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A density-functional theory that treats all states of an electronic system on the same footing is introduced.
The corresponding Kohn-Sham formalism can be applied to ground and excited states alike, does not suffer
from av-representability problem, and represents a rigorous formal basis for the common, but so far unjusti-
fied practice to treat excited states by Kohn-Sham methods. The presented density-functional theory emerges
from a generalization of the constrained-search procedure. The new Kohn-Sham formalism is based on gen-
eralized adiabatic connections introduced here. The possible topologies of those generalized adiabatic connec-
tions are discussed. A density-based stationarity principle and a density theorem that represents a more general
counterpart of the Hohenberg-Kohn theorem are presented. A method to take into account exactly exchange
interactions in the presented Kohn-Sham formalism is introduced, implemented, and applied to atoms.
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PACS numbds): 31.15.Ew, 31.10tz, 31.50+w

I. INTRODUCTION AND SUMMARY are some systems, e.g., certain lanthanide and actinide atoms,
for which it may not hold trug27].
Density-functional theoryDFT) [1-7] is the most widely In this work a more general density-functional theory and

used theory for the investigation of electronic systems. It ighe corresponding generalization of the KS formalism is in-
almost exclusively applied within the framework of the troduced. The DFT of this work emerges from a generaliza-
Kohn-Sham(KS) formalism [2,3,8]. Despite its dominant tion of the constrained-sear¢@8—3Q procedure. The new
position in molecular and solid state physics, traditionalKS formalism is based on generalized adiabatic connections
DFT, i.e., present DFT in contrast to the DFT developed in(GAC’s) introduced here, and is therefore called the
this work, exhibits a number of serious shortcomings and>AC-KS formalism[31-34. A density-based stationarity
limitations. principle and a density theorem that represents a more gen-

First, ground and excited states play very different roles€ral counterpart of the Hohenberg-KokiiK) theorem are
The ground state is a central quantity in traditional DET.Presented. The formalism of this work treats all states of an

Many of its properties can be calculated accurately and effi€/€ctronic system on the same footing, makes a direct KS
ciently with present DFT methods. Excited states and theif eatment of exqt_ed states possible, and does not suffer from
properties, on the other hand, are not directly accessible ift v;(fféefsentalbllltyfprobler_?.d tat ted by Fritsch
traditional DFT, except those excited states that are the erE- ormafism for excited states suggested by Friische
ergetically lowest of their symmetr{9]. Nevertheless, a .35’36 also is ba;ed on agenerallz_anon of adlapatlc connec-

: A oy ) ' tions. The formalism of Fritsche relies on a relation between
treatment of excited states is, in principle, possible on th

basis of traditional DFT. Indeed, ensemble formalisms for%hanges of the electron density and changes of the correlated

X pair density[36]. The validity of this relation has been the
excited states were suggested by Theoph[80] and by g hiect of controversial discussions. Here, in Appendix A, it

Grosset al. [11-13. Garling presented a formalism to treat 5 shown that the relation, in general, does not hold true. The
excited states on the basis of the ground-state KS orbitalgyrmalism of this work is founded on an entirely different
[14]. However, so far both types of formalisms could bepasis, a generalization of the constrained-search procedure,
applied only to a few atomic systerfi5,16. The reason is namely, and at no point refers to the pair density or related
that reliable generally applicable approximations for the requantities and thus is not plagued by the problems of
quired specific density functionals are lacking. The imple-Fritsche's formalism.
mentation of ensemble formalisms is furthermore impeded The introduced new KS formalism can be applied as eas-
by technical difficulties. Thus a direct investigation of ex- ily as the traditional one. Indeed, a frequently used, however
cited states isle factonot possible within traditional DFT. In so far formally unjustified, approach to treat excited states
practice, excitation energies of atoms and molecules can bean be identified as a crude approximate application of the
determined indirectly through time-dependent DEY-26. new KS formalism. It is common practice to straightfor-
This, however, leads to the unsatisfying necessity to resort tavardly treat excited states within the standard KS scheme by
a time-dependent theory in order to describe a property of aimply leaving energetically low KS orbitals unoccupidd.
stationary state. Unless the considered excited state is the lowest of its sym-
A second weakness of traditional DFT is that its applica-metry[9], this procedure is completely unjustified within the
bility within the KS formalism depends on a quantity, the KS traditional KS formalism. Nevertheless, it often yields good
model system, whose existence is not guaranteed but has tesults. The formalism of this work represents a sound for-
be assumed. While this assumption, thaepresentability mal basis for this procedure and therefore explains its suc-
assumption(2,3], seems to be justified in most cases, therecess.
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In order to fully exploit the potential of the DFT presented potentialv (r). Here, T and (/ee are the operators of the ki-
here and of the corresponding KS formalism, it is necessarpetic energy and of the electron-electron interaction, respec-
to develop reliable approximations for the density function-ively. The constantr with values between zero and one, 0
als occurring in the new theory. The crude approach of sim< y<1, is the coupling constant of the electrons. For real
ply approximating the density functionals of the new theoryphysical systems the coupling constant equals 1. The HK
by those from traditional DFT can be considered only as &heorem, however, is valid for arbitrary positive valuesaof
first preliminary step towards this goal. As a possible nexiyhich can be even larger than 1 and thus can lie outside the
step, a method for the exact treatment of the exchange fungange ofa relevant in this work. From the HK theorem it
tionals is suggested in this work. For atoms, such an exacty|lows that the ground-state electron density of an electronic
exchange GAC-KS method is shown to be feasible. As aystem uniquely determines the corresponding external po-
illustration, excitation energies of alkaline atoms are calcutgntig| up to an additive constafit—3]. Additionally the
lated. An exact-exchange GAC-KS method for molecules igjensity determines the particle number. Thus the ground-
currently developed37]. . state electron density determines the Hamiltonian operator

The paper is organized as follows. In Sec. Il, traditionalang subsequently all properties of the electronic system.
DFT is reexamined. In particular, it is shown that, in contrast The HK theorem allows one to define the Hohenberg-
to a widely adopted point of view, the Hohenberg-Kohn,,, functionalF[5, ], a functional of ground-state densi-

(HK) theorem is not a sufficient foundation for traditional ,. =~ h . .
DFT. The constrained-search procedure, on the other hand,flglsug and coupling constanta given by the expectation

shown to suffice as a basis for traditional DFT. In Sec. Il A,
the constrained-search procedure is generalized. In Sec.
[l B, the more general DFT of this work is established. To
that end, two lemmas are proven and then used to derive % ~ ) - )
density-based stationarity principle and a density theoren@' the ground staté/[p, @] belonging tdp anda. The tilde
that may be considered as a more general counterpart of tf8 P indicates thap is a ground-state density, i.e., that it is
HK theorem of traditional DFT. Section Il C introduces gen- (N density of the ground state of a Hamilton operator of the
eralized adiabatic connections between noninteracting an@®rm T+ a@Ve+0. Such densities are calledrepresentable
interacting electronic systems. In Sec. Il D the GAC-KS for-[2 3] for the corresponding value of The tilde onE and¥

malism, the analog of the traditional KS formalism, is pre-; qicates that the HK function®[5,«] and the wave func-
sented. The GAC-KS formalism is derived under a certain

assumption on the topology of GAC’s. Section IV discussedion ¥[p,a] are defineq Of“y f(lv-reprgsentgblg densities.
the accessibility of the density functionals arising in the newThe ground-state densifyyieldsF[p,«] in an indirect way
formalism and introduces an exact-exchange GAC-KJor a givena: p determines the exte_rnal_potential and the
method. As an illustration, excitation energies of alkalineelectron numbelN and thus the Hamiltonian operator; the
atoms are calculated within the new formalism in Sec. V.Hamiltonian operator then leads to the ground st[®, a]
Section VI contains concluding remarks. In Appendix A, the\hich finally givesE[7,a] by Eq. (1). These dependencies
validity of the relat'lon of Refs[35, 34 betwefen.change's _of may be symbolized by

the correlated pair density and the density is scrutinized.

GAC's that do not exhibit the required topology are consid-  ~ NoT+aVe 453 Bl 2
ered in Appendix B p(r)—>v(r), - a ee v— [pya,:l_> [P:a]- ( )

Fp,a]l=(V[p,al|T+ aVed V5, al) (1)

For a specific particle numbé&\, coupling constant, and

IIl. TRADITIONAL DENSITY-FUNCTIONAL THEORY external potentiab (r), the inequality
AND THE STANDARD KOHN-SHAM FORMALISM

In this section the structure of traditional DFT and of the F[p'a]+J dr v(l’)p(r)?F[po,a]-l-J dru(r)po(r)
standard KS formalism is reexamined and the starting points 3
for the generalization and modifications suggested in this . ) . ,
work are discussed. The development of DFT began with th80!dS true. In inequality3), p is an arbitrary -representable
discovery of the HK theorerfil] and according to a widely density, in other word;? is trle density of the ground state of
adopted point of view the HK theorem plaifse central role  a Hamiltonian operatof + aVee+ 0’ with some external po-
within DFT. Indeed, the HK theorem is often considered as dential v’ (r) which, in general, is different from the given
sufficient basis for traditional DFT including the standard KSpotentialv(r). On the other handy, shall be the electron
formalism. This, however, is not true. Therefore, in this workdensity of the ground state of the Hamilton operaior
traditional DFT is considered from a somewhat d|ﬁerent+a\“/ee+{) with the given external potential(r). With defi-

angle with the constrained-search proced@@-3q instead  ion (1), inequality (3) follows directly from the fact that

of the HK theorem placed at the center of the theory. ~ . ]
The HK theorem states that two electronic systems witfhe ground stat&’[po,a] yields a lower energy expectation

external potentials that differ by more than a constant cannotalue with T+ aVeet+0 than any other wave function, thl_JS
have ground states with the same electron density. The the@lso a lower energy expectation value than wave functions

rem holds true only for local external potentials, i.e., forfl}[f,,a] of ground-state densiti§s that differ from pg. In-
(i)|eCtr9nIC SyStemS W|th a Haml|t0nlan Operator Of the formequa”ty (3) sometimes is called the second HK theorem, a
T+ aVeet 0 with 0 being the operator generated by a localnotation not adopted here.
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Inequality (3) suggests to find the ground-state energylonger invoked in this justification of Thomas-Fermi-like

F[p,a]+ fdrv(r)p(r) of an electronic system by finding methods. Moreover, the constrained-search defini#@)rof
the electron density p, which minimizes 'E[T? al the HK functional immediately yields the HK theorem: If for

+ fdro(r)p(r) and by subsequently evaluatiﬁ%[po,a] a givena two electronic systems with different external po-

+Jdr v(r)po(r). In Thomas-Fermi method®,3,38,39 the tentials had the same ground-state dengigy then they
ground-state density and energy are obtained by a minimiza/ould have the same ground stat[p,,a] because
tion of density functionals for the ground-state energy. AtY[Po,a], by definition, yields the lowest value for the sum
first glance, inequality3) may be considered as a formal Of the kinetic and the electron-electron interaction energy
justification of such methods. A closer look, however, re-While the interaction energy with the external potential is
veals that inequality3) does not suffice for this purpose. The identical for all wave functions yielding the ground-state
reason is that the HK function®[5,a] and therefore in- densnypo. .Hovyever, two electronic system with external
equality(3) is defined only fow -representable densities. Cri- Potentials differing by more than a constant cannot have the
teria that are sufficient to determine whether or not a giverf@me ground state if potentials are restricted to be local. The
density isv-representable are unknown. Therefore, it is notcrucial point shown here is that the constrained-search pro-
possible to carry out a minimization based on inequg(BDy cedure given in ECK4) is a more fundamental basis for DFT
In Thomas-Fermi methods, on the other hand, one minimizethan the HK theorem because the constrained-search proce-
over all densities yielding the correct particle number regarddure not only leads to the HK theorem but furthermore
less of whether they are-representable or not. Thus these yields, independently of the HK theorem, inequaliy),
methods are not justified by inequalit@) or the HK theo- solves theuv-representability problem, and thus justifies
rem. This is an example demonstrating that the HK theorenThomas-Fermi methods.
alone is not a sufficient basis for DFT. In the DFT introduced in this work, a constrained search
The v-representability problem can be solM&8-30 by s carried out not only for the absolute minimum as in E.
defining a more general HK function® [p,a] by a con-  but for stationary points in general. The resulting generaliza-

strained search as tion of Eq. (4) yields functionals that are more general than
the HK functionalF[ p,«] and the corresponding generaliza-
Flp,a]= min(\lf|‘i’+ aVee|\I'). (4)  tion of Eq. (5) leads to more wave functions than just the

Y—p minimizing wave functionsV[p,a].

o . While Thomas-Fermi methods, in principle, are very ap-
The minimization in Eq.(4) runs over all wave functions pegling, they are unsuitable for practical purposes because
yielding the electron density. The minimum, by definition  gyficiently accurate approximations for the unknown func-
the absolute minimum, can be shown to eXi0] for all  ional F[p,«] are not available. In practice, DFT is almost
well-behaved densities independent of whether or not th%xclusively employed via the KS formalism. Within the KS
densities are-representable. Thus[ p,a] is defined for all  f5rmalism” one calculates a model wave function, the KS

densities, not only fov-representable ones. The minimizing \yave function, which is associated with the real physical

wave function is denote?[p,a]. By ground-state wave function. From the KS wave function one
_ . . then deduces properties of the physical system, in particular
min(W|T+ aVed ¥)—V[p,a] ®)  the ground-state energy. The KS wave function is defined by

v=p three condition: (i) It is an eigenstate of a model system of

it is expressed that minimizatio@) determines¥[p,a]. The hypothetpal n_omnteractlng eIectronsA, |.eA., it .|s aAn elg_enstate
dependency of the HK functiond¥[p,a] and the corre- Of @ Hamiltonian operator of the form+ o with o5 being
sponding minimizing wave function on the density can nowdenerated by a local effective potentia(r), the KS poten-

be symbolized by tial, (ii) it yields the same electron density as the real physi-
cal ground stateiii) it is a specific eigenstate of the nonin-
p(r)—=V[p,a],F[p,al], (6)  teracting Hamiltonian operatof+o, namely the ground

] ] ) state. Because of the HK theorem these conditions guarantee
arelation that is much simpler than the one of sché2héor  that for a given physical electron system not more than one
F[p,a]. For v-representable densiti€g the functionals KS wave function can exist and that the KS wave function

E[p,a] andF [p,«] as well as¥[p,a] and¥[p,a] can be therefore is well defined.

shown to be identicdl2,3). Condition (iii ) is necessary for the application of the HK
Inequality(3) can now be rewritten for the HK functional theorem. This condition, however, also reintroduces a
Flp,al, v-representability problem into the traditional KS formalism

even though the constrained-search definitinof the HK
functional is not plagued by-representability problems.
F [P,a]+f drov(r)p(r)=F [Po,a]+f drou(r)po(r). While the KS wave function is unique if it exists, there is no
(7) Quarantee that it exists. This has to be assumed. In other
words, the KS formalism is based on therepresentability
Now arbitrary densitiep, not only ground-state densitigs  condition that every ground-state electron density of a physi-
can be substituted in the left-hand side of inequalify.  cal interacting system is also the ground-state density of a
Thus inequality (7) represents a sound formal basis for noninteracting KS system. From practical experience one
Thomas-Fermi-like methods. Note that the HK theorem is nanay conclude that this assumption holds true in most cases.
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On the other hand, there is evidence for violations of thishe coupling constant of the electrdr3]. This assumption
assumption, e.g., in lanthanide and actinide atoms with opewill also be made throughout this work.
f shells[27]. Only electron systems with properly normalizable wave
For the determination of the KS wave function, the func-functions, i.e., finite systems, are considered. Systems with
tional derivatives with respect to the density of the HK func-an exponentially decaying asymptotic electron density, like
tionals ata=0 anda=1 are required2,3]: atoms or molecules, are therefore placed in a large but finite
box in order to enforce normalizable unbound states. Peri-
odic systems are treated before the thermodynamic limit is
taken by considering a large but finite number of unit cells
p(1)=po([Vexdil) embedded in periodic boundary conditions.
For simplicity, electronic systems will be treated in this
®) work as if they had no symmetries and only nondegenerate
eigenstates. Real systems always exhibit symmetries. Even if
no symmetries in real space are present, there still exists full
) , rotational symmetry in spin space if, as in this work, relativ-
In Eq. (8), vex(r) is the known external potential of a con- jgiic effects are neglected. Symmetries can be taken into ac-
sidered physical electron system, usually the potential of theynt in the present formalism along the lines of Réd],

nuclei andpo([vex];r is the ground-state density of this sys- yhich suggests a treatment of symmetries in traditional DFT.
tem. Throughout this work.,(r) designates exclusively ex-

ternal potentials of fully interacting electron systems while
v(r) stands for external potentials of systems with arbitrary
coupling constant. At this point it is again important to define  FunctionalsQ[ p,v,«] are defined as expectation values
the HK functionals via the constrained-search procedure be- . R
cause in order to take in E¢B) the functional derivatives of Qlp,v,al=(¥Y[p,v,a]|T+aVectd|¥[p,v,al) (9
density functionals at the ground-state dengg{f v ey;r) it .
is necessary that the functional is defined in a vicinity of thisof wave functions ¥[p,v,a]. The ¥[p,v,a] are those

: : ~ ~ . . wave functions that yield the electron densjyand for
density. For the HK functional&[ p,«] this would require

that a vicinity ofv-representable densities exists around eacf™@%; additionally, the - expectation Valué‘l'[p,v,ajﬂ"l'
v-representable density. Whether this is the case or not ig @Ved W[p,v,@]) is stationary with respect to variations
unclear. Here the importance of the constrained-search prétv—, of ¥[p,v,a] which leave the electron density un-
cedure shows up again. changed, i.e., variations that tui{ p,»,«] into a wave func-

In the GAC-KS formalism introduced in the next section, tion with the same electron density. That means that the
model wave functions are introduced in a different way. The¥[p.»,2] are those wave functions with densigyfor which
model wave functions again are required to yield the saméhe condition
density as the considered state of the real physical electron . .
system and again have to be eigenfunctions of a noninteract- Sy_o(P[T+aVed¥)=0 (10
ing Hamiltonian operator with local effective potential. But it o
is no longer required that the model wave functions areholds true. The parameter labels all existing wave func-
ground statesf such a noninteracting Hamiltonian operator. tions ¥[p,v,a] of a given density in some arbitrary order.

In other words, from the conditions defining the standard KSThe ¥[p,v,a] shall be callecb-stationary wave functionef
system, conditioné) and(ii) are retained in the definition of the densityp and the coupling constan. If the p-stationary

the model wave functions of the GAC-KS formalism, Wave functions¥[p,v,a] of a givenp and« are all isolated,
whereas conditiofiii ) is no longer involved. Therefore, no then the labels are integers, otherwise also labeibeing
v-representability problem plagues the GAC-KS formalism.'€al numbers may occur. Ap-stationary wave function
Instead of conditiorii), a generalized adiabatic connection ¥lp.».a] is isolated if aroundP[p,»,a] there exists a neigh-
between interacting and noninteracting states is used to corRorhood in the Hilbert space in which no othestationary
pletely define the model wave functions. Because conditiofvave function of the same densipyand of the same cou-
(i) is no longer involved, the resulting GAC-KS formalism Pling constanta is present. Wave functions that are distin--
treats ground and excited states alike. guished just py a constant phase factor, as usual, are consid-

An important difference from the traditional KS formal- €red as identical. _ _
ism is that the HK theorem is not required in the derivation ~In order to compare the function@[p,»,a] with the HK
of the GAC-KS formalism. The density theorem emerging adunctionalF[p,«], it is expressed in the form
a generalization of the HK theorem in the DFT of this work . .
also is not required. The density theorem is obtained as an Qlp,v,al= stat(V[T+aVdV). (11)
interesting but not crucial spin-off. v¥—p

OF [p,a=1]
op(r)

B OF [p,a=0]
op(r)

V(M) =vex(r)+

p(1)=po([vexdit)

A. Functionals Q[ p,»,a]

The expression stay_,(¥|O|¥) stands for thesth sta-
tionary value of the expectation valy&’|O|¥) of an op-

eratorO under the constraint that the wave functiohyield
In density-functional theory it is common to assume thatthe electron densitp. Because the labeling of the stationary
functionals are differentiable with respect to the density orvalues is arbitrary, they are determined in two steps. Within

[ll. DFT BEYOND THE HK THEOREM, GAC-KS
FORMALISM
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the set of wave functions that yield the densityone first  stationarity principle of quantum mechanics. This principle
determines all wave functions for which the eXpeCtationstates that the eigenstates of a Hamiltonian Operﬁtor
value (W|O[W) is stationary with respect to all variations + oV, +5, with the operatod being generated by a local
dy_., that do not change the density. Subsequently, one thegxternal potentiab(r), are those wave functions for which
labels all the stationary points. The Hohenberg-Kohn func—the expectation Valud‘I’i|1'+a\A/ee+ﬁ|‘Ifi> is stationary

tional Fp,a] is contained in the _S_et of fu_nctlor]als with respect to any variatiody,_,y turning ¥, into another
Qlp,v,a] because the absolute minimum i (VT  npormalizedN-electron wave function. The expectation value

+aVed W) of Eq. (4) is a stationary point. (W,|T+aVet+0|¥;) is therefore also stationary for the
By subsetdy, ., of variations. This leads to
stat <\I’|"I\'+a\A/ee|\If>—>\If[p,v,a] (12) 0:5q;4,p<\1’i|:|\—+a\’\/ee+l’}|q’i>:5q;4,p<\1’i|:|\—+a\’\/eel\l’i>.
V,‘I’*)p
(15

it is expressed that theth stationary point determines the The second equality in Eq.(15 follows because
wave function¥[p,,a] in a similar but more general way as Su_,(Wi|3|¥;)=0 due to the fact that the variatiohy, _,
the minimum(S) determines the wave functiofifp,a]. The  goes not change the density. Equatids) identifies¥; as
latter is ap-stationary wave function, i.e¥[p,a] is con- 5 member of the set ofp-stationary wave functions
tained in the set of wave functioni[p,v,a]. W[p,v,a]; see Eq(10).

The dependencies between densitips functionals Lemma |l states thatach p-stationary wave function
W[p,v,a], and wave functionsV[p,v,a] may be symbolized [, 4] is an eigenstate of an electronic system with cou-

by the scheme pling strengtha and with the external potential(r) given
b
p(1)—W[p,v,a],Qlp,v,a] 1y

that resembles schen(@) of traditional DFT. However, one v(n=—q([p,v,al;r)+u.
density now determines a whole set of wave functions an

functionals. Both the minimization@) and(5) and the find- prove lemma Il, an arbitrary variatiod¥ (of type 8y_.y) of

ing of stationary points in Eq$11) and(12) are carried out a wave functiom¥[p,v,a] accompanied by a corresponding
by a constrained search, a search over the subset of way '

functions that yield a given electron density. The difference Ariation dp of the density is decomposed according to
between Egs(4) and(5) on the one hand and Eg4.1) and oV =6V, + 5V, (17)
(12) on the other is that in the latter all stationary points, not
only the absolute minimum, are searched for. with

The functional derivative o[ p, v, «] with respect to the
electron density for fixed’ and a shall be denoted by oV =V[p+bp,v,a]l—V[p,v,«a] (18

a(Lp,v,alir)=6Q[p,v,al]l dp(r). (14 and

In the formalism considered here, the electron number is oV,=06V—-o6V,. (19
fixed. As a result, functional derivatives with respect to the

electron density are defined only up to an additive constanthe first variations¥; converts¥[p,v,«] into a wave func-
because change$p(r) of the electron density have to obey tion W[p+ dp,v,a] that also isp-stationary for the coupling
the conditionfdr 8p(r)=0 which guarantees particle num- constantx, however, for the density+ 5p. The parameter

ber conservation. That means the functional derivative ofhall remain unaffected by the variation. The second varia-
Q[ p,v,«] with respect to the density is represented by a setion 6V, then, by construction, does not change the density
of functions with the functions differing by an additive con- in first order, i.e.,0W, is of type éy_.,. The equation

stant. The functionq([p,v,a];r) shall be one arbitrary ~ ~

member of this set. (8P| T+ aVeetd|¥[p,v,al)+c.C.

(16)

(iin Eqg. (16), u is an arbitrary additive constant. In order to

B. Relation of ¥[p,r,a] and Q[ p,»,«] to eigenstates and :<N1|T+ aVee+v|‘l'[p,V,a]>+C.c.
potentials, generalization of Thomas-Fermi methods =<5\1r1|'i'+ aV el‘I’[p v,a])+c.c
e » L.

The relation ofp-stationary wave function®{p,v,«a] and
of functionals Q[ p,v,a] to eigenvalues and potentials of
electronic systems is described with the help of two lemmas.
The first lemma, lemma |, states thedich eigenstatd; of = 5Q[Piv,a]+j dro(r)op(r)
an electronic system with coupling strengilis p-stationary
for the coupling constant. In other words, each eigenstate
¥, of an electronic system with coupling constantis a :f drlq([p,v,al;r) +v(r)]1ép(r)=0 (20
member of the set of wave functiodq p; ,v,a] correspond-
ing via the constrained-sear¢h?) to the electron density; now proves lemma Il. The first equality in E@O) follows
of ¥;, ¥,=¥[p;,v,a]. Lemma | follows from the basic from

+{(8V4|0|¥[p,v,a])+c.C.
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(8W,| T+ aVeet 0| ¥[p,v,al)+c.c=0.  (21)

Equation(21) holds true because of two arguments. First,

becausé 8V ,|T+ aV.d¥[p,v,a])+c.c=0 due to the fact
that 5%, is of type 6y, andW[p,v,a] is p-stationary. Sec-
ond, becaus€sV,|o|¥[p,v,a])+c.c=0 due to the fact
that ¥, as variations of typesy_,, does not change the
density in first order. In Eq(20), 6Q[ p,v,«] is the change
of the functionalQ resulting from changing¥[p,v,a] to
W[p+ 8p,v,a]. For the last equality in Eq20) it is used that
particle number conservation requiresfdr wdp(r)
=ufdr Sp(r)=0.

A corollary to lemmas | and Il is thahe external poten-
tial v(r) of any electronic system with coupling constaris
a functional —q([ p; ,v,a];r) + u of the electron density;
of any of its eigenstate¥,;. This corollary can be deduced N
as follows. Lemma | proves that every eigenstitiebelongs A
to the set ofp-stationary wave function¥[ p; ,v,«]. Lemma

Il shows that every-stationary wave functio¥'[ p; ,v,a] is FIG. 1. Symbolic representation of different types of general-
an eigenstate of an electronic Hamiltonian operator with coUized adiabatic connectiof&AC’s): Structures 1 and 2 are isolated
pling constanta and external potential-q([p;,v,a];r) GAC's, structures 3 and 4 are bunches of GAC’s, and structure 5 is
+ . The potential—q([ p;,v,a];r) +u must equal the ex- a tube of GAC's. The Hilbert space of antisymmetNeparticle
ternal potentialv(r) because a wave function, hef¥; wave functions is represented by planes perpendicular to the cou-
=W¥[p;,v,a], cannot be an eigenstate of two electronicpling constant axis. For=0 anda=1 these planes are displayed
Hamiltonian operators with the same coupling strengthut by symbolic axesA andB.
with external potentials that differ by more than a constant.
The latter statement holds true only for electronic systemsnines all external potentials(r) that lead to at least one
with external potentials that are local. However, only sucheigenstate with that density.
electronic systems are considered in this work. On the basis of the lemmas and theorems derived so far,
The corollary, respectively lemmas | and I, proves thethe Thomas-Fermi scheme can be generalized to be, in prin-
following density theorem, which represents a generalizatiomiple, applicable to any eigenstate of an electronic system,
of the HK theorem: An electron density determines the ex- not only to the ground state. The treatment of an electronic
ternal potentials of all electronic systems that have at leaskystem characterized by a given external potent{@) and
one eigenstate with this electron densiycorollary of this  electron numberN with the generalized Thomas-Fermi
theorem is thaain electron density determines all properties scheme comprises two steps. First, one searches for all den-
of all electronic systems that have at least one eigenstatsities p; which have, at least for one value ofa functional
with this electron density derivative —q([ p;i , v, ];r) + u that equals the external po-
Lemmas | and Il together establish a density-based staential. Then, second, one determines the total energies of the
tionarity principle. For a given coupling strengti this  eigenstates determined by the foung by evaluating
density-based stationarity principle reads as followd:  Q([p,,v,a];r)+ fdrou(r)p;(r) for those v for which
p-stationary wave functions of a given densityare eigen- —q([pi,v,al;r)+u=v(r). While this generalized
states of an electronic system and an eigenstate of any ele¢homas-Fermi approach is of academic interest, a practical

tronic system that yields the densjtys a p-stationary wave  application seems to be even less feasible than that of the
function of p. The density-based stationarity principle is a standard Thomas-Fermi approach.

counterpart to the common stationarity principle of quantum
mechanics. The quantum-mechanical stationarity principle
determines all eigenstates belonging to a given external po-
tential, i.e., all eigenstates of an electronic Hamiltonian op- Generalized adiabatic connectiolSAC’s) shall be the
erator with this external potential. The corresponding elecpaths of thep-stationary wave function®[p,v,a] if the cou-
tron densities can be obtained from the eigenstates. Theling constant goes from zero to one while the dengignd
density-based stationarity principle determines all eigenstatgbe values of the parameterare fixed. The set of all GAC'’s
belonging to a given electron density, i.e., all wave functiongor a given densityp establishes a relation between the sets
that yield this density and are eigenstates of an electroniof p-stationary wave functions av=0 and ata=1, i.e.,,
Hamiltonian operator. The corresponding external potentialbetween the set given by ali[ p,v,=0] and the set given
are given by Eq(16). Note that, to some extent, electron by all ¥[p,v,a=1]. Figure 1 represents a symbolic picture
densities and external potentials change roles if one goesf the GAC’s and the relations betwegrstationary wave
from one stationarity principle to the other. functions ata=0 anda=1 for some density. For illustra-
For a given density and coupling constanthere exists tional purposes it is assumed that the three basic types of
one Eq.(16) for each eigenstate of an electronic system withGAC's are present for the considered density. How far these
that density. Equatiori16) for different values ofv deter-  basic types of GAC’s occur for electron densities of real

C. Generalized adiabatic connection
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systems is discussed later on. The GAC's are structures in as structure 5. A set op-stationary wave functions
high-dimensional space that is obtained by extending th&[p,v,a] of the samep and « is connected if it cannot be
Hilbert space of antisymmetrid-particle wave functions by decomposed into isolated sets. A setgé$tationary wave
an additional dimension for the coupling constant. In Fig. 1functionsW¥[p,v,a] of the same and« is isolated if, around
each plane perpendicular to the coupling constant axis reggach member of the set, one can find a neighborhood in the
resents the Hilbert space of antisymmetNeparticle wave Hilbert space which contains nestationary wave function
functions. Fora=0 anda=1 these planes are indicated by €xcept those that are members of the set. A structure of the

the symbolic axesA and B. The Hilbert space of antisym- tyPpe of structure 5 shall be calledtabe of GAC’s Con-
metric N-particle wave functions, of course, is not a two- nected sets of-stationary wave functions and therefore also
dimensional but a high-dimensional space. At each value diiP€S of GAC's seem not to occur in real systems. The dis-
the coupling constant the p-stationary wave function¥[p cussion of such structures is included for completeness.

L) ! 1
v,a] for a givenp are represented by a point in the corre- If for any two valuesa anda’ a tube of GAC's estab-

: s : ; lishes one-to-one mappings between tH4p,v,«] and
sponding plane symbolizing the Hilbert space of antisym- A : f
metric N-particle wave functions. The points representingq}[p””a ] yielding the tube of GAC's atx and o, respec-

W[ p,v,a] for different values ofx but fixed values op and v tively, then the adiabatic connections and the corresponding
then form a GAC. VY[ p,v,a] for any value ofa can be labeled by parameters
Various types of GAC's may occur. A GAC may fso- which are realor at .Ieast ratio_nalnumbers. Otherwise the
lated, like the GAC’s 1 and 2 in the figure. An adiabatic tube of GAC'’s contains bunchlike structures and the bunches
building the set can be labeled by the real parametek

connection shall be isolated if at each valueaothe corre- labeli f1h di f . h d poi
sponding p-stationary wave functior¥[p,v,a] is isolated. abeling of t € corresponding wave unctions at t een point
a=0 anda=1 requires additional parameters as discussed

(Isolated p-stationary wave functions were defined in Sec.. . . .
lA. ) Isolated GAC's can be labeled by the parametef in the preceding paragraph. However, in this work, such a

the p-stationary wave function®[p,»,a] building it. Note ~ '2b€ling will turn out to be not necessary for tubes of GAC's
that the wave function®[p, »,«] of different isolated GAC's ~ containing bunchlike structures.

ield identical ati | £ th & Note that, for any value o#, there are other wave func-
may yield identical expectation values of the operalor  i,ns \which are notp-stationary lying “between” the

+aVee at one, several, or even all values @f In other [y 1 a] of a connected set. More precisely, any subset of
words, the functionalQ[p,»,a] and Q[p,»’",a] with v’ the Hilbert space that, for some value @fcompletely con-

# v which refer to different isolated GAC's of the same den-tains a connected set of wave funCtiO‘ﬁgp,V,a] also con-

sity may have the same value. Thus, if the expectation valugins other wave functions that are not members of the set.
(¥[p,v,a]|T+aVed¥[p,v,al)=Q[p,v,a] of two GAC's  An obvious reason for this is that any neighborhood of a
of the same density is equal at a certain value of the couplingvave function¥[p,v,a] contains wave functions that have a
constante, that does not mean that the two GAC’s have adifferent electron density.

common point. Figure 1 shows such a situation for GAC’'s 1  The functional®Q[ p, v, @] associated with a connected set
and 2 if the symbolic axi® is defined dependently omin  of p-stationary wave function¥[p,v,a] of a givenp and «

such a way that it gives the value ¢¥|T+ aV.J¥). That all have the same value. The reason is that anyyar,a]
means the simple picture of crossing energy levels does né@n be connected by a path which always can be divided into
apply here.(Remember that the real Hilbert space of anti-infinitesimal steps going from ong-stationary wave func-
symmetric N-particle wave functions is not two but even tion ¥[p,»,a] of the connected set to anothgrstationary
much higher dimensional. wave function¥[p,v,a] of the set. These infinitesimal steps

A more complicated structure of adiabatic connectionsare changesy ., of the wave functionst[p,v,a] which do
arises if for a given density several isolateg-stationary ~ Not change the density and therefore, due to the definition of
wave functions atx=0 are related to isolateg-stationary  the ¥[p,v,a], Egs.(10) and(12) do not change the value of
wave functions atr=1 by GAC'’s that have common points. the correspondin@[p,v,a]. If the functional derivatives
The resulting structures shall be callbdnches of GAC's dlp.v,a]+u corresponding to a connected set of wave
Examples for bunches of GAC's are the structures 3 and 4 ifunctions¥[p, v, a] differ from each other then, because of
Fig. 1. In this case the end points of the GAC'ssat0 no  lemmas | and II, theV'[p,»,«] would be eigenstates of dif-
longer are labeled by a single labebut by two labelsyand ~ ferent Hamiltonian operators. This can be assumed to not be
7. The labelr now designates the bunch while different endthe case [37]. Therefore the functional derivatives
points of the bunch at=0 are labeled byy. The corre- dlp,v,a]+ u of a connected set oF[p,v,a] can be assumed
sponding wave functions atr=0 are then given by to be equal and then the members of a connected set of
W[p,»,7,0]. In a similar way the end points of the adiabatic -Stationary wave function¥[p,»,a] all belong to one set of
connections atv=1 are designated by the labelof the  degenerate eigenstates of a Hamiltonian operatowV,
bunch and a labet indicating the different end points of the + with an external potential(r) that is given by the cor-
bunch ata=1. The corresponding wave functions at theseresponding functional derivativesq[ p,v,a]+ u.
end points are given bW¥([p,v,x,1]. The described labeling Real systems may have degenerate states with the same
scheme applies only to the end points of the adiabatic corelectron density, however these states correspond to isolated
nection ata=0 or =1 but this is all that is needed in this p-stationary wave functions. In an atom, for example, two of
work. three degenerat@ eigenstates, namely those with magnetic

A set of GAC’s given at each value of by a connected quantum number 1 or-1, have the same electron density.
set of p-stationary wave function¥[p,v,«] is shown in Fig.  An infinitesimal admixture of the state with magnetic quan-
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tum number O or—1 to the state with magnetic quantum acting system. Those eigenstat#s belong to the same in-
momentum number 1, however, changes the electron deteracting Hamiltonian operator witbne external potential
sity. Thus the eigenstates in the neighborhood of the onec.(r) but the eigenstate¥;, of course, in general have
with magnetic quantum number 1 have different electrordifferentdensities. Each eigenstalg is ap-stationary wave
densities and the eigenstate is an isolgtesfationary wave function W[p;,v,a=1] with p; being the density of the
function. eigenstate. The value of the parametelepends on how the
Other cases of GAC's than those displayed in Fig. 1 maﬁeneralized adiabatic connections for the dengjtare la-

occur, e.g., bunches of tubes of GAC’s an isolated GAC thaPeled. For each of the densitigs the functional derivative
branches at some>0 and at a largerr<1 reunites again — d([pi,»,a=1],r)+u equalsve,(r) for that value of the
into one isolated GAC, or tubes of GAC'’s that, from a cer-Parametew for whichW[p;,v,a=1]="; . If one considers
tain value ofa on, collapse into one isolated GAC. These 2!l €igenstates of a noninteracting Hamiltonian operator with
cases are combinations or generalizations of the three typ&ffective potentiab(r), a similar picture arises. The eigen-

of adiabatic connections discussed above and can be treatet@tes®; vyield different densitiesp; and for eachp; the
in an analogous fashion. potential v¢(r) equals the functional derivative

—q([pj,v,@=0],r)+ u if the parameter corresponds to
the p-stationary wave functionb;, i.e., if ¥[p;,v,a=0]
=d,.

The GAC-KS formalism will be derived first for the spe- EJach eigenstat®; of a real physical system is associated
cial case of isolated GAC's and will then be generalized. Fokyith a unique eigenfunctio®; of a unique noninteracting
a given densityp the wave functions¥'[p,v,a=1] at the  model system via a GAC if the GAC's are assumed to be
end points of the GAC’s a&= 1, according to lemma 2, are solated. As in the standard KS formalisr; shall be called
eigenstated”, of fully interacting electron systems with ex- the KS wave function and the model system shall be called
ternal potentialee,(r) that equal—q[p,v,a=1]+pu, i.e.,  the KS system. By construction, the densjty of the KS
the V[p,v,a=1] are eigenstates of Hamiltonian operatorswave function®; equals that of the corresponding wave
T+ aVeet Doy With ve,(r)=—0a([p,v,a=1];r)+ . From  function ¥;, i.e., ®; like W; yields the densityp; and p;
now onWV, or ¥; shall designate exclusively eigenstates of=p;. Note that many KS systems are associated with one
fully interacting systems. The eigenstatBg asp-stationary  physical system, in general one KS system for each eigen-
wave functions op anda=1 are adiabatically connected to stateV;.
p-stationary wave function¥[ p,v,a=0] of the same den- In order to determine the KS system and wave function
sity p but =0. In the case of isolated GAC’s a one-to-one associated with a specific eigenstdte of a given real elec-
mapping between th&[p,v,a=1] and the¥[p,v,a=0] tron system and in order to determine the energy of the
results. Now lemma 2 is invoked again. It guarantees that thphysical eigenstate with the help of the associated KS wave
T[p,v,a=0] are eigenstated , of noninteracting model function, various energy functionals have to be defined.
systems with Hamiltonian operatofst vs. Eigenstates of a 1hese energy functionals are components of the functionals
noninteracting model system shall be designatedbpyor ~ Qlpi,7,a] at =0 anda=1 and therefore depend on the
@, to distinguish them from the eigenstatég or ¥, of an densityp; and the parameter labeling the associated GAC.
interacting electronic system. The corresponding potential§iowever, the labeling of the GAC’s for the densipy is
are denoted byuvg(r). The potentials vy(r) equal arbitrary. The parametertherefore is not uniquely defined.
—q([p,v,a=0],r)+ . Because the model systems are This problem is solved by replacing the variabjgsand v in
noninteracting, their eigenstates are Slater determinants bufff€ functionals¥[p;,v,a] andQ[p;,»,a]. In this way the
of orbitals that are eigenstates of single-particle Sgimger ~ Necessity to find a universal labeling scheme that uniquely

equations with Hamiltonian operatofst+ o if no degenera- defines is avoided and the evaluation of the functionals
cies are present. In case of degeneracles can be a Q[ pi ,v,a] and their components is facilitated. In the case of

symmetry-determined linear combination of Slater determi-ISOIated GAC's, the variables; and » uniquely determine

Moy, v,@=0]=®; and ¥b,=W[p;,v,a=0] be-
nants which differ only by degenerate orbitalgvhetherT Lpi,»,a=0]=®; and converselyp; =[p; ,»,a=0] be

- ds f . i il for th longs to a unique; = p; and a uniquev. Therefore, in func-
+0s stands for a non|nteract|@-p§rt|c e or for the corre- a1 the variablep; andv can be replaced by the KS wave
sponding single-particle Hamiltonian operator depends o

Bunction ®;. The KS wave functiorb; is the wave function

th_e context_). In contrast to Fradm_onal DFT, the S"’?‘tef deter- that is actually calculated in the GAC-KS scheme and thus is
minant® , is not necessarily built by the energetically low- _ available quantity

estAortiitaIs becausg, does not have to be the ground state gy generalizing the corresponding definitions of the stan-
of T+0s. . . dard KS formalism, the functional&[ ®;], U[®;], E[®;],
The wave function®[p,v,a=1] at thea=1 end points  and E.[®;] of the noninteracting kinetic energy, the Cou-

of the generalized adiabatic connectionsoof density but  |omb energy, the exchange energy, and the correlation en-
different », in general, are eigenfunction®, of different  ergy, respectively, are defined as

interacting systems witdifferentexternal potential® o,(r)
=—q([p,v,e=1],r)+ . Similarly, the noninteracting Ts[cpj]:TS[pi,y]:<q>j|i’|cpj), (22
model systems and their potentiats(r)=—q([p,v,a
=0],r)+ u for onedensity but varying values of are, in
general,different On the other hand, one is usually inter-
ested in a number of different eigenstate®oégiven inter-

D. Generalized adiabatic connection Kohn-Sham formalism

pi(r)pi(r’)

|r_r/| ’ (23)

U[(I)j]:U[Pi]:%f drdr’
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EJ® ]=E,p; .V]=<‘I’j|\7eelq)j>— ue;], (24 the eigenstaté; and thus on the orbitals building; . In the
GAC-KS scheme, in contrast to the traditional KS scheme,

and not the energetically lowest but some other set of orbitals is
occupied. The energdy; of the real interacting eigenstafe,
EJlPj1=Epi,v]=Qlpi,v,a=1]-Q[p;,v,a=0] corresponding tab; is given by
—Ulpi]l=Exlpi 7] Ei=Td®;]+U[®;]+E,[®;]+E[P|]
=(V| T+ Vd W) —(D:| T+ Vo d D). (25)
< i e |> < J ee l> +fdrvex(r)p([®j];r)- (31)

The corresponding Coulomb, exchange, and correlation po-

tentials are given by functional derivatives In the GAC-KS scheme each eigenstiiteof a given real

ey Ty — interacting system is adiabatically connected to a certain
u([P;1;r)=u([pil;r) 6U[p]/5/0(f)|p =p;(r) state®; of a certain noninteracting model system. However,
remember that two different eigenstatesook real interact-
:f dr’pi(r")/|r—r'|, (26)  ing system, in general, are adiabatically connected to two
different eigenstates dfvo differentnoninteracting systems
Ty — T — with two different effective potentials¢(r). That means for
AP0 =vullpi vIin) = 0B Lo, vl dp(r)], ):Pi<r)(’27) each eigenstat; the GAC-KS scheme has to be carried out
separately, i.e., for eacl; the corresponding(r) and®;
and are determined separately.
A crucial point is that, in generaly; corresponds to a
ve([Pjlir)=v([pi ,V];r)=5Ec[p,v]/&p(r)lp(r):pi(,), ®; with j#i. The ground stat&’, of a real physical sys-
(28)  tem, for example, does not have to be related to the ground
state ®, of a noninteracting model system. Thus the
respectively. The functional derivatives are takep;&t) for  ,-representability assumption is not required. For the special

a fixed parameter. That means the definition of the poten- case thaj=i=0 the GAC-KS scheme reduces to the tradi-
tials vy and v refers to the variableg; and ». However, tional KS scheme, see Fig(d.

after having define@, andv. in the variables; and v one If the ground statel ,="¥[p,,v,a=1] of an interacting
can then change to the variablg . system is adiabatically connected to an excited sthfe

In the traditional KS formalism, exchange and correlation= W[po,v,a=0] (j#0) of a noninteracting system, then
functionals also can be expressed as functionals of the Kgne of two cases is present in the standard KS formalism.
wave function or equivalently the KS orbitals, as in thewhich one is present depends on the offistationary wave
GAC-KS formalism. However, implicitly the functionals functions W[p,,»',a=0]#®; of density p, with v’ v
would remain functionals of the density whereas in thewhich are not connected to the considertg by a GAC.
GAC-KS formalism they are implicit functionals of the den- The first case arises if one of the othestationary wave
sity and the parameter. Orbital-dependent functionals are functions ¥[py,v',a= 0]#®; is the ground state of the
preferable to traditional denSlty functionals because they arﬁonmteracung System it is associated with accord|ng to
much more flexible and because the KS orbitals containemma 2, i.e., if¥[po,v’,a=0] is the ground state of the
much more information than the density. noninteracting Hamiltonian operator with the effective po-

By combining the definition§14) and(22)—(28) with Eq.  tential —q([po.v',@=0];r)+u’#—q([pg,v,a=0];r)

(16) for «=0 and a=1 and foruv(r) being vy(r) and 4+, Then the wave functioW’[po,v’,a=0]+®,with »’
vex(r), an equation for the potential(r), the KS potential, = is the KS wave function of the standard KS formalism.
is obtained: That means, in this case, the model systems of the standard
and the GAC-KS scheme are different. The standard adia-
vs(r):UeXt(r)J’u([q)i];r)+vx([®i];r)+UC([(DJ'];r)'Zg batic connection, i.e., the adiabatic connection as defined in
(29 the standard KS formalism, would be discontinuous in this
case, which is symbolically displayed in Figb2 In Fig. 2
the symbolic axiB shall be chosen dependently arin such
a way that it gives the expectation valué\lfﬁ'
[T+0eqt 0+0y+0.]P;=Eg; P (30) +a'Ved¥). At the coupling constani’ the standard adia-
batic connection is discontinuous in Figb2 Because the
with eigenvalueE;. The eigenvalueEg; is an auxiliary ~GAC-KS formalism does avoid such discontinuous adiabatic
guantity that will not be used any further in this work. Equa- connections, it seems to be preferable in such a situation.
tion (30), the analog of the KS equation of traditional DFT, The second case arises if none of the wave functions
shall be called the GAC-KS equation. The GAC-KS equa-¥[pq,v',a=0]#®; with »'#v is the ground state of a
tion, like the traditional KS equation, decouples in corre-noninteracting Hamiltonian operator. Then the dengiyis
sponding single-particle equations for the KS orbitals. Equanot noninteracting -representable and the standard KS for-
tion (30) or the corresponding single-particle equations havemalism is not applicable in contrast to the GAC-KS scheme,
to be solved in a self-consistency scheme because parts which is not based on any-representability assumption. In
the Hamiltonian operator, namely v, , ando., depend on this case the standard adiabatic connection does not exist for

Because the wave functio®; is an eigenfunction of
+ s, it obeys the noninteracting Scliioger equation
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different indiceg, the resulting energies for the correspond-
ing physical eigenstat?; can be energetically ordered and
energy indices can be attached.

In the set of KS energy indicgemerging in the GAC-KS
formalism from the eigenstates of a given physical system,
certain numbers may be missing or may appear more than
once. If a numbej is chosen that is not present in the set of
KS energy indices, then the GAC-KS scheme will not lead to
a solution, i.e., it will not converge. If a numbgis chosen
that appears more than once, then it depends on the starting
condition of the self-consistency procedure for which eigen-
state of the physical system the associated KS wave function
is determined.

The complicated relation between the energy indices of
the interacting and the noninteracting systems reflects the
fact that there exists no simple universal way to relate the
energies of real interacting electronic systems to those of
noninteracting model systems. Therefore, a formalism
should not require assumptions on the energy indices of
model states, rather the relation between the energy indices
of the physical and the model states should result from the
formalism. This is the case in the GAC-KS formalism but
not in the standard KS formalism. The latter requires the
model system associated with the ground state of a real sys-
tem to be the ground state of a noninteracting model system.

Next the GAC-KS is generalized in order to cover other
cases than that of isolated GAC'’s. First tubes of GAC’s shall
_ N S be considered. In this case it is sufficient to carry out the

FIG. 2. Generalized versus traditional adiabatic connectifams GAC-KS scheme with one arbitrary memb#f p,v,a=0]
notation, see Fig.)1 Generalized adiabatic connections are depictedof the set ofp-stationary wave functions forming the end
by solid lines, traditignal ad_iabatic connections by dashed Iinespoint of the tube of GAC’s atr=0. One can even choose a
Ground states of noninteracting model systems are denotdg, by different W[p,»,a=0] in each iteration of the self-

excited states byp; or ®,. (a) Traditional adiabatic connection is consistency procedure. The reason is that. according to Sec
identical to one of the generalized adiabatic connecti@sTradi- yPp . . 9 '
1B, all wave functions¥[p,v,a] of a continuous set of

tional adiabatic connection is discontinuous) Traditional adia- . f ) b d to be ei
batic connection does not exist for values of the coupling constarﬁ"Stat'onary wave functions can be assumed to be eigenstates

which are smaller thag'. of the same Hamiltonian operator. Therefore, the wave func-
tions ¥[p,v,a=0] of a continuous set atr=0, the KS

values of the coupling constant which are smaller tadn ~ Wave functions corresponding to a tube of GAC's, are all

See Fig. Po) for a symbolic representation of this case.  eigenstates of the same effective potentiglr). Further-

In practical applications one is usually interested in amore, the functional®Q[p,v,a] corresponding to such a
number of eigenstates and energy eigenvalues of a giveepntinuous set op-stationary wave function®[p,v,a] all
physical electronic system. Thth eigenstatel; of the real have the same value and the same functional derivative
physical electronic system is adiabatically connected to thél([p,v,a];r). Thus all the functionald¢[p,v], E\[p,v],
jth eigenstate of a KS system. However, the relation betweednd E[p,»] as well as the functional derivatives
i andj is nota priori known and only the energy indg»of  vx([p,7];r) andv([p,v];r) belonging to a tube of GAC’s
the KS wave function enters the KS scheme and is knoware equal. Therefore, the case of a tube of GAC’s can be
from the start. Thus a GAC-KS treatment of a single selectedreated simply as if it were the case of an isolated GAC
eigenstate of the real system is not possible unless physichecause it is not necessary to distinguish between the mem-
intuition allows one to choose the corresponding value of théers of a continuous set of wave functiolifp,v,a] at anya.
index j. The GAC-KS scheme, therefore, is applied in sev-As mentioned in Sec. Il C, this case seems not to occur in
eral steps. real systems and therefore seems to be of academic interest

(i) An indexj is chosen. only.

(i) The GAC-KS equations are self-consistently solved In the case of GAC’s forming bunches, the assumption is
for that indexj. In each iteration cycle the exchange andmade that each bunch has just one end pointatl (see
correlation potentials are determined from those KS orbitalstructure 3 in Fig. 1 In this case the-stationary wave func-
of the previous cycle that built thith eigenstate of the KS tions ata=0, the corresponding functiona@ at «=0, and
Hamiltonian operator of the previous cycle. subsequently the functionals;, E,, andE. as well as the

(ii ) After self-consistency has reached the energy of thdunctional derivatives, andv depend not only on the den-
corresponding physical eigensta®, is determined via Eq. sity p and the bunch index but also on the parametey
(32). designating the end point of a given buncheat 0. Because

(iv) After having carried out the GAC-KS scheme for each bunch shall have just one end pointatl, no indexx




PRA 59 DENSITY-FUNCTIONAL THEORY BEYOND THE . .. 3369

to label this end point is required. The variabjes, andn  depend only on the electron density. Therefore, the depen-
specify a unique wave functioW[p,v,»,a=0]=®;. Con-  dence ofE,, E¢, v, andv. on the labelv of the involved
versely, this wave functio®;=W¥[p,v,n,a«=0] determines GAC is completely ignored. As shown in Sec. llI D, the KS
uniquely the variablep, », and ». Thus it is possible to wave function®; contains all information on botp and v
replace the variablep, », and » by ®; and the GAC-KS  The information onw, however, is not used in the described
formalism remains essentially unchanged. LDA and GGA approximations. Moreover, the LDA and
Note that, in contrast to the standard KS formalism, it isGGA’s are developed for ground states, not for excited
not required in the GAC-KS formalism that an eigenstate ofstates. If the LDA or a GGA is employed in the described
an interacting physical electron system is related to only onavay, then the GAC-KS method turns into a standard KS
noninteracting KS system. The GAC-KS procedure alsgrocedure in which the ground-state electron density is re-
works if more than one KS system is associated with onglaced by an excited-state density. This is the common pro-
eigenstate of an interacting system. cedure to treat excited states that is mentioned in the Intro-
Whether the assumption that bunches of GAC's do noduction. While this approach has no formal justification
have more than one end pointat 1 is always valid needs within the standard KS formalism, the GAC-KS formalism
further investigation. The behavior of bunches of GAC's notof this work now gives it a formal justification by identifying
obeying this assumption in the GAC-KS formalism is dis-it as an approximate GAC-KS procedure. On the other hand,
cussed in Appendix B. Physical intuition suggests that, irthe success of the GAC-KS method in the crude local density
real systems, bunches of GAC’s do not exist at all, neitheor generalized gradient approximations is very promising
those with one nor those with several end pointaatl. A and suggests the development of improved GAC-KS meth-
physical reason why GAC's should touch seems not to exisods based on specific orbital-dependent approximations for
and the physical meaning of the points where GAC's touclthe GAC-KS functional€, , E., vy, andu..
would be unclear(See also the remark in Sec. VI that relates  Approximations for the exchange energy and potential
the question of whether bunches of GAC'’s exist to the quesean be avoided completely if the exact expressions presented
tion of whether many-body perturbation theory converges.next are employed. The exchange enekgy®;] is simply
With respect to the validity of the assumption on the endgiven by the standard expression for the exchange energy of
points of bunches of GAC's, also note that if a bunch ofa Slater determinant
GAC's has more than one end pointet 1, then the corre-
spondingp-stationary wave function¥[p,v,x,a] are eigen- occ occ * * /
functions of different interacting systems with different ex- E,=—1> > f dr dr'(Pa(r)(pb(r)(pb,(r ) @alr )_
ternal potentialgthis is shown in Appendix B Thus in order a b r=r']
to violate the assumption, eigenstates of different electron (32
systems with different external potentials, i.e., of two differ-
ent Hamiltonian operators, would have to somehow evolveln expression(32), ¢,(r) and ¢,(r) denote KS orbitals
without changing their electron density, into eigenstates ofvhich are two-dimensional spinors in order to represent the
one Hamiltonian operator just by a change in the couplingpin degree of freedom. A star denotes the Hermitian adjoint,
constant. This shows that the assumption on the end points abt just the complex conjugate of a KS orbital. If degenera-
bunches of GAC's is likely to hold true and probably is lesscies due to symmetries are present, then the KS wave func-
severe than the-representability assumption of traditional tion is a symmetry-dependent linear combination of Slater
DFT. determinants. The corresponding generalization of expres-
sion (32) for E,[®;] is straightforward. Expressio(82) is
identical to the expression for the exchange energy in the
standard KS formalisni2,3]. However, in contrast to the
If the GAC-KS formalism is applied, then the various standard KS formalism, the occupied orbitals entering ex-
parts of the total energf;, Eq. (31), and the contribu- Pression(32) now, in general, are not the energetically low-
tions to the effective potentials, Eq. (29), have to be €stones and solve the GAC-KS instead of the standard KS
calculated. The contributionsT{®;], U[®;], and €quations. _ _
Jdrvex(r)p([®;1;r) of E; can easily be obtained exactly ~ The exchange potentiak([®;];r) obeys the equation
from the occupied KS orbitals building the KS wave function
®;. Among the contributions te, the external potential 0cc unocce
vex(r) is given and the Coulomb potentia([®;];r) again f dr'Xy(r,rog(r') =2 2 @i(Nes(r)
can be easily evaluated exactly from the occupied KS orbit- a s
als via the electron densiy{ ®;]. Thus the handling of the
energy functional&,[ ®;] andE [ ®;] and of the potentials
vy([@;];r) andv([®;];r) remains to be discussed.
Simple approximations foE,[ ®;], E[P;], v.([P;];r),
andv([®;];r) result if the electron density([®;];r) and, In Eq. (33), o,N- is an integral operator with kernel
if necessary, also gradients pf[ ®;];r) are substituted into oRE(r, 1) == () @f (r')/|r—r'|. This means that}"
the local-density approximatiofi.DA) or generalized gradi- is a nonlocal exchange operator of the same form as the
ent approximationgGGA's) for the exchange and correla- Hartree-Fock exchange operator but built from the occupied
tion functionals of the standard KS formalism. Obviously KS orbitals. Bye, ande the eigenvalues of the KS orbitals
these are quite crude approximations. The LDA and GGA'sp,(r) and ¢4(r), respectively, are designated. By

IV. FUNCTIONALS
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0OCC unocc *

X(r)=S S @z (Nes(Mes (') @a(r )+C.C.

TABLE I. Excitation energies of alkaline atoms in eV.

€3~ &s a4 Transiton ~ LDA EXX EXX/LDA EXX/GGA CC* Expt?
39 Li 2s—2p 182 1.84 1.90 1.86 1.85 1.85

the response function corresponding to the KS wave function 2s—3s 3.26 3.33 3.53 341 3.37 3.37
is denoted. Equatio33) is identical to the corresponding 2s—3p 3.70 3.80 4.02 3.88 3.83 3.83
equation in traditional KS theorj42—44. Again, however,
the orbitals entering E¢33) now are GAC-KS orbitals that, & 3s—3p 218 197 210 200 209 210
in general, are not the energetically lowest ones. Equation 3s—4s 3.17 3.04  3.26 314 318 3.19
(33) can be derived similar to the way in which the corre- ~ 3s—4p 3.79 3.57 385 3.69  3.74 3.75
sponding equation in the standard KS formalism was deriveg 45 _,4p 168 1.41 1.53 1.46 1.60 1.61
in Ref.[44]. A closely related approach to derive E§3) is 4s—5s 257 235 257 2.49 260 2.61
to equate two different fprms for the functional denyaﬂves of 4s—5p 3.06 2.76 3.03 293 3.05 3.06
the exchange energy with respect to the KS potential, namely
Jdr'[SE/Sp(r")][ 8p(r')/ dvg(r)] and “Referencd49].

S dr [ SE./ S¢a(r') [ Sepalr' ) Svg(r)]. compared to highly accurate coupled-clugte€) results and

experimental datp49]. For the light atom Li the EXX yields

Methods to solve Eq:33) within the standard KS formal- results that are close to the CC and experimental data. This
ism exist for atoms and solidst2,45. For the exact ex- indicates that correlation plays only a minor role in this case.
change results presented in the next section, (B§. was  For Na and K the neglect of correlation has a stronger affect;
solved within the GAC-KS formalism. the EXX results in these cases deviate more significantly

A coupling constant expansion f&, andv. can be ob- from the CC and experimental data. Inclusion of correlation
tained by generalizing the adiabatic connection perturbatioln the LDA or GGA level leads to an improvement for Na
theory of Refs[43,44,4§ if no bunchlike structures of GAC and K but the resulting EXX/LDA data are not systemati-

are presentsee also Sec. VI cally better than pure LDA values. This finding is not sur-
prising. It is well known that the LDA and the GGA benefit

V. APPLICATION OF THE GAC-KS METHOD from error cancelation between exchange and correlation. If

TO ALKALI-METAL ATOMS exchange is treated exactly, these error cancellations, of

course, are no longer present. Thus, in order to obtain good

The applicability and the capabilities of the GAC-KS for- results with an exact exchange GAC-KS procedure, correla-
malism itself are sufficiently demonstrated by the successfulion has to be treated in an approximation that does not rely
LDA and GGA treatments for excited statg$] which now  on error cancelations with exchange and therefore goes be-
can be considered as GAC-KS calculations. The illustrativgond the LDA and the current GGA’s.
example of this section shall introduce GAC-KS methods
that go beyond the LDA or GGA, namely GAC-KS schemes
that treat the exchange energy and potential exactly by em-
ploying Eqs.(32) and(33). The spin-polarized GAC-KS cal- There is an interesting connection between the question of
culation was carried out by generalizifgj7] the method of  whether or not bunchlike structures of GAC'’s exist and the
Ref.[42], an exact exchange or optimized potential methodoroblem of whether many-body perturbation theory with re-
based on the standard KS formalism. spect to orders of the coupling constant converges. If bunch-

The three energetically lowest excitations of Li, Na, andlike structures are present, then wave functiok,v,a],
K were calculated by four GAC-KS schemes. In three calcufunctionalsQ[ p, v,a], and other quantities cannot be devel-
lations exchange was treated exactly whereas correlation waged in Taylor series with respect to the coupling constant
either neglected, treated on the LDA level, or taken into acand perturbation theory along the adiabatic connection is not
count within the GGA[48]. For comparison, also a pure possible. Thus information on the applicability of many-
LDA calculation (LDA for exchange and correlatigrwas  body perturbation theory is relevant for answering the ques-
carried out. The four calculation are denoted by Ed%act  tion of whether bunchlike GAC exists. Remember, the
Exchangg EXX/LDA, EXX/GGA, and LDA, respectively. GAC-KS does not require the absence of bunchlike GAC,
Of the considered excited states, only the first one, as ththe case of exclusively isolated GAC's just represents the
lowest state of its symmetry’P), is accessible in the tradi- simplest scenario. The other way around, an investigation on
tional KS formalism[9]. The spin densities of the siXP  whether or not bunchlike GAC's exist, may yield new infor-
states are not spherically symmetric but exhibit cylindricalmation on the applicability of many-body perturbation theory
symmetry. Therefore, for this state the symmetrized KS forfrom an interesting point of view. Note that in many-body
malism of Ref.[41] and its generalization to the GAC-KS perturbation theory one usually considers the dependence of
case is invoked. That means the calculation of tRestate  the energy of the eigenstatesarfe Hamiltonian operator on
was based on the spherically symmetric contribution of thea perturbation parameter. The eigenstates forming different
spin densities of théP states which were obtained by aver- GAC’s of a given density, on the other hand, belonglii
aging over the spin densities of tH® states with the same ferent Hamiltonian operators. The standard picture of level
magnetic spin quantum number. crossings, i.e., the crossing of energy curves in the two-

In Table | the results of the calculations are displayed andlimensional space of energy and perturbation parameter,

VI. CONCLUDING REMARKS
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therefore, does not apply for GAC's. The first one is generated by replacing one occupied orbital
For periodic systems, the GAC-KS formalism under cer-of ¥, by an unoccupied one, the second by replacing two
tain conditions reduces in the thermodynamic limit to theoccupied orbitals by unoccupied ones. Next two changes
excited-state formalism of Ref14] which is based on the s¥, ands¥, can be constructed. The chang#; shall be
standard KS formalism. In Reff14] the excited states of the the singly excited Slater determinant times an infinitesimal
standard KS Hamiltonian operator which is determined byymbper, the changéV', is given by the changé¥, plus an
the ground state are related to the excited states of the intéjfinjtesimal number times the doubly excited Slater deter-
acting physical system under the assumption that the enefinant. Both changes yield the same chadgg(r”) of the
getical ordering of all states is preserved if the coupling conyensity because the admixture of a doubly excited Slater
stant runs from zero to one. That means that in the formaliSrgeterminant does not affect the electron density in first order.
of Ref.[14], ground and excited states always belong to ther,o change of the pair densigp(r’,r), however, is dif-
same Hamiltonian operator. In the GAC-KS f_ormalism, ONfarent for the two changes¥, ar|1d 5¥, of the eigenstate
the Othef hand, gach eigenstate of the phys_lcal system, ‘@i because the admixture of a doubly excited Slater deter-
general, is associated with a different KS Hamiltonian OPera inant changes the pair density. Equatié), however, for

tor. However, the differences between the GAC-KS Hamil- .
. ' . -, both changes would yield the same char&pé r’,r) of the
tonian operators for states obtained by exciting a small num- ges woud yi (r'.r)

ber of electrons become negligible in the limit of an infinite gal(rr,(,j)egfsﬁl/ebggﬁ:;; l?l'(f)lﬁz gg?{; ggisctli?)?]dsaoowse tﬁ::nae fﬁ?ﬂ]ge
number of unit cells and thus an infinite number of electrons > )

In this case the two formalisms become equivalent tion I'y(r”,r,r) cannot exist.
In this work the basis for a self-consistent KS treatment of In Refs.[35,39 eigenstates of fully interacting electron

excited states was established. Further work along two IineséyStemS are considered whereas the counterexample given

is highly desirable. First, accurate approximate exchangabove refers to eigenstates of noninteracting electron sys-

and, more importantly, correlation functionals for the?ems. However, for eigenstates of an interacting electron sys-

: . tem one also can find two changé¥,; and 6V, which
GAC-KS formalism should be developed. Such approximate : L, .
functionals have to be orbital dependent. Correlation funcy'GId the same change of the densii(r") but different

) o, . .
tionals should not rely on error cancellations between ex_changesrof t,r)e ,pa|r densmf(r-,r). This again shows that a
change and correlation in order to be applicable in methogfunetion i(rr ,r) cannot exist.

that treat the GAC-KS exchange exactly. Second, the topol- For example, if one infinitesimally changes the external

ogy of generalized adiabatic connections should be furthepotential of the fully interacting electronic system with the
investigated. eigenstatel,;, then the eigenstate changes by an infinitesi-

mal change that shall be designated &E,. The corre-
sponding change of the density shall &#r). Another wave
function can be generated by performing a constrained
The author thanks R. v. Leeuwen for his program for thesearch, Eq(12). Among all wave functions that yield the
optimized potential method, and H. H. Heinze, M. Moukara,density p;(r) + dp;, the one that minimizes the expectation
and N. Rach for their support. This work was supported by value of T+ aV,, for « being infinitesimally smaller than 1
the Deutsche Forschungsgemeinschaft and the Fonds dersearched. The difference between this wave function and
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Chemischen Industrie. ¥, defines a changéV¥,. The changesV, leads to the
same changép,(r) of the density a$¥,, because the den-
APPENDIX A: RELATIONS BETWEEN CHANGES sity of W;+é6W¥,, by construction, equals that of;
OF THE DENSITY AND THE PAIR DENSITY +6¥,. Among all wave functions yielding,+ dp;, V;

+6W¥,, as the ground state of a fully interacting electronic
system, is the one that minimizes the expectation value of

T+ aVee for =1 and not likeW,+ 5%, for a value ofa
» e , that is smaller. Therefore, the wave functiobis+ 6¥, and
opi(r ,f):f drTi(r",r",r) Spi(r”) (Al)  y,+ 5W, have different pair densities and the changgs,
and 6V, lead to different changeﬁpiz(r’,r).
the changesépiz(r’,r) and 6p;(r"”) of the pair density The problem with Eq(Al) is the claim that it holds true
piz(r’,r) and of the density;(r"”), respectively, which are for changes5pi2(r’,r) and 8p;(r"”) resulting from arbitrary
caused by an arbitrary norm-preserving chad®je of an  changess¥ of an eigenstate¥;. If one considers only
eigenstate¥; of an electronic Hamiltonian operator. The changes between thestationary wave functions introduced
density of¥; is denotedp;(r). In Eq.(Al) spin summations in Sec. lll A, then an equation being equivalent to E41)
are assumed to be already carried out in contrast to Reffiolds true[37]. For a coupling constanz=1 the kernel
[35,36. Furthermore, the classical part of the pair density isI';(r”,r’,r) then is the functional derivative of the pair den-
not separated here. Thus the full pair density, not just thaity with respect to the electron density for fixed parameter
correlated pair density as in Ref85,36, is considered here. (and in the case for fixed parameter The pair density and
For the case of’; being an eigenstate of a noninteracting its functional derivative then are both functionals not only of
system, a simple counterexample shows thafr”,r’,r) the density but also of the parametefand in the case also
does not exist. A nondegenerate eigenstate of a noninteraaif «). According to lemmas | and l(see Sec. IlI B, each
ing system consists of a single Slater determinant. Now tw@igenstate of an electronic system isp&tationary wave
Slater determinants that are orthogonaMtpare generated. function and conversely eaghstationary wave function is

In Refs. [35,36 the existence of a unique function
I';(r",r’,r) is asserted that relates by the equation
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an eigenstate of an electronic system. Thus an equation like For Coulomb systems Kato’'s theorem can be employed.
Eg. (A1) holds true for changes turning, for fixee, an  Coulomb systems consist of interacting electrons in the field
eigenstate of an electronic system into a wave function thasdf point charges. Real systems, i.e., atoms, molecules, and
again is an eigenstate of an electronic system with the samslids, are Coulomb systems if external fields are absent and

coupling constantv. if the nuclei, as usual, are treated as point charges. Kato’s
theorem[50] states that the position and the charge of the

APPENDIX B: BUNCHES OF GENERALIZED ADIABATIC nuclei of a Coulomb system are uniquely determined by the
CONNECTIONS WITH MORE THAN ONE END cusps of the electron density. Kato's theorem holds for
POINT AT a=1 ground as well as excited states. In Coulomb systems the

) . ] nuclei are the only source for the external potential. Thus

In this appendix bunches of GAC's are discussed thappjy one unique Coulomb system can be associated with a
have more than one end point@t0 andat a=1. In this  given density. Therefore astationary wave function of this
case indicesy and « labeling the end points of a bunch at giyen density can be either an eigenstate of the one Coulomb
a=0 anda=1, respectively, have to be introduced. Thensystem or an eigenstate of an electronic system that is not a
wave functions¥[p,v,n,a=0] and¥[p,v,k,a=1], func-  Coulomb system. Thosg-stationary wave functions of the
tionals Q[p,v,7,2=0], Qlp,v,k,a=1], Tdp,v,7],  given density that are eigenfunctions of the associated Cou-
Exlp,v,7], and Ep,v,7,«], and functional derivatives |omb system all have to be degenerate and therefore can be
vy(lp,v,m]ir) and vc([p,v,7,«];r) arise. Note that (distinguished by symmetry. The reason is that for Coulomb
WV[p,v,n,a=0], Ex, andv, depend only onrandbutnot  systems, because they are real systems, two eigenstates with
on k, whereas¥[p,v,x,«=1] depends orv and x but not  different main quantum number do not yield the same den-
on 7. sities. For real systems in the absence of external fields one

The following condition is shown later on to hold for real can therefore identify the end point of a bunch of GAC’s at
systems, i.e., atoms, molecules, or solids: Ph&tationary 4 =1 that corresponds to a Coulomb system as the one that
wave functions¥[p,v,x,a=1] of a bunch of GAC's alx  is an eigenstate of the considered real system. One can then
=1 are eigenstates of interacting Hamiltonian operators withurther constrain the constrained search for phetationary
different external potentials, i.eq([p,v,x",@=1];r)+u’  wave functions ax=1 by an additional condition, namely
#d([p,v,k,a=1];r)+u if «'# k. With this assumption the condition that the-stationary wave functions addition-
the external potentials may be used to label the end points efily are eigenstates of a Coulomb system. In this way one
the bunch of GAC’s ain=1, i.e., theve, can be used to could avoid the use of the external potential for the identifi-
replace the labels. Thus the variableg,v,7,x can be re- cation of the relevant end point of the involved bunch of
placed by ®; and v, resulting in functionalsTJ{®;], = GAC's. Unfortunately this approach is feasible only for den-
Ed®jl, EfDj,vexds vx([Pj]ir), and v ([P, vexlir)- sities that are densities of eigenstate of Coulomb systems.
Note that the external potentials occur only in the correlatiorHowever, there seems to be no guarantee that the electron
functionalsE [ ®;,veq] and v ([Pj,veyql;r). Furthermore, densities emerging during the self-consistency process of a
note that the potentials,,, are not variables of the function- GAC-KS procedure always belong to eigenstates of Cou-
als in the usual sense, because they cannot be continuousymb systems.

varied. For a givend; only a few external potentialgey It remains to show why the external potentials corre-
may occur in the functionals; each end point of the corresponding to different end points of a bunch of GAC’saat
sponding bunch of GAC's a¥=1 yields one possibleqy;. =1 are different for real electron systems. If two functional

For a given real interacting electron system the externatlerivatives q([p,v,x,a=1];r)+u and q([p,v.x’,«a
potentialv o is known; it usually is the potential of the nu- =1];r)+u’ were equal, then the corresponding two wave
clei. Thus all functionals depend only on accessible quantifunctions¥[p,v,x,a=1] and ¥[p,v,x',a=1] would be
ties at those densities that correspond to eigenstates of tkdgenstates of one interacting electronic system with a
real system. At first glance this seems to suggest that theamiltonian operator with the external potential
GAC-KS formalism could be applied as before with the onlyq([p,v,x,a=1];r)+u=q([p,v,x",a=1];r)+u’. First,
difference being that the correlation function&s and v systems shall be considered that exhibit no symmetries and
now depend not only of; but also orv,,. This, however, thus no degeneracies due to symmetry. Then different eigen-
is not the case. If the GAC-KS procedure is carried out, therstates have different main quantum numbers. In all real sys-
the electron density changes during the self-consistency praems two eigenstates with different main quantum number
cess and reaches the correct density only if the process hagver have the same electron density. Thus the statement on
converged. With the density also the external potentialgxternal potentials of bunches of GAC’s holds if no symme-
given by end points of the corresponding bunch of GAC's attries are present. If symmetries are taken into account along
a=1 change and, in general, all differ from tl@epriori  the lines suggested in Ref41l], then a symmetrized
known vy. Thus the knowledge of the external potential GAC-KS formalism results. In such a symmetrized GAC-KS
vext Of the given real electron system is not sufficient to pickformalism only states with well-defined symmetry quantum
the correct end point of the bunch of GAC's during the self-numbers occur and only states with the same symmetry
consistency scheme. A second problem is that it is not at aljuantum number can be adiabatically connected. Thus the
clear how the knowledge in the external potential of theGAC’s can be characterized by a symmetry quantum num-
given real system could be used in practice, i.e., one does nber. GAC's with different symmetry quantum number cannot
know how to approximate functionals depending®pand have a common point at any because states with different
Uext- symmetry quantum number are different. For example, two
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atomic eigenstates with angular momentum quantum numbemd a constant external potential, independent afl eigen-
L=1 and magnetic quantum numidr= + 1 have the same states have the same electron density, a constant density.
electron density. The GAC’s corresponding to the eigenfurthermore, some eigenstates have the same symmetry
states with magnetic quantum numbdr=1 consist exclu- quantum number with respect to translational symmetry. In a
sively of state withM =1, whereas the GAC's belonging to noninteracting homogeneous electron gas, for example, an
the eigenstate wittM = —1 consist only of states witivi eigenstate with the same translational quantum number as
=—1. Thus the two GAC'’s cannot have a common point,the ground state can be obtained by replacing two single-
i.e., the two eigenstates fdvl=+1 cannot belong to the particle states with wave vectoks and k' by two single-
same bunch of GAC's. In an electronic system with symme-article states with wave vectors and g’ that obey the
tries two eigenstates that have the same density and belomgndition g+q'=k+k’. Thus eigenstates with the same
to the same bunch of GAC's therefore must have the samgymmetry labels and the same electron density exist for the
symmetry gquantum numbers and thus, as in the absence bbmogeneous electron gas. This does not mean that the
symmetries, have different main quantum numbers. NowGAC-KS formalism cannot be applied. Only if two or more
again, the fact that in real systems eigenstates with differeraf these eigenstates belong to the same bunch of GAC's
main quantum numbers never have the same electron densityould the application of the GAC-KS formalism be prob-
can be invoked. lematic. Whether eigenstates of the homogeneous electron
Whether the statement on external potentials of bunchegas belong to the same bunch of GAC’s or not remains an
of GAC’s also holds true in model systems needs furtheopen question. Physical intuition suggests that this is not the
investigation. In the homogeneous electron gas, more presase, see Sec. VI. In any case, the homogeneous electron gas
cisely in a finite system with periodic boundary conditionsis not a real but a model system.
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