @19# and @20#!. Many of them can be obtained direct
from the so-called differential virial theorem~equation!

n~r ! f~r ;@g1 ,g2 ,vext,h2# !50, ~8.3!

which can be interpreted as a local force balance equa
because among the terms summing tof there is2“vext—the
force acting on an electron due to the external potential. T
Eq. ~8.3!, obtained in@21#, was shown to be satisfied at an
p-

e

n

st
e

p

d

y,

n,

is

space pointr by DM’s g15ğ1@gN#, g25ğ2@gN#, where the
ensembleNDM gN is constructed according to Eq.~2.5!
from the eigenfunctionsCl of the Schro¨dinger equation

ĤCl5ElCl ~8.4!

with Ĥ given by Eqs.~1.1!, ~1.2! in terms of the potentials
vext,h2 present also in Eq.~8.3!. In particular, the differential
virial equation ~8.3! is satisfied by the pairg15ğ1@gN

GS#,

g25ğ2@gN
GS#, corresponding to the solution of Eq.~2.1!. The

total force f, entering Eq.~8.3!, is a sum of the external
internal and kinetic components

f5fext1f int1fkin , ~8.5a!

defined as

f ext,a~r !52¹a~r ! vext~r !, ~8.5b!

n~r ! f int,a~r !522E d3r 8~¹a~r ! h2~r ,r 8!!n2~r ,r 8!,

~8.5c!

n~r ! f kin,a~r !5(
b

S \2

4m
¹a~r !¹b

2~r ! n~r !22¹b~r !tab~r ! D ,

~8.5d!

in terms of the following functionals ofg1 andg2—the ar-
guments off in Eq. ~8.3!:

tab~r !5
\2

4m
@¹a~r 8!¹b~r 9!1¹a~r 9!¹b~r 8!#

3S (
s

g1~r1r 8,s ;r1r 9,s! DU
r85r950

~8.5e!

—the kinetic energy density tensor,

n~r !5(
s

g1~r ,s;r ,s! ~8.5f!

—the diagonal spinless 1DM, i.e., the electron number d
sity,

n2~r1 ,r2!5 (
s1 ,s2

g2~r1 ,s1 ,r2 ,s2 ;r1 ,s1 ,r2 ,s2! ~8.5g!

—the diagonal spinless 2DM, i.e., the electron pair dens
Note that the integrated trace oftab(r ) gives the total kinetic
energy according to Eq.~7.3c!, second line.

The virial theorem, Eq.~7.5!, can be obtained from Eq
~8.3! by multiplying it by r and subsequent integration ov
the whole space@21#. Other hypervirial theorems can be ob
tained similarly usingw i(r ) r instead ofr @wherew i(r ) are
some chosen functions, see discussion by Holas and M
in @20#; although noninteracting many-electron systems
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considered by them only, their results can be easily exten
to the interacting systems by adding the contribution due
f int]. If

Pi@g1 ,g2 ,vext,h2#50 ~8.6!

denotes the ith hypervirial equation, then the ‘‘least
squares’’ sum

Q@g1 ,g2#5(
i

pi~Pi@g1 ,g2 ,vext,h2# !2 ~8.7!

can serve as a particular representation ofQ. The role of the
weightspi.0 is to make various terms of the sum similar
sensitive to variations of the parametersa when used in Eq.
~8.2!. The property~8.1! is obeyed by thisQ, because the
hypervirial equations~8.6! are satisfied byg15ğ1@gN

GS#,

g25ğ2@gN
GS#. The number of summed terms in Eq.~8.7!

should exceed the number of free parameters ina, involved
in Eq. ~8.2!. It is worth noting that, in their recent paper@22#,
Cioslowski and Lopez-Boada make use of the hypervi
theorem to obtain the electron-electron repulsion energy
an approximate functional of the Hartree-Fock 1DM.

The form ~8.7! of Q is ‘‘expensive’’ in applications, be-
cause the evaluation of eachPi needs accurate numeric
integration over the whole space. Therefore I propose
other Q which makes an alternative use of the different
virial equation~8.3!, namely

Q@g1 ,g2#5E d3r n~r !$f~r ;@g1 ,g2 ,vext,h2# !%2. ~8.8!

It shows the property~8.1!, because the forcef(r ) acting on
an electron at any pointr vanishes, Eq.~8.3!, when the DM’s
reduced fromgN

GS are used. The electron density plays in E
~8.8! the role of the weighting function. Actually, for the us
in Eq. ~8.2!, the integral in Eq.~8.8! need not be evaluate
s

a

ed
o

l
as

n-
l

.

very accurately—approximate numerical integration usin
few representative points of space should be sufficient. H
ever, the number of these points should exceed the num
of free parameters ina.

IX. CONCLUSIONS

In concluding, the main results of the present investig
tion are summed up:

~i! The GU approach@2# to the GS problem of a many
electron system is analyzed in terms of the reduc
density-matrix approach, as an approximation to E
~2.11!.

~ii ! The GU approximate functional 2DM, when proper
extended tog̃2

$1/2%@g1#, shows the property~3.7!, i.e.,
it obeys the requirement imposed on the exact 2D
g̃2

min@g1#, Eq. ~2.13!.
~iii ! A generalization of the GU functional,g̃2

$a%@g1#, is
proposed, Eq.~4.3! with ~4.1!: the extended GU func-
tional, g̃2

$1/2%@g1#, corresponds toK50 in Eq. ~4.3!.
This g̃2

$a%@g1# obeys the properties~4.4!–~4.8!. Viola-
tion of the property~4.10! can be diminished for some
parametersa.

~iv! The relations~5.5! and~6.3! between various approxi
mations to the GS energy are established.

~v! The energy and DM’s corresponding to the soluti
of the GS problem with the generalized GU fun
tional, Eq. ~5.3!, satisfy two virial equations, Eqs
~7.4a! and~7.11!, which are also satisfied by the exa
solution.

~vi! An algorithm to obtain the best approximation to th
GS solution is proposed@below Eq.~8.1!#.

~vii ! Two versions, Eq.~8.7! and ~8.8!, of an auxiliary
functionalQ@g1 ,g2# ~used in the algorithm! are pro-
posed.
s.
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