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Density-functional theory beyond the Hohenberg-Kohn theorem
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A density-functional theory that treats all states of an electronic system on the same footing is introduced.
The corresponding Kohn-Sham formalism can be applied to ground and excited states alike, does not suffer
from a v-representability problem, and represents a rigorous formal basis for the common, but so far unjusti-
fied practice to treat excited states by Kohn-Sham methods. The presented density-functional theory emerges
from a generalization of the constrained-search procedure. The new Kohn-Sham formalism is based on gen-
eralized adiabatic connections introduced here. The possible topologies of those generalized adiabatic connec-
tions are discussed. A density-based stationarity principle and a density theorem that represents a more general
counterpart of the Hohenberg-Kohn theorem are presented. A method to take into account exactly exchange
interactions in the presented Kohn-Sham formalism is introduced, implemented, and applied to atoms.
@S1050-2947~99!01105-1#

PACS number~s!: 31.15.Ew, 31.10.1z, 31.50.1w
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I. INTRODUCTION AND SUMMARY

Density-functional theory~DFT! @1–7# is the most widely
used theory for the investigation of electronic systems. I
almost exclusively applied within the framework of th
Kohn-Sham~KS! formalism @2,3,8#. Despite its dominant
position in molecular and solid state physics, tradition
DFT, i.e., present DFT in contrast to the DFT developed
this work, exhibits a number of serious shortcomings a
limitations.

First, ground and excited states play very different rol
The ground state is a central quantity in traditional DF
Many of its properties can be calculated accurately and e
ciently with present DFT methods. Excited states and th
properties, on the other hand, are not directly accessibl
traditional DFT, except those excited states that are the
ergetically lowest of their symmetry@9#. Nevertheless, a
treatment of excited states is, in principle, possible on
basis of traditional DFT. Indeed, ensemble formalisms
excited states were suggested by Theophilou@10# and by
Grosset al. @11–13#. Görling presented a formalism to trea
excited states on the basis of the ground-state KS orb
@14#. However, so far both types of formalisms could
applied only to a few atomic systems@15,16#. The reason is
that reliable generally applicable approximations for the
quired specific density functionals are lacking. The imp
mentation of ensemble formalisms is furthermore imped
by technical difficulties. Thus a direct investigation of e
cited states isde factonot possible within traditional DFT. In
practice, excitation energies of atoms and molecules ca
determined indirectly through time-dependent DFT@17–26#.
This, however, leads to the unsatisfying necessity to reso
a time-dependent theory in order to describe a property
stationary state.

A second weakness of traditional DFT is that its applic
bility within the KS formalism depends on a quantity, the K
model system, whose existence is not guaranteed but h
be assumed. While this assumption, thev-representability
assumption@2,3#, seems to be justified in most cases, th
PRA 591050-2947/99/59~5!/3359~16!/$15.00
s

l
n
d

.
.
fi-
ir
in
n-

e
r

ls

-
-
d

be

to
a

-

to

e

are some systems, e.g., certain lanthanide and actinide at
for which it may not hold true@27#.

In this work a more general density-functional theory a
the corresponding generalization of the KS formalism is
troduced. The DFT of this work emerges from a generali
tion of the constrained-search@28–30# procedure. The new
KS formalism is based on generalized adiabatic connect
~GAC’s! introduced here, and is therefore called t
GAC-KS formalism @31–34#. A density-based stationarity
principle and a density theorem that represents a more
eral counterpart of the Hohenberg-Kohn~HK! theorem are
presented. The formalism of this work treats all states of
electronic system on the same footing, makes a direct
treatment of excited states possible, and does not suffer f
a v-representability problem.

A KS formalism for excited states suggested by Fritsc
@35,36# also is based on a generalization of adiabatic conn
tions. The formalism of Fritsche relies on a relation betwe
changes of the electron density and changes of the corre
pair density@36#. The validity of this relation has been th
subject of controversial discussions. Here, in Appendix A
is shown that the relation, in general, does not hold true. T
formalism of this work is founded on an entirely differe
basis, a generalization of the constrained-search proced
namely, and at no point refers to the pair density or rela
quantities and thus is not plagued by the problems
Fritsche’s formalism.

The introduced new KS formalism can be applied as e
ily as the traditional one. Indeed, a frequently used, howe
so far formally unjustified, approach to treat excited sta
can be identified as a crude approximate application of
new KS formalism. It is common practice to straightfo
wardly treat excited states within the standard KS scheme
simply leaving energetically low KS orbitals unoccupied@4#.
Unless the considered excited state is the lowest of its s
metry @9#, this procedure is completely unjustified within th
traditional KS formalism. Nevertheless, it often yields go
results. The formalism of this work represents a sound f
mal basis for this procedure and therefore explains its s
cess.
3359 ©1999 The American Physical Society
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In order to fully exploit the potential of the DFT presente
here and of the corresponding KS formalism, it is necess
to develop reliable approximations for the density functio
als occurring in the new theory. The crude approach of s
ply approximating the density functionals of the new theo
by those from traditional DFT can be considered only a
first preliminary step towards this goal. As a possible n
step, a method for the exact treatment of the exchange f
tionals is suggested in this work. For atoms, such an ex
exchange GAC-KS method is shown to be feasible. As
illustration, excitation energies of alkaline atoms are cal
lated. An exact-exchange GAC-KS method for molecules
currently developed@37#.

The paper is organized as follows. In Sec. II, tradition
DFT is reexamined. In particular, it is shown that, in contr
to a widely adopted point of view, the Hohenberg-Ko
~HK! theorem is not a sufficient foundation for tradition
DFT. The constrained-search procedure, on the other han
shown to suffice as a basis for traditional DFT. In Sec. III
the constrained-search procedure is generalized. In
III B, the more general DFT of this work is established. T
that end, two lemmas are proven and then used to deri
density-based stationarity principle and a density theo
that may be considered as a more general counterpart o
HK theorem of traditional DFT. Section III C introduces ge
eralized adiabatic connections between noninteracting
interacting electronic systems. In Sec. III D the GAC-KS fo
malism, the analog of the traditional KS formalism, is pr
sented. The GAC-KS formalism is derived under a cert
assumption on the topology of GAC’s. Section IV discuss
the accessibility of the density functionals arising in the n
formalism and introduces an exact-exchange GAC-
method. As an illustration, excitation energies of alkali
atoms are calculated within the new formalism in Sec.
Section VI contains concluding remarks. In Appendix A, t
validity of the relation of Refs.@35, 36# between changes o
the correlated pair density and the density is scrutiniz
GAC’s that do not exhibit the required topology are cons
ered in Appendix B.

II. TRADITIONAL DENSITY-FUNCTIONAL THEORY
AND THE STANDARD KOHN-SHAM FORMALISM

In this section the structure of traditional DFT and of t
standard KS formalism is reexamined and the starting po
for the generalization and modifications suggested in
work are discussed. The development of DFT began with
discovery of the HK theorem@1# and according to a widely
adopted point of view the HK theorem playsthecentral role
within DFT. Indeed, the HK theorem is often considered a
sufficient basis for traditional DFT including the standard K
formalism. This, however, is not true. Therefore, in this wo
traditional DFT is considered from a somewhat differe
angle with the constrained-search procedure@28–30# instead
of the HK theorem placed at the center of the theory.

The HK theorem states that two electronic systems w
external potentials that differ by more than a constant can
have ground states with the same electron density. The t
rem holds true only for local external potentials, i.e., f
electronic systems with a Hamiltonian operator of the fo
T̂1aV̂ee1 v̂ with v̂ being the operator generated by a loc
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potentialv(r ). Here,T̂ and V̂ee are the operators of the ki
netic energy and of the electron-electron interaction, resp
tively. The constanta with values between zero and one,
<a<1, is the coupling constant of the electrons. For r
physical systems the coupling constant equals 1. The
theorem, however, is valid for arbitrary positive values ofa
which can be even larger than 1 and thus can lie outside
range ofa relevant in this work. From the HK theorem
follows that the ground-state electron density of an electro
system uniquely determines the corresponding external
tential up to an additive constant@1–3#. Additionally the
density determines the particle number. Thus the grou
state electron density determines the Hamiltonian oper
and subsequently all properties of the electronic system.

The HK theorem allows one to define the Hohenbe
Kohn functionalF̃@ r̃,a#, a functional of ground-state dens
ties r̃ and coupling constantsa given by the expectation
value

F̃@ r̃,a#5^C̃@ r̃,a#uT̂1aV̂eeuC̃@r̃,a#& ~1!

of the ground stateC̃ @r̃,a# belonging tor̃ anda. The tilde
on r̃ indicates thatr̃ is a ground-state density, i.e., that it
the density of the ground state of a Hamilton operator of
form T̂1aV̂ee1 v̂. Such densities are calledv-representable

@2,3# for the corresponding value ofa. The tilde onF̃ andC̃

indicates that the HK functionalF̃@ r̃,a# and the wave func-

tion C̃@r̃,a# are defined only forv-representable densities
The ground-state densityr̃ yields F̃@ r̃,a# in an indirect way
for a givena: r̃ determines the external potential and t
electron numberN and thus the Hamiltonian operator; th
Hamiltonian operator then leads to the ground stateC̃@r̃,a#

which finally givesF̃@ r̃,a# by Eq. ~1!. These dependencie
may be symbolized by

r̃~r !→v~r !,N→T̂1aV̂ee1 v̂→C̃@r̃,a#→F̃@ r̃,a#. ~2!

For a specific particle numberN, coupling constanta, and
external potentialv(r ), the inequality

F̃@ r̃,a#1E dr v~r !r̃~r !>F̃@r0 ,a#1E dr v~r !r0~r !

~3!

holds true. In inequality~3!, r̃ is an arbitraryv-representable
density, in other wordsr̃ is the density of the ground state o
a Hamiltonian operatorT̂1aV̂ee1 v̂8 with some external po-
tential v8(r ) which, in general, is different from the give
potentialv(r ). On the other hand,r0 shall be the electron
density of the ground state of the Hamilton operatorT̂

1aV̂ee1 v̂ with the given external potentialv(r ). With defi-
nition ~1!, inequality ~3! follows directly from the fact that

the ground stateC̃@r0 ,a# yields a lower energy expectatio
value with T̂1aV̂ee1 v̂ than any other wave function, thu
also a lower energy expectation value than wave functi

C̃@r̃,a# of ground-state densitiesr̃ that differ fromr0 . In-
equality ~3! sometimes is called the second HK theorem
notation not adopted here.
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Inequality ~3! suggests to find the ground-state ener
F̃@ r̃,a#1*dr v(r ) r̃(r ) of an electronic system by findin
the electron density r0 which minimizes F̃@ r̃,a#

1*dr v(r ) r̃(r ) and by subsequently evaluatingF̃@r0 ,a#
1*dr v(r )r0(r ). In Thomas-Fermi methods@2,3,38,39# the
ground-state density and energy are obtained by a minim
tion of density functionals for the ground-state energy.
first glance, inequality~3! may be considered as a form
justification of such methods. A closer look, however,
veals that inequality~3! does not suffice for this purpose. Th
reason is that the HK functionalF̃@ r̃,a# and therefore in-
equality~3! is defined only forv-representable densities. Cr
teria that are sufficient to determine whether or not a giv
density isv-representable are unknown. Therefore, it is n
possible to carry out a minimization based on inequality~3!.
In Thomas-Fermi methods, on the other hand, one minim
over all densities yielding the correct particle number rega
less of whether they arev-representable or not. Thus the
methods are not justified by inequality~3! or the HK theo-
rem. This is an example demonstrating that the HK theor
alone is not a sufficient basis for DFT.

Thev-representability problem can be solved@28–30# by
defining a more general HK functionalF @r,a# by a con-
strained search as

F @r,a#5min
c→r

^CuT̂1aV̂eeuC&. ~4!

The minimization in Eq.~4! runs over all wave functions
yielding the electron densityr. The minimum, by definition
the absolute minimum, can be shown to exist@40# for all
well-behaved densities independent of whether or not
densities arev-representable. ThusF@r,a# is defined for all
densities, not only forv-representable ones. The minimizin
wave function is denotedC@r,a#. By

min
c→r

^CuT̂1aV̂eeuC&→C@r,a# ~5!

it is expressed that minimization~4! determinesC@r,a#. The
dependency of the HK functionalF@r,a# and the corre-
sponding minimizing wave function on the density can n
be symbolized by

r~r !→C@r,a#,F @r,a#, ~6!

a relation that is much simpler than the one of scheme~2! for
F̃@ r̃,a#. For v-representable densitiesr̃ the functionals

F̃@ r̃,a# andF @ r̃,a# as well asC̃@r̃,a# andC@r̃,a# can be
shown to be identical@2,3#.

Inequality~3! can now be rewritten for the HK functiona
F @r,a#,

F @r,a#1E dr v~r !r~r !>F @r0 ,a#1E dr v~r !r0~r !.

~7!

Now arbitrary densitiesr, not only ground-state densitiesr̃,
can be substituted in the left-hand side of inequality~7!.
Thus inequality ~7! represents a sound formal basis f
Thomas-Fermi-like methods. Note that the HK theorem is
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longer invoked in this justification of Thomas-Fermi-lik
methods. Moreover, the constrained-search definition~4! of
the HK functional immediately yields the HK theorem: If fo
a givena two electronic systems with different external p
tentials had the same ground-state densityr0 , then they
would have the same ground stateC@r0 ,a# because
C@r0 ,a#, by definition, yields the lowest value for the su
of the kinetic and the electron-electron interaction ene
while the interaction energy with the external potential
identical for all wave functions yielding the ground-sta
density r0 . However, two electronic system with extern
potentials differing by more than a constant cannot have
same ground state if potentials are restricted to be local.
crucial point shown here is that the constrained-search
cedure given in Eq.~4! is a more fundamental basis for DF
than the HK theorem because the constrained-search pr
dure not only leads to the HK theorem but furthermo
yields, independently of the HK theorem, inequality~7!,
solves the v-representability problem, and thus justifie
Thomas-Fermi methods.

In the DFT introduced in this work, a constrained sear
is carried out not only for the absolute minimum as in Eq.~4!
but for stationary points in general. The resulting generali
tion of Eq. ~4! yields functionals that are more general th
the HK functionalF@r,a# and the corresponding generaliz
tion of Eq. ~5! leads to more wave functions than just th
minimizing wave functionsC@r,a#.

While Thomas-Fermi methods, in principle, are very a
pealing, they are unsuitable for practical purposes beca
sufficiently accurate approximations for the unknown fun
tional F@r,a# are not available. In practice, DFT is almo
exclusively employed via the KS formalism. Within the K
formalism one calculates a model wave function, the
wave function, which is associated with the real physi
ground-state wave function. From the KS wave function o
then deduces properties of the physical system, in partic
the ground-state energy. The KS wave function is defined
three condition: ~i! It is an eigenstate of a model system
hypothetical noninteracting electrons, i.e., it is an eigens
of a Hamiltonian operator of the formT̂1 v̂s with v̂s being
generated by a local effective potentialvs(r ), the KS poten-
tial, ~ii ! it yields the same electron density as the real phy
cal ground state,~iii ! it is a specific eigenstate of the nonin
teracting Hamiltonian operatorT̂1 v̂s , namely the ground
state. Because of the HK theorem these conditions guara
that for a given physical electron system not more than
KS wave function can exist and that the KS wave functi
therefore is well defined.

Condition ~iii ! is necessary for the application of the H
theorem. This condition, however, also reintroduces
v-representability problem into the traditional KS formalis
even though the constrained-search definition~4! of the HK
functional is not plagued byv-representability problems
While the KS wave function is unique if it exists, there is n
guarantee that it exists. This has to be assumed. In o
words, the KS formalism is based on thev-representability
condition that every ground-state electron density of a ph
cal interacting system is also the ground-state density o
noninteracting KS system. From practical experience o
may conclude that this assumption holds true in most ca
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On the other hand, there is evidence for violations of t
assumption, e.g., in lanthanide and actinide atoms with o
f shells@27#.

For the determination of the KS wave function, the fun
tional derivatives with respect to the density of the HK fun
tionals ata50 anda51 are required@2,3#:

vs~r !5vext~r !1
dF @r,a51#

dr~r !
U

r~r !5r0~@vext#;r !

2
dF @r,a50#

dr~r !
U

r~r !5r0~@vext#;r !

. ~8!

In Eq. ~8!, vext(r ) is the known external potential of a con
sidered physical electron system, usually the potential of
nuclei andr0(@vext#;r is the ground-state density of this sy
tem. Throughout this workvext(r ) designates exclusively ex
ternal potentials of fully interacting electron systems wh
v(r ) stands for external potentials of systems with arbitr
coupling constant. At this point it is again important to defi
the HK functionals via the constrained-search procedure
cause in order to take in Eq.~8! the functional derivatives o
density functionals at the ground-state densityr0(@vext#;r ) it
is necessary that the functional is defined in a vicinity of t

density. For the HK functionalsF̃@ r̃,a# this would require
that a vicinity ofv-representable densities exists around e
v-representable density. Whether this is the case or no
unclear. Here the importance of the constrained-search
cedure shows up again.

In the GAC-KS formalism introduced in the next sectio
model wave functions are introduced in a different way. T
model wave functions again are required to yield the sa
density as the considered state of the real physical elec
system and again have to be eigenfunctions of a noninte
ing Hamiltonian operator with local effective potential. But
is no longer required that the model wave functions a
ground statesof such a noninteracting Hamiltonian operato
In other words, from the conditions defining the standard
system, conditions~i! and~ii ! are retained in the definition o
the model wave functions of the GAC-KS formalism
whereas condition~iii ! is no longer involved. Therefore, n
v-representability problem plagues the GAC-KS formalis
Instead of condition~iii !, a generalized adiabatic connectio
between interacting and noninteracting states is used to c
pletely define the model wave functions. Because condi
~iii ! is no longer involved, the resulting GAC-KS formalis
treats ground and excited states alike.

An important difference from the traditional KS forma
ism is that the HK theorem is not required in the derivati
of the GAC-KS formalism. The density theorem emerging
a generalization of the HK theorem in the DFT of this wo
also is not required. The density theorem is obtained as
interesting but not crucial spin-off.

III. DFT BEYOND THE HK THEOREM, GAC-KS
FORMALISM

In density-functional theory it is common to assume th
functionals are differentiable with respect to the density
s
n
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the coupling constant of the electrons@2,3#. This assumption
will also be made throughout this work.

Only electron systems with properly normalizable wa
functions, i.e., finite systems, are considered. Systems
an exponentially decaying asymptotic electron density, l
atoms or molecules, are therefore placed in a large but fi
box in order to enforce normalizable unbound states. P
odic systems are treated before the thermodynamic lim
taken by considering a large but finite number of unit ce
embedded in periodic boundary conditions.

For simplicity, electronic systems will be treated in th
work as if they had no symmetries and only nondegene
eigenstates. Real systems always exhibit symmetries. Ev
no symmetries in real space are present, there still exists
rotational symmetry in spin space if, as in this work, relat
istic effects are neglected. Symmetries can be taken into
count in the present formalism along the lines of Ref.@41#,
which suggests a treatment of symmetries in traditional D

A. Functionals Q†r,n,a‡

FunctionalsQ@r,n,a# are defined as expectation value

Q@r,n,a#5^C@r,n,a#uT̂1aV̂ee1 v̂uC@r,n,a#& ~9!

of wave functions C@r,n,a#. The C@r,n,a# are those
wave functions that yield the electron densityr and for
that, additionally, the expectation valuêC@r,n,a#uT̂
1aV̂eeuC@r,n,a#& is stationary with respect to variation
dC→r of C@r,n,a# which leave the electron density un
changed, i.e., variations that turnC@r,n,a# into a wave func-
tion with the same electron density. That means that
C@r,n,a# are those wave functions with densityr for which
the condition

dC→r^CuT̂1aV̂eeuC&50 ~10!

holds true. The parametern labels all existing wave func-
tions C@r,n,a# of a given densityr in some arbitrary order.
TheC@r,n,a# shall be calledr-stationary wave functions~of
the densityr and the coupling constanta!. If the r-stationary
wave functionsC@r,n,a# of a givenr anda are all isolated,
then the labelsn are integers, otherwise also labelsn being
real numbers may occur. Ar-stationary wave function
C@r,n,a# is isolated if aroundC@r,n,a# there exists a neigh
borhood in the Hilbert space in which no otherr-stationary
wave function of the same densityr and of the same cou
pling constanta is present. Wave functions that are disti
guished just by a constant phase factor, as usual, are co
ered as identical.

In order to compare the functionalQ@r,n,a# with the HK
functionalF@r,a#, it is expressed in the form

Q@r,n,a#5 stat
n,C→r

^CuT̂1aV̂eeuC&. ~11!

The expression statn,C→r^CuÔuC& stands for thenth sta-
tionary value of the expectation value^CuÔuC& of an op-
eratorÔ under the constraint that the wave functionsC yield
the electron densityr. Because the labeling of the stationa
values is arbitrary, they are determined in two steps. Wit
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the set of wave functions that yield the densityr, one first
determines all wave functions for which the expectat
value ^CuÔuC& is stationary with respect to all variation
dC→r that do not change the density. Subsequently, one
labels all the stationary points. The Hohenberg-Kohn fu
tional F@r,a# is contained in the set of functiona
Q@r,n,a# because the absolute minimum minC→r^CuT̂
1aV̂eeuC& of Eq. ~4! is a stationary point.

By

stat
n,C→r

^CuT̂1aV̂eeuC&→C@r,n,a# ~12!

it is expressed that then th stationary point determines th
wave functionC@r,n,a# in a similar but more general way a
the minimum~5! determines the wave functionC@r,a#. The
latter is ar-stationary wave function, i.e.,C@r,a# is con-
tained in the set of wave functionsC@r,n,a#.

The dependencies between densitiesr, functionals
C@r,n,a#, and wave functionsC@r,n,a# may be symbolized
by the scheme

r~r !→C@r,n,a#,Q@r,n,a# ~13!

that resembles scheme~6! of traditional DFT. However, one
density now determines a whole set of wave functions
functionals. Both the minimizations~4! and~5! and the find-
ing of stationary points in Eqs.~11! and~12! are carried out
by a constrained search, a search over the subset of w
functions that yield a given electron density. The differen
between Eqs.~4! and~5! on the one hand and Eqs.~11! and
~12! on the other is that in the latter all stationary points, n
only the absolute minimum, are searched for.

The functional derivative ofQ@r,n,a# with respect to the
electron density for fixedn anda shall be denoted by

q~@r,n,a#;r !5dQ@r,n,a#/dr~r !. ~14!

In the formalism considered here, the electron numbe
fixed. As a result, functional derivatives with respect to t
electron density are defined only up to an additive cons
because changesdr(r ) of the electron density have to obe
the condition*dr dr(r )50 which guarantees particle num
ber conservation. That means the functional derivative
Q@r,n,a# with respect to the density is represented by a
of functions with the functions differing by an additive co
stant. The functionq(@r,n,a#;r ) shall be one arbitrary
member of this set.

B. Relation of C†r,n,a‡ and Q†r,n,a‡ to eigenstates and
potentials, generalization of Thomas-Fermi methods

The relation ofr-stationary wave functionsC@r,n,a# and
of functionals Q@r,n,a# to eigenvalues and potentials o
electronic systems is described with the help of two lemm
The first lemma, lemma I, states thateach eigenstateC i of
an electronic system with coupling strengtha is r-stationary
for the coupling constanta. In other words, each eigensta
C i of an electronic system with coupling constanta is a
member of the set of wave functionsC@r i ,n,a# correspond-
ing via the constrained-search~12! to the electron densityr i
of C i , C i5C@r i ,n,a#. Lemma I follows from the basic
en
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stationarity principle of quantum mechanics. This princip
states that the eigenstates of a Hamiltonian operatoT̂

1aV̂ee1 v̂, with the operatorv̂ being generated by a loca
external potentialv(r ), are those wave functions for whic
the expectation valuêC i uT̂1aV̂ee1 v̂uC i& is stationary
with respect to any variationdC→N turning C i into another
normalizedN-electron wave function. The expectation valu

^C i uT̂1aV̂ee1 v̂uC i& is therefore also stationary for th
subsetdC→r of variations. This leads to

05dC→r^C i uT̂1aV̂ee1 v̂uC i&5dC→r^C i uT̂1aV̂eeuC i&.

~15!

The second equality in Eq.~15! follows because
dC→r^C i uv̂uC i&50 due to the fact that the variationdC→r

does not change the density. Equation~15! identifiesC i as
a member of the set ofr-stationary wave functions
C@r i ,n,a#; see Eq.~10!.

Lemma II states thateach r-stationary wave function
C@r,n,a# is an eigenstate of an electronic system with co
pling strengtha and with the external potentialv(r ) given
by

v~r !52q~@r,n,a#;r !1m. ~16!

In Eq. ~16!, m is an arbitrary additive constant. In order
prove lemma II, an arbitrary variationdC ~of typedC→N) of
a wave functionC@r,n,a# accompanied by a correspondin
variationdr of the density is decomposed according to

dC5dC11dC2 ~17!

with

dC15C@r1dr,n,a#2C@r,n,a# ~18!

and

dC25dC2dC1 . ~19!

The first variationdC1 convertsC@r,n,a# into a wave func-
tion C@r1dr,n,a# that also isr-stationary for the coupling
constanta, however, for the densityr1dr. The parametern
shall remain unaffected by the variation. The second va
tion dC2 then, by construction, does not change the den
in first order, i.e.,dC2 is of typedC→r . The equation

^dCuT̂1aV̂ee1 v̂uC@r,n,a#&1c.c.

5^dC1uT̂1aV̂ee1 v̂uC@r,n,a#&1c.c.

5^dC1uT̂1aV̂eeuC@r,n,a#&1c.c.

1^dC1uv̂uC@r,n,a#&1c.c.

5dQ@r,n,a#1E dr v~r !dr~r !

5E dr †q~@r,n,a#;r !1v~r !‡dr~r !50 ~20!

now proves lemma II. The first equality in Eq.~20! follows
from
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^dC2uT̂1aV̂ee1 v̂uC@r,n,a#&1c.c.50. ~21!

Equation ~21! holds true because of two arguments. Fir
becausêdC2uT̂1aV̂eeuC@r,n,a#&1c.c.50 due to the fact
that dC2 is of typedC→r andC@r,n,a# is r-stationary. Sec-
ond, becausêdC2uv̂uC@r,n,a#&1c.c.50 due to the fact
that dC2 as variations of typedC→r does not change th
density in first order. In Eq.~20!, dQ@r,n,a# is the change
of the functionalQ resulting from changingC@r,n,a# to
C@r1dr,n,a#. For the last equality in Eq.~20! it is used that
particle number conservation requires*dr mdr(r )
5m*dr dr(r )50.

A corollary to lemmas I and II is thatthe external poten-
tial v(r ) of any electronic system with coupling constanta is
a functional2q(@r i ,n,a#;r )1m of the electron densityr i
of any of its eigenstatesC i . This corollary can be deduce
as follows. Lemma I proves that every eigenstateC i belongs
to the set ofr-stationary wave functionsC@r i ,n,a#. Lemma
II shows that everyr-stationary wave functionC@r i ,n,a# is
an eigenstate of an electronic Hamiltonian operator with c
pling constanta and external potential2q(@r i ,n,a#;r )
1m. The potential2q(@r i ,n,a#;r )1m must equal the ex-
ternal potentialv(r ) because a wave function, hereC i
5C@r i ,n,a#, cannot be an eigenstate of two electron
Hamiltonian operators with the same coupling strengtha but
with external potentials that differ by more than a consta
The latter statement holds true only for electronic syste
with external potentials that are local. However, only su
electronic systems are considered in this work.

The corollary, respectively lemmas I and II, proves t
following density theorem, which represents a generaliza
of the HK theorem: An electron density determines the e
ternal potentials of all electronic systems that have at le
one eigenstate with this electron density. A corollary of this
theorem is thatan electron density determines all properti
of all electronic systems that have at least one eigens
with this electron density.

Lemmas I and II together establish a density-based
tionarity principle. For a given coupling strengtha this
density-based stationarity principle reads as follows:All
r-stationary wave functions of a given densityr are eigen-
states of an electronic system and an eigenstate of any e
tronic system that yields the densityr is a r-stationary wave
function of r. The density-based stationarity principle is
counterpart to the common stationarity principle of quant
mechanics. The quantum-mechanical stationarity princ
determines all eigenstates belonging to a given external
tential, i.e., all eigenstates of an electronic Hamiltonian
erator with this external potential. The corresponding el
tron densities can be obtained from the eigenstates.
density-based stationarity principle determines all eigenst
belonging to a given electron density, i.e., all wave functio
that yield this density and are eigenstates of an electro
Hamiltonian operator. The corresponding external potent
are given by Eq.~16!. Note that, to some extent, electro
densities and external potentials change roles if one g
from one stationarity principle to the other.

For a given density and coupling constanta there exists
one Eq.~16! for each eigenstate of an electronic system w
that density. Equation~16! for different values ofn deter-
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mines all external potentialsv(r ) that lead to at least one
eigenstate with that density.

On the basis of the lemmas and theorems derived so
the Thomas-Fermi scheme can be generalized to be, in p
ciple, applicable to any eigenstate of an electronic syst
not only to the ground state. The treatment of an electro
system characterized by a given external potentialv(r ) and
electron numberN with the generalized Thomas-Ferm
scheme comprises two steps. First, one searches for all
sitiesr i which have, at least for one value ofn, a functional
derivative2q(@r i ,n,a#;r )1m that equals the external po
tential. Then, second, one determines the total energies o
eigenstates determined by the foundr i by evaluating
Q(@r i ,n,a#;r )1*dr v(r )r i(r ) for those n for which
2q(@r i ,n,a#;r )1m5v(r ). While this generalized
Thomas-Fermi approach is of academic interest, a prac
application seems to be even less feasible than that of
standard Thomas-Fermi approach.

C. Generalized adiabatic connection

Generalized adiabatic connections~GAC’s! shall be the
paths of ther-stationary wave functionsC@r,n,a# if the cou-
pling constant goes from zero to one while the densityr and
the values of the parametern are fixed. The set of all GAC’s
for a given densityr establishes a relation between the s
of r-stationary wave functions ata50 and ata51, i.e.,
between the set given by allC@r,n,a50# and the set given
by all C@r,n,a51#. Figure 1 represents a symbolic pictu
of the GAC’s and the relations betweenr-stationary wave
functions ata50 anda51 for some density. For illustra
tional purposes it is assumed that the three basic type
GAC’s are present for the considered density. How far th
basic types of GAC’s occur for electron densities of re

FIG. 1. Symbolic representation of different types of gener
ized adiabatic connections~GAC’s!: Structures 1 and 2 are isolate
GAC’s, structures 3 and 4 are bunches of GAC’s, and structure
a tube of GAC’s. The Hilbert space of antisymmetricN-particle
wave functions is represented by planes perpendicular to the
pling constant axis. Fora50 anda51 these planes are displaye
by symbolic axesA andB.
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systems is discussed later on. The GAC’s are structures
high-dimensional space that is obtained by extending
Hilbert space of antisymmetricN-particle wave functions by
an additional dimension for the coupling constant. In Fig
each plane perpendicular to the coupling constant axis
resents the Hilbert space of antisymmetricN-particle wave
functions. Fora50 anda51 these planes are indicated b
the symbolic axesA and B. The Hilbert space of antisym
metric N-particle wave functions, of course, is not a tw
dimensional but a high-dimensional space. At each value
the coupling constanta ther-stationary wave functionsC@r,
n,a# for a givenr are represented by a point in the corr
sponding plane symbolizing the Hilbert space of antisy
metric N-particle wave functions. The points representi
C@r,n,a# for different values ofa but fixed values ofr andn
then form a GAC.

Various types of GAC’s may occur. A GAC may beiso-
lated, like the GAC’s 1 and 2 in the figure. An adiabat
connection shall be isolated if at each value ofa the corre-
spondingr-stationary wave functionC@r,n,a# is isolated.
~Isolatedr-stationary wave functions were defined in Se
III A. ! Isolated GAC’s can be labeled by the parametern of
the r-stationary wave functionsC@r,n,a# building it. Note
that the wave functionsC@r,n,a# of different isolated GAC’s
may yield identical expectation values of the operatorT̂

1aV̂ee at one, several, or even all values ofa. In other
words, the functionalsQ@r,n,a# and Q@r,n8,a# with n8
Þn which refer to different isolated GAC’s of the same de
sity may have the same value. Thus, if the expectation va

^C@r,n,a#uT̂1aV̂eeuC@r,n,a#&5Q@r,n,a# of two GAC’s
of the same density is equal at a certain value of the coup
constanta, that does not mean that the two GAC’s have
common point. Figure 1 shows such a situation for GAC’
and 2 if the symbolic axisB is defined dependently ona in
such a way that it gives the value of^CuT̂1aV̂eeuC&. That
means the simple picture of crossing energy levels does
apply here.~Remember that the real Hilbert space of an
symmetric N-particle wave functions is not two but eve
much higher dimensional.!

A more complicated structure of adiabatic connectio
arises if for a given densityr several isolatedr-stationary
wave functions ata50 are related to isolatedr-stationary
wave functions ata51 by GAC’s that have common points
The resulting structures shall be calledbunches of GAC’s.
Examples for bunches of GAC’s are the structures 3 and
Fig. 1. In this case the end points of the GAC’s ata50 no
longer are labeled by a single labeln but by two labelsn and
h. The labeln now designates the bunch while different e
points of the bunch ata50 are labeled byh. The corre-
sponding wave functions ata50 are then given by
C@r,n,h,0#. In a similar way the end points of the adiaba
connections ata51 are designated by the labeln of the
bunch and a labelk indicating the different end points of th
bunch ata51. The corresponding wave functions at the
end points are given byC@r,n,k,1#. The described labeling
scheme applies only to the end points of the adiabatic c
nection ata50 or a51 but this is all that is needed in thi
work.

A set of GAC’s given at each value ofa by a connected
set ofr-stationary wave functionsC@r,n,a# is shown in Fig.
a
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1 as structure 5. A set ofr-stationary wave functions
C@r,n,a# of the samer and a is connected if it cannot be
decomposed into isolated sets. A set ofr-stationary wave
functionsC@r,n,a# of the samer anda is isolated if, around
each member of the set, one can find a neighborhood in
Hilbert space which contains nor-stationary wave function
except those that are members of the set. A structure of
type of structure 5 shall be called atube of GAC’s. Con-
nected sets ofr-stationary wave functions and therefore al
tubes of GAC’s seem not to occur in real systems. The d
cussion of such structures is included for completeness.

If for any two valuesa and a8 a tube of GAC’s estab-
lishes one-to-one mappings between theC@r,n,a# and
C@r,n,a8# yielding the tube of GAC’s ata anda8, respec-
tively, then the adiabatic connections and the correspond
C@r,n,a# for any value ofa can be labeled by parametersn
which are real~or at least rational! numbers. Otherwise the
tube of GAC’s contains bunchlike structures and the bunc
building the set can be labeled by the real parametern. A
labeling of the corresponding wave functions at the end po
a50 anda51 requires additional parameters as discus
in the preceding paragraph. However, in this work, suc
labeling will turn out to be not necessary for tubes of GAC
containing bunchlike structures.

Note that, for any value ofa, there are other wave func
tions which are notr-stationary lying ‘‘between’’ the
C@r,n,a# of a connected set. More precisely, any subset
the Hilbert space that, for some value ofa, completely con-
tains a connected set of wave functionsC@r,n,a# also con-
tains other wave functions that are not members of the
An obvious reason for this is that any neighborhood o
wave functionC@r,n,a# contains wave functions that have
different electron density.

The functionalsQ@r,n,a# associated with a connected s
of r-stationary wave functionsC@r,n,a# of a givenr anda
all have the same value. The reason is that any twoC@r,n,a#
can be connected by a path which always can be divided
infinitesimal steps going from oner-stationary wave func-
tion C@r,n,a# of the connected set to anotherr-stationary
wave functionC@r,n,a# of the set. These infinitesimal step
are changesdC→r of the wave functionsC@r,n,a# which do
not change the density and therefore, due to the definitio
the C@r,n,a#, Eqs.~10! and ~12! do not change the value o
the correspondingQ@r,n,a#. If the functional derivatives
q@r,n,a#1m corresponding to a connected set of wa
functionsC@r,n,a# differ from each other then, because
lemmas I and II, theC@r,n,a# would be eigenstates of dif
ferent Hamiltonian operators. This can be assumed to no
the case @37#. Therefore the functional derivative
q@r,n,a#1m of a connected set ofC@r,n,a# can be assumed
to be equal and then the members of a connected se
r-stationary wave functionsC@r,n,a# all belong to one set of
degenerate eigenstates of a Hamiltonian operatorT̂1aV̂ee
1 v̂ with an external potentialv(r ) that is given by the cor-
responding functional derivatives2q@r,n,a#1m.

Real systems may have degenerate states with the s
electron density, however these states correspond to iso
r-stationary wave functions. In an atom, for example, two
three degenerateP eigenstates, namely those with magne
quantum number 1 or21, have the same electron densit
An infinitesimal admixture of the state with magnetic qua
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tum number 0 or21 to the state with magnetic quantu
momentum number 1, however, changes the electron
sity. Thus the eigenstates in the neighborhood of the
with magnetic quantum number 1 have different elect
densities and the eigenstate is an isolatedr-stationary wave
function.

Other cases of GAC’s than those displayed in Fig. 1 m
occur, e.g., bunches of tubes of GAC’s an isolated GAC t
branches at somea.0 and at a largera,1 reunites again
into one isolated GAC, or tubes of GAC’s that, from a ce
tain value ofa on, collapse into one isolated GAC. The
cases are combinations or generalizations of the three t
of adiabatic connections discussed above and can be tre
in an analogous fashion.

D. Generalized adiabatic connection Kohn-Sham formalism

The GAC-KS formalism will be derived first for the spe
cial case of isolated GAC’s and will then be generalized. F
a given densityr the wave functionsC@r,n,a51# at the
end points of the GAC’s ata51, according to lemma 2, ar
eigenstatesCk of fully interacting electron systems with ex
ternal potentialsvext(r ) that equal2q@r,n,a51#1m, i.e.,
the C@r,n,a51# are eigenstates of Hamiltonian operato
T̂1aV̂ee1 v̂ext with vext(r )52q(@r,n,a51#;r )1m. From
now onCk or C i shall designate exclusively eigenstates
fully interacting systems. The eigenstatesCk asr-stationary
wave functions ofr anda51 are adiabatically connected t
r-stationary wave functionsC@r,n,a50# of the same den-
sity r but a50. In the case of isolated GAC’s a one-to-o
mapping between theC@r,n,a51# and theC@r,n,a50#
results. Now lemma 2 is invoked again. It guarantees that
C@r,n,a50# are eigenstatesF l of noninteracting mode
systems with Hamiltonian operatorsT̂1vs . Eigenstates of a
noninteracting model system shall be designated byF l or
F j to distinguish them from the eigenstatesCk or C i of an
interacting electronic system. The corresponding potent
are denoted by vs(r ). The potentials vs(r ) equal
2q(@r,n,a50#,r )1m. Because the model systems a
noninteracting, their eigenstates are Slater determinants
of orbitals that are eigenstates of single-particle Schro¨dinger
equations with Hamiltonian operatorsT̂1 v̂s if no degenera-
cies are present. In case of degeneraciesF l can be a
symmetry-determined linear combination of Slater deter
nants which differ only by degenerate orbitals.~WhetherT̂
1 v̂s stands for a noninteractingN-particle or for the corre-
sponding single-particle Hamiltonian operator depends
the context.! In contrast to traditional DFT, the Slater dete
minantF l is not necessarily built by the energetically low
est orbitals becauseF l does not have to be the ground sta
of T̂1 v̂s .

The wave functionsC@r,n,a51# at thea51 end points
of the generalized adiabatic connections ofone density but
different n, in general, are eigenfunctionsCk of different
interacting systems withdifferentexternal potentialsvext(r )
52q(@r,n,a51#,r )1m. Similarly, the noninteracting
model systems and their potentialsvs(r )52q(@r,n,a
50#,r )1m for one density but varying values ofn are, in
general,different. On the other hand, one is usually inte
ested in a number of different eigenstates ofonegiven inter-
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acting system. Those eigenstatesC i belong to the same in
teracting Hamiltonian operator withone external potential
vext(r ) but the eigenstatesC i , of course, in general hav
differentdensities. Each eigenstateC i is ar-stationary wave
function C@r i ,n,a51# with r i being the density of the
eigenstate. The value of the parametern depends on how the
generalized adiabatic connections for the densityr i are la-
beled. For each of the densitiesr i the functional derivative
2q(@r i ,n,a51#,r )1m equalsvext(r ) for that value of the
parametern for which C@r i ,n,a51#5C i . If one considers
all eigenstates of a noninteracting Hamiltonian operator w
effective potentialvs(r ), a similar picture arises. The eigen
statesF j yield different densitiesr j and for eachr j the
potential vs(r ) equals the functional derivative
2q(@r j ,n,a50#,r )1m if the parametern corresponds to
the r-stationary wave functionF j , i.e., if C@r j ,n,a50#
5F j .

Each eigenstateC i of a real physical system is associat
with a unique eigenfunctionF j of a unique noninteracting
model system via a GAC if the GAC’s are assumed to
isolated. As in the standard KS formalism,F j shall be called
the KS wave function and the model system shall be ca
the KS system. By construction, the densityr j of the KS
wave functionF j equals that of the corresponding wav
function C i , i.e., F j like C i yields the densityr i and r j
5r i . Note that many KS systems are associated with
physical system, in general one KS system for each eig
stateC i .

In order to determine the KS system and wave funct
associated with a specific eigenstateC i of a given real elec-
tron system and in order to determine the energy of
physical eigenstate with the help of the associated KS w
function, various energy functionals have to be defin
These energy functionals are components of the functio
Q@r i ,n,a# at a50 anda51 and therefore depend on th
densityr i and the parametern labeling the associated GAC
However, the labeling of the GAC’s for the densityr i is
arbitrary. The parametern therefore is not uniquely defined
This problem is solved by replacing the variablesr i andn in
the functionalsC@r i ,n,a# andQ@r i ,n,a#. In this way the
necessity to find a universal labeling scheme that uniqu
definesn is avoided and the evaluation of the functiona
Q@r i ,n,a# and their components is facilitated. In the case
isolated GAC’s, the variablesr i and n uniquely determine
C@r i ,n,a50#5F j and converselyF j5C@r i ,n,a50# be-
longs to a uniquer i5r j and a uniquen. Therefore, in func-
tionals the variablesr i andn can be replaced by the KS wav
functionF j . The KS wave functionF j is the wave function
that is actually calculated in the GAC-KS scheme and thu
an available quantity.

By generalizing the corresponding definitions of the sta
dard KS formalism, the functionalsTs@F j #, U@F j #, Ex@F j #,
and Ec@F j # of the noninteracting kinetic energy, the Co
lomb energy, the exchange energy, and the correlation
ergy, respectively, are defined as

Ts@F j #5Ts@r i ,n#5^F j uT̂uF j&, ~22!

U@F j #5U@r i #5 1
2 E dr dr 8

r i~r !r i~r 8!

ur2r 8u
, ~23!
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Ex@F j #5Ex@r i ,n#5^F j uV̂eeuF j&2U@F j #, ~24!

and

Ec@F j #5Ec@r i ,n#5Q@r i ,n,a51#2Q@r i ,n,a50#

2U@r i #2Ex@r i ,n#

5^C i uT̂1V̂eeuC i&2^F j uT̂1V̂eeuF j&. ~25!

The corresponding Coulomb, exchange, and correlation
tentials are given by functional derivatives

u~@F j #;r !5u~@r i #;r !5dU@r#/dr~r !ur~r !5r i ~r !

5E dr 8r i~r 8!/ur2r 8u, ~26!

vx~@F j #;r !5vx~@r i ,n#;r !5dEx@r,n#/dr~r !ur~r !5r i ~r ! ,
~27!

and

vc~@F j #;r !5vc~@r i ,n#;r !5d Ec@r,n#/dr~r !ur~r !5r i ~r ! ,
~28!

respectively. The functional derivatives are taken atr i(r ) for
a fixed parametern. That means the definition of the pote
tials vx and vc refers to the variablesr i and n. However,
after having definedvx andvc in the variablesr i andn one
can then change to the variableF j .

In the traditional KS formalism, exchange and correlati
functionals also can be expressed as functionals of the
wave function or equivalently the KS orbitals, as in t
GAC-KS formalism. However, implicitly the functional
would remain functionals of the density whereas in t
GAC-KS formalism they are implicit functionals of the de
sity and the parametern. Orbital-dependent functionals ar
preferable to traditional density functionals because they
much more flexible and because the KS orbitals con
much more information than the density.

By combining the definitions~14! and~22!–~28! with Eq.
~16! for a50 and a51 and for v(r ) being vs(r ) and
vext(r ), an equation for the potentialvs(r ), the KS potential,
is obtained:

vs~r !5vext~r !1u~@F j #;r !1vx~@F j #;r !1vc~@F j #;r !.
~29!

Because the wave functionF j is an eigenfunction ofT̂
1 v̂s , it obeys the noninteracting Schro¨dinger equation

@ T̂1 v̂ext1û1 v̂x1 v̂c#F j5Es, jF j ~30!

with eigenvalueEs, j . The eigenvalueEs, j is an auxiliary
quantity that will not be used any further in this work. Equ
tion ~30!, the analog of the KS equation of traditional DF
shall be called the GAC-KS equation. The GAC-KS equ
tion, like the traditional KS equation, decouples in cor
sponding single-particle equations for the KS orbitals. Eq
tion ~30! or the corresponding single-particle equations ha
to be solved in a self-consistency scheme because par
the Hamiltonian operator, namelyu, v̂x , andv̂c , depend on
o-
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re
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-
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-
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the eigenstateF j and thus on the orbitals buildingF j . In the
GAC-KS scheme, in contrast to the traditional KS schem
not the energetically lowest but some other set of orbital
occupied. The energyEi of the real interacting eigenstateC i
corresponding toF j is given by

Ei5Ts@F j #1U@F j #1Ex@F j #1Ec@F j #

1E dr vext~r !r~@F j #;r !. ~31!

In the GAC-KS scheme each eigenstateC i of a given real
interacting system is adiabatically connected to a cer
stateF j of a certain noninteracting model system. Howev
remember that two different eigenstates ofone real interact-
ing system, in general, are adiabatically connected to
different eigenstates oftwo differentnoninteracting systems
with two different effective potentialsvs(r ). That means for
each eigenstateC i the GAC-KS scheme has to be carried o
separately, i.e., for eachC i the correspondingvs(r ) andF j
are determined separately.

A crucial point is that, in general,C i corresponds to a
F j with j Þ i . The ground stateC0 of a real physical sys-
tem, for example, does not have to be related to the gro
state F0 of a noninteracting model system. Thus th
v-representability assumption is not required. For the spe
case thatj 5 i 50 the GAC-KS scheme reduces to the tra
tional KS scheme, see Fig. 2~a!.

If the ground stateC05C@r0 ,n,a51# of an interacting
system is adiabatically connected to an excited stateF j
5C@r0 ,n,a50# ( j Þ0) of a noninteracting system, the
one of two cases is present in the standard KS formali
Which one is present depends on the otherr-stationary wave
functions C@r0 ,n8,a50#ÞF j of density r0 with n8Þn
which are not connected to the consideredC0 by a GAC.
The first case arises if one of the otherr-stationary wave
functions C@r0 ,n8,a50#ÞF j is the ground state of the
noninteracting system it is associated with according
lemma 2, i.e., ifC@r0 ,n8,a50# is the ground state of the
noninteracting Hamiltonian operator with the effective p
tential 2q(@r0 ,n8,a50#;r )1m8Þ2q(@r0 ,n,a50#;r )
1m. Then the wave functionC@r0 ,n8,a50#ÞF jwith n8
Þn is the KS wave function of the standard KS formalism
That means, in this case, the model systems of the stan
and the GAC-KS scheme are different. The standard a
batic connection, i.e., the adiabatic connection as define
the standard KS formalism, would be discontinuous in t
case, which is symbolically displayed in Fig. 2~b!. In Fig. 2
the symbolic axisB shall be chosen dependently ona in such
a way that it gives the expectation valuêCuT̂
1a8V̂eeuC&. At the coupling constanta8 the standard adia
batic connection is discontinuous in Fig. 2~b!. Because the
GAC-KS formalism does avoid such discontinuous adiaba
connections, it seems to be preferable in such a situat
The second case arises if none of the wave functi
C@r0 ,n8,a50#ÞF j with n8Þn is the ground state of a
noninteracting Hamiltonian operator. Then the densityr0 is
not noninteractingv-representable and the standard KS fo
malism is not applicable in contrast to the GAC-KS schem
which is not based on anyv-representability assumption. I
this case the standard adiabatic connection does not exis
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values of the coupling constant which are smaller thana8.
See Fig. 2~c! for a symbolic representation of this case.

In practical applications one is usually interested in
number of eigenstates and energy eigenvalues of a g
physical electronic system. Thei th eigenstateC i of the real
physical electronic system is adiabatically connected to
j th eigenstate of a KS system. However, the relation betw
i and j is not a priori known and only the energy indexj of
the KS wave function enters the KS scheme and is kno
from the start. Thus a GAC-KS treatment of a single selec
eigenstate of the real system is not possible unless phy
intuition allows one to choose the corresponding value of
index j. The GAC-KS scheme, therefore, is applied in se
eral steps.

~i! An index j is chosen.
~ii ! The GAC-KS equations are self-consistently solv

for that index j. In each iteration cycle the exchange a
correlation potentials are determined from those KS orbi
of the previous cycle that built thej th eigenstate of the KS
Hamiltonian operator of the previous cycle.

~iii ! After self-consistency has reached the energy of
corresponding physical eigenstate,C i is determined via Eq.
~31!.

~iv! After having carried out the GAC-KS scheme f

FIG. 2. Generalized versus traditional adiabatic connections~for
notation, see Fig. 1!. Generalized adiabatic connections are depic
by solid lines, traditional adiabatic connections by dashed lin
Ground states of noninteracting model systems are denoted byF0 ,
excited states byF j or Fk . ~a! Traditional adiabatic connection i
identical to one of the generalized adiabatic connections.~b! Tradi-
tional adiabatic connection is discontinuous.~c! Traditional adia-
batic connection does not exist for values of the coupling cons
which are smaller thana8.
en
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different indicesj, the resulting energies for the correspon
ing physical eigenstateC i can be energetically ordered an
energy indicesi can be attached.

In the set of KS energy indicesj emerging in the GAC-KS
formalism from the eigenstates of a given physical syste
certain numbers may be missing or may appear more t
once. If a numberj is chosen that is not present in the set
KS energy indices, then the GAC-KS scheme will not lead
a solution, i.e., it will not converge. If a numberj is chosen
that appears more than once, then it depends on the sta
condition of the self-consistency procedure for which eige
state of the physical system the associated KS wave func
is determined.

The complicated relation between the energy indices
the interacting and the noninteracting systems reflects
fact that there exists no simple universal way to relate
energies of real interacting electronic systems to those
noninteracting model systems. Therefore, a formali
should not require assumptions on the energy indices
model states, rather the relation between the energy ind
of the physical and the model states should result from
formalism. This is the case in the GAC-KS formalism b
not in the standard KS formalism. The latter requires
model system associated with the ground state of a real
tem to be the ground state of a noninteracting model syst

Next the GAC-KS is generalized in order to cover oth
cases than that of isolated GAC’s. First tubes of GAC’s sh
be considered. In this case it is sufficient to carry out
GAC-KS scheme with one arbitrary memberC@r,n,a50#
of the set ofr-stationary wave functions forming the en
point of the tube of GAC’s ata50. One can even choose
different C@r,n,a50# in each iteration of the self-
consistency procedure. The reason is that, according to
III B, all wave functionsC@r,n,a# of a continuous set of
r-stationary wave functions can be assumed to be eigens
of the same Hamiltonian operator. Therefore, the wave fu
tions C@r,n,a50# of a continuous set ata50, the KS
wave functions corresponding to a tube of GAC’s, are
eigenstates of the same effective potentialvs(r ). Further-
more, the functionalsQ@r,n,a# corresponding to such a
continuous set ofr-stationary wave functionsC@r,n,a# all
have the same value and the same functional deriva
q(@r,n,a#;r ). Thus all the functionalsTs@r,n#, Ex@r,n#,
and Ec@r,n# as well as the functional derivative
vx(@r,n#;r ) andvc(@r,n#;r ) belonging to a tube of GAC’s
are equal. Therefore, the case of a tube of GAC’s can
treated simply as if it were the case of an isolated GA
because it is not necessary to distinguish between the m
bers of a continuous set of wave functionsC@r,n,a# at anya.
As mentioned in Sec. III C, this case seems not to occu
real systems and therefore seems to be of academic int
only.

In the case of GAC’s forming bunches, the assumption
made that each bunch has just one end point ata51 ~see
structure 3 in Fig. 1!. In this case ther-stationary wave func-
tions ata50, the corresponding functionalsQ at a50, and
subsequently the functionalsTs , Ex , andEc as well as the
functional derivativesvx andvc depend not only on the den
sity r and the bunch indexn but also on the parameterh
designating the end point of a given bunch ata50. Because
each bunch shall have just one end point ata51, no indexk
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to label this end point is required. The variablesr, n, andh
specify a unique wave functionC@r,n,h,a50#5F j . Con-
versely, this wave functionF j5C@r,n,h,a50# determines
uniquely the variablesr, n, and h. Thus it is possible to
replace the variablesr, n, and h by F j and the GAC-KS
formalism remains essentially unchanged.

Note that, in contrast to the standard KS formalism, it
not required in the GAC-KS formalism that an eigenstate
an interacting physical electron system is related to only
noninteracting KS system. The GAC-KS procedure a
works if more than one KS system is associated with o
eigenstate of an interacting system.

Whether the assumption that bunches of GAC’s do
have more than one end point ata51 is always valid needs
further investigation. The behavior of bunches of GAC’s n
obeying this assumption in the GAC-KS formalism is d
cussed in Appendix B. Physical intuition suggests that,
real systems, bunches of GAC’s do not exist at all, neit
those with one nor those with several end points ata51. A
physical reason why GAC’s should touch seems not to e
and the physical meaning of the points where GAC’s tou
would be unclear.~See also the remark in Sec. VI that relat
the question of whether bunches of GAC’s exist to the qu
tion of whether many-body perturbation theory converge!
With respect to the validity of the assumption on the e
points of bunches of GAC’s, also note that if a bunch
GAC’s has more than one end point ata51, then the corre-
spondingr-stationary wave functionsC@r,n,k,a# are eigen-
functions of different interacting systems with different e
ternal potentials~this is shown in Appendix B!. Thus in order
to violate the assumption, eigenstates of different elect
systems with different external potentials, i.e., of two diffe
ent Hamiltonian operators, would have to somehow evo
without changing their electron density, into eigenstates
one Hamiltonian operator just by a change in the coupl
constant. This shows that the assumption on the end poin
bunches of GAC’s is likely to hold true and probably is le
severe than thev-representability assumption of tradition
DFT.

IV. FUNCTIONALS

If the GAC-KS formalism is applied, then the variou
parts of the total energyEi , Eq. ~31!, and the contribu-
tions to the effective potential,vs , Eq. ~29!, have to be
calculated. The contributionsTs@F j #, U@F j #, and
*dr vext(r )r(@F j #;r ) of Ei can easily be obtained exact
from the occupied KS orbitals building the KS wave functi
F j . Among the contributions tovs , the external potentia
vext(r ) is given and the Coulomb potentialu(@F j #;r ) again
can be easily evaluated exactly from the occupied KS or
als via the electron densityr@F j #. Thus the handling of the
energy functionalsEx@F j # andEc@F j # and of the potentials
vx(@F j #;r ) andvc(@F j #;r ) remains to be discussed.

Simple approximations forEx@F j #, Ec@F j #, vx(@F j #;r ),
andvc(@F j #;r ) result if the electron densityr(@F j #;r ) and,
if necessary, also gradients ofr(@F j #;r ) are substituted into
the local-density approximation~LDA ! or generalized gradi-
ent approximations~GGA’s! for the exchange and correla
tion functionals of the standard KS formalism. Obvious
these are quite crude approximations. The LDA and GG
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depend only on the electron density. Therefore, the dep
dence ofEx , Ec , vx , andvc on the labeln of the involved
GAC is completely ignored. As shown in Sec. III D, the K
wave functionF j contains all information on bothr and n
The information onn, however, is not used in the describe
LDA and GGA approximations. Moreover, the LDA an
GGA’s are developed for ground states, not for excit
states. If the LDA or a GGA is employed in the describ
way, then the GAC-KS method turns into a standard
procedure in which the ground-state electron density is
placed by an excited-state density. This is the common p
cedure to treat excited states that is mentioned in the In
duction. While this approach has no formal justificatio
within the standard KS formalism, the GAC-KS formalis
of this work now gives it a formal justification by identifying
it as an approximate GAC-KS procedure. On the other ha
the success of the GAC-KS method in the crude local den
or generalized gradient approximations is very promis
and suggests the development of improved GAC-KS me
ods based on specific orbital-dependent approximations
the GAC-KS functionalsEx , Ec , vx , andvc .

Approximations for the exchange energy and poten
can be avoided completely if the exact expressions prese
next are employed. The exchange energyEx@F j # is simply
given by the standard expression for the exchange energ
a Slater determinant

Ex52 1
2 (

a

occ

(
b

occ E dr dr 8
wa* ~r !wb~r !wb* ~r 8!wa~r 8!

ur2r 8u
.

~32!

In expression~32!, wa(r ) and wb(r ) denote KS orbitals
which are two-dimensional spinors in order to represent
spin degree of freedom. A star denotes the Hermitian adjo
not just the complex conjugate of a KS orbital. If degene
cies due to symmetries are present, then the KS wave fu
tion is a symmetry-dependent linear combination of Sla
determinants. The corresponding generalization of exp
sion ~32! for Ex@F j # is straightforward. Expression~32! is
identical to the expression for the exchange energy in
standard KS formalism@2,3#. However, in contrast to the
standard KS formalism, the occupied orbitals entering
pression~32! now, in general, are not the energetically low
est ones and solve the GAC-KS instead of the standard
equations.

The exchange potentialvx(@F j #;r ) obeys the equation

E dr 8Xs~r ,r 8!vx~r 8!5(
a

occ

(
s

unocc

wa* ~r !ws~r !

3
^wsuv̂x

NIuwa&
«a2«s

1c.c. ~33!

In Eq. ~33!, v̂x8
NL is an integral operator with kerne

vx
NL(r ,r 8)5(k

occwk(r )wk* (r 8)/ur2r 8u. This means thatv̂x
NL

is a nonlocal exchange operator of the same form as
Hartree-Fock exchange operator but built from the occup
KS orbitals. By«a and«s the eigenvalues of the KS orbital
wa(r ) andws(r ), respectively, are designated. By
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Xs~r ,r 8!5(
a

occ

(
s

unocc wa* ~r !ws~r !ws* ~r 8!wa~r 8!

«a2«s
1c.c.

~34!

the response function corresponding to the KS wave func
is denoted. Equation~33! is identical to the correspondin
equation in traditional KS theory@42–44#. Again, however,
the orbitals entering Eq.~33! now are GAC-KS orbitals that
in general, are not the energetically lowest ones. Equa
~33! can be derived similar to the way in which the corr
sponding equation in the standard KS formalism was deri
in Ref. @44#. A closely related approach to derive Eq.~33! is
to equate two different forms for the functional derivatives
the exchange energy with respect to the KS potential, nam
*dr 8@dEx /dr(r 8)#@dr(r 8)/dvs(r )# and

(a
occ*dr 8@dEx /dwa~r 8!#@dwa~r 8!/dvs~r !#.

Methods to solve Eq.~33! within the standard KS formal
ism exist for atoms and solids@42,45#. For the exact ex-
change results presented in the next section, Eq.~33! was
solved within the GAC-KS formalism.

A coupling constant expansion forEc andvc can be ob-
tained by generalizing the adiabatic connection perturba
theory of Refs.@43,44,46# if no bunchlike structures of GAC
are present~see also Sec. VI!.

V. APPLICATION OF THE GAC-KS METHOD
TO ALKALI-METAL ATOMS

The applicability and the capabilities of the GAC-KS fo
malism itself are sufficiently demonstrated by the succes
LDA and GGA treatments for excited states@4# which now
can be considered as GAC-KS calculations. The illustra
example of this section shall introduce GAC-KS metho
that go beyond the LDA or GGA, namely GAC-KS schem
that treat the exchange energy and potential exactly by
ploying Eqs.~32! and~33!. The spin-polarized GAC-KS cal
culation was carried out by generalizing@47# the method of
Ref. @42#, an exact exchange or optimized potential meth
based on the standard KS formalism.

The three energetically lowest excitations of Li, Na, a
K were calculated by four GAC-KS schemes. In three cal
lations exchange was treated exactly whereas correlation
either neglected, treated on the LDA level, or taken into
count within the GGA@48#. For comparison, also a pur
LDA calculation ~LDA for exchange and correlation! was
carried out. The four calculation are denoted by EXX~Exact
Exchange!, EXX/LDA, EXX/GGA, and LDA, respectively.
Of the considered excited states, only the first one, as
lowest state of its symmetry (2P), is accessible in the tradi
tional KS formalism@9#. The spin densities of the six2P
states are not spherically symmetric but exhibit cylindri
symmetry. Therefore, for this state the symmetrized KS f
malism of Ref.@41# and its generalization to the GAC-K
case is invoked. That means the calculation of the2P state
was based on the spherically symmetric contribution of
spin densities of the2P states which were obtained by ave
aging over the spin densities of the2P states with the same
magnetic spin quantum number.

In Table I the results of the calculations are displayed a
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compared to highly accurate coupled-cluster~CC! results and
experimental data@49#. For the light atom Li the EXX yields
results that are close to the CC and experimental data.
indicates that correlation plays only a minor role in this ca
For Na and K the neglect of correlation has a stronger aff
the EXX results in these cases deviate more significa
from the CC and experimental data. Inclusion of correlat
on the LDA or GGA level leads to an improvement for N
and K but the resulting EXX/LDA data are not systema
cally better than pure LDA values. This finding is not su
prising. It is well known that the LDA and the GGA benefi
from error cancelation between exchange and correlation
exchange is treated exactly, these error cancellations
course, are no longer present. Thus, in order to obtain g
results with an exact exchange GAC-KS procedure, corr
tion has to be treated in an approximation that does not
on error cancelations with exchange and therefore goes
yond the LDA and the current GGA’s.

VI. CONCLUDING REMARKS

There is an interesting connection between the questio
whether or not bunchlike structures of GAC’s exist and t
problem of whether many-body perturbation theory with
spect to orders of the coupling constant converges. If bun
like structures are present, then wave functionsC@r,n,a#,
functionalsQ@r,n,a#, and other quantities cannot be deve
oped in Taylor series with respect to the coupling constana,
and perturbation theory along the adiabatic connection is
possible. Thus information on the applicability of man
body perturbation theory is relevant for answering the qu
tion of whether bunchlike GAC exists. Remember, t
GAC-KS does not require the absence of bunchlike GA
the case of exclusively isolated GAC’s just represents
simplest scenario. The other way around, an investigation
whether or not bunchlike GAC’s exist, may yield new info
mation on the applicability of many-body perturbation theo
from an interesting point of view. Note that in many-bod
perturbation theory one usually considers the dependenc
the energy of the eigenstates ofoneHamiltonian operator on
a perturbation parameter. The eigenstates forming diffe
GAC’s of a given density, on the other hand, belong todif-
ferent Hamiltonian operators. The standard picture of lev
crossings, i.e., the crossing of energy curves in the tw
dimensional space of energy and perturbation parame

TABLE I. Excitation energies of alkaline atoms in eV.

Transition LDA EXX EXX/LDA EXX/GGA CCa Expt.a

Li 2s→2p 1.82 1.84 1.90 1.86 1.85 1.85
2s→3s 3.26 3.33 3.53 3.41 3.37 3.37
2s→3p 3.70 3.80 4.02 3.88 3.83 3.83

Na 3s→3p 2.18 1.97 2.10 2.00 2.09 2.10
3s→4s 3.17 3.04 3.26 3.14 3.18 3.19
3s→4p 3.79 3.57 3.85 3.69 3.74 3.75

K 4s→4p 1.68 1.41 1.53 1.46 1.60 1.61
4s→5s 2.57 2.35 2.57 2.49 2.60 2.61
4s→5p 3.06 2.76 3.03 2.93 3.05 3.06

aReference@49#.
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therefore, does not apply for GAC’s.
For periodic systems, the GAC-KS formalism under c

tain conditions reduces in the thermodynamic limit to t
excited-state formalism of Ref.@14# which is based on the
standard KS formalism. In Ref.@14# the excited states of th
standard KS Hamiltonian operator which is determined
the ground state are related to the excited states of the i
acting physical system under the assumption that the e
getical ordering of all states is preserved if the coupling c
stant runs from zero to one. That means that in the formal
of Ref. @14#, ground and excited states always belong to
same Hamiltonian operator. In the GAC-KS formalism,
the other hand, each eigenstate of the physical system
general, is associated with a different KS Hamiltonian ope
tor. However, the differences between the GAC-KS Ham
tonian operators for states obtained by exciting a small n
ber of electrons become negligible in the limit of an infin
number of unit cells and thus an infinite number of electro
In this case the two formalisms become equivalent.

In this work the basis for a self-consistent KS treatmen
excited states was established. Further work along two l
is highly desirable. First, accurate approximate excha
and, more importantly, correlation functionals for th
GAC-KS formalism should be developed. Such approxim
functionals have to be orbital dependent. Correlation fu
tionals should not rely on error cancellations between
change and correlation in order to be applicable in meth
that treat the GAC-KS exchange exactly. Second, the to
ogy of generalized adiabatic connections should be fur
investigated.
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APPENDIX A: RELATIONS BETWEEN CHANGES
OF THE DENSITY AND THE PAIR DENSITY

In Refs. @35,36# the existence of a unique functio
G i(r 9,r 8,r ) is asserted that relates by the equation

dr i
2~r 8,r !5E dr 9G i~r 9,r 8,r !dr i~r 9! ~A1!

the changesdr i
2(r 8,r ) and dr i(r 9) of the pair density

r i
2(r 8,r ) and of the densityr i(r 9), respectively, which are

caused by an arbitrary norm-preserving changedC of an
eigenstateC i of an electronic Hamiltonian operator. Th
density ofC i is denotedr i(r ). In Eq. ~A1! spin summations
are assumed to be already carried out in contrast to R
@35,36#. Furthermore, the classical part of the pair density
not separated here. Thus the full pair density, not just
correlated pair density as in Refs.@35,36#, is considered here

For the case ofC i being an eigenstate of a noninteracti
system, a simple counterexample shows thatG i(r 9,r 8,r )
does not exist. A nondegenerate eigenstate of a noninte
ing system consists of a single Slater determinant. Now
Slater determinants that are orthogonal toC i are generated
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The first one is generated by replacing one occupied orb
of C i by an unoccupied one, the second by replacing t
occupied orbitals by unoccupied ones. Next two chan
dC1 anddC2 can be constructed. The changedC1 shall be
the singly excited Slater determinant times an infinitesim
number, the changedC2 is given by the changedC1 plus an
infinitesimal number times the doubly excited Slater det
minant. Both changes yield the same changedr i(r 9) of the
density because the admixture of a doubly excited Sla
determinant does not affect the electron density in first ord
The change of the pair densitydr i

2(r 8,r ), however, is dif-
ferent for the two changesdC1 and dC2 of the eigenstate
C i because the admixture of a doubly excited Slater de
minant changes the pair density. Equation~A1!, however, for
both changes would yield the same changedr i

2(r 8,r ) of the
pair density because both changes lead to the same ch
dr(r 9) of the density. This contradiction shows that a fun
tion G i(r 9,r 8,r ) cannot exist.

In Refs. @35,36# eigenstates of fully interacting electro
systems are considered whereas the counterexample g
above refers to eigenstates of noninteracting electron
tems. However, for eigenstates of an interacting electron
tem one also can find two changesdC1 and dC2 which
yield the same change of the densityr i(r 9) but different
changes of the pair densityr i

2(r 8,r ). This again shows that a
function G i(r 9,r 8,r ) cannot exist.

For example, if one infinitesimally changes the extern
potential of the fully interacting electronic system with th
eigenstateC i , then the eigenstate changes by an infinite
mal change that shall be designated asdC1 . The corre-
sponding change of the density shall bedr~r !. Another wave
function can be generated by performing a constrain
search, Eq.~12!. Among all wave functions that yield the
densityr i(r )1dr i , the one that minimizes the expectatio
value of T̂1aV̂ee for a being infinitesimally smaller than 1
is searched. The difference between this wave function
C i defines a changedC2 . The changedC2 leads to the
same changedr i(r ) of the density asdC1 , because the den
sity of C i1dC2 , by construction, equals that ofC i
1dC1 . Among all wave functions yieldingr i1dr i , C i
1dC1 , as the ground state of a fully interacting electron
system, is the one that minimizes the expectation value
T̂1aV̂ee for a51 and not likeC i1dC2 for a value ofa
that is smaller. Therefore, the wave functionsC i1dC1 and
C i1dC2 have different pair densities and the changesdC1

anddC2 lead to different changesdr i
2(r 8,r ).

The problem with Eq.~A1! is the claim that it holds true
for changesdr i

2(r 8,r ) and dr i(r 9) resulting from arbitrary
changesdC of an eigenstateC i . If one considers only
changes between ther-stationary wave functions introduce
in Sec. III A, then an equation being equivalent to Eq.~A1!
holds true@37#. For a coupling constanta51 the kernel
G i(r 9,r 8,r ) then is the functional derivative of the pair de
sity with respect to the electron density for fixed parameten
~and in the case for fixed parameterk!. The pair density and
its functional derivative then are both functionals not only
the density but also of the parametern ~and in the case also
of k!. According to lemmas I and II~see Sec. III B!, each
eigenstate of an electronic system is ar-stationary wave
function and conversely eachr-stationary wave function is
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an eigenstate of an electronic system. Thus an equation
Eq. ~A1! holds true for changes turning, for fixeda, an
eigenstate of an electronic system into a wave function
again is an eigenstate of an electronic system with the s
coupling constanta.

APPENDIX B: BUNCHES OF GENERALIZED ADIABATIC
CONNECTIONS WITH MORE THAN ONE END

POINT AT a51

In this appendix bunches of GAC’s are discussed t
have more than one end point ata50 and at a51. In this
case indicesh and k labeling the end points of a bunch
a50 anda51, respectively, have to be introduced. Th
wave functionsC@r,n,h,a50# andC@r,n,k,a51#, func-
tionals Q@r,n,h,a50#, Q@r,n,k,a51#, Ts@r,n,h#,
Ex@r,n,h#, and Ec@r,n,h,k#, and functional derivatives
vx(@r,n,h#;r ) and vc(@r,n,h,k#;r ) arise. Note that
C@r,n,h,a50#, Ex , andvx depend only onn andh but not
on k, whereasC@r,n,k,a51# depends onn andk but not
on h.

The following condition is shown later on to hold for re
systems, i.e., atoms, molecules, or solids: Ther-stationary
wave functionsC@r,n,k,a51# of a bunch of GAC’s ata
51 are eigenstates of interacting Hamiltonian operators w
different external potentials, i.e.,q(@r,n,k8,a51#;r )1m8
Þq(@r,n,k,a51#;r )1m if k8Þk. With this assumption
the external potentials may be used to label the end poin
the bunch of GAC’s ata51, i.e., thevext can be used to
replace the labelsk. Thus the variablesr,n,h,k can be re-
placed by F j and vext resulting in functionalsTs@F j #,
Ex@F j #, Ec@F j ,vext#, vx(@F j #;r ), and vc(@F j ,vext#;r ).
Note that the external potentials occur only in the correlat
functionalsEc@F j ,vext# and vc(@F j ,vext#;r ). Furthermore,
note that the potentialsvext are not variables of the function
als in the usual sense, because they cannot be continuo
varied. For a givenF j only a few external potentialsvext
may occur in the functionals; each end point of the cor
sponding bunch of GAC’s ata51 yields one possiblevext.

For a given real interacting electron system the exter
potentialvext is known; it usually is the potential of the nu
clei. Thus all functionals depend only on accessible qua
ties at those densities that correspond to eigenstates o
real system. At first glance this seems to suggest that
GAC-KS formalism could be applied as before with the on
difference being that the correlation functionalsEc and vc
now depend not only onF j but also onvext. This, however,
is not the case. If the GAC-KS procedure is carried out, th
the electron density changes during the self-consistency
cess and reaches the correct density only if the process
converged. With the density also the external potent
given by end points of the corresponding bunch of GAC’s
a51 change and, in general, all differ from thea priori
known vext. Thus the knowledge of the external potent
vext of the given real electron system is not sufficient to p
the correct end point of the bunch of GAC’s during the se
consistency scheme. A second problem is that it is not a
clear how the knowledge in the external potential of t
given real system could be used in practice, i.e., one does
know how to approximate functionals depending onF j and
vext.
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For Coulomb systems Kato’s theorem can be employ
Coulomb systems consist of interacting electrons in the fi
of point charges. Real systems, i.e., atoms, molecules,
solids, are Coulomb systems if external fields are absent
if the nuclei, as usual, are treated as point charges. Ka
theorem@50# states that the position and the charge of
nuclei of a Coulomb system are uniquely determined by
cusps of the electron density. Kato’s theorem holds
ground as well as excited states. In Coulomb systems
nuclei are the only source for the external potential. Th
only one unique Coulomb system can be associated wi
given density. Therefore ar-stationary wave function of this
given density can be either an eigenstate of the one Coul
system or an eigenstate of an electronic system that is n
Coulomb system. Thoser-stationary wave functions of the
given density that are eigenfunctions of the associated C
lomb system all have to be degenerate and therefore ca
distinguished by symmetry. The reason is that for Coulo
systems, because they are real systems, two eigenstates
different main quantum number do not yield the same d
sities. For real systems in the absence of external fields
can therefore identify the end point of a bunch of GAC’s
a51 that corresponds to a Coulomb system as the one
is an eigenstate of the considered real system. One can
further constrain the constrained search for ther-stationary
wave functions ata51 by an additional condition, namel
the condition that ther-stationary wave functions addition
ally are eigenstates of a Coulomb system. In this way o
could avoid the use of the external potential for the ident
cation of the relevant end point of the involved bunch
GAC’s. Unfortunately this approach is feasible only for de
sities that are densities of eigenstate of Coulomb syste
However, there seems to be no guarantee that the elec
densities emerging during the self-consistency process
GAC-KS procedure always belong to eigenstates of C
lomb systems.

It remains to show why the external potentials cor
sponding to different end points of a bunch of GAC’s ata
51 are different for real electron systems. If two function
derivatives q(@r,n,k,a51#;r )1m and q(@r,n,k8,a
51#;r )1m8 were equal, then the corresponding two wa
functions C@r,n,k,a51# and C@r,n,k8,a51# would be
eigenstates of one interacting electronic system with
Hamiltonian operator with the external potenti
q(@r,n,k,a51#;r )1m5q(@r,n,k8,a51#;r )1m8. First,
systems shall be considered that exhibit no symmetries
thus no degeneracies due to symmetry. Then different eig
states have different main quantum numbers. In all real s
tems two eigenstates with different main quantum num
never have the same electron density. Thus the stateme
external potentials of bunches of GAC’s holds if no symm
tries are present. If symmetries are taken into account al
the lines suggested in Ref.@41#, then a symmetrized
GAC-KS formalism results. In such a symmetrized GAC-K
formalism only states with well-defined symmetry quantu
numbers occur and only states with the same symm
quantum number can be adiabatically connected. Thus
GAC’s can be characterized by a symmetry quantum nu
ber. GAC’s with different symmetry quantum number cann
have a common point at anya because states with differen
symmetry quantum number are different. For example, t
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atomic eigenstates with angular momentum quantum num
L51 and magnetic quantum numberM561 have the same
electron density. The GAC’s corresponding to the eig
states with magnetic quantum numberM51 consist exclu-
sively of state withM51, whereas the GAC’s belonging t
the eigenstate withM521 consist only of states withM
521. Thus the two GAC’s cannot have a common poi
i.e., the two eigenstates forM561 cannot belong to the
same bunch of GAC’s. In an electronic system with symm
tries two eigenstates that have the same density and be
to the same bunch of GAC’s therefore must have the sa
symmetry quantum numbers and thus, as in the absenc
symmetries, have different main quantum numbers. N
again, the fact that in real systems eigenstates with diffe
main quantum numbers never have the same electron de
can be invoked.

Whether the statement on external potentials of bunc
of GAC’s also holds true in model systems needs furt
investigation. In the homogeneous electron gas, more
cisely in a finite system with periodic boundary conditio
s

ted

J

,

h-
er

-

,

-
ng
e
of
,

nt
ity

es
r
e-

and a constant external potential, independent ofa all eigen-
states have the same electron density, a constant den
Furthermore, some eigenstates have the same symm
quantum number with respect to translational symmetry. I
noninteracting homogeneous electron gas, for example
eigenstate with the same translational quantum numbe
the ground state can be obtained by replacing two sin
particle states with wave vectorsk and k8 by two single-
particle states with wave vectorsq and q8 that obey the
condition q1q85k1k8. Thus eigenstates with the sam
symmetry labels and the same electron density exist for
homogeneous electron gas. This does not mean that
GAC-KS formalism cannot be applied. Only if two or mor
of these eigenstates belong to the same bunch of GA
would the application of the GAC-KS formalism be pro
lematic. Whether eigenstates of the homogeneous elec
gas belong to the same bunch of GAC’s or not remains
open question. Physical intuition suggests that this is not
case, see Sec. VI. In any case, the homogeneous electro
is not a real but a model system.
hys.
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