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Multipartite pure-state entanglement
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We show that pure states of multipartite quantum systemsnaitéiseparable(i.e., give separable density
matrices on tracing any pajtyf and only if they have a generalized Schmidt decomposition. Implications of
this result for the quantification of multipartite pure-state entanglement are discussed. Further, as an application
of the techniques used here, we show that any purification of a bipartite-bound entangled state having a
positive partial transpose igi-inseparable i.e., has none of its three bipartite partial traces separable.
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I. INTRODUCTION that are needed. In Sec. Il we take a brief look at a recently
proposed framework for quantifying tripartitenultipartite
Quantum entanglement, first noted by Einstein-Podolskypure-state entanglemefit6]. Finally, in Sec. Il we present
Rosen(EPR [1] and Schrdinger[2], is one of the essential the results: the first result, establishing the equivalence of the
features of quantum mechanics. Its famous embodiment, thget of Schmidt decomposable states and the set of multisepa-

spin singlet(commonly referred to as the EPR sate rable states, provides support for the proposed pure-state en-
tanglement measure, and the second result provides a neces-
1 sary condition for the existence of bound entanglement with
|‘I’AB>:E(|TALB>—HATB>), (1) positive partial transpose. Now let us look at some basic

properties of entanglement.

proposed by Bohm3], was shown by Bell4] to have stron-
ger correlations than allowed by any local hidden variable A. Entanglement basics
theory. The Greenberger-Horne-Zelinger-MermiGHZ2)

Entanglement is a property that only has meaning for a
state[5,6] g property y g

multipartite system, i.e. one whose Hilbert space can be
viewed as a product of two or more tensor factors corre-
|‘PABC>:i(|TATBTC>+|lAlBlC>) @) sponding to physical subsystems of the system. In the EPR
J2 example, the two subsystems are the two spin-1/2 particles A
and B that form the spin singlet. As a matter of convenience,
is a canonical three-particle example of quantum entangleve think about these subsystems as belonging to different
ment. Contradiction between local hidden variable theorieparties: Alice has subsystem A, Bob has subsystem B, and so
and quantum mechanics occurs even for nonstatistical pré@n. For arbitrary systems, EPR singlets and GHZ states can
dictions about the GHZ sta{&,6], as opposed to the statis- be made meaningful by labelling any two orthogonal states
tical ones for the EPR singlet. These aspects of quantur@f €ach party’s subsystem as spin-up and spin-down, respec-
mechanics have often been referred to as quantum nonlocdively.
ity, and form an important aspect of the study of the foun- Operationally, unentangledor separablestates are the
dations of quantum mechanics. ones that can be made by the different parties athmos}
Recently it has been realized that quantum resources canassically coordinated local operations.e., local opera-
be useful in information processing. Quantum entanglemerifons by the parties, which are coordinated by the exchange
p|ays a key role in many such app“cations like quanturnOf classical information. Herécal Operationsinclude uni-
teleportation[7], superdense codin@], quantum error cor- tary transformations, additions of ancillas, measurements,
rection[9], quantum key distributioh10], entanglement en- and throwing away parts of the system, all performed locally
hanced classical communicatidil], quantum computa- by one party on his/her subsystem. Classical communication
tional speedup§l2], quantum distributed computatiga3], between parties is included because it allows for the creation
and entanglement-enhanced communication complgkdy ~ of mixed states that are classically correlated but exhibit no
In view of its central rol§15] in quantum information, it is guantum correlations.
imperative to have a qualitative as well as quantitative theory Thus, mathematically speaking, a pure staté®¢---) is
of it. separable iff it can be written as a tensor product of states
In the last few years much progress has been made in tHeelonging to different parties:
study of bipartite pure- and mixed-state entanglement. In the
rest of this introduction we mention some of these results [WABC- =M |xB) ey e - . ()

A mixed statep”BC - is separable if and only if it can be
*Electronic address: ash@physics.ucsb.edu written as a sum of separable pure stateg:
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where the probabilitiep;=0 and Z;p;=1. Finally, states
that are not separable are said toeléangledr inseparable
Because classical communication between parties should FIG. 1. Types of bipartite entanglement: The left half of the

not increase their quantum correlations, the expectation gfg, e represents the set of PPT states, and the right half represents
any quantitative measure of entanglement should be nonifpe et of NPT states. S denotes separable states, and D denotes

creasing under classically coordinated local operations. IRsgjlable states. B(B~) denotes bound entangled states with

addition, any such measure must be invariant under locahn)pT. In general, all these sets are known to be nonempty except
unitary transformations, because they only correspond to afor B-, for which no example is known vet.

other choice of local bases. Naturally, such a measure must
be zero for any separable state. Also, it is natural to requirdy and distillability, where partial transpose®)'® of a
such a measure to be additive for tensor products. To sunslensity matrixp”® in the basigi®j®) is given by
marize, the four requirements for a good measure of en- CASBl, AB\TwlLAIB _ /i AIBl ABILA: B
tanglement ar¢18]: ((iq) zero for separagle state$,) invari- (PR35 (™) TBlKAE) = (M P KETE). )
ant under local unitary transformation@ii) nonincreasing The positivity of the partial transposeof a density matrix,
under classically coordinated local operations, émfiaddi-  or equivalently the positivity of a density matrix under par-
tive for tensor products. Since bipartite entanglement is théial transposition(PPT) is a necessary conditiof24] for
simplest case, let us review it next. separability. Similarly, negativifyof the density matrix un-
der partial transpositiofNPT) is a necessary conditidi25]
for distillability.
Thus the set of mixed bipartite states can be divided into
For bipartite pure states it has been shdiB,2(q that  four classes, as shown in Fig. 1: the set of separable states
partial entropy is a good entanglement measure. It is equdb), the set of distillable state®), the set of PPT bound
both to the state’sntanglement of formatiofihe number of entangled statesB(") and the set of NPT bound entangled
singlets asymptotically required to prepare the state, usingtates B~). Now we are in a position to turn to the concepts
only classically coordinated local operatiprad the state’s of reducibilities and equivalences and their relation to en-
distillable entanglementthe number of singlets asymptoti- tanglement measures.
cally preparable from the state using only classically coordi-

B. Bipartite entanglement

nated local operationsHere partial entropy is the von Neu- Il. REDUCIBILITIES, EQUIVALENCES, AND
mann entropyof the reduced density matrix left after tracing ENTANGLEMENT MEASURES
out any one of the two parties. Mathematically we write this In this section we will review the concepts of reducibili-

as ties and equivalences with respect to classically coordinated

E(WAB)=S(pP)=S(pB), (5) local operationg 26], whi(_:h are central to quantifying en-
tanglement. Then we review a suggested way of quantifying
tripartite and in general multipartite pure-state entanglement

where p”=Trg(|V*8)(W*B]), and so on. For mixed states [16].

partial entropy is no longer a good measure since it can be |n what follows we use a quantitative measure of similar-
nonzero for some separable states like the completely ranty of two states. One such measure is the fid¢®y,28: the
dom state. A variety of apparently distinct entanglementidelity of a mixed state relative to a pure statey) is given
measures for bipartite mixed states have been discussed, By F(p,#)=(y|p|#). It is the probability with whichp will

Cluding entanglement of formation, distillable entanglementpass the test for beinbﬁ% conducted by an observer who
[19,21, entanglement of assistani@?], relative entropy en-  knows the statéy).

tanglemen{18], and locally unitarily invariant parameters of

the density matrix[23]. However, no measure has been A. Reducibilities and equivalences

glrﬁ\e/ed to satisfy all the properties required of a good mea- We say a pure statieb) is reducible(<) to |¥) if and
Qualitatively, the set of inseparable states can be divided nly if

into two subsetsdistillable states— inseparable states that 3, such thatZ(|W)(W|)=|D )P 7)

have finite positive distillable entanglement — ahdund
entangled states— inseparable states that have zero distill-
able entanglement. Theartial transposeof a density matrix )

can be used to formulate necessary conditions for separabil- W& S& @ matrbA is positive if and only if all its eigenvalues are
non-negative. This definition coincides with that of non-negative

matrices in mathematical literature.
3Clearly, the partial transpose of a density matrix is basis depen-
The von Neumann entrop of a density matrix is defined to  dent, but its eigenvalues are not.
be the Shannon entropy of its eigenvalues, i.eS(p)=H({\;}) “Here negativity of a Hermitian matrix means that at least one of
= -3\ logy(\;), where); are the eigenvalues of. its eigenvalues is negative.
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whereL is a multilocally implementable trace-preserving su-proaching unit efficiency and fidelity in the limit of large
peroperatof29,30 (a mathematical representation of classi-number of copies. The crucial requirement for these meth-
cally coordinated local operationsintuitively this means ods to work is the existence of the Schmidbrmal or polay
that by doing classically coordinated local operations thedecomposition for bipartite pure statE32], in which any
parties can makgb) starting from|W). Necessary and suf- pure state saj*8) can be written in the form
ficient conditions for reducibility of bipartite pure states were
found in Ref.[31].
Two state§®) and|V) are said to beequivalent(=) if ABy _ 1A\ o i B
|®)<|¥) and|¥)=<|®P). Intuitively this means that the two ) 2. aili®)y®|i%), (10
states are interconvertible by classically coordinated local
operations. Here the principle of nonincrease of entangle-
ment implies that equivalent states must have the same ewhere|i”) and [i®) form orthonormal bases in Alice and
tanglement21]. Obviously, states related by local unitary Bob’s Hilbert space, respectively. Notice that, by change of
transformations are equivalent and so are all separable statggases of local bases, each of 8&hmidt coefficients; &an
We say thatW¥)“* and|®)®Y, with x andy non-negative  be made real and non-negative.
real numbers,areasymptotically equivaler(t=) if |®)®Y is

asymptotically reducible(<) to |¥)®*, and vice versa, _ N _ N
B. Schmidt decomposability, multiseparability,

where
and pure-state entanglement
|D)Y<|V)Yiff  Vsopem05 Tmnc Let Alice, Bob, Charlie, ... , Nancy be theparties who
have one subsystem each of mpart system, generally in a
such that|m_n|<5 joint state.

We say am-party statgW”BC - Ny js (n-)Schmidt de-
composablédf it has annth-order Schmidt decomposition,
and F(L(|PN¥[eM)) |d)*(MW)=1—¢.  (8) i.e. it can be written in the form

Here £ is a multilocally implementable trace preserving su- ABC. .. N _ AT B C N

peroperator that convertsix copies of |¥) into a high- ¥ >_2i [ - 1%, (11)
fidelity approximation tony copies of|®), wherem andn

are nonnegative integers. These definitions extend the con-

cepts of reducibility and equivalence to encompass the situnhere|i?), |i®), |i€),... ,|iN) form orthonormal bases in
ation of asymptotic interconversion between states. Agaiilice, Bob, Charlie, ... , and Nancy’s Hilbert space respec-

the principle of nonincrease of entanglement requires thaively. Again, by change of phases of local bases, each of the
asymptotically equivalent states must have the same erSchmidt coefficients;aan be made real and non-negative.
tanglement. A useful property of Schmidt decomposable states is that
As an example of the usefulness of these concepts let ube density matrices obtained by tracing out any party are
re-express the bipartite pure-state entanglement resudeparable. We call this propertyn-separability or
[19,20, mentioned in Sec. |, in terms of asymptotic equiva- multiseparability® Further, these density matrices obtained
lence. In this new language, any bipartite pure St#é®) is by tracing one party areigenseparablei.e. they have sepa-

asymptotically equivalent t&(¥*8) EPR singlets: rable eigenvectors. We call this propertyeigenseparability
ng or multieigenseparability
| WAB) ~ | EPRB) ©E(Y), ©) Let us now look at tripartite states for concreteness. It has

been noted 34] that arbitrary tripartite pure states are not
Thus if we take the EPR singlet to be the unit of entangle-Schmidt decomposable. A different way of seeing this is by
ment (ebit), the partial entropyE(¥*8) specifies the EPR using the facts that any bipartite mixed state can be pufified
singlets that can be obtained from and are required to prepaf82] to a tripartite pure state and Schmidt decomposable
|WABY by classically coordinated local operations. states are trieigenseparable: Then if this were true, all bipar-
In proving this result, the concepts of entanglement contite states would be eigenseparable, which is false.

centration and dilutiorf19] are central. The process of as- The absence of Schmidt decomposition for a general tri-
ymptotically reducing a given bipartite pure state to EPRpartite pure state means that, on the one hand, the techniques
singlet form isentanglement dilutionand that of reducing developed for bipartite pure states cannot be generalized in a
EPR singlets to an arbitrary bipartite pure statensangle- straightforward manner to tripartite pure states, but on the
ment concentrationThen the above result means that en-other hand it implies that there are interesting new properties
tanglement concentration and dilution, are reversible in théo be discovered about states that are not Schmidt decompos-
sense of asymptotic equivalence, i.e., in the sense of amble.

SStates with non-negative real exponents are defined in an ®n the terminology of Ref[33], multiseparability is equivalent to
asymptotic sense by |¢)®N)®"=|¥)enX where |¥)®°  all possible partial semiseparability.
=|0”0B0°. . .). Here|x| called the floor ofx, is defined as the ‘A purification of a mixed stat@”® is a pure stat¢W*5C) such
greatest integer less than or equahio. that pAB=Tro (| WABC)(WABC)),
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Now we are in a position to review the framework used A A
[16] to quantify tripartite(multipartite entanglement along
the lines of the bipartite case. It is based on finding sets of PPT PPT <:>
states (analogous to the EPR singlet in the bipartite
case to which every pure tripartitdmultipartite state is
asymptotically equivalent. Such sets are called reversibe B S C B C
entanglement generating sets. More precisely, §€et
={|¥1),|2), ... |¥n)} is areversible entanglement gener-
ating set (REGS if and only if for any state
|\P> EIxl,x2 ..... X, =01 such that

FIG. 2. Equivalence of triseparability and Schmidt decompos-
ability: Here, (A)lice, (B)ob, and(C)harlie represent the three par-
ties. The sided®, BC, and A of the triangle represent the density
matricesp”®, pBC, andp”C, respectively. The wiggly lines represent
“essential” tripartite entanglement embodied by Schmidt decom-

| W)~ 1) 1@ ) 2@ - - - @ [4hr) . (12 posable states.
The tensor powers,,X,, ... X, are known as the entangle- i ¢ that i ble state is Schmidt d
ment measur¢or entanglement coefficientsxduced by the 0 expect that any triseparable state I1s schmi ecompos-

able.
Here we prove this claim and in general prove that any
ultiseparable state is Schmidt decomposable. Let us turn to

REGSG.
Of course one would like to know the fewest states
needed to make any general pure state. This leads to tl

definition of aminimal reversible entanglement generating at next,

set(MREGS to be a REGS of least cardinality. The $gt

={|EPR)} is an example of a MREGS for bipartite entangle- A. Equivalence of multiseparability and Schmidt

ment which induces the entanglement measure given by the decomposability

partial entropy in bits. The result is trivial for one party. For the bipartite case it

_ As mentioned earlier, bipartite entanglement concentragiates that all pure states have a Schmidt decomposition
tion and dilution protocols depend crucially on the existencgynich as we mentioned earlier. is known to be true. So we
of a Schmidt decomposition. Not surprisingly, the bipartite ,.ye the result first for the tripartite case and then extend it
protocols for entanglement concentration and dilution can bg, e multipartite case by induction.

generalized 16] to work for tripartite(multipartite Schmidt Consider a triseparable pure st*E%). By definition,
de_composak_JIe states and used to prove that they are asympss  BC and pAC are separable.
totically equivalent to GHZgeneralizetl GHZ) states, with Now we show that any triseparable state is Schmidt de-
the one-party part'ial entrqpy as t'he induced enta”gleme%mposable. Since PPT is a necessémyt in general not
measure. That is, if#*%°) is Schmidt decomposable, sufficient[35]) condition for separability, we /E)égve a stron-
er result, namelylf a tripartite pure state|W" is such
[WA8) ~|GHZ) =", (13 '?hathC is separa}\,t)le ang;AC an% p"B are|PPT,>then it is

We note here that for any multipartite Schmidt decompos-SChmIdt decomposable

able state, one-party partial von Neumann entropies are equal _:[I'hlfpﬁscult. ls_tllltgst;]atggt '3 Fig. 2. T? pr(;ve this we first
to the Shannon entropy of the square of the Schmidt coeffit/Mte | ) in its Schmi ecompositiof82]

cients. Now we are in a position to motivate and present the n
main results of the paper. | WABCY = > \/)\_i|)\iA>®|)\iBC>, (14)
i=1
ll. RESULTS

where|\?) are eigenvectors gf* and |\E€) are eigenvec-

For simplicity let us restrict ourselves to the case of tri—t s of 0B corr nding to the nonzefpositive eigenval-
partite systems. The asymptotic equivalence of Schmidt de?rs Ofp ™ Correspo g to the honze(pos eigenva

composable states to GHZ states gives a way of quantifyintfes e . .

their entanglement. When we look at states that do not ilend SCe€p IS separable it can be written as an ensemble of

themselves to the dilution and concentration scheme foPUre Product states. Lef={p;,|yr¢i)[i=1,... m} be

Schmidt decomposable states, we notice that it is their bipaSUch an ensemble with the fewest membérerBe ng?n).

tite entanglement left after tracing out a party, that somehow Nen probabilitiesp;>0V;_; ., and stategy; ¢;) are

“gets in the way” of using these protocols. This fits in with Pairwise linearly independent. Hefg47") is a short way of

the fact we discussed earlier in Sec. Il B that the existence ofriting |¢P)®|4C). Now suppose Alice does the following

non-Schmidt decomposable states is intimately connected 1ocal operations:

the existence of bipartite entangled states. Thus it is natural (1) She appends an ancilla and performs a local unitary
transformation o W*8C), resulting in

8An n party generalization of the GHZ state which we call the = ABC = ‘A B ,C
n-cat state is defined to be N4 >:|21 Jpilifyff), (15
1 i i .
In-cab = —= (7418 ... 1N+ [[A1B. .. 1N, The Hughston-Jozsa-Wootters req@P] ensures that this is
2 always possible.
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(2) Now Alice chooses two distinct basis vectdr$) and
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nience we illustrate the induction step for the case of four

[i*), and does an incomplete von Neumann measurememarties: Alice, Bob, Charlie, and David.
projecting the above state into the subspace spanned by theseLet |¥ECP) be a 4-separable state of Alice, Bob, Charlie,

two vectors and its complement. As a result, with probabilityand David. By definitionp®¢P, pAcP, p

(pi+p;)>0, the joint state becomes
[WAR)Y =q iy 0) +ayli*uf 85),
with gi= vp;/(pi+p;) andqg;=p;/(pi+p))-

This can be rewritten as
W) = aili*iBi% + ;%) (ali®)+ BliB) (7119 + 8li)),
17)
where{[i),|jB)} are orthonormal basis vectors for thpan
of {|yP).|47)} with [iBy=]y7), and similarly on Charlie’s
side. Also|a|?+]|B|?=1 and|y|?+]|58/?=1 for normaliza-
tion. In this basis the partial transposepﬁjlB is

(16)

q? 0  qgy*a* O
PO 0 Gars 0
g qdjye g8 qflal®*  ofa*p
0 0 a’ep*  of|pl?
(18

Sincep”® is PPT so ispf;® [25]; this requireq36]

0 41027 B*
019278 g5l al? ,
implying
vy=0 or B=0,
ie.,
[o0LIb0) o up)=|yr). (19
Repeating the above argument fgt°, we obtain
[P LIgd) or |ép)=[¢r). (20

Since any pair of states in ensemiglare linearly inde-

ABD " and pABC are

separable. Alice can by local operations as in the paragraph
before Eq.(15 make it into

(@200 =3, Vpili*ufear). 22

Joining Charlie and David together into one party and apply-

ing the tripartite result — Eq(21) — implies that the| °)
form an orthonormal set which we renari8). Thus

|{I‘,ABCD>:i§1 Jpili%iBpCxP). (23

Now joining Alice and Bob together as a composite party
Alice and applying the tripartite result—Eg81)—we have
that the|¢°) form an orthonormal set and so do theP).
This proves the result. After this we apply the two-
dimensional projection technique of this section to prove a
new necessary condition for bipartite bound entanglement
with PPT.

B. No B*-S theorem

It is well known that any two-party mixed state can be
purified into a tripartite pure state. Then a connection be-
tween tripartite pure-state entanglement and bipartite mixed-
state entanglement seems likely. Already the fact that
triseparable states are Schmidt decomposable tells us that a
purification | WABC) of a separable bipartite stapé® with
inseparable eigenvectors cannot be Schmidt decomposable
and hence cannot be triseparable. Thus at least op&‘f
and p”° is entangled.

Here we prove another result of this kind: any purification
of a bipartite PPT bound-entangled (B state is tri-
inseparable. More preciselif,| WAEC) is a purification of a
bipartite PPT bound-entangled stapé®, then pB© and p”°¢
are inseparable and hendd &) is tri-inseparable.

Before proving this result, note that any purification for

pendent, the only consistent solution for the above relationg”® is related to any other, by addition of an ancilla and/or a

is
[P L]yf)  and [0 L]d]). (21)

Since Alice can choose any two distingf=1, ... m, Eq.

(21) implies that|WAB¢) is Schmidt decomposable. This

completes the proof.

This result is intuitively very satisfying, because it means
that if there are no bipartite correlations among any two par
ties when the third party is traced out, then the tripartite state
is Schmidt decomposable and hence asymptotically equiv
lent to GHZ states. This result supports the hypothesis th
the GHZ and EPR states together form a MREGS, with th
EPR singlets representing the bipartite entanglement be-

local unitary transformation by Charl[@2]. Since insepara-
bility is unaffected by such local operatiof®l], if we prove
the above result for one purification it will hold for any other
purification. The proof then follows as a trivial consequence

of the following result.If a tripartite pure state|W"8¢) is
such thatpB¢ is separable andp”® has positive partial
transpose, thep”® must be separableThis result is illus-
trated in Fig. 3.

" The argument is similar to that employed in proving the
equivalence of Schmidt decomposability and triseparability.

:Ehe difference is that here, onp/*® is given to have positive

artial transpose; but all the steps from E@s} to (19) go
hrough. To prove the result, we show that EtP) implies

. X \JdrABC\ i H
tween the parties, and the GHZ state representing “essefat|¥*~) in Eq. (15) can be written as

tial” tripartite entanglement.

The generalization of this result to the multipartite case
follows by induction from the tripartite case. For conve-

t(i)

[@)=2 Iufo X Vpilxelf), @4
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A A
S S
PPT <:> S
S
B S C B S C
FIG. 3. No B'-S theorem: HerdA)lice, (B)ob, and(C)harlie

represent the three parties. The sides AB, BC, and AC of the tri- D D B B
angles represent the density matrige€, pBC, and p”®, respec-
tively. =

with the kets|u) pairwise linearly independentfj| xi)
= 88y, and(vij|vig) = Si(v|vi). HereS5_;t(i)=m and
pi;>0V;. Eq. (24) implies

S
78 =Trd T (T =TS al P (wfl e x9N,
__ - A
with |X| C> Et(I)l Pij /9 |X|J>®|V ;) and g;= t(l) 1Pij>0;
we have used the orthogonality of tI1m~,J) s for different
values of subscript. Performing this trace it is easy to see

that p”B is separable. Recall that'® is obtained fromp”®

by appending an ancilla and/or a unitary rotation by Alice.

Since inseparability is preserved under these local opera-

tions, separability op*® implies thatp”? is also separable. FIG. 4. Here vertices of the triangle represent the three parties,
Now all that remains to be proved is tH&ABC) has the and each of the sides represents the corresponding bipartite density

form shown in Eq(24) above. For this we use induction on matrix obtained by tracing out the party corresponding to the re-

the number of terms im‘TfABC> Obviously the form in Eq maining vertex. The letters near the sides label the kind of bipartite

i </ s i entanglement of the corresponding density matri¢€separable,
(24) holds in the case whelt?*®“) has just one term. Now (Djistillable, B*,B~, and B, which stands for both*Band B.

assuming that this form holds fer=r—1 terms,

U: U: m: % X
» »
(o] w2
o ) o o =,

state entanglement, because it shows that if there isnno (
|WABCY = 1 —p, | TABS) + \p, [rAyB o), (26)  —1)-partite entanglement after tracing any party, then the
n-partite state is Schmidt decomposable and hence asymp-
Where | P} has the form of Eq(24) with =°_,t(i)=r totically equivalent to the corresponding generalized GHZ
—1. Here I>p,>0. But the condition in Eq(19) with j state, which represents “essentiafi-partite entanglement.
=r andi=1,...,r—1) implies that eithed, such that This result supports the hypothesis that the set of 2-,3-,
n-party generalized GHZ states form a minimal reversible
|¢rB)=|,uE>, with entanglement generating set, with thkeparty generalized
GHZ states representing “essentidt“partite entanglement.
| >l|u,]) Vi sk Thus this work provides support for the entanglement mea-
sure proposed in Ref16]. Further work needs to be done to
or prove that the generalized GHZ states form a minimal re-
versible entanglement generating set.
|¢OLIvE) V). (27 We have also proved that any purification of a bipartite
_ bound entangled state with positive partial transpose is tri-
Thus|¥#EC) can be written in the form given by ER4): in  inseparable. This provides a new necessary condition for
the first case witts—s andt(k)—t(k)+1, and in the sec- bound entanglement with positive partial transpose. An im-
ond case withs—s+1 andt(s+1)=1. Thus the result is portant question relating to the “no 'B” theorem is
proved. whether there exist states like"B-B*—B* and B"—B™
Given a tripartite pure statel“B), there are many pos- —D. This is related to the question whetherPPT states
sibilities for the kind of entanglement of the correspondingare triseparable and whethieirPPT states are biseparable.

bipartite statesp”®, pB¢, and p”°. Figure 4 shows these
possibilities and marks the ones ruled out by this result. ACKNOWLEDGMENTS
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