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Multipartite pure-state entanglement

Ashish V. Thapliyal*
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106

~Received 24 December 1998!

We show that pure states of multipartite quantum systems aremultiseparable~i.e., give separable density
matrices on tracing any party! if and only if they have a generalized Schmidt decomposition. Implications of
this result for the quantification of multipartite pure-state entanglement are discussed. Further, as an application
of the techniques used here, we show that any purification of a bipartite-bound entangled state having a
positive partial transpose istri-inseparable, i.e., has none of its three bipartite partial traces separable.
@S1050-2947~99!11805-5#

PACS number~s!: 03.67.2a
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I. INTRODUCTION

Quantum entanglement, first noted by Einstein-Podols
Rosen~EPR! @1# and Schro¨dinger@2#, is one of the essentia
features of quantum mechanics. Its famous embodiment
spin singlet~commonly referred to as the EPR state!

uCAB&5
1

A2
~ u↑A↓B&2u↓A↑B&), ~1!

proposed by Bohm@3#, was shown by Bell@4# to have stron-
ger correlations than allowed by any local hidden varia
theory. The Greenberger-Horne-Zelinger-Mermin~GHZ!
state@5,6#

uCABC&5
1

A2
~ u↑A↑B↑C&1u↓A↓B↓C&) ~2!

is a canonical three-particle example of quantum entan
ment. Contradiction between local hidden variable theo
and quantum mechanics occurs even for nonstatistical
dictions about the GHZ state@5,6#, as opposed to the statis
tical ones for the EPR singlet. These aspects of quan
mechanics have often been referred to as quantum nonlo
ity, and form an important aspect of the study of the fou
dations of quantum mechanics.

Recently it has been realized that quantum resources
be useful in information processing. Quantum entanglem
plays a key role in many such applications like quant
teleportation@7#, superdense coding@8#, quantum error cor-
rection@9#, quantum key distribution@10#, entanglement en
hanced classical communication@11#, quantum computa-
tional speedups@12#, quantum distributed computation@13#,
and entanglement-enhanced communication complexity@14#.
In view of its central role@15# in quantum information, it is
imperative to have a qualitative as well as quantitative the
of it.

In the last few years much progress has been made in
study of bipartite pure- and mixed-state entanglement. In
rest of this introduction we mention some of these res
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that are needed. In Sec. II we take a brief look at a rece
proposed framework for quantifying tripartite~multipartite!
pure-state entanglement@16#. Finally, in Sec. III we present
the results: the first result, establishing the equivalence of
set of Schmidt decomposable states and the set of multis
rable states, provides support for the proposed pure-state
tanglement measure, and the second result provides a n
sary condition for the existence of bound entanglement w
positive partial transpose. Now let us look at some ba
properties of entanglement.

A. Entanglement basics

Entanglement is a property that only has meaning fo
multipartite system, i.e. one whose Hilbert space can
viewed as a product of two or more tensor factors cor
sponding to physical subsystems of the system. In the E
example, the two subsystems are the two spin-1/2 particle
and B that form the spin singlet. As a matter of convenien
we think about these subsystems as belonging to diffe
parties: Alice has subsystem A, Bob has subsystem B, an
on. For arbitrary systems, EPR singlets and GHZ states
be made meaningful by labelling any two orthogonal sta
of each party’s subsystem as spin-up and spin-down, res
tively.

Operationally,unentangledor separablestates are the
ones that can be made by the different parties with~at most!
classically coordinated local operations, i.e., local opera-
tions by the parties, which are coordinated by the excha
of classical information. Herelocal operationsinclude uni-
tary transformations, additions of ancillas, measureme
and throwing away parts of the system, all performed loca
by one party on his/her subsystem. Classical communica
between parties is included because it allows for the crea
of mixed states that are classically correlated but exhibit
quantum correlations.

Thus, mathematically speaking, a pure stateuCABC . . . & is
separable iff it can be written as a tensor product of sta
belonging to different parties:

uCABC . . . &5ufA& ^ uxB& ^ ucC& ^ •••. ~3!

A mixed staterABC . . . is separable if and only if it can be
written as a sum of separable pure states@17#:
3336 ©1999 The American Physical Society
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PRA 59 3337MULTIPARTITE PURE-STATE ENTANGLEMENT
rABC . . . 5(
i

pi uf i
A&^f i

Au ^ ux i
B&^x i

Bu ^ uc i
C&^c i

Cu ^ •••,

~4!

where the probabilitiespi>0 and ( i pi51. Finally, states
that are not separable are said to beentangledor inseparable.

Because classical communication between parties sh
not increase their quantum correlations, the expectation
any quantitative measure of entanglement should be no
creasing under classically coordinated local operations
addition, any such measure must be invariant under lo
unitary transformations, because they only correspond to
other choice of local bases. Naturally, such a measure m
be zero for any separable state. Also, it is natural to req
such a measure to be additive for tensor products. To s
marize, the four requirements for a good measure of
tanglement are@18#: ~i! zero for separable states,~ii ! invari-
ant under local unitary transformations,~iii ! nonincreasing
under classically coordinated local operations, and~iv! addi-
tive for tensor products. Since bipartite entanglement is
simplest case, let us review it next.

B. Bipartite entanglement

For bipartite pure states it has been shown@19,20# that
partial entropy is a good entanglement measure. It is eq
both to the state’sentanglement of formation~the number of
singlets asymptotically required to prepare the state, us
only classically coordinated local operations! and the state’s
distillable entanglement~the number of singlets asymptot
cally preparable from the state using only classically coo
nated local operations!. Here partial entropy is the von Neu
mann entropy1 of the reduced density matrix left after tracin
out any one of the two parties. Mathematically we write th
as

E~CAB!5S~rA!5S~rB!, ~5!

whererA5TrB(uCAB&^CABu), and so on. For mixed state
partial entropy is no longer a good measure since it can
nonzero for some separable states like the completely
dom state. A variety of apparently distinct entanglem
measures for bipartite mixed states have been discussed
cluding entanglement of formation, distillable entanglem
@19,21#, entanglement of assistance@22#, relative entropy en-
tanglement@18#, and locally unitarily invariant parameters o
the density matrix@23#. However, no measure has be
proved to satisfy all the properties required of a good m
sure.

Qualitatively, the set of inseparable states can be divi
into two subsets:distillable states— inseparable states tha
have finite positive distillable entanglement — andbound
entangled states— inseparable states that have zero dist
able entanglement. Thepartial transposeof a density matrix
can be used to formulate necessary conditions for separ

1The von Neumann entropyS of a density matrixr is defined to
be the Shannon entropyH of its eigenvalues, i.e.,S(r)5H($l i%)
52( il i log2(li), wherel i are the eigenvalues ofr.
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ity and distillability, where partial transpose (rAB)TB of a
density matrixrAB in the basisu i A j B& is given by

^ i A j Bu~rAB!TBukAl B&5^ i Al BurABukA j B&. ~6!

The positivity2 of the partial transpose3 of a density matrix,
or equivalently the positivity of a density matrix under pa
tial transposition~PPT! is a necessary condition@24# for
separability. Similarly, negativity4 of the density matrix un-
der partial transposition~NPT! is a necessary condition@25#
for distillability.

Thus the set of mixed bipartite states can be divided i
four classes, as shown in Fig. 1: the set of separable s
~S!, the set of distillable states~D!, the set of PPT bound
entangled states (B1) and the set of NPT bound entangle
states (B2). Now we are in a position to turn to the concep
of reducibilities and equivalences and their relation to e
tanglement measures.

II. REDUCIBILITIES, EQUIVALENCES, AND
ENTANGLEMENT MEASURES

In this section we will review the concepts of reducibi
ties and equivalences with respect to classically coordina
local operations@26#, which are central to quantifying en
tanglement. Then we review a suggested way of quantify
tripartite and in general multipartite pure-state entanglem
@16#.

In what follows we use a quantitative measure of simil
ity of two states. One such measure is the fidelity@27,28#: the
fidelity of a mixed stater relative to a pure stateuc& is given
by F(r,c)5^curuc&. It is the probability with whichr will
pass the test for beinguc&, conducted by an observer wh
knows the stateuc&.

A. Reducibilities and equivalences

We say a pure stateuF& is reducible(<) to uC& if and
only if

'L such thatL~ uC&^Cu!5uF&^Fu ~7!

2We say a matrixA is positive if and only if all its eigenvalues ar
non-negative. This definition coincides with that of non-negat
matrices in mathematical literature.

3Clearly, the partial transpose of a density matrix is basis dep
dent, but its eigenvalues are not.

4Here negativity of a Hermitian matrix means that at least one
its eigenvalues is negative.

FIG. 1. Types of bipartite entanglement: The left half of t
figure represents the set of PPT states, and the right half repre
the set of NPT states. S denotes separable states, and D de
distillable states. B1(B2) denotes bound entangled states w
P~N!PT. In general, all these sets are known to be nonempty ex
for B2, for which no example is known yet.
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whereL is a multilocally implementable trace-preserving s
peroperator@29,30# ~a mathematical representation of clas
cally coordinated local operations!. Intuitively this means
that by doing classically coordinated local operations
parties can makeuF& starting fromuC&. Necessary and suf
ficient conditions for reducibility of bipartite pure states we
found in Ref.@31#.

Two statesuF& and uC& are said to beequivalent([) if
uF&<uC& anduC&<uF&. Intuitively this means that the two
states are interconvertible by classically coordinated lo
operations. Here the principle of nonincrease of entan
ment implies that equivalent states must have the same
tanglement@21#. Obviously, states related by local unita
transformations are equivalent and so are all separable st

We say thatuC& ^ x anduF& ^ y, with x andy non-negative
real numbers,5 areasymptotically equivalent(') if uF& ^ y is
asymptotically reducible(d) to uC& ^ x, and vice versa,
where

uF& ^ yduC& ^ xiff ;d.0,e.0 ; 'm,n,L

such that
um2nu

m
,d

and F„L~ uC&^Cu ^ (mx)!,uF& ^ (ny)
…>12e. ~8!

HereL is a multilocally implementable trace preserving s
peroperator that convertsmx copies of uC& into a high-
fidelity approximation tony copies ofuF&, wherem and n
are nonnegative integers. These definitions extend the
cepts of reducibility and equivalence to encompass the s
ation of asymptotic interconversion between states. Ag
the principle of nonincrease of entanglement requires
asymptotically equivalent states must have the same
tanglement.

As an example of the usefulness of these concepts le
re-express the bipartite pure-state entanglement re
@19,20#, mentioned in Sec. I, in terms of asymptotic equiv
lence. In this new language, any bipartite pure stateuCAB& is
asymptotically equivalent toE(CAB) EPR singlets:

uCAB&'uEPRAB& ^ E(CAB). ~9!

Thus if we take the EPR singlet to be the unit of entang
ment ~ebit!, the partial entropyE(CAB) specifies the EPR
singlets that can be obtained from and are required to pre
uCAB& by classically coordinated local operations.

In proving this result, the concepts of entanglement c
centration and dilution@19# are central. The process of a
ymptotically reducing a given bipartite pure state to EP
singlet form isentanglement dilution, and that of reducing
EPR singlets to an arbitrary bipartite pure state isentangle-
ment concentration. Then the above result means that e
tanglement concentration and dilution, are reversible in
sense of asymptotic equivalence, i.e., in the sense of

5States with non-negative real exponents are defined in
asymptotic sense by (uC& ^ x) ^ n5uC& ^ bn xc, where uC& ^ 0

5u0A0B0C . . . &. Here bxc called the floor ofx, is defined as the
greatest integer less than or equal tonlx.
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proaching unit efficiency and fidelity in the limit of larg
number of copiesn. The crucial requirement for these met
ods to work is the existence of the Schmidt~normal or polar!
decomposition for bipartite pure states@32#, in which any
pure state sayuCAB& can be written in the form

uCAB&5(
i

ai u i A& ^ u i B&, ~10!

where u i A& and u i B& form orthonormal bases in Alice an
Bob’s Hilbert space, respectively. Notice that, by change
phases of local bases, each of theSchmidt coefficients ai can
be made real and non-negative.

B. Schmidt decomposability, multiseparability,
and pure-state entanglement

Let Alice, Bob, Charlie, . . . , Nancy be then parties who
have one subsystem each of ann-part system, generally in a
joint state.

We say ann-party stateuCABC . . . N& is (n-)Schmidt de-
composableif it has an nth-order Schmidt decomposition
i.e. it can be written in the form

uCABC . . . N&5(
i

ai u i A&u i B&u i C&•••u i N&, ~11!

whereu i A&, u i B&, u i C&, . . . , u i N& form orthonormal bases in
Alice, Bob, Charlie, . . . , and Nancy’s Hilbert space respe
tively. Again, by change of phases of local bases, each of
Schmidt coefficients ai can be made real and non-negative

A useful property of Schmidt decomposable states is t
the density matrices obtained by tracing out any party
separable. We call this propertyn-separability or
multiseparability.6 Further, these density matrices obtain
by tracing one party areeigenseparable, i.e. they have sepa
rable eigenvectors. We call this propertyn-eigenseparability
or multieigenseparability.

Let us now look at tripartite states for concreteness. It
been noted@34# that arbitrary tripartite pure states are n
Schmidt decomposable. A different way of seeing this is
using the facts that any bipartite mixed state can be purifi7

@32# to a tripartite pure state and Schmidt decomposa
states are trieigenseparable: Then if this were true, all bip
tite states would be eigenseparable, which is false.

The absence of Schmidt decomposition for a general
partite pure state means that, on the one hand, the techn
developed for bipartite pure states cannot be generalized
straightforward manner to tripartite pure states, but on
other hand it implies that there are interesting new proper
to be discovered about states that are not Schmidt decom
able.

n 6In the terminology of Ref.@33#, multiseparability is equivalent to
all possible partial semiseparability.

7A purification of a mixed staterAB is a pure stateuCABC& such
that rAB5TrC(uCABC&^CABCu).
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Now we are in a position to review the framework us
@16# to quantify tripartite~multipartite! entanglement along
the lines of the bipartite case. It is based on finding sets
states ~analogous to the EPR singlet in the bipart
case! to which every pure tripartite~multipartite! state is
asymptotically equivalent. Such sets are called revers
entanglement generating sets. More precisely, setG
5$uc1&,uc2&, . . . ,ucn&% is a reversible entanglement gene
ating set ~REGS! if and only if for any state
uC& 'x1 ,x2 , . . . ,xn>0, such that

uC&'uc1&
^ x1^ uc2&

^ x2^ •••^ ucn&
^ xn. ~12!

The tensor powersx1 ,x2 , . . . ,xn are known as the entangle
ment measure~or entanglement coefficients! induced by the
REGSG.

Of course one would like to know the fewest stat
needed to make any general pure state. This leads to
definition of aminimal reversible entanglement generatin
set ~MREGS! to be a REGS of least cardinality. The setG2
5$uEPR&% is an example of a MREGS for bipartite entang
ment which induces the entanglement measure given by
partial entropy in bits.

As mentioned earlier, bipartite entanglement concen
tion and dilution protocols depend crucially on the existen
of a Schmidt decomposition. Not surprisingly, the bipart
protocols for entanglement concentration and dilution can
generalized@16# to work for tripartite~multipartite! Schmidt
decomposable states and used to prove that they are as
totically equivalent to GHZ~generalized8 GHZ! states, with
the one-party partial entropy as the induced entanglem
measure. That is, ifuCABC& is Schmidt decomposable,

uCABC&'uGHZ& ^ S(rA). ~13!

We note here that for any multipartite Schmidt decomp
able state, one-party partial von Neumann entropies are e
to the Shannon entropy of the square of the Schmidt co
cients. Now we are in a position to motivate and present
main results of the paper.

III. RESULTS

For simplicity let us restrict ourselves to the case of
partite systems. The asymptotic equivalence of Schmidt
composable states to GHZ states gives a way of quantify
their entanglement. When we look at states that do not l
themselves to the dilution and concentration scheme
Schmidt decomposable states, we notice that it is their bi
tite entanglement left after tracing out a party, that someh
‘‘gets in the way’’ of using these protocols. This fits in wit
the fact we discussed earlier in Sec. II B that the existenc
non-Schmidt decomposable states is intimately connecte
the existence of bipartite entangled states. Thus it is nat

8An n party generalization of the GHZ state which we call t
n-cat state is defined to be

un-cat&5
1

A2
~ u↑A↑B . . . ↑N&1u↓A↓B . . . ↓N&.
of
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to expect that any triseparable state is Schmidt decom
able.

Here we prove this claim and in general prove that a
multiseparable state is Schmidt decomposable. Let us tur
that next.

A. Equivalence of multiseparability and Schmidt
decomposability

The result is trivial for one party. For the bipartite case
states that all pure states have a Schmidt decompos
which, as we mentioned earlier, is known to be true. So
prove the result first for the tripartite case and then exten
to the multipartite case by induction.

Consider a triseparable pure stateuCABC&. By definition,
rAB, rBC, andrAC are separable.

Now we show that any triseparable state is Schmidt
composable. Since PPT is a necessary~but in general not
sufficient @35#! condition for separability, we prove a stron
ger result, namely,If a tripartite pure stateuCABC& is such
that rBC is separable andrAC and rAB are PPT, then it is
Schmidt decomposable.

This result is illustrated in Fig. 2. To prove this we fir
write uCABC& in its Schmidt decomposition@32#

uCABC&5(
i 51

n

Al i ul i
A& ^ ul i

BC&, ~14!

where ul i
A& are eigenvectors ofrA and ul i

BC& are eigenvec-

tors ofrBC corresponding to the nonzero~positive! eigenval-
uesl i .

SincerBC is separable it can be written as an ensemble
pure product states. LetE5$pi ,uc i

Bf i
C&u i 51, . . . ,m% be

such an ensemble with the fewest members~here m>n).
Then probabilitiespi.0,; i 51, . . . ,m and statesuc i

Bf i
C& are

pairwise linearly independent. Hereuc i
Bf i

C& is a short way of
writing uc i

B& ^ uf i
C&. Now suppose Alice does the followin

local operations:
~1! She appends an ancilla and performs a local unit

transformation onuCABC&, resulting in

uC̃ABC&5(
i 51

m

Api u i Ac i
Bf i

C&, ~15!

The Hughston-Jozsa-Wootters result@32# ensures that this is
always possible.

FIG. 2. Equivalence of triseparability and Schmidt decomp
ability: Here,~A!lice, ~B!ob, and~C!harlie represent the three pa
ties. The sidesAB

,
BC, and AC of the triangle represent the densi

matricesrAB,rBC, andrAC, respectively. The wiggly lines represen
‘‘essential’’ tripartite entanglement embodied by Schmidt deco
posable states.
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3340 PRA 59ASHISH V. THAPLIYAL
~2! Now Alice chooses two distinct basis vectorsu i A& and
u j A&, and does an incomplete von Neumann measurem
projecting the above state into the subspace spanned by
two vectors and its complement. As a result, with probabi
(pi1pj ).0, the joint state becomes

uC i j
ABC&5qi u i Ac i

Bf i
C&1qj u j Ac j

Bf j
C&, ~16!

with qi5Api /(pi1pj ) andqj5Apj /(pi1pj ).
This can be rewritten as

uC i j
ABC&5qi u i Ai Bi C&1qj u j A&~au i B&1bu j B&)~gu i C&1du j C&),

~17!

where$u i B&,u j B&% are orthonormal basis vectors for thespan
of $uc i

B&,uc j
B&% with u i B&5uc i

B&, and similarly on Charlie’s
side. Also uau21ubu251 and ugu21udu251 for normaliza-
tion. In this basis the partial transpose ofr i j

AB is

~r i j
AB!TB5S qi

2 0 qiqjg* a* 0

0 0 qiqjg* b* 0

qiqjga qiqjgb qj
2uau2 qj

2a* b

0 0 qj
2ab* qj

2ubu2

D .

~18!

SincerAB is PPT so isr i j
AB @25#; this requires@36#

U 0 q1q2g* b*

q1q2gb q2
2uau2 U>0,

implying

g50 or b50,

i.e.,

uf j
C&'uf i

C& or uc j
B&5uc i

B&. ~19!

Repeating the above argument forrAC, we obtain

uc j
B&'uc i

B& or uf j
C&5uf i

C&. ~20!

Since any pair of states in ensembleE are linearly inde-
pendent, the only consistent solution for the above relati
is

uc j
B&'uc i

B& and uf j
C&'uf i

C&. ~21!

Since Alice can choose any two distincti , j 51, . . . ,m, Eq.
~21! implies that uCABC& is Schmidt decomposable. Th
completes the proof.

This result is intuitively very satisfying, because it mea
that if there are no bipartite correlations among any two p
ties when the third party is traced out, then the tripartite s
is Schmidt decomposable and hence asymptotically equ
lent to GHZ states. This result supports the hypothesis
the GHZ and EPR states together form a MREGS, with
EPR singlets representing the bipartite entanglement
tween the parties, and the GHZ state representing ‘‘es
tial’’ tripartite entanglement.

The generalization of this result to the multipartite ca
follows by induction from the tripartite case. For conv
nt
ese

s

s
r-
te
a-
at
e
e-
n-

e

nience we illustrate the induction step for the case of fo
parties: Alice, Bob, Charlie, and David.

Let uCABCD& be a 4-separable state of Alice, Bob, Charl
and David. By definitionrBCD, rACD, rABD, and rABC are
separable. Alice can by local operations as in the paragr
before Eq.~15! make it into

uC̃ABCD&5(
i 51

m

Api u i Ac i
Bf i

Cx i
D&. ~22!

Joining Charlie and David together into one party and app

ing the tripartite result — Eq.~21! — implies that theuc i
B&

form an orthonormal set which we renameu i B&. Thus

uC̃ABCD&5(
i 51

m

Api u i Ai Bf i
Cx i

D&. ~23!

Now joining Alice and Bob together as a composite pa
Alicẽ and applying the tripartite result—Eq.~21!—we have
that theuf i

C& form an orthonormal set and so do theux i
D&.

This proves the result. After this we apply the tw
dimensional projection technique of this section to prove
new necessary condition for bipartite bound entanglem
with PPT.

B. No B1-S theorem

It is well known that any two-party mixed state can b
purified into a tripartite pure state. Then a connection
tween tripartite pure-state entanglement and bipartite mix
state entanglement seems likely. Already the fact t
triseparable states are Schmidt decomposable tells us th
purification uCABC& of a separable bipartite staterAB with
inseparable eigenvectors cannot be Schmidt decompos
and hence cannot be triseparable. Thus at least one ofrBC

andrAC is entangled.
Here we prove another result of this kind: any purificati

of a bipartite PPT bound-entangled (B1) state is tri-
inseparable. More precisely,if uCABC& is a purification of a
bipartite PPT bound-entangled staterAB, thenrBC and rAC

are inseparable and henceuCABC& is tri-inseparable.
Before proving this result, note that any purification f

rAB is related to any other, by addition of an ancilla and/o
local unitary transformation by Charlie@32#. Since insepara-
bility is unaffected by such local operations@21#, if we prove
the above result for one purification it will hold for any oth
purification. The proof then follows as a trivial consequen
of the following result.If a tripartite pure stateuCABC& is
such that rBC is separable andrAB has positive partial
transpose, thenrAB must be separable.This result is illus-
trated in Fig. 3.

The argument is similar to that employed in proving t
equivalence of Schmidt decomposability and triseparabil
The difference is that here, onlyrAB is given to have positive
partial transpose; but all the steps from Eqs.~14! to ~19! go
through. To prove the result, we show that Eq.~19! implies
that uC̃ABC& in Eq. ~15! can be written as

uC̃ABC&5(
i 51

s

um i
B& ^ (

j 51

t( i )

Api j ux i j
A& ^ un i j

C&, ~24!



e

e
er
.

n

-
ng

an
t
e-

(
the
mp-

HZ
.

ble

.
ea-
o
re-

ite
tri-
for

im-

id
r-
r
id
it

tr

ties,
nsity
re-

rtite

PRA 59 3341MULTIPARTITE PURE-STATE ENTANGLEMENT
with the ketsum i
B& pairwise linearly independent,^x i j

Auxkl
A &

5d ikd j l , and^n i j
Cunkl

C &5d ik^n i j
Cun i l

C&. Here( i 51
s t( i )5m and

pi j .0; i j . Eq. ~24! implies

r̃AB5TrCuC̃ABC&^C̃ABCu5TrC(
i 51

s

qi um i
B&^m i

Bu ^ ux i
AC&^x i

ACu,

~25!

with ux i
AC&5( j 51

t( i ) Api j /qi ux i j
A& ^ un i j

C& and qi5( j 51
t( i ) pi j .0;

we have used the orthogonality of theun i j & ’s for different
values of subscripti. Performing this trace it is easy to se
that r̃AB is separable. Recall thatr̃AB is obtained fromrAB

by appending an ancilla and/or a unitary rotation by Alic
Since inseparability is preserved under these local op
tions, separability ofr̃AB implies thatrAB is also separable

Now all that remains to be proved is thatuC̃ABC& has the
form shown in Eq.~24! above. For this we use induction o
the number of terms inuC̃ABC&. Obviously the form in Eq.
~24! holds in the case whenuC̃ABC& has just one term. Now
assuming that this form holds fors5r 21 terms,

uC̃ r
ABC&5A12pr uC̃ r 21

ABC&1Apr ur Ac r
Bf r

C&, ~26!

Where uC̃ r 21
ABC& has the form of Eq.~24! with ( i 51

s t( i )5r
21. Here 1.pr.0. But the condition in Eq.~19! with j
5r and i 51, . . . ,(r 21) implies that either'k such that

uc r
B&5umk

B&, with

uf r
C&'un i j

C& ; i , j ; iÞk

or

uf r
C&'un i j

C& ; i , j . ~27!

ThusuC̃ r
ABC& can be written in the form given by Eq.~24!: in

the first case withs→s and t(k)→t(k)11, and in the sec-
ond case withs→s11 and t(s11)51. Thus the result is
proved.

Given a tripartite pure stateuCABC&, there are many pos
sibilities for the kind of entanglement of the correspondi
bipartite statesrAB, rBC, and rAC. Figure 4 shows these
possibilities and marks the ones ruled out by this result.

IV. CONCLUSIONS AND DISCUSSIONS

We have proved the equivalence of multiseparable
Schmidt decomposable~multipartite pure! states. This resul
is relevant to the problem of quantifying multipartite pur

FIG. 3. No B1-S theorem: Here~A!lice, ~B!ob, and~C!harlie
represent the three parties. The sides AB, BC, and AC of the
angles represent the density matricesrAB, rBC, and rAC, respec-
tively.
.
a-

d

state entanglement, because it shows that if there is non
21)-partite entanglement after tracing any party, then
n-partite state is Schmidt decomposable and hence asy
totically equivalent to the corresponding generalized G
state, which represents ‘‘essential’’n-partite entanglement
This result supports the hypothesis that the set of 2-,3-, . . . ,
n-party generalized GHZ states form a minimal reversi
entanglement generating set, with thek-party generalized
GHZ states representing ‘‘essential’’k-partite entanglement
Thus this work provides support for the entanglement m
sure proposed in Ref.@16#. Further work needs to be done t
prove that the generalized GHZ states form a minimal
versible entanglement generating set.

We have also proved that any purification of a bipart
bound entangled state with positive partial transpose is
inseparable. This provides a new necessary condition
bound entanglement with positive partial transpose. An
portant question relating to the ‘‘no B1S’’ theorem is
whether there exist states like B12B12B1 and B12B1

2D. This is related to the question whethertri-PPT states
are triseparable and whetherbi-PPT states are biseparable.
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