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We study the problem of optimizing the Shannon mutual information for sources of real quantum states, i.e.,
sources for which there is a basis in which all of the states have only real components. We consider in detail
the sourcesEM of M equiprobable quantum bit~qubit! states lying symmetrically around the great circle of real
states on the Bloch sphere and give a variety of explicit optimal strategies. We also consider general real
group-covariant sources for which the group acts irreducibly on the subset of all real states and prove the
existence of a real group-covariant optimal strategy, extending a theorem of Davies@E. B. Davies, IEEE. Inf.
TheoryIT-24, 596~1978!#. Finally, we propose an optical scheme to implement our optimal strategies, simple
enough to be realized with present technology.@S1050-2947~99!11005-9#

PACS number~s!: 03.67.2a, 03.65.Bz, 42.79.Sz, 89.80.1h
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I. INTRODUCTION

There are two principal measures of quality in the qu
tum detection problem for a given finite number of quantu
states with fixed prior probabilities. One is the minimizati
of a specified Bayes cost, and the other is the maximiza
of the Shannon mutual information@1–3#. The former is use-
ful if one has to reach a decision after performing a sin
quantum measurement whereas the latter is more relevan
the problem of transmitting as much classical information
possible using the given ensemble of states. In this pape
will consider the problem of maximizing the Shannon m
tual information for a certain class of quantum ensemble

In a general communication setting, let$xiPX% be input
letters and let$j i% be their prior probabilities. Let us denot
output letters by$yjPY%. Both the Bayes cost and the Sha
non mutual information are defined in terms of the con
tional probabilityP( j u i ) of obtaining outputyj provided that
the letter sent wasxi . The former is defined as

B~X:Y!5(
i j

Ci j j i P~ j u i ! ~1!

for a Bayes cost matrix@Ci j #, while the latter is defined as

I ~X:Y!5(
i , j

PXY~ i , j !log
PXY~ i , j !

PX~ i !PY~ j !
, ~2!

where PXY( i , j ) @[j i P( j u i )# is the joint probability, and
PX( i ) ([j i) and PY( j ) @[(kjkP( j uk)# are the marginal
probabilities of the input and output lettersxi andyj , respec-
tively. ~Since all the results in this paper are valid for a
logarithm base, we shall specify the base only where ne
sary.! In classical information theory, the channel matr
@P( j u i )# is given and fixed, characterizing the noise in t
channel. In contrast, in a quantum information theoretic c
text where signal carriers are to be quantum states trans
ted without noise, the channel matrix generally become
variable. This is because the act of quantum detection it
PRA 591050-2947/99/59~5!/3325~11!/$15.00
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generally has a probabilistic output so the channel matri
dependent on the choice of quantum detection strategy. M
precisely, the input letters correspond to a set of posit
trace class operators of trace one$r̂ i% on a Hilbert spaceHs .
A quantum detection strategy is described by a posit
operator-valued measure~POVM! on Hs . A POVM is any
set$p̂ j% of Hermitian positive operators forming a resolutio
of the identity

p̂ j
†5p̂ j , p̂ j>0 ; j , (

j
p̂ j5 Î . ~3!

The detection operatorp̂ j corresponds to the output letteryj
and the conditional probabilities are given by

P~ j u i !5Tr~p̂ j r̂ i !.

Thus in the quantum context the optimization ofI (X:Y) is
carried out with respect to the choice of POVM$p̂ j% for
fixed ensembleE5$r̂ i ;j i% ~i.e., with fixed letter statesr̂ i and
fixed prior probabilitiesj i). The maximum value ofI (X:Y)
is called the accessible information of the ensembleE.

The setP of all POVM’s is a convex set andI (X:Y)
enjoys the following fundamental property:

~CONV!: For a fixed ensembleE5$r̂ i ;j i%, I (X:Y) is a con-
vex function onP.

A proof of ~CONV! is given in theorem 2.7.4 of@4#. Let
I (E:A) denote the mutual information obtained from th
POVM A applied to the ensembleE. Then ifA is a convex
combination of POVMsAi ,

A5p1A11•••pnAn ,

it follows from ~CONV! that

I ~E:A!<(
i

pi I ~E:Ai !<max
i

I ~E:Ai !. ~4!
3325 ©1999 The American Physical Society



n
n
is
uf
n

io

nl

n
r-

ril
tio
ha
rre

h

ar
es
-

bl

nd

n-
.

re
e

o

he
t
e
ed

in

d

t in
sity
ion
trat-
lts

d
n

nts
ll

w

n

or

any
r
be
, of

real
hat
all
s or

3326 PRA 59SASAKI, BARNETT, JOZSA, OSAKI, AND HIROTA
The Bayes costB(X:Y) is an affine concave function o
the convex setP. Therefore the Bayes cost minimizatio
problem is a kind of linear programming problem and
expected to have a unique solution. A necessary and s
cient condition for specifying the optimum solution is know
@1,2#. On the other hand, the Shannon mutual informat
I (X:Y) is a nonlinear and convex function onP. The maxi-
mization of this quantity is a much harder problem and o
a necessary condition for the optimum is known@1#. Thus
the maximization ofI (X:Y) with respect to the detectio
strategy$p̂ j% is a basic and open problem in quantum info
mation theory.

In this problem, the number of outputs is not necessa
the same as the number of the inputs. The optimum solu
is not necessarily unique either. However, it is known t
there must be at least one optimum solution which co
sponds to an extreme point of the convex setP. This is due
to the convexity of the functionI (X:Y). Such an extreme
point is a set of rank one elements, which means that eacp̂ j
has the formkuv&^vu, where uv& is a pure state and 0<k
<1. The number of elements,N, can be bounded byd<N
<d2, whered is the dimension of the Hilbert spaceHs of
which the input state ensemble$r̂ i% is made@5#. I (X:Y) is
also possibly maximized at some interior points ofP as well.
In that case the number of outcomes may exceedd2. Explicit
examples of optimal solutions have been given for bin
ensembles@6–8# and for the ensemble of four qubit stat
with tetrahedral symmetry@5#. The latter is a specific ex
ample of a general result of Davies@5# characterizing the
form of an optimal strategy for any symmetrical ensem
whose symmetry group actsirreducibly on thewhole state
space.

In this paper we will study the accessible information a
corresponding optimal strategies for an ensembleEM of M
qubit states with symmetry groupZM , the group of integers
moduloM. Some of our results will also apply to more ge
eral ensembles.EM may be explicitly described as follows
Let $(0

1),(1
0)% be thez-spin eigenstates and writeuc0&5(0

1).
Let

V̂[expS 2 i
p

M
ŝyD5S cos

p

M
2sin

p

M

sin
p

M
cos

p

M

D . ~5!

ThenEM consists of theM states

uck&5V̂kuc0&5S cos
kp

M

sin
kp

M

D , k50, . . . ,M21, ~6!

taken with equal prior probabilitiesjk51/M . Note that these
states~in thez-spin basis! involve only real components. On
the Bloch sphere they are equally spaced around a g
circle C in the x-z plane consisting of all real states. Th
antipodal points which haveC as an equator are the twoŝy
eigenstates. ThusEM is clearly symmetrical with respect t
the groupZM whose generator is represented by 2p/M ro-
fi-

n

y

y
n
t
-

y

e

at

tation about the axis joining theŝy eigenstates. At the Hil-
bert space level the operatorsV̂k in Eq. ~5! provide a projec-
tive unitary representation ofZM @e.g., V̂M52I and cf Eq.
~7! later#.

This symmetry group does not act irreducibly on t
whole state space. Indeed theŝy eigenstates are left invarian
by the group action.~Irreducibility on the whole state spac
requires that the only invariant point is the maximally mix
state 1

2 Î .! Hence we cannot apply Davies’ theorem@5# to
provide an optimal strategy forEM . Nevertheless we will
prove that the conclusion of Davies’ theorem remains true
this case, i.e., that there exists a pure stateua0& such that the
ZM-symmetric POVM

AM5H 2

M
uak&^aku:k50, . . . ,M21%,

where uak&5V̂kua0&

is an optimal strategy forEM . Furthermore, we will show
that ua0& may be taken to be the state orthogonal touc0&.

The caseM53 is of particular interest. It is the so-calle
trine ensemble which has been much studied@9–11#. Holevo
in 1973 @9# showed that no von Neumann measuremen
H2 can be an optimal strategy, demonstrating the neces
of considering more general POVMs in quantum detect
theory. Since that time it has been conjectured that the s
egy A3 above is optimal for the trine source. Our resu
resolve this conjecture affirmatively.

The strategyAM has M elements. However, as note
above, for ensembles ind52 dimensions there is always a
optimal strategy with at mostd254 elements~which does
not increase withM ). We will show that the ensemblesEM
always have an optimal strategy with at most three eleme
and explicit strategies of this form will be described for a
M. If M is even, thenEM consists ofM /2 pairs of orthogonal
states. Let$uj&,uh&% be any one of these pairs. We will sho
that the two-element POVM$uj&^ju,uh&^hu% ~a regular von
Neumann measurement! is always an optimal strategy whe
M is even. We will also describe further optimalK-element
POVMs whereK lies between 3 andM.

II. GROUP-THEORETIC APPROACH

We begin by setting up a group-theoretic formalism f
symmetric ensembles, leading to a main result~theorem 1!
which applies to symmetric ensembles of real states in
dimensiond>2. An essential requirement in many of ou
results will be that various states and unitary operators
real. The requirement that a state or operator be real has
course, no intrinsic physical meaning. When we speak of
states and real operators we will always mean simply t
there exists a basis of the Hilbert space relative to which
the required objects simultaneously have real component
real matrix elements.

A projective unitary representation of a groupG is an
assignment of a unitary operationÛg to each member ofG
satisfying
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PRA 59 3327ACCESSIBLE INFORMATION AND OPTIMAL . . .
Ûg1
Ûg2

5eif(g1 ,g2)Ûg1g2
, ~7!

where the phasesf(g1 ,g2) may be chosen arbitrarily. A
finite ensembleE of equiprobable~generally mixed! states is
said to be symmetric with respect to the groupG, or
G-covariant, if the following condition is satisfied: there is
projective unitary representation$Ûg% of G such that for all
g, Ûgr̂Ûg

† is in E wheneverr̂ is in E. We write

gr̂5Ûgr̂Ûg
† ~8!

for the action ofg on the stater̂. The phasesf(g1 ,g2) do
not appear in Eq.~8! andg1„g2( r̂)…5(g1g2)( r̂). Note that,
in contrast to Davies@5#, we do not require thatG parame-
trisesE, i.e.,G need not act transitively on the set of states
E. For example,EM is ZM-covariant and the action is trans
tive, but E2N is alsoZ2- and ZN-covariant via nontransitive
actions.

A G-covariant POVMA ~for the projective unitary rep-
resentation$Ûg%) is a POVM such thatÛgÂÛg

† is in A
wheneverÂ is in A. We write

gÂ[ÛgÂÛg
† ~9!

for the action ofg on a POVM elementÂ. From Eqs.~8! and
~9! we see that Tr(Âr̂)5Tr(gÂ•gr̂), i.e., the probability of
outcomeÂ on stater̂ is G-invariant. Hence

Tr~gÂ• r̂ !5Tr~Â•g21r̂ !, ~10!

so that the set of probabilities of theG-shifted outputsgÂ on
a fixed input r̂ is obtained as a permutation of the set
probabilities of the unshifted outputÂ acting on suitably
shifted inputs.

Let E be aG-covariant ensemble with projective unita
representation$Ûg%. We aim to find conditions on$Ûg%
which will guarantee the existence of aG-covariant POVM
A5$Âg :gPG% with elements parametrized byG, and hav-
ing group actiongÂh5Âgh . Thus ife is the identity ofG we
have

Âg5ÛgÂeÛg
† , ~11!

and we require

M̂[ (
gPG

Âg5 Î . ~12!

~Later we will take the elements ofA to be rank 1 and
consider the question of whenA is an optimal strategy for
E.! From Eq.~11! we see thatM̂ commutes with all theÛg’s:

ÛgM̂5M̂Ûg . ~13!

Thus if the set$Ûg% acts irreducibly on the state space~i.e.,
there is no proper invariant subspace!, Schur’s lemma will
guarantee that Eq.~12! holds. This fact is used by Davies@5#
to characterize an optimal strategy for anyG-covariant en-
f

f

semble whose symmetry group acts irreducibly on the wh
state space. However this condition of full irreducibility o
the whole state space is not necessary for Eq.~12! to hold.
We will use the following more general form of Schur
lemma.

Lemma 1. Let $M̂g% be any set of nonsingulard by d
matrices over some fieldF which acts irreducibly on the
vector spaceV5Fd ~i.e., there is no proper subspace mapp
to itself by all theM̂g’s!. Suppose thatK̂ is any matrix that
commutes with all theM̂g’s:

K̂M̂ g5M̂gK̂. ~14!

Then ~a! either K̂50 or K̂ is nonsingular;~b! if K̂ has a
nonzero eigenvaluel in F, thenK̂5l Î .

Proof. ~a! Let K̂(V) denote the image ofV under the map
K̂ and similarly forM̂g(V). SinceM̂g is nonsingular we have
M̂g(V)5V. By Eq. ~14! we have M̂gK̂(V)5K̂M̂ g(V)
5K̂(V), i.e., K̂(V) is an invariant subspace. Hence eith
K̂(V)50 ~in which caseK̂50) or elseK̂(V)5V ~in which
caseK̂ is nonsingular!. ~b! If K̂ has eigenvaluel in F, then
B̂5K̂2l Î is singular. AlsoB̂M̂ g5M̂gB̂ for all g. Hence by
~a!, B̂ must be zero, i.e.,K̂5l Î . j

We will apply this lemma withF5R to obtain useful
results aboutG-covariant ensembles ofreal states whose
groupG acts irreducibly only on the restricted setRd of real
states~but not necessarily irreducibly on the full state spac!.
This is the case for our ensemblesEM . Let uGu denote the
size of G and let d5Tr Î be the dimension of the Hilber
space.

Lemma 2. Suppose that$Ûg% is a projective unitary rep-
resentation ofG such thatÛg are allreal matrices and$Ûg%
acts irreducibly onRd. Let uv&PRd be any real state. Write

Âg5
d

uGu
Ûguv&^vuÛg

† .

Then$Âg :gPG% is a G-covariant POVM, i.e.,(gPGÂg5 Î .
Proof. Let M̂5(gPGÂg . Then M̂ is a real matrix and

M̂Ûg5ÛgM̂ for all gPG. Also M̂ is a Hermitian positive
matrix ~being a sum of projectors with positive coefficient!
so it has a real positive eigenvaluel.0. By the previous
lemma,M̂5l Î . Since TrÂg5d/uGu for all g, we get TrM̂
5d5Tr Î so l51. j

Theorem 1. Let E be any ensemble of equiprobable re
states in dimensiond. Suppose thatE is G-covariant with
respect to a projective unitary representation$Ûg% of real
matrices which acts irreducibly onRd. Then there exists a
real pure stateuv& such that theG-covariant POVMD
5$D̂g :gPG% defined by

D̂g5
d

uGu
Ûguv&^vuÛg

†

is an optimal strategy forE.
Proof. We will work in the basis with respect to which th

states ofE and the matricesÛg have real entries. LetA
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5$Â1 , . . . ,Ân% beanyoptimal POVM forE. We will trans-
mogrify A into the required form while preserving optima
ity. First strip off all imaginary parts of the entries of th
matricesÂk . Let Ãk5Re(Âk) and Ã5$Ã1 , . . . ,Ãn%. Then
Ã is again a POVM and has real symmetric matrices
elements.@To see thatÃk is a positive matrix note thatAk

positive implies that the complex conjugateÂk* is positive so

Ãk5 1
2 (Âk1Âk* ) must be positive. Also(Âk5 Î andÎ is real

so (Ãk5I too.# Next note that TrÂkr̂5Tr Ãkr̂ for any real
state r̂ @since Im(Âk) is antisymmetric# so Ã remains an
optimal strategy.

In generalÃ will not have rank 1 elements even ifA had
rank 1 elements. Thus decompose eachÃk into its rank 1
eigenprojectors~multiplied by the corresponding eigenva
ues! which are necessarily real as the eigenvalues/vector
any real symmetric matrix are real. Then form the larg
POVM B5$B̂1 , . . . ,B̂m% comprising all the scaled rank
eigenprojectors above. Such a refinement of a POVM
never decrease the mutual information, soB with real rank 1
elements is still optimal.

Now look at

Ĉkg5
1

uGu
gB̂k for gPG and k51, . . . ,m.

~15!

Note that(kgĈkg5 Î since(B̂k5 Î andgÎ5 Î for all g. Let
C5$Ĉkg% be the corresponding POVM withuGum elements.
Thus C is G-covariant but the action ofG is not transitive.
We finally aim to cut downC to a smaller optimal
G-covariant POVM with elements labeled byG.

Let I (E:A) denote the mutual information obtained fro
any POVMA applied to any ensembleE. First we show that
I (E:C)5I (E:B) so thatC remains optimal. Let us label th
inputs byi PI and denote conditional probabilities forC by
PC(kgu i ). Denote the conditional probabilities forB by
PB(ku i ) and let j be the constant prior input probability
Then

PC~kgu i !5Tr Ĉkgr̂ i5
1

uGu
Tr gB̂k• r̂ i .

According to Eq.~10!, for each fixedg andk the resulting set
of probabilities labeled byi PI will be just apermutationof
the setPB(ku i ), rescaled by 1/uGu. Thus the joint probabili-
ties

PEC~ i ,kg!5jPC~kgu i !5
1

uGu
jPB~ku i !5

1

uGu
PEB~ i ,k!

and the marginal probabilities forC andB,

PC~kg!5(
l

jPC~kgu l !5
1

uGu (
l

jPB~ku l !5
1

uGu
PB~k!,

will be independent ofg, and also

(
i

PEC~ i ,kg!log
PEC~ i ,kg!

jPC~kg!
5

1

uGu (
i

PEB~ i ,k!log
PEB~ i ,k!

jPB~k!
s

of
r

n

will be independent ofg. The mutual informationI (E:C) and
I (E:B) is given by@cf. Eq. ~2!#

I ~E:C!5(
i ,kg

PEC~ i ,kg!log
PEC~ i ,kg!

jPC~kg!
,

I ~E:B!5(
i ,k

PEB~ i ,k!log
PEB~ i ,k!

jPB~k!
.

On substituting the aboveG-invariant expressions into
I (E:C) we readily getI (E:C)5I (E:B). ~Our argument is ac-
tually an explicit example of the claim in lemma 5 of@5#.!
HenceC remains optimal.

Finally note that for eachi , B̂i /(Tr B̂i) is a real pure state
so, by lemma 2,

Di5H d

uGu
gB̂i

Tr B̂i

:gPGJ
is a POVM for eachi. Now (TrB̂i /d)Di5$(1/uGu)gB̂i :g
PG%, soC is a convex combination

C5(
i 51

m
Tr B̂i

d
Di .

Hence, by Eq.~4!,

I ~E:C!<max
i

I ~E:Di !.

SinceC was optimal it follows that at least one of theDi ’s is
optimal. This gives an optimalG-covariant POVM with real
rank 1 elements, parametrized byG, completing the
proof. j

III. OPTIMAL STRATEGIES FOR EM

We now return to theZM-covariant ensembleEM in two
dimensions, comprising the states

uck&5S cos
kp

M

sin
kp

M

D , k50, . . . ,M21,

with equal prior probabilities 1/M . According to theorem 1,
there must exist an optimalZM-covariant POVM A
5$Â0 , . . . ,ÂM21% with M real rank 1 elements. The ele
ments will have the formÂj5uaj&^aj u with

uaj&5V̂j ua0&5A 2

MS cosS u1
j p

M D
sinS u1

j p

M D D , j 50, . . . ,M21,

~16!

and V̂ is given in Eq. ~5!. The conditional probabilities
p( j uk)5 z^aj uck& z2 may be readily computed and after som
rearrangement we obtain the mutual informationI (u) explic-
itly as
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I ~u!5
1

M (
k50

M21 F11cosS 2u2
2kp

M D G
3 lnF11cosS 2u2

2kp

M D G . ~17!

In this section, the base of the logarithm is taken ase. @For
this base the numerical value of Eq.~17! is the amount of
information in nats~natural units! rather than bits~binary
digits!.# From the symmetry,I (u) is a periodic function with
periodp/M . Figure 1 shows numerical plots ofI (u) for M
52, 3, 4, and 5 and illustrates the following basic proper

Lemma 3. For eachM , I (u) has a global maximum a
u5p/2.

The proof of this lemma is given in the Appendix.
Hence in general an optimal strategy forEM consists of

choosing a real rank 1 POVM with elementsÂk lying in
directions orthogonal to the input statesuck&. This POVM
will be denoted byAM . The outputÂk signifies with cer-
tainty that the input was notuck& but leaves a residual un
certainty in the remaining signal states.

For a given ensembleE the optimal strategy is not uniqu
and in practice it may be of interest to find optimal POVM
with the minimum number of elements. TheG-covariant op-
timal POVM above hasM elements and we note here som
ways of reducing this number using the group theoretic
proach. In the next section, with different methods, we w
show that three elements always suffice for any real q
source, and develop corresponding strategies for theEM ’s.

Lemma 4. Suppose thatkÞ1 divides M exactly. Then
there is aZk-covariant optimal POVM forEM with k real
rank 1 elements.

Proof. Sincek dividesM , ZM has a subgroup isomorphi
to Zk and soEM is Zk-covariant. SincekÞ1, the action ofZk
contains a nontrivial rotation so it acts irreducibly onR2.
Thus theorem 1 immediately gives the required result.j

Remark. Lemma 4 may also be obtained by a convex
argument as follows. We will illustrate the idea with th
specific example ofM515 andk53. The general case is
straightforward generalization.Z155$0,1, . . . ,14% has the
subgroup $0,5,10% isomorphic to Z3. Let A15

5$Â0 ,Â1 , . . . ,Â14% be the optimal strategy given by theo
rem 1 and lemma 3, with the direction ofÂk being orthogo-
nal to thekth state ofE15. According to lemma 2, the thre
directions 0,5,10 corresponding to the subgroup may be u
to define a POVM. We just need to rescaleÂ0 ,Â5, andÂ10

FIG. 1. Shannon mutual informationI (u) in nats versus the
optimization parameteru for M52, 3, 4, and 5.
.

-
l
it

ed

so that they add up toÎ . The scaling factor isM /k55. Thus
B05$5Â0,5Â5 ,5Â10% is a POVM. NowÎ is alwaysG invari-
ant so we can apply the group elementsl 51, 2, 3, and 4 of
Z15 to B0 to obtain POVMs,

Bl[ lB05$5Âl ,5Âl 15,5Âl 110% for l 50,1,2,3,4.

Note that theBl ’s have elements parametrized by thecosets
of Z3 in Z15. Also by symmetry of the construction
I (E15:Bl) is independent ofl. FurthermoreA15 is a uniform
convex combination of theBl ’s,

A155(
l 50

4
1

5
Bl ,

so by Eq.~4!,

I ~E15:A15!<max
l

I ~E15:Bl !.

SinceA15 was optimal we see thatBl is optimal for eachl.
This gives the result of lemma 4 and also identifies the
rections of thek element POVM as being any chosen sym
metrical set of k directions orthogonal to correspondin
states ofEM . j

An immediate special case is the following.
Corollary. If M is even, thenEM is made up ofM /2 pairs

of orthogonal states. The von Neumann measurement
fined by any one of these orthogonal pairs is an optim
strategy forEM . j

Thus if M is composite we can significantly reduce th
number of elements in our optimal strategy, but ifM is prime
then this number remains large. In the next section we giv
different approach to reducing the number of elemen
showing that just three elements always suffice for any
semble of real qubit states.

IV. OPTIMAL POVMs WITH THREE ELEMENTS

Davies@5# has shown that any ensemble ind dimensions
has an optimal strategy withN elements whered<N<d2.
This is directly based on~CONV!, that is,I (X:Y) is a con-
vex function on the convex setP of all POVMs. Because of
this, I (X:Y) will always take its maximum value at an ex
treme point of the convex setP ~and also possibly at som
interior points as well!. Each extreme point ofP consists of
N rank 1 elements bounded byd<N<d2. If we restrict at-
tention to onlyreal ensembles, then this upper bound onN
can be improved as follows@12#.

Lemma 5. Let E be any ensemble of real states ind di-
mensions. Then the Shannon mutual information can
maximized by a POVM withN elements whered<N
<d(d11)/2.

Proof. The proof proceeds along the same lines as
original one in Ref.@5# with a slight replacement. For an
POVM $p̂ j% write p̂ j5m jdp̄ j , where Trp̄ j51, so

(
j

m j p̄ j5 Î /d, (
j

m j51. ~18!
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Let X be the~compact convex! set of all positive Hermitian
operators with trace 1~such as thep̄ j ’s!. SinceI (E:A) is a
convex function on the setP of all POVMs, its maximum is
attained at an extreme point ofP. The essential point of the
original proof in Ref.@5# is that every extreme point ofP has
D11 rank 1 elements whereD is the real dimension ofX. In
the case of general ensemblesD5d221. In our case of rea
ensembles the members ofX andP can be restricted to rea
matrices soX comprises real symmetric trace 1 matrices a
D5d(d11)/221. Hence the extreme points ofP have
<d(d11)/2 elements. j

Thus for the real ensemblesEM with d52, POVMs with
three real elements suffice to provide an optimal strategy
describe such a POVM, we first introduce the three real~un-
normalized! vectors

uv0&5cS 1

0D , ~19a!

uv1&5aS coswa

sinwa
D , ~19b!

uv2&5bS coswb

sinwb
D , ~19c!

where the first vector lies along the first basis direction a
the remaining two are in a general position. Imposing
condition( j uv j&^v j u5 Î , we get

c5A22a22b2, ~20a!

a25
coswb

sinwa sin~wa2wb!
, ~20b!

b25
coswa

sinwb sin~wb2wa!
, ~20c!

and

0<a21b2<2. ~20d!

Once the angleswa and wb have been chosen,a, b, andc
are fixed. Finally we rotate these vectors around they axis
through an angleu to make the general POVM with thre
real rank 1 elements:

v̂ j~u![uv j~u!&^v j~u!u, ~21a!

uv j~u!&5V̂~u!uv j&, V̂~u![exp~2 iuŝy!. ~21b!

This gives the most general POVM$v̂0(u),v̂1(u),v̂2(u)% in
terms of three independent parameterswa , wb , andu.

We are now in a position to maximize the Shannon m
tual information ofEM with ~at most! three-element POVMs
We first give a useful preliminary lemma.

Lemma 6. LetA5$la
2ua&^au% be any POVM with rank 1

elements labeled bya, where 0,la<1 is real and

ua&5S cosua

sinua
D

d

o

d
e

-

in the z-spin basis. Then the mutual information forEM is
given by

I ~EM :A!5(
a

la
2

2
I ~ua!, ~22!

whereI (u) is the function given in Eq.~17!.
Proof. The statesuck& of EM given in Eq.~6! lead to the

conditional probabilities

P~auk!5la
2z^ckua& z25

la
2

2 F11cosS 2ua2
2kp

M D G .
Substituting these into Eq.~2! readily yields the formula Eq.
~22! after a little algebra. j

Theorem 2. The Shannon mutual information ofEM ~for
M.2) is maximized by the POVMW5$v̂ j* 5uv j* &^v j* u: j
50,1,2%, where

uv0* &5S 0

A22a22b2D , ~23a!

uv1* &5aS 2sinS mp

M D
cosS mp

M D D , ~23b!

uv2* &5bS sinS np

M D
cosS np

M D D , ~23c!

and

a25

cosS np

M D
sinS mp

M D sinS ~m1n!p

M D >0, ~24a!

b25

cosS mp

M D
sinS np

M D sinS ~m1n!p

M D >0. ~24b!

Herem andn are any positive integers satisfying

0<a21b2<2. ~24c!

In some cases one ofa, b, andA22a22b2 is zero and the
POVM has only two elements.

Proof. For the three-element POVMW(u,wa ,wb)
5$v̂0(u),v̂1(u),v̂2(u)% with rank 1 elements, lemma 6 im
mediately gives
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I ~EM :W!5S 12
a2

2
2

b2

2 D I ~u!1
a2

2
I ~u1wa!

1
b2

2
I ~u1wb!.

HenceI (EM :W)<maxu I(u). By lemma 3 this maximum is
I (p/2), the accessible information ofEM . Furthermore,I (u)
is periodic in u with period p/M . Hence we can achiev
I (EM :W)5I (p/2) by settingu5p/2 and choosingfa and
fb to be any integer multiples ofp/M . This gives Eqs.~23!.
Equations ~24! are just the condition for$v̂ j* % to be a
POVM. j

From this theorem we can develop various kinds of op
mal strategies. We noted previously in corollary 1 that ifM
is even, then there exists an optimal strategy based on a
of orthogonal directions. This also follows from theorem
if M54L22 with L51,2, . . . , then we may taken52L
21 giving a50 and a two-element POVM based on t
directions (1

0) and (0
1). If M54L with L51,2, . . . , we may

take m5n5L giving A22a22b250 and an optimal
POVM based on the directions (1

21) and (1
1). In both cases

the pair of directions coincides with an orthogonal pair
states ofEM .

If M is odd, at least three outputs are required. In the c
of M53, we get an optimum strategy with three elements
equal norm. This coincides with our previous resultA3 of
theorem 1 and lemma 3. The cases ofM55 andM57 are
more interesting. In both cases, the optimum strategies
sist of the three elements with the two different norms~in
contrast to theZM-covariant strategies of theorem 1!. A so-
lution for M55 is shown in Fig. 2. The POVM elements a
represented by the thick solid lines and the dashed lines
resent the input states.@Note that, for ease of presentatio
these dashed lines representing the states
EM—symmetrically distributed around a whole circle—
correspond to the vectors (21)kuck& rather than the origina
vectors in Eq. ~6!#. According to choices of paramete
(m,n) in theorem 2, there can be several configuratio
of the POVM directions. But by the symmetry ofE5 they
all lie in the same position relative to the ensemble a
whole, characterized bya25b251/@2 sin2(2p/5)# as shown
in Fig. 2.

Figure 3 shows the case ofM57. There are now two
inequivalent classes of POVM element directions. One c

FIG. 2. Optimal POVM directions~thick solid lines! given by
theorem 2 in the case ofM55. The input states are represented
(21)kuck& by the dashed lines whose lengths correspond to a
state vector. The lengths of the thick solid lines are scaled accor
to the normalization factors of the corresponding POVM eleme
-

air
:

f

se
f

n-

p-

of

s

a

r-

responds toa25b251/@2 sin2(2p/7)# where the angle be
tween the two measurement vectors directed downwar
2p/7 ~the left figure!, and the other corresponds toa25b2

51/@2 sin2(3p/7)# where the angle between the two me
surement vectors directed downward is 3p/7 ~the right fig-
ure!.

Lemma 6 and theorem 2 may be used to provide a furt
variety of optimalK-element POVMs forEM , whereK is
between 3 andM.

Lemma 7. Let A be any POVM as described in lemma
for which all anglesua have the form

ua5
p

2
1ka

p

M
, where ka is an integer. ~25!

ThenA is an optimal strategy forEM .
Proof. SinceI (u) is periodic with periodp/M , we have

I (ua)5I (p/2) for all a. Also (la
252 so that Eq.~22! im-

mediately givesI (EM :A)5I (p/2) i.e.,A is optimal. j
Now note the following facts.
~a! All POVMs in theorem 2 satisfy Eq.~25!.
~b! If A5$Âi% is any POVM satisfying Eq.~25!, then any

ZM-shifted versionAl of A, defined for eachl PZM by

Al5$V̂l Âi V̂
†l%

is a POVM also satisfying Eq.~25!. ~The anglesua are just
shifted bylp/M ).

~c! If A1 , . . . ,AN is any list of POVMs satisfying Eq.
~25!, then any convex combination of theAi ’s will satisfy
Eq. ~25!. ~In forming convex combinations we naturall
amalgamate POVM elements from differentAi ’s that lie in
the same direction.!

Hence any convex combination of anyZM-shifted ver-
sions of the POVMs in theorem 2 will be an optimal stra
egy. For example, let us consider a convex combination
tween two POVM’s in the case ofM55. The following$v̂ j%
is one of the optimum detection strategies from theorem

v̂05~12a2!~ Î 2ŝz!, ~26a!

v̂15
a2

2 F Î 2sinS 4p

5 D ŝx2cosS 4p

5 D ŝzG , ~26b!

s
it

ng
s.

FIG. 3. Two inequivalent optimal POVMs in the case ofM
57. The POVM directions and input states are represented by t
and dashed lines, respectively, according to the conventions of
2.
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v̂25
a2

2 F Î 2sinS 6p

5 D ŝx2cosS 6p

5 D ŝzG , ~26c!

where a251/@2 sin2(2p/5)#. The convex combination be
tween$v̂ j% and$V̂2v̂ j V̂

†2% forms the resolution of the iden
tity

~12l!(
j 50

2

v̂ j1l(
k50

2

V̂2v̂kV̂
†25 Î ~l>0!, ~27!

and we define

m̂05~12l!v̂01lV̂2v̂2V̂†2, ~28a!

m̂15~12l!v̂11lV̂2v̂0V̂†2, ~28b!

m̂25~12l!v̂2 , ~28c!

m̂35lV̂2v̂1V̂†2. ~28d!

~Note that v̂0}V̂2v̂2V̂†2 and v̂1}V̂2v̂0V̂†2.! This gives a
four-element POVM$m̂ j% which maximizes the Shanno
mutual information forE5.

The strategies in theorem 2 are not genera
ZM-covariant but they correspond to extreme points ofP. On
the other hand, theZM-covariant strategy of theorem 1
generally not an extreme point ofP. The ZM-covariant
POVM of theorem 1 can be related to the asymmetri
three-element POVM of theorem 2 as follows. Note first th
if W5$v̂ j% is any optimal POVM, then so ismW
5$V̂mv̂ j V̂

†m% for any mPZM . Indeed,

I ~EM :W!5I ~EM :mW! ~29!

since the set of states ofEM is invariant under the action o
ZM . Given any one of theN(52,3)-element POVMs$v̂ j* %
defined in theorem 2, one can consider the resolution of
identity

1

M (
m50

M21

(
j 50

N21

V̂mv̂ j* V̂†m5 Î . ~30!

But the MN elements$V̂mv̂ j* V̂†m% are proportional to each
other in groups ofN and these groups may each naturally
summed and assigned a single element. This leads to
covariantM-element POVM which is justAM of theorem 1
and lemma 3. In this senseAM may be thought of as a
convex combination

AM5 (
kPZM

1

M
kW,

whereW is any one of the POVMs in theorem 2. If we kno
thatAM is optimal, then Eqs.~29! and~4! will imply thatW
is optimal too. This provides an alternative proof of theore
2 if we already know theorem 1 and lemma 3. On the ot
hand, if conversely we are given the result of theorem
~which uses lemma 3!, then the accessible information ofEM
must beI (p/2) soAM must be optimal@since I (EM :AM)
5I (p/2) by definition ofI (u) andAM#.
y

l
t

e

he

r
2

V. IMPLEMENTATION

The optimal POVMsAM andW given in theorems 1 and
2 may be of interest from the viewpoint of putting quantu
detection theory to the test. None of the POVMs for attain
maximum mutual information have been demonstrated
experiment yet. So far, only two kinds of optimal quantu
detection scenarios have been confirmed experiment
One is the Helstrom bound as the minimumaverageerror
probability @2#, and the other is the Ivanovic-Dieks-Per
bound which gives the maximum probability for error-fre
detection, sometimes referred to as the unambiguous m
surement@13–16#. ~A concise review of both criteria can b
found in Ref. @17#.! The former scenario was first demon
strated experimentally by Barnett and Riis@18#. The latter
has been demonstrated in the laboratory by Huttneret al.
@19#. Both of these are concerned with discrimination b
tween binary nonorthogonal states, in which case the opti
detection strategy consists of a projection onto the ortho
nal pair of measurement vectors, that is, von Neumann m
surement. In our case ofAM andW for EM with M odd, we
are dealing with essentiallynonorthogonal measurement
vectors inH2, which is called ageneralizedmeasurement.
No von Neumann measurement can be an optimal stra
for EM with M odd. This case is of particular interest here.
is already well known that this kind of generalized measu
ment can be converted into a standard von Neumann m
surement in a larger Hilbert space by introducing an ancill
system. This so-called Naimark extension ensures that
POVM can be physically implemented in principle@2,3#.

In this section we propose an optical scheme to dem
strate the optimal POVMs specified byW for EM made of
single-mode photon polarization states. As seen in the
ceding section,W has three outcomes at most and suffices
provide an optimal strategy for allEM ’s. For M odd, it is
always possible to find the optimal strategy withm5n, that
is, a25b251/@2 sin2(mp/M )# in theorem 2 ifm is taken as
M /4,m,M /2. We consider the implementation of this pa
ticular detection strategy. The measurement vectors can
represented by

uv0* &52sin
g

2
u↓&, ~31a!

uv1* &52
1

A2
u↑&1

1

A2
cos

g

2
u↓&, ~31b!

uv2* &5
1

A2
u↑&1

1

A2
cos

g

2
u↓&, ~31c!

where

cos
g

2
[cot

mp

M
, sin

g

2
[2A12cot2

mp

M
, ~32!

and u↑& and u↓& are orthonormal bases of polarization. Th
first step is to make orthogonal measurement vectors by
bedding $uv0* &,uv1* &,uv2* &% into a three- or higher-
dimensional Hilbert space. One possible physical presc
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tion is to make an optical circuit with two input ports, sa
‘‘ a’’ and ‘‘ b.’’ The signal state is guided into the port ‘‘a,’’
while the port ‘‘b’’ is initialized as the vacuum state. We ca
then consider the four-dimensional Hilbert space spanne
the orthonormal basis$uEj&%,

uE0&[u↑&au0&b , ~33a!

uE1&[u↓&au0&b , ~33b!

uE2&[u0&au↑&b , ~33c!

uE3&[u0&au↓&b , ~33d!

where u0& is the vacuum state and the subscriptsa and b
indicate the port ‘‘a’’ and ‘‘ b,’’ respectively. A natural or-
thogonalization is

uV0&[uv0* &au0&b1cos
g

2
u0&au↑&b , ~34a!

uV1&[uv1* &au0&b1
1

A2
sin

g

2
u0&au↑&b , ~34b!

uV2&[uv2* &au0&b1
1

A2
sin

g

2
u0&au↑&b , ~34c!

uV3&[u0&au↓&b , ~34d!

or equivalently,

uV0&[2sin
g

2
u↓&au0&b1cos

g

2
u0&au↑&b , ~35a!

uV1&[
1

A2
S 2u↑&au0&b1cos

g

2
u↓&au0&b1sin

g

2
u0&au↑&bD ,

~35b!

uV2&[
1

A2
S u↑&au0&b1cos

g

2
u↓&au0&b1sin

g

2
u0&au↑&bD ,

~35c!

uV3&[u0&au↓&b . ~35d!

It is easy to check that$uV0&,uV1&,uV2&% give the same
channel matrix as$uv0* &,uv1* &,uv2* &%, that is, ^v j uc i&
5^V j u(uc i&au0&b) ( j 50,1,2). The second step is to decom
pose the von Neumann measurement$uV j&% into a unitary
transformation followed by a measurement in the ba
$uEj&% in order to find a practical detector structure. We m
write

^V0u[^E2uÛ2Û1 , ~36a!

^V1u[^E1uÛ2Û1 , ~36b!

^V2u[^E0uÛ2Û1 , ~36c!

^V3u[^E3uÛ2Û1 , ~36d!

whereÛ1 and Û2 are given by the matrices
by

is
y

Û1[S 1 0 0 0

0 cos
g

2
sin

g

2
0

0 2sin
g

2
cos

g

2
0

0 0 0 1

D , ~37!

Û2[S 1

A2

1

A2
0 0

2
1

A2

1

A2
0 0

0 0 1 0

0 0 0 1

D , ~38!

in the$uE0&,uE1&,uE2&,uE3&% -basis representation. Equation
~36! mean that in the detector, the signal stateuc i&au0&b is
first transformed byÛ2Û1, and is then measured in the bas
$uEj&% which corresponds to the simultaneous measurem
with respect towhich pathandwhich polarization. The final
step is to translateÛ2Û1 into a practical circuit. In fact, this
unitary transformation can be effected by the simple circ
consisting of passive linear optical devices such as polariz
beam splitters, polarization rotators, and half-wave pla
@20#. The circuit is shown in Fig. 4.~The basesu↑& and u↓&
are assumed to be linearly polarized states.! The Û2Û1 part
consists of four half-wave plates, two polarizing beam sp
ters, and two polarization rotators. Each half-wave plate
oriented at 45° to the horizontal so that each componen
polarization is rotated to 90°. The polarization rotator rep
sented by the circle with the rotation angleg performs

R̂y~g!5S cos
g

2
sin

g

2

2sin
g

2
cos

g

2

D . ~39!

FIG. 4. Optical circuit implementingW5$v̂0* ,v̂1* ,v̂2* %. It con-

sists of the unitary transformationÛ2Û1 followed by the measure-

ment$uEj&%. Û2Û1 is effected by four half-wave plates, two pola
izing beam splitters, and two polarization rotators. T
measurement$uEj&% is made by photon counting at the four outp
ports.
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The polarizing beam splitter represented by the square fu
tions as a perfect mirror only for↓ polarization~fast axis
polarization!. Light polarized along↑ polarization~slow axis
polarization! passes straight through it perfectly. The me
surement$uEj&% is made by photon counting at the four ou
put ports. Note that only a single photon count at one of
three ports is expected and the outcomeuE3& is never ex-
pected. This structure is valid for anyM ~the number of the
signals! if one tunes the rotation angleg in R̂y(g) according
to the value ofM @see Eq.~32!#. The circuit is simple enough
to be implemented with present technology.

VI. CONCLUDING REMARKS

We have considered optimal strategies for symmetr
sources of real quantum states, treating in detail the sou
EM of M real qubit states placed symmetrically in thex-z
plane around the Bloch sphere. Davies@5# has provided a
general theorem characterizing an optimal strategy for
G-covariant source whose group acts irreducibly on
whole state space. The symmetry groupZM of EM does not
act irreducibly on that state space so Davies’s theorem
not be directly applied. However, we proved an extension
this theorem which applies toG-covariant sources of rea
states for which the group acts irreducibly on the subse
real states~as is the case forEM). This led to aZM-covariant
optimal strategyAM for EM .

We also derived alternative optimal strategiesW which
contain at most three real POVM elements. In deriving t
strategyW we exploited the convexity ofI (X:Y) on the
convex setP of all POVMs. These strategies are n
G-covariant in general but correspond to extreme points
P. The small number of elements can be advantageous
practical implementation of the detection strategies as s
in the preceding section. TheG-covariant strategy is not gen
erally an extreme point ofP but for higher dimensions i
would seem easier to derive explicitG-covariant solutions
rather than extreme point solutions.

Our results have added to the relatively small number
quantum sources for which optimal strategies are explic
known. They may be extended in various straightforwa
ways ~which we have omitted for clarity of presentation!.
For example, the optimal strategiesAM andW for EM re-
mains optimal for theM-state source

H ~12e!uck&^cku1e
1

2
Î 2:kPZM ;

1

M J ,

where each pure signal has been corrupted by noise give
the maximally mixed state12 Î 2. This mixed state ensemble
clearly alsoG-covariant and the process of deriving the o
timal strategy for this ensemble is quite the same as in
pure state case (e50) but just multiplying the cosine term
in Eq. ~17! by (12e). Then the same strategy remains op
mal for theG-covariant mixed state ensemble although
accessible information decreases withe as expected.

It is perhaps worth briefly contrasting our results of ma
mizing the mutual information with the problem of minimiz
ing the average error probability. The latter is defined forEM
and anyM-element POVM by
c-
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Pe512
1

M (
k50

M21

P~kuk!. ~40!

The Pe-optimal strategy is$p̂k%5$2/M uck&^cku:kPZM%,
that is, the POVM based on the state directions themsel
This is true also for the above mixed state ensemble.~The
necessary and sufficient conditions forPe optimality, as
given in @1,2#, are easily verified for$p̂k%.! Generally Pe
minimization is an essentially different type of optimizatio
problem fromI (X:Y) maximization.

Within the confines of our formalism, various interestin
issues remain unresolved. For example we would like
know an optimal strategy for the realZM-covariant source
‘‘double-EM ’’ in four dimensions comprising the 2-qubit sig
nal states$uck&uck&:kPZM ;1/M %. In this case the symmetry
groupZM does not act irreducibly even on the subset of
real 2-qubit states. Interesting properties of doubleE3 have
been considered in@11# from the viewpoint of coding gain of
transmittable information.

It is also a remaining difficult problem to optimize a qua
tum channel over both thea priori probability distribution of
signalsand the detection strategy for a fixed set of quantu
states. The solution is known only for the binary pure st
channel.

ACKNOWLEDGMENTS

The authors would like to thank A. S. Holevo and T.
Usuda for giving crucial comments on this work. The
would also like to thank C. A. Fuchs, C. H. Bennett, and
Chefles for helpful discussions. R.J. is grateful to W.
Wootters who drew his attention to the reality of the sou
E3 as an important property, which ultimately led to theore
1. M.S. and S.M.B. thank the Great Britain Sasakawa Fo
dation and the British Council for financial support. S.M.
and R.J. thank the U.K. Engineering and Physical Scie
Research Council for financial support.

APPENDIX: PROOF OF THE LEMMA 3

Sinceu cos(2u22kp/M)u,1, I (u) can be expanded by us
ing the formula

~11x!ln~11x!5x1 (
n52

`
~21!n

n~n21!
xn, uxu,1. ~A1!

We get

I ~u!5
1

M (
k50

M21 FcosS 2u2
2kp

M D
1 (

n52

`
~21!n

n~n21!
cosnS 2u2

2kp

M D G
5

1

M (
n52

`
~21!n

n~n21! (
k50

M21

cosnS 2u2
2kp

M D ,

since(k50
M21cos(2u22kp/M )50. Next we separate out th

even and odd parts of the series and replace powers of
sines by multiple angle cosines to get



PRA 59 3335ACCESSIBLE INFORMATION AND OPTIMAL . . .
I ~u!5
1

M (
n51

`
~21!2n

2n~2n21! (
k50

M21

cos2nS 2u2
2kp

M D
1

1

M (
n51

`
~21!2n11

~2n11!2n (
k50

M21

cos2n11S 2u2
2kp

M D
5

1

M (
n51

`
~21!2n

2n~2n21! (
k50

M21
1

22n21 H 1

2 S 2n

n D
1 (

l 50

n21 S 2n

l D cosF ~2n22l !S 2u2
2kp

M D G J
1

1

M (
n51

`
~21!2n11

~2n11!2n (
k50

M21
1

22n

3H (
l 50

n S 2n11

l D cosF ~2n1122l !S 2u2
2kp

M D G J .

~A2!

Then recall that

(
k50

M21

cosS L
2kp

M D5H M for L/M5q ~ integer!

0 for L/MÞ integer.
~A3!

Applying this to Eq.~A2! with L52n22l and L52n11
22l in the even and odd series, we get
ry

y

I ~u!5 (
n51

`
~21!2n

2n~2n21!22n21 F1

2 S 2n

n D
1 (

l 50

n21

(
q50

` S 2n

l D cos~2uqM!d2n22l ,qMG
1 (

n51

`
~21!2n11

~2n11!2n22n

3F(
l 50

n

(
q50

` S 2n11

l D cos~2uqM!d2n1122l ,qMG
5 (

n51

`
1

2n~2n21!22n S 2n

n D
1 (

q50

`

f ~qM!~21!qMcos~2uqM!, ~A4!

where

f ~qM!5 (
n51

`

(
l 50

n21 S 2l 1qM

l D
~2l 1qM!~2l 1qM21!22l 1qM21

3~d2n22l ,qM1d2n1122l ,qM!. ~A5!

Since f (qM).0, I (u) is maximized when
(21)qMcos(2uqM)51, that is,u5p/2 for all M. j
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