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Properties of the Goedecker-Umrigar functional for the many-electron problem
and its generalization
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The calculational scheme for an approximate ground-state energy of a many-electron system, recently
proposed by Goedecker and Umrig&U) [Phys. Rev. Lett81, 866 (1998], is analyzed in terms of the
reduced-density-matrix approach. Its underlying object, the GU density-matrix functional, is generalized, pos-
sibly leading to improved energies. Properties of the solutions of the ground-state problem obtained from the
original and the generalized GU functionals are establisf&t050-294{@9)08605-9

PACS numbdps): 31.15.Ew, 71.10-w

I. INTRODUCTION Il. REDUCED-DENSITY-MATRIX APPROACH

In the reduced-density-matrix approach, one obtains the

Dgtermmatlon_of the ground-sta(&S) energy of many- - gs energyEgs by varying an expression for the energy over
fermion systems is a problem frequently encountered in vari- . . .
. o ; : reduced density matrices rather than wave functions. At the

ous investigations in atomic, molecular, condensed matte

fevel of the N-body density matricesNDM'’s), these two

and nuclear physics. Therefore, reliable and efficient calcu- . ; e
ways are equivalent, because, according to the variational

lational schemes for its solution are of great value and inter- .7~ ) s S
rinciple, Egs can be obtained from the following minimiza-

est. Many such schemes are already available that differ i . . \
accuracy and computational complexity, such as the Hartreg—on> with respect t9C,, , W, } or with respect tNDM's yy,

Fock approach or the density-functional thedsee, e.g., \rléhl;::sez?;ct))ﬁ]eg Dtlsl’st'he setP(N,N) of the ensemblév-
[1]) with various levels of sophistication for the exchange- P '
correlation energy functional. Nevertheless there is a need

for more accurate approaches. A very promising recent cal- Egs= min > Cu(W,|A|P,)
culational scheme of Goedecker and Umrigat)) [2] rep- (C, W,} cEq.2.5 X
resents a successful step forward in developing the so-called . .
reduced-density-matrix approach to the GS probleaese, = min {Eq yi[ yn11+Eo[ val yall}
e.g., the proceedind8]). My aim is to provide a better un- yNeEP(NN)
derstanding of this scheme within the general density-matrix {0 s 2.1)
approach, because the GU pafi&rconcentrated mainly on CTUUINT N '
demonstrating the effectiveness of the scheme. The present
analysis results also in generalization of the underlying GUHere(see, e.g.[1])
density-matrix functional.
To be specific, | am going to consider in this paper, simi-g,p(l_ 1 pionD)
larly as GU in[2], an N-electron system with one- and two-
body interactions, described by the Hamiltonian :(N> f d(p+1)- - -dN
N N-1 N P
F|(x1,...,xN)=2l hy(x)+ _21 _Eﬂhz(xi,xj), Xgn(d...N;1"...p'(p+1)...N) 2.2
i= =1 j=i
1.2

is thep-body density matriXpDM) obtained by reduction of
wherex,={r;s;}=i denotes the space-spin coordinatethf ~an arbitraryNDM gy, thusy, is a functional ofgy,
electron,h,(j,i)=h,(i,j)>0. In applications,

1.2 Eil9:1]= f d1hy(1)g,(1;1") ) 2.3

ha(1)=t(ry) +vex(ry) -

is a sum of the kinetic energylifferential operatorand the

external potentia{local operator, e.g., due to Coulombic in- and
teractions with fixed nuclgi while
) E2[92]=f d1d2h,(12)g,(12,12) (2.9
are functionals ofg; and g,, involving the one-body and
is the electron-electron repulsion energy. two-body operators ofd, [dj meansEsj fdsrj. In the
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present papen; ,d,,gy denote arbitrary 1DM, 2DMNDM, qu_ltrary to the 2DM case, the necessary and sufficient
possibly lacking N representability. The propertyy,  conditions[4] for 1DM to be ensemblé-representabley,
e P(N,N) is defined by e P(N,1), i.e., y1= y1[ yn] With yye P(N,N), are known,

namely that its spectral resolution is in the form

(.. N;1T .. N)=2 W, (1. .. N)PX (1 ...N),
A

(2.59 nL1)=2 (D ¢ (1), (2108

C,=0, X C,=1, (V¥,|V,)=6,,, (2.5b O=n;=<1, (2.109
A

U(.oietj.o)==W,(...j...1...). (250 Z”iIN, (il d)y=5y; (2.100

Obviously, for the minimizeryS® in Eq. (2.1), only the GS
wave functions enter Eq2.539. Therefore, if the GS is de-
generate, the minimizer is not unique.

Since the expression for the energy involves only 1D
and 2DM, Eq.(2.1) can be rewritten as the following mini-
mization with respect to ensembierepresentable reduced

wheren;,¢;(1) are called natural occupation numbers and

natural spin orbitals. Due to the explicit knowledge of
MP(N,l), another reduced-density-matrix approach to the GS
problem can be definedsee Levy[17], and references
therein for earlier paperdy performing minimization in Eq.

2DM's: (2.6) in two steps, internal ovey,, external overy;:
Ees= min {Eiyi[7]+El7]}, (2.6 Ees= min {Eq{y]+E[¥" vl (2.1D)
v2€P(N,2) v1€P(N,1)
where the 1DMy,, a functional of 2DMg,, defined as where the functiona}/"™ of v, is defined by minimization of
E, over y,:
. 2
71(1;1';[92])=mf d29,(121'2)  (2.7) .
EJ¥5"  v1l1= min  Efy,] (212
represents a reduction of the 2DY4, which is consistent ¥2e PIN2 Ayl vl =71
with the general reduction rule, ER.2). By definition, the
relation y, e P(N,2) means that constrained by the requirement fg; to be reduciblgsee
Eqg. (2.7)] to the giveny,. So this requirement is satisfied
yo=yo[yn]  With yye P(N,N), (2.8)  also by the minimizer:
see EQq.(2.5). Unfortunately, all sufficient conditions to de- 3’1[??"1[ y.11= 1. 213

fine the setP(N,2), equivalent to one described in E&.9
with Eq. (2.5), but solely in terms of constraints imposed on
the form of 2DM’s, are unknown, as yet.

Nevertheless, if only some selected constrai@song
them Hermiticity and proper normalizatipare imposed on
2DM’s during minimization in Eq(2.6), then, as observed lll. EXTENDED GOEDECKER-UMRIGAR APPROACH
by Colemar{4] and Garrod and Perc{5], the lower bound
to the GS energy is obtained

Due to this fact, the argument of tlg term in Eq.(2.11) is
so simple[compare Eq(2.6)].

Unfortunately, the definitiorf2.12) does not provide the
form of Y3 y,] for computational purposes, because the
E.>EAN2_  min (E.[X +E (2.9 sufficient conditions fory, e P(N,2) are unknown. Never-

Gs™=es gzeA(sz){ iG]+ gl (2.9 theless, a useful approach to the GS energy problem can be
obtained from Eq.(2.11) if some approximation to the

Here A(N,2) denotes the set of 2DM’s which satisfy the ¥z Lv1] functional, based on intuition and heuristic argu-
mentioned constraints, whilel(N,2)D7P(N,2) must hold. ments, is constructed. This is done by &J. Their approxi-
The last relation justifies the direction of inequality in Eq. mation, denoted now agh“2 [y,], may be defined as the
(2.9 [compare with Eq(2.6)]. In order to perform the mini-  orbital-self-interaction-free part ¢ j terms of the following
mization in Eq.(2.9), one usually expands the trial 2Dy (extended hepeGU functional:

in some basis set of spin orbitals. The expansion coefficients

play the role of variational parameters. Various authors de- _ IO

fine their A(N,2) by a set of constraints imposed on these B Rl (3.1a
parametergsee, e.g.[4—16], and references therginTests

show that in some cases quite tight lower bounds are genewritten in terms of natural occupations and orbitalsgf
ated. Eqg. (2.10, as
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~1113 . . . were able to recognize this attribute on the diagonal only.
02 (12;1'2';[71])252 [ninjdi(D &7 (1) (2 ¢7(2')  From the property shown in E¢3.7) follows immediately
the normalization of/5¥? to the number of pairs in the sys-

N2 (1) bF (2)) (207 (1)1, tem[2]:

(3.1b
N,[ 7512 LJIN-1)N  f N,1).
where its orbital-self-interaction pari€i termg is [7 [yall=z( ) or any y; €PN, 23 8
Y (1212 [9]) GU were aware of this, but they state in their paper that they

prefer to uséyit?' =34Y2 312" " Eq. (3.13, which vio-
=1 [(A—n)ndi (1) (2 ¢F (1) ¥ (2')]. (310  lates Eqs(3.7) and(3.9), although the numerical error, e.g.,
I

In fact, GU defined only the diagonal elements of the 2DM NZ[_;{ZUZ}”[YIJ]:E I(1—n)n;, (3.9
functional, theiro(12)=54"2'(12,12), since that is all that !

's required to determing, 22?2?1 Eq.(24). , is very small for most systems where the natural occupations
The definition(3.1b of y,™ can be rewritten more com- . are close either to zero or to one. But this may not be true

pactly in terms ofyf—the a power of y;= y1, for a>0: in the case of systems with a degenerate GS.
In my opinion, Egs.(3.7) and (3.8) are so fundamental
o . , ~ (172} ~ 112}’
Y1(L1 )=Ei N (1) ¥ (1), (3.2 that 75", rather thanyt"®", should be preferred as the

min

approximation toy3'™". But the GU opinion is oppositg2],

although no arguments are given. By excluding H&%"

term, they choose to have no orbital self-interactions in their

functional. When discussing this problem, GU state that their

functional is not perfectly electron self-interaction free, and,

(¥ Py (1; 1')EJ d1” y$(1,1M)9%(1";1")=y5*A(1;1'),  therefore, leads to the incorrect value of the calculated GS

(3.2 energy for the hydrogen atom. | propose a different view on
' this subject. Since the electron self-interactions are excluded

from the Hamiltonian(1.1) (summations restricted bji),

the exact reduced-density-matrix approé2i.]) to a system

~ (U2 g0t o described by this Hamiltonian ought to be regarded as elec-

v: "(121°25[71]) tron self-interaction free. The errors of the calculated GS
2[71 (1) 71(2 2')— )/1/2(1 2) 71/2 (21)]. 33 energy for H and other atoms, observed by GU, are due to

the approximate nature of the functiong$’? [y,], used
It is convenient to define the functionals for the norms ofjnstead of the exactbut unknown Y™ y,]. It should be
1DM and 2DM as noted that this approximate 2DM functionénd also its
extensmny{l’Z}[yl]) is capable of producing exact results
Nl[gl]:J' dlg;(1;1), (3.4  for one-electron systems, provided the spectral resolution of
the trial y, in EQ.(2.10 is limited to only one natural orbital.
Then both 753 [y,] and 3Y2[ y,] behave as the exact
Nz[gz]=f d1d2g,(1212). (35  yy"—they vanlsh(thus showing absence of the electron-

electron interaction foN=1). But an exact density-matrix
approach to any one-electron system is represented by Eq.

(2.11) with »J"=0 inserted(and no limit on the number of
natural orbitals However, if a dissociation of a many-

N[ y,]=N. (3.6 electron molecule into one-electron atofi@ns) is investi-

gated within the approximation based oB*2[y,] or

It can be checked immediately from E(.3), using Egs. 3/{21’2}[3/1], approximate solutions are obtained b+ 1 frag-
(3.2b and (3.6), that the result of reducmgy{l’Z}[yl] to  ments(i.e., with nonvanishing 2DMrather than the above-

which, due to the properties shown in Ef.10), satisfies the
usual multiplication rule

namely,

The norm of the ensembls-representabley;, Eq. (2.10),
satisfies obviously

1DM, Eqg.(2.7), coincides with the argument;, mentioned exact versions. It is worth noting tﬁg‘li” is an
implicit function of N, because its definition, Eq2.12), in-
72l yill= 7. (37  volvesN.
This means thab2[ y,], the approximation toy¥" y,], IV. GENERALIZATION OF THE GU FUNCTIONAL
obeys the same requirement 8" y,] does, Eq.(2.13. The GU choice of the power 1/2 in the definitic®.3) of

Since GU defined only the diagonal element§y§1‘2}' , they  the approximation to/J" y;] can be generalized to an arbi-
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trary powera>0 by defining the following approximate which stems from Eq9.3.29 and(2.10 providedy; scales

functional:
Y1212 y1))
=3{1(L1) y1(22') - 3[¥5(L2) y1 %(21)
+yi73(1;2) Y4211}, for

o<a<! (4.

(it is sufficient to takea<} becauseyt! @ =912, Obvi-
ously, fora= 3, this definition reduces to that in E.3). It
is easy to verify that the 2DM functionazl{za}[yl], Eq. (4.2,
obeys the requirement satisfied B§"y,] in Eq. (2.13.

Actually, the same requirement is satisfied by a linear com-

bination of the}{za} terms with different powers:

W= a vy (4.23

provided its coefficients are related by the equation

2 alK: 1.

(4.2b

It will be convenient to rewrite Eq(4.2) in terms of XK
independent parameteas-{a, ,az,(}le, namely

K K
Y= ( 1- ; alK)”y{zl’Z}Jr 21 a7, (433

where

—o<ay, <+®, 0<a,.<j, (4.3b
by choosinga,,=1/2 anda;;=1— Ef: 181,. At K=0 the
definition (4.3) reduces to the definitio(8.3) of the extended
GU functional.

Thus the generalized GU functiong)® satisfies the basic
imposed on the exact functional

requirement (2.13
~ min

Y2 L1l i.e.,

Y[ YR y111= 71, (4.4)

and also satisfies some necessary conditions for
e P(N,2) [i.e., relations following from Eq(2.8 with Eq.
(2.9

(i) preservation of the homogeneous scalifig

YRI1=7yal, (4.59
where the definition of the scalgadbM, for A>0,
'yp,)\(rl-sl,rz,sz, c ;ri,Si, ce)
=A%y (Nr1,51,Mr2,S;, .. INI1,S], .. .)
(4.5b

is induced by the scaling—\r of the spacdthe proof of
Eq. (4.59 relies on the identity

(4.50

Yin(r1,S15r1,8) = N3yF(Nry,s15h11,57),

as in Eq.(4.5b],
(ii) Hermiticity

¥2(121'2")=v5(1'2';12), (4.6
(iii) normalization
Na[v2]=3(N-1)N, (4.7
(iv) symmetry
¥2(2L52'1") = y5(121'2). (4.9
But 75® violates the antisymmetry
¥2(2L5,1'2") = = y,(121'2"). (4.9
The non-negativity of the diagonal element
y5(12:12)=0 (4.10

may be also violated for some argumed® Namely, for
X,=X; one has from Eq4.1) for each term of the combina-
tion (4.3 the negative value

Y AL1L[ 1))
=HyHLD-[/A(LD) y1 AL ]Y?)
X{yHLD+[Y4(1;1) v~ 31,113 <0, (4.12)

becausey?(1;1)> y1(1;1)>0 for 0<B<1 [see Eqs(3.29
and (2.10]. By continuity, this diagonal element should
remain negative also forx, close to x;. However,

Y¥(12,12) is positive for most arguments2, because it
integrates to a positive number, E@..7) with Eq. (3.5). It
should be noted that certai . of Eq.(4.39 may be chosen

negative, thus allowing the combinatigi®(11;11;[ y,]) to
become positive in some rangexf This would reducédor

even removgthe range of arguments2 Where")'/{za} violates
the necessary conditio@.10), as compared with4/? .

V. ENERGIES RESULTING FROM GU SCHEMES
Consideringfy{za}[yl] written explicitly in terms of natural
orbitals of y,, one can split it similarly as in Eq3.13
= 5

and find that its orbital-self-interaction part is independent of
the collective parameter, namely
A=A (52

For the energies corresponding to the considered approxima-
tions to )" [compare Eq(2.11)]:

min  {Eyl y11+ E[ V2 y1 11}
v1€P(N,1)

:{. . '}|71=7{1a}’

Egs™ E{Ga%:

(5.3
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Ees~EEL = min {Eily1]+E[ ¥ [7]]}
y1€P(N,1)
_{ : '}|71 y{la}' (54)
the following relation holds:
El<ell,  for anya (5.5

because the above inequality is equivalent to

Eil v+ El YR M I<EL ¥ 1+ Bl YR 42 1

<Ey[ ¥ 1+ El % [ 11,
(5.6

Here, the first inequality reflects the fact tha® is the mini-
mizer in Eq.(5.3), while the second inequality follows from

A = 2" Egs. (5.1) and (5.2, and then from
E,[—74"1>0, see Eq.(2.4) with a positive integrand,
smceh2>0 and—5¥2"(12,12)>0 [Eq. (3.19 with n; sat-
isfying Eq. (2.10b].

VI. RELATION WITH THE HARTREE-FOCK
APPROXIMATION

The observation made by G[2], that their functional
coincides with the unrestricted Hartree-Fod¥HF) func-

A. HOLAS
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VII. VIRIAL EQUATIONS

An interesting identity can be derived by means of scal-
ing, Eq.(4.5b. Since the scaled minimizer of E¢5.3
YR srs s =" (g sy s (7.0
belongs to the setP(N,1) [Eq. (2.10 with ¢;,(r,s)
=\¥2¢;(\r,s), n; ,=n;], and at\ =1 it coincides with the
original minimizer, the resultlndj{a} can be obtained also
from the following minimization:

E&= min {E[ 31+ ELW =1 }-1,
0<A<>
(7.29
and, therefore,
~}h=1=0 (7.2b

must hold. By taking into account EqR.3), (1.2), and(7.1),
the form of theE; term of Eq.(7.29 is found

Ely@1=N2T[ ¥+ V[veay . ¥¥1,  (7.39

where

Uext,)\(r):Uext(k_lr) (7.3b

tional if the occupation numbers are constrained to be 1 or 0,

will be used now to establish a relation between the GS
energies in the generalized GU and the UHF approximations. Tlg:]=
So, the 1DM i, derivable from a determinantal wave
function of the UHF approach, can be defined by E410
supplemented with the constraints

ﬁZ
J dxl( - ﬁ)vz(rl)gl(rlasliri’sl)

r_
rn=r

ﬁZ
:f dxl%V(rl)-V(ri)gl(rl,sl;ri,sl)

ri=rq

(1_ni)ni:O, i= (73©

1,2,.... (6.1)

Such 1DM is idempotentyyHFe=YHF1 [compare Eq.

(3.2)], therefore Eqs(4.1) and (4.3) result in [ yYHF]

=Y "= yYHF—_the 2DM derived from the same UHF
wave function(see, e.g/[1]). This means that the UHF upper and, by taking Eqs(2.4),(1.3),(4.58,(4.5b), the form of the
bound to the GS energy can be obtained from the followingglectron-electron interaction term is found

minimization:
E LV i3 11=NE[ Y vi¥1]. (7.38

Therefore, the necessary condition2b for the minimum
leads to

V[Uigl]:J dx; v(r)g91(Xg;%1), (7.30

{El[ y1l+Eal b {3’ (711}
(6.2

min
v1€ PIN,DA(1—nj)n;=

Egs< EZHF=

[it is sufficient to involve in Eq(6.2) the 2DM 73" rather 2 T[N+ Vv b 1+ B[ vi¥11=0, (7.4a

than75¥ , because, under the constraiffisl), Y53 =0, see
Egs. (5.2 and (3.19]. One sees that botBYH" and E/2

result from the minimization of the same functior&lq.

(6.2 and Eq.(5.4)] with respect toy,, variations of which
being more restricted in Eq6.2). Therefore the following
inequality holds

where[see Eq.(7.3b]

Vexl(1) = (7.4b

vext)\(r) =—T1-Vug(r),
A=1

i.e., an identity of the same form as the virial equatieee,
/ e.g.,[18]) satisfied by the exact solution, E@.1),
Ed <eZF,  for any a (6.3) 5

2 TLyal v I 1+ VI e val YR+ E2lv2l v °11=0.

See also Eq(5.5). (7.9
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It should be noted that when the external potential results 5 11, ia(R)1+V R} B (R)T1+ E- [T 8 (R

from the Coulombic interaction of electrons with a single [ (R VIved iR Y (RIH Bl v (R))

nucleus, ve,r)=—2€e* (kqr), then vl =ve and this d

should be inserted into Eqé7.49 and(7.5). + d—gE{a}(gR) =0, (7.10
If the external potential of Eq1.2) is specified as result- =1

ing from the Coulombic electron-nuclei interactions, .
or, equivalently,

—Z,€e?
Ve D) =ved 1iR)= 2 <R[ T

{a}(R) 0.
(7.1)

“(7R

R:(Rl, ""RM):(Rll’RlZ’ ...,RM3), (76) . . .
It should be noted that the summation in Eg.11) involves
the independent nuclear coordinates diely., relative to the

whereZ, andR, are the atomic number and tfiéxed) po-
sition vlector olf Ith nucleus. then the energliﬁ:;,( g)iSF()IUSSEOfIrSt atom and allowing for arbitrary rotation of the molecule
' a wholg One can consider also the total energy of the

above, likeEgs, EIZ, EI&', ELHF, and the corresponding molecule

DM minimizers y3S, 413 8" JUHF " all depend orR,
e.g. E2=EE(R), yi¥=9¥(R). In addition to scaling of WEL(R) = EB(R) + Eq(R), (7.12
the electronlc coordinates, as in E4.5b), one can introduce
simultaneous scaling of the nuclear coordinates which includes the nucleus-nucleus interaction energy
Yp A(r1,81,72,S ri,s R) Mo 2,282
L L L LA | L LA I k
pe R Em(R)=2 R T (713
=8Py, (Lry,81,872,80, « - 11,8, - i(R). AL
(7.7a By taking into account that
d
This new scaling, similarly as in E¢4.5a, is also preserved d_gEnn(gR) =—En(R), (7.14
by the model 2DM functionah¥[ y,1: (=1
Eqg. (7.11) can be rewritten as
YR y11=7 vl (7.7D
. . . . TOAMRI+WER) + X Ragp LW R)=0,
Continuing the analogy with the previous scaling, one can J
write (7.15

This identity is of the same form as another virial equation

— {a . {a
(R) min {T{yigl+Vived :R). 7i¢] (see, e.g.[1]) satisfied by the exact solution, E@.1):

0< (<>

E [ 8 .
RN TR Wes R+ S Ry 55 Wes RI=0,
={ Ve (7.9 (7.163

Note that the expectation value of the original Hamiltonian isyhere

minimized in Eq.(7.8), therefore the nuclear positionsin,

are not scaled. After transforming variables of integration in WsgR)=EggR)+E.(R). (7.16b
the termsT, V, andE, of Eq. (7.8) one obtains

It is worth noting that the virial equation§.49 and(7.11),
EG(R)= min {ZZT[¥H(IR)]+{ V[ved -:{R), ¥ ((R)]  satisfied by the solutiont® , EL of Eq. (5.3 for arbitrarya,
0<f<e are satisfied also by the solutions of E¢5.4 and (6.2),
because the scaling properties of the corresponding 2DM'’s
BRI = Y= (799 y s propert ponding
are the same as afl” .

so the condition, necessary for the minimum,
VIIl. OPTIMIZATION OF PARAMETERS

i . —0 (7.95 As shown in Sec. IV, all important properties, E¢é.4)—
d¢ -1 ' (4.8), of the generalized GU functiongh®[ y,], which jus-

t|fy its role as an approximation to the exact functional

leads to Yo y,], are satisfied for any. So, for an approximate
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solution (5.3 of the GS problem for an arbitrgry many- space point by DM's y1= vl Ynls ¥2= ¥l Ynl, Where the
electron system by means of the one-body-density-matrix afsnsembleNDM 1y, is constructed according to E¢R.5)

proach(2.11), a whole family of approximate 2DM function-  from the eigenfunction®, of the Schidinger equation
als parametrized bg can be used. In order to apply it to a

particular system characterized by, h,, andN, some op- HY, =E, ¥, (8.4)
timum collective parametea=a[ v, h,,N] should be cho- .
sen. with H given by Egs.(1.1), (1.2) in terms of the potentials

There are known identities which are satisfied by thev.,,h, present also in Eq8.3). In particular, the differential
1DM and 2DM reduced from the exact GS solutip‘,ﬁis, but,  virial equation(8.3) is satisfied by the paity;= 3’,1[ yﬁs]
in general, are violated by the approximate DM§' and  ,,_3, 1,89 corresponding to the solution of EQ.1). The

gl =51 {#1, corresponding to the solution of E5.3.  total forcef, entering Eq.(8.3), is a sum of the external,
A requirement to minimize these “violations” can be used internal and kinetic components

to gefinea | expect that the corresponding energy deviation

|E{&—Egd will be also close to optimuntminimum with f=fext finet fuin (8.59
respect to variations af). Of course, this conjecture should i
be confirmed by tests. defined as
For a givenN-electron system, leQ[g;,0,] denotes a
functional with the following property: fexta(l) == Va(r) vex(r), (8.5p

2GS L A GS11—
Q[gl!QZ]BQ[71[’YNS]!’YZ[’}/NS]]_O (81) n(r)fint,a(r)z_zf dsr'(Va(r) hz(r,r,))nz(r,r,),
(examples will be given Then the proposed algorithm to (8.59
obtain, by means of the generalized GU functional, the best
approximation to the GS solution for a given system is the 2

following: (i) perform minimizations in Eq(5.3 for a cho-  N(F) fkin,a(r):% am V(D V(1) n(r) =2V 5(r)tep(r) |,
sen set of points in the space of the paramegerBhis de-

fines the DM'sy{® andg'? as functions of these; (ii) find (8.50
in the space of the parameters pointa—the minimizer in I terms of the following functionals of, and y,—the ar-

2

the following minimization: guments off in Eq. (8.3):
i {al gl =oria gl@ h?
min s = y (82) _ ’ " ” ’
oL g =Rl e tap(1)= g [T ) V1) 4V ()T 5(17)]

[probably some interpolation between the points of the step
(i) would be sufficient to determina]; (iii) perform the =pr=0
minimization in Eq.(5.3 for a=a; the obtainedE; is the (8.50
best approximation t&gs, while the DM's y4¥ andgl® are

the best approximations tg,[ 5] and y,[ S5, —the kinetic energy density tensor,
To be practical, only a few parameters should be involved
in this algorithm. For instance, values of a small nuntbef
parametersa,, are chosen and fixed, e.dK,=2, a,,=1/6, n(r)=2> 7l(r,sr,s) (8.5f)
a,,=2/6,[see Eq(4.3)], and thenK real parametera,, are s
to be optimized. ) ) ]
The virial theorems, Eq<€7.5) and(7.168, may serve as —_the diagonal spinless 1DM, i.e., the electron number den-
examples of the above-mentioned identities. Unfortunately,s'ty'
they are use{le}ss f{o}r constructiQf g, ,g,], because thegre
satisfiedby y{¥, g, Egs.(7.4a and(7.15), for arbitrarya. _ _
However, the virial equatiori7.5) is a member of a wide nZ(rl’rZ)_s;i,z 72(11:81.02,%i11,81.12.5,) (8.59
class of identities known as the hypervirial theorefsse,
e.g.,[19] and[20]). Many of them can be obtained directly —the diagonal spinless 2DM, i.e., the electron pair density.

x| > yl(r+r’,s;r+r”,s))
S

from the so-called differential virial theorefequation Note that the integrated trace fs(r) gives the total kinetic
energy according to Eq7.30, second line.
n(r) f(r;[ v1, 72,V ext,N21) =0, 8.3 The virial theorem, Eq(7.5), can be obtained from Eq.

(8.3 by multiplying it by r and subsequent integration over
which can be interpreted as a local force balance equatiorthe whole spac€?21]. Other hypervirial theorems can be ob-
because among the terms summing tieere is— Vv —the  tained similarly usingp;(r) r instead ofr [where ¢;(r) are
force acting on an electron due to the external potential. Thisome chosen functions, see discussion by Holas and March
Eq. (8.3), obtained in21], was shown to be satisfied at any in [20]; although noninteracting many-electron systems are
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considered by them only, their results can be easily extendedery accurately—approximate numerical integration using a
to the interacting systems by adding the contribution due tdew representative points of space should be sufficient. How-

fint - If
Pil ¥1,72:Vext:N2]=0 (8.6)

denotes theith hypervirial equation, then the *“least-
squares” sum

ever, the number of these points should exceed the number
of free parameters ia.

IX. CONCLUSIONS

In concluding, the main results of the present investiga-

tion are summed up:

Q[gl,gz]=2i Pi(Pi[91,92, 06,22 (8.7)

can serve as a particular representatioof he role of the
weightsp; >0 is to make various terms of the sum similarly
sensitive to variations of the parametersvhen used in Eq.
(8.2. The property(8.1) is obeyed by thigQ, because the

hypervirial equations(8.6) are satisfied byy;=y,[ySS],
¥2=72[ ¥S%]. The number of summed terms in E.7)
should exceed the number of free parameters, imvolved
in Eq. (8.2). It is worth noting that, in their recent page?],
Cioslowski and Lopez-Boada make use of the hypervirial

theorem to obtain the electron-electron repulsion energy as

an approximate functional of the Hartree-Fock 1DM.
The form (8.7) of Q is “expensive” in applications, be-
cause the evaluation of eadh needs accurate numerical

integration over the whole space. Therefore | propose an-

other Q which makes an alternative use of the differential
virial equation(8.3), namely

Q[gvaZ]:J d3rn(r){f(r;[gl1921vext1h2])}2' (88)

It shows the property8.1), because the forcér) acting on
an electron at any poimtvanishes, Eq@8.3), when the DM’s
reduced frorr‘r)/(,\,3S are used. The electron density plays in Eq.
(8.9) the role of the weighting function. Actually, for the use
in Eq. (8.2), the integral in Eq(8.8) need not be evaluated

(i) The GU approacii2] to the GS problem of a many-
electron system is analyzed in terms of the reduced-

density-matrix approach, as an approximation to Eg.

(2.12).

(i)  The GU approximate functional 2DM, when properly
extended toy5/2[ y,], shows the property3.?), i.e.,
it obeys the requirement imposed on the exact 2DM
Y2 [ 71], Eq.(2.13. _

(i) A generalization of the GU functional [ y,], is

proposed, Eq4.3) with (4.1): the extended GU func-
tional, 75¥[ y11, corresponds t& =0 in Eq. (4.3.
This 753[ y,] obeys the propertiegt.4)—(4.8). Viola-
tion of the property4.10 can be diminished for some
parameters.

The relationg5.5) and(6.3) between various approxi-
mations to the GS energy are established.

The energy and DM’s corresponding to the solution
of the GS problem with the generalized GU func-
tional, Eq. (5.3, satisfy two virial equations, Egs.
(7.43 and(7.11), which are also satisfied by the exact
solution.

An algorithm to obtain the best approximation to the
GS solution is proposebelow Eq.(8.1)].

Two versions, Eq.(8.7) and (8.8), of an auxiliary
functional Q[ g4,9,] (used in the algorithpnare pro-
posed.
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