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We study the problem of optimizing the Shannon mutual information for sources of real quantum states, i.e.,
sources for which there is a basis in which all of the states have only real components. We consider in detail
the sourceg),, of M equiprobable quantum higubit) states lying symmetrically around the great circle of real
states on the Bloch sphere and give a variety of explicit optimal strategies. We also consider general real
group-covariant sources for which the group acts irreducibly on the subset of all real states and prove the
existence of a real group-covariant optimal strategy, extending a theorem of [DavigésDavies, |IEEE. Inf.
TheoryIT-24, 596 (1978]. Finally, we propose an optical scheme to implement our optimal strategies, simple
enough to be realized with present technold@1050-2947©9)11005-9

PACS numbsd(s): 03.67—a, 03.65.Bz, 42.79.Sz, 89.86h

[. INTRODUCTION generally has a probabilistic output so the channel matrix is

dependent on the choice of quantum detection strategy. More

There are two principal measures of quality in the quan{precisely, the input letters correspond to a set of positive
tum detection problem for a given finite number of quantumirace class operators of trace C{Iﬁﬁ} on a Hilbert spacé.

states with fixed prior probabilities. One is the minimization A quantum detection strategy is described by a positive
of a specified Bayes cost, and the other is the maximizatiogperator-valued measuf€OVM) on H. A POVM is any

of the Shannon mutual mform.at.mm-S]. The former IS USe- set{ %j} of Hermitian positive operators forming a resolution
ful if one has to reach a decision after performing a single

. of the identity
guantum measurement whereas the latter is more relevant for
the problem of transmitting as much classical information as ~y - . ) A
possible using the given ensemble of states. In this paper we m=mj, m=0 V], Z m=1. ()
will consider the problem of maximizing the Shannon mu- .
tual information for a certain class of quantum ensembles.
In a general communication setting, fet € X} be input

letters and le{¢;} be their prior probabilities. Let us denote
output letters byy; € Y}. Both the Bayes cost and the Shan- P(iliY=Tr( 5.

. 1= ; . . (J||) r(ﬂ-jpl)'
non mutual information are defined in terms of the condi-

tional probabilityP(j|i) of obtaining outpuy; provided that  Thus in the quantum context the optimizationIg¢K:Y) is
the letter sent was; . The former is defined as carried out with respect to the choice of POV} for
fixed ensemblé’z{[)i ;&) (i.e., with fixed letter states; and

The detection operatc?ri corresponds to the output lettgr
and the conditional probabilities are given by

B(X:Y)=2> C;&P(jli) (1)  fixed prior probabilitiest;). The maximum value of(X:Y)
! is called the accessible information of the ensentble
for a Bayes cost matrikC;; ], while the latter is defined as The setP of all POVM's is a convex set anti(X:Y)

enjoys the following fundamental property:

Pyy(i,] ) ~ .

[(X:Y)= E Pyy(i,j )|og%, 2 (CONV): For a fixed ensemblé={p; ; &}, 1(X:Y) is a con-
) X v{] vex function onP.

where Pyy(i,j) [=&P(j|i)] is the joint probability, and A proof of (CONV) is given in theorem 2.7.4 of4]. Let
Py(i) (=&) andPy(j) [==¢&P(jlk)] are the marginal 1(&:.A) denote the mutual information obtained from the
probabilities of the input and output lettecsandy;, respec-  POVM A applied to the ensemblg Then if A is a convex
tively. (Since all the results in this paper are valid for any combination of POVMs4, ,

logarithm base, we shall specify the base only where neces-

sary) In classical information theory, the channel matrix A=pi A+ ppdn,

[P(jli)] is given and fixed, characterizing the noise in the,

channel. In contrast, in a quantum information theoretic conit follows from (CONV) that

text where signal carriers are to be quantum states transmit-

ted without noise, the channel matrix generally becomes a I(E:A)sz, pil(E:A)<=maxX (& A). 4
variable. This is because the act of quantum detection itself [ [
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The Bayes cosB(X:Y) is an affine concave function on  tation about the axis joining the, eigenstates. At the Hil-

the convex setP. Therefore the Bayes cost minimization pet ghace level the operatdr in Eq. (5) provide a projec-
problem is a kind of linear programming problem and is . it tation Gf VM= _| and cf E
expected to have a unique solution. A necessary and suff%el;tg'ﬂary representation dy [e.g.,V"= and ct £q.

cient condition for specifying the optimum solution is known ) . .

[1,2]. On the other hand, the Shannon mutual information This symmetry group df)es. not act wreduub!y on the

1(X:Y) is a nonlinear and convex function 6h The maxi-  Whole state space. Indeed th¢ eigenstates are left invariant

mization of this quantity is a much harder problem and onlyPy the group action(lrreducibility on the whole state space

a necessary condition for the optimum is knoj}. Thus requireAs that the only invariant point is the maximally mixed

the maximization ofl (X:Y) with respect to the detection state3l.) Hence we cannot apply Davies' theord| to

strategy{%j} is a basic and open problem in quantum infor- Provide an optimal strategy fafy . Nevertheless we will

mation theory. prove that the conclusion of Davies’ theorem remains true in
In this problem, the number of outputs is not necessarilyihis case, i.e., that there exists a pure stag such that the

the same as the number of the inputs. The optimum solutiodm-Symmetric POVM

is not necessarily unique either. However, it is known that

there must be at least one optimum solution which corre- 2

sponds to an extreme point of the convex BefThis is due An= M' a(a'k=0,... M—1},

to the convexity of the functiodn(X:Y). Such an extreme

point is a set of rank one elements, which means that %@ch R

has the formk|v){v|, where|v) is a pure state and<« where |a,)=V!ap)

<1. The number of elements, can be bounded bgi<N

=d?, whered is the dimension of the Hilbert spadés of s an optimal strategy fo€y . Furthermore, we will show

which the input state ensembfg;} is made[5]. 1(X:Y) is  that|ay) may be taken to be the state orthogonali#g).

also possibly maximized at some interior points/ods well. The caseM =3 is of particular interest. It is the so-called

In that case the number of outcomes may exaedExplicit  trine ensemble which has been much stud#&d11]. Holevo

examples of optimal solutions have been given for binaryin 1973[9] showed that no von Neumann measurement in

ensembleg6—8] and for the ensemble of four qubit states H, can be an optimal strategy, demonstrating the necessity

with tetrahedral symmetry5]. The latter is a specific ex- of considering more general POVMs in quantum detection

ample of a general result of Davig¢§] characterizing the theory. Since that time it has been conjectured that the strat-

form of an optimal strategy for any symmetrical ensembleegy A5 above is optimal for the trine source. Our results

whose symmetry group acteeducibly on thewhole state  resolve this conjecture affirmatively.

space. The strategyAy,, has M elements. However, as noted
In this paper we will study the accessible information andabove, for ensembles =2 dimensions there is always an

corresponding optimal strategies for an ensenhjeof M optimal strategy with at mos#?=4 elementsiwhich does

qubit states with symmetry groufy, , the group of integers not increase witiM). We will show that the ensemble,

moduloM. Some of our results will also apply to more gen- always have an optimal strategy with at most three elements

eral ensemblesty, may be explicitly described as follows. and explicit strategies of this form will be described for all

Let {(3),(3)} be thez-spin eigenstates and writ¢/o)=(3). M. If M is even, therf,, consists oM /2 pairs of orthogonal

Let states. Le{|£),| )} be any one of these pairs. We will show
that the two-element POVNI| £){&|,| 7){7|} (a regular von
o d s nz Neumann measuremerns always an optimal strategy when
. T . W M M is even. We will also describe further optimglelement
VEGXF( —iyoy|= - - | (5)  POVMs whereK lies between 3 aniyl.
siny cogy

Il. GROUP-THEORETIC APPROACH

Then&), consists of theM states , , , i
We begin by setting up a group-theoretic formalism for

kar symmetric ensembles, leading to a main restleorem 1}
COSV which applies to symmetric ensembles of real states in any
|gn) = V¥ gho) = , k=0,...M-1, (6) dimensiondzz. An es§ential requirement' in many of our
sink—w results will be_ that various states and unitary operators be
M real. The requirement that a state or operator be real has, of

course, no intrinsic physical meaning. When we speak of real
taken with equal prior probabilitie§,=1/M. Note that these states and real operators we will always mean simply that
stateg(in the z-spin basiginvolve onlyreal components. On there exists a basis of the Hilbert space relative to which all
the Bloch sphere they are equally spaced around a gregte required objects simultaneously have real components or
circle C in the x-z plane consisting of all real states. The real matrix elements
antipodal points which have as an equator are the twg, A projective unitary representation of a gro@pis an
eigenstates. Thu§y is clearly symmetrical with respect to assignment of a unitary operatidh, to each member o6
the groupZy, whose generator is represented by/®1 ro-  satisfying
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Uglogzzei(ﬁ(gl’gZ)Uglgz’ (7)
where the phase#(g,,9,) may be chosen arbitrarily. A
finite ensemble of equiprobablggenerally mixed states is
said to be symmetric with respect to the gro@ or
G-covariant, if the following condition is satisfied: there is a

projective unitary representatiquﬂg} of G such that for all
g, 09;303 is in £ wheneverp is in £ We write

g;):UgP

Nt
Ug

8

for the action ofg on the statep. The phasesp(g;,g,) do

not appear in Eq(8) andg1(92(p))=(9192)(p). Note that,
in contrast to Davie$5], we do not require tha parame-
trisesé, i.e., G need not act transitively on the set of states o
E. For exampleg, is Zy-covariant and the action is transi-
tive, but &,y is alsoZ,- and Zy-covariant via nontransitive
actions.

A G-covariant POVMA (for the projective unitary rep-
resentation{Ug}) is a POVM such that AU} is in A

wheneverA is in A. We write

gA=0,AU] 9)

for the action ofg on a POVM elemend. From Eqs(8) and
(9) we see that Tip)=Tr(gA-gp), i.e., the probability of
outcomeA on statep is G-invariant. Hence

Tr(gA-p)=Tr(A-g""p), (10

so that the set of probabilities of ti& shifted outputsyA on

a fixed inputp is obtained as a permutation of the set of

probabilities of the unshifted outpu?t\ acting on suitably
shifted inputs.
Let £ be aG-covariant ensemble with projective unitary

representatio{U,}. We aim to find conditions or{U 4}
which will guarantee the existence ofGazcovariant POVM

A={Ag :g e G} with elements parametrized iy, and hav-

ing group actiorgAh=Agh. Thus ifeis the identity ofG we
have

Ag=U AL, (12)
and we require
M=, Ay=I. (12)
geG

(Later we will take the elements ofl to be rank 1 and
consider the question of wheA is an optimal strategy for

£.) From Eq.(11) we see thaM commutes with all thdﬁg’s:

UM=MU,. (13
Thus if the se{OQ} acts irreducibly on the state spage.,
there is no proper invariant subspac8chur’'s lemma will
guarantee that Eq12) holds. This fact is used by Davi¢S]

to characterize an optimal strategy for aBycovariant en-
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semble whose symmetry group acts irreducibly on the whole
state space. However this condition of full irreducibility on
the whole state space is not necessary for (E8) to hold.

We will use the following more general form of Schur's
lemma.

Lemma 1 Let {Mgy} be any set of nonsingulad by d
matrices over some fiel& which acts irreducibly on the
vector spac&/=FY (i.e., there is no proper subspace mapped
to itself by all theM’s). Suppose thak is any matrix that
commutes with all thevl's:

KMg=MgK. (14)

Then (a) either K=0 or K is nonsingular;(b) if K has a

fnonzero eigenvalug in F, thenK =\1.

Proof (a) Let K(V) denote the image of under the map
K and similarly f0r|\7lg(V). SinceI\A/Ig is nonsingular we have
MQ(V):v. By Eq. (14 we have MK (V) =KMy(V)
=K(V), i.e., K(V) is an invariant subspace. Hence either
K(V)=0 (in which caseK =0) or elseK(V)=V (in which
caseK is nonsingular. (b) If K has eigenvalua in F, then
B=K—\I is singular. AlsoBM,=M 4B for all g. Hence by
(@), B must be zero, ieK=\. H

We will apply this lemma withF=R to obtain useful
results aboutG-covariant ensembles akal states whose
groupG acts irreducibly only on the restricted st of real

stategbut not necessarily irreducibly on the full state space
This is the case for our ensemblég . Let |G| denote the

size of G and letd=Trl be the dimension of the Hilbert
space.

Lemma 2 Suppose tha{CJg} is a projective unitary rep-

resentation ofs such thaIfJg are allreal matrices aanJg}
acts irreducibly oriRY. Let [v) e RY be any real state. Write

9 0gl0) 010}
Gl glv){v|Ug.

Ag=

Then{A,:g e G} is aG-covariant POVM, i.e.3 . cAy=1.

Proof. Let M=S,_cA,. ThenM is a real matrix and
MU,=UgM for all ge G. Also M is a Hermitian positive
matrix (being a sum of projectors with positive coefficignts
so it has a real positive eigenvalae>0. By the previous
lemma,M=\1. Since TrA,=d/|G| for all g, we get T
=d=Trl sor=1. W

Theorem 1Let £ be any ensemble of equiprobable real
states in dimensioml. Suppose thaf is G-covariant with

respect to a projective unitary representat{ch}b} of real
matrices which acts irreducibly oRY. Then there exists a
real pure statdv) such that theG-covariant POVM D

={D4:ge G} defined by
. d. .y
D92@U9|U><U|Ug

is an optimal strategy fof.
Proof. We will work in the basis with respect to which the

states of€ and the matrices*f)g have real entries. Le#d
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={A;, ... A} beanyoptimal POVM for&. We will trans-
mogrify A into the required form while preserving optimal-
ity. First strip off all imaginary parts of the entries of the

matricesA, . Let A,=Re(A,) and A={A,, ... A.}. Then
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will be independent of). The mutual information(&:C) and
I(&:B) is given by[cf. Eq. (2)]
PSC(i !kg)

I(E:C)=;kg Pecli kg)logz5 ey

A is again a POVM and has real symmetric matrices as

elements[To see thafA, is a positive matrix note thah,
positive implies that the complex conjugaﬁé is positive so
A= 3 (Ak+A ) must be positive. Als@A, =1 and] is real
soSA,=1 too] Next note that TA,p=TrAp for any real

statep [since Im@,) is antisymmetri¢ so A remains an
optimal strategy.

In generalA will not have rank 1 elements even.if had

rank 1 elements. Thus decompose edghinto its rank 1
eigenprojectordmultiplied by the corresponding eigenval-

ues which are necessarily real as the eigenvalues/vectors of
any real symmetric matrix are real. Then form the larger

POVM B={B;, ... B} comprising all the scaled rank 1
eigenprojectors above Such a refinement of a POVM cal
never decrease the mutual information Bwith real rank 1
elements is still optimal.

Now look at

N 1 .
Ckg=@gBk for geG and k=1,...m
(15

Note that=,Cs=1 since=B,=1 andgi=T for all g. Let
Cz{ékg} be the corresponding POVM witlG|m elements.
ThusC is G-covariant but the action o is not transitive.
We finally aim to cut downC to a smaller optimal
G-covariant POVM with elements labeled K&

Let I1(&:.A) denote the mutual information obtained from
any POVMA applied to any ensemblg First we show that
[(&:C)=1(&:B) so thatC remains optimal. Let us label the
inputs byi e Z and denote conditional probabilities f6rby
P.(kg|i). Denote the conditional probabilities foB by
Ps(kli) and let ¢ be the constant prior input probability.
Then

, .1 .
Pce(kgli)=Tr Cygpi= @TrgBk'Pi :

According to Eq(10), for each fixedy andk the resulting set
of probabilities labeled bye Z will be just apermutationof
the setPz(Kk|i), rescaled by 1G|. Thus the joint probabili-
ties

. 1 L1 :
Pec(i k@)= EP(kgli) = @§P3(k|l)= @Pm(l K)
and the marginal probabilities fat and B,

Pe(kg) =20 £Pc(kgll)= |G|E§P3(kll) G |Pg<k)

will be independent of, and also

 Pulikg 1 Pes(i K)
2. Pecli kg)log g5 - =g] 2 Pesli Klog g o5

Peg(i, k)
EPp(k) -

On substituting the aboves-invariant expressions into
[(&:C) we readily get (€:C)=1(&:B). (Our argument is ac-
tually an explicit example of the claim in lemma 5 [&].)
HenceC remains optimal.

Finally note that for each, B;/(TrB;) is a real pure state
so, by lemma 2,

|(5:B)=_2k Pes(i k)lo

ng

eG
BRI

is a POVM for eachi. Now (Tré /d)D;={(1/G|)gB; :g
'L G}, soC is a convex combination

-3

=1

Tr
d

Hence, by Eq(4),
I(S:C)sm_axl(E:Di).

SinceC was optimal it follows that at least one of t#g’s is
optimal. This gives an optimab-covariant POVM with real
rank 1 elements, parametrized b§, completing the
proof. W

Ill. OPTIMAL STRATEGIES FOR &y

We now return to th&Zy,-covariant ensembléy, in two
dimensions, comprising the states

kar

oSy
1 k:

Ckw
sy

lgh) =

with equal prior probabilities M. According to theorem 1,
there must exist an optimaly-covariant POVM A

={Aq, ... Ay_1} with M real rank 1 elements. The ele-
ments will have the formA; = |a;)(a;| with
cos( 6+ —
|ay)=Vi|ag)= \f . j=0,...M—1,
sin| 6+ V
(16)

and V is given in Eq.(5). The conditional probabilities
p(j|k) =Ka| ) |* may be readily computed and after some
rearrangement we obtain the mutual informati¢d) explic-
itly as
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FIG. 1. Shannon mutual informatiol(#) in nats versus the
optimization parametef for M=2, 3, 4, and 5.

1+ C05<
2k

1o za- 2]

In this section, the base of the logarithm is takeread~or
this base the numerical value of E@.7) is the amount of
information in nats(natural unity rather than bitgbinary
digits).] From the symmetry,(6) is a periodic function with
period /M. Figure 1 shows numerical plots bf6) for M
=2, 3, 4, and 5 and illustrates the following basic property

Lemma 3 For eachM, 1(#) has a global maximum at
0=ml2.

The proof of this lemma is given in the Appendix.

Hence in general an optimal strategy ), consists of
choosing a real rank 1 POVM with elemen@s( lying in
directions orthogonal to the input statpg). This POVM
will be denoted by.A,, . The outputA, signifies with cer-
tainty that the input was ndt/,) but leaves a residual un-
certainty in the remaining signal states.

For a given ensembl€ the optimal strategy is not unique

M-1

1
() =37 2

k=0

2k

26—

XIn

17)
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so that they add up th The scaling factor id1/k=5. Thus

Bo={5A,5A5,5A is a POVM. Nowi is alwaysG invari-

ant so we can apply the group elementsl, 2, 3, and 4 of

Z45to B, to obtain POVMs,
B=1By={5A,5A 554,10 for 1=0,1,2,3,4.

Note that thel5’s have elements parametrized by ttesets

of Z; in Z;5. Also by symmetry of the construction,

I (&15:8)) is independent of. FurthermoreA;s is a uniform
convex combination of thé,’s,

4

1
A= E §B| )
=0

so by Eq.(4),

I(&15: As)<max|(&5:8).
[

Since A5 was optimal we see thd, is optimal for eacH.
This gives the result of lemma 4 and also identifies the di-
rections of thek element POVM as being any chosen sym-
metrical set ofk directions orthogonal to corresponding
|

An immediate special case is the following.

Corollary. If M is even, therty, is made up oM/2 pairs
of orthogonal states. The von Neumann measurement de-
fined by any one of these orthogonal pairs is an optimal
strategy for§,. N

Thus if M is composite we can significantly reduce the
number of elements in our optimal strategy, butlifs prime
then this number remains large. In the next section we give a
different approach to reducing the number of elements,
showing that just three elements always suffice for any en-

and in practice it may be of interest to find optimal POVMs semble of real qubit states.

with the minimum number of elements. Tkecovariant op-

timal POVM above ha$/ elements and we note here some

IV. OPTIMAL POVMs WITH THREE ELEMENTS

ways of reducing this number using the group theoretic ap-

proach. In the next section, with different methods, we will

Davies[5] has shown that any ensembledrdimensions

show that three elements always suffice for any real qubibas an optimal strategy witN elements wherel<N<d>.

source, and develop corresponding strategies fo€ifis.

Lemma 4 Suppose thak#1 divides M exactly. Then
there is aZ,-covariant optimal POVM for€y, with k real
rank 1 elements.

Proof. Sincek dividesM, Z,, has a subgroup isomorphic
to Z, and so€y, is Z,-covariant. Sincd&# 1, the action oZ,
contains a nontrivial rotation so it acts irreducibly &3.
Thus theorem 1 immediately gives the required resull.

Remark Lemma 4 may also be obtained by a convexity

argument as follows. We will illustrate the idea with the
specific example oM =15 andk=3. The general case is a
straightforward generalizationZ,;5={0,1, . ..,14 has the
subgroup {0,5,1G isomorphic to Z;. Let A;js
={Ag,A;, ... AL be the optimal strategy given by theo-
rem 1 and lemma 3, with the direction Af( being orthogo-
nal to thekth state of€,5. According to lemma 2, the three

directions 0,5,10 corresponding to the subgroup may be used

to define a POVM. We just need to rescélg,As, andA;,

This is directly based ofCONV), that is,| (X:Y) is a con-
vex function on the convex s@ of all POVMs. Because of
this, [(X:Y) will always take its maximum value at an ex-
treme point of the convex s& (and also possibly at some
interior points as wejl Each extreme point dP consists of
N rank 1 elements bounded lo=N<d?. If we restrict at-
tention to onlyreal ensembles, then this upper bound lén
can be improved as followd 2].

Lemma 5 Let £ be any ensemble of real statesdrdi-
mensions. Then the Shannon mutual information can be
maximized by a POVM withN elements whered<N
=sd(d+1)/2.

Proof. The proof proceeds along the same lines as the
original one in Ref[5] with a slight replacement. For any

POVM {;} write ;= u;dm;, where Trm;j=1, so

; pjm=1ld, ; pi=1. (18)
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Let X be the(compact convexset of all positive Hermitian in the z-spin basis. Then the mutual information 6y, is

operators with trace tsuch as ther;’s). Sincel(£:A) isa  given by

convex function on the sé® of all POVMs, its maximum is

attained at an extreme point & The essential point of the )\g

original proof in Ref[5] is that every extreme point 6% has 1(Em:A)= 2 - 1(6a), (22)
D +1 rank 1 elements whei# is the real dimension of. In
the case of general ensembl@s-d?— 1. In our case of real
ensembles the members &fand P can be restricted to real
matrices soY comprises real symmetric trace 1 matrices an
D=d(d+1)/2—1. Hence the extreme points ¢ have
=<d(d+1)/2 elements. &

Thus for the real ensembl&y, with d=2, POVMs with P(alk)=\2(y |a>|2:—a
three real elements suffice to provide an optimal strategy. To ali Yk 2
describe such a POVM, we first introduce the three (aal
normalized vectors

wherel (6) is the function given in Eq(17).
d Proof. The statesy,) of &y given in Eq.(6) lead to the

conditional probabilities
2k
1+co 29a—v .

Substituting these into E¢2) readily yields the formula Eq.
(22) after a little algebra. H

2

1

|w0>zc( , (199 Theorem 2The Shannon mutual information &%, (for
0 M>2) is maximized by the POVNW={&* =|w¥ )(w}|:]
=0,1,2, where
CoSep,
|wi)=a| . : (19b
SiNg, . 0 )
= , 23
coses 87| = (23
lwg)=b| _. , (199
Sln(Pb
C[ma
where the first vector lies along the first basis direction and —sin o
the remaining two are in a general position. Imposing the |lwi)=a , (23b)
condition 3| w;){w;| =T, we get co{%)
c=+2—a’—b? (209
cos [ (nw>
sin —
P & B— (20b) M
SiNg, SiN(@,— @p) lwz)=b N ' (239
o
cos{—)
cos M
o___ "% (200
singy, Si( @~ @a)
and
and
0<a2+b?<2. (209 COS(“_”)
M
Once the angleg, and ¢, have been choseam, b, andc a’= o () m =0, (249
are fixed. Finally we rotate these vectors around ytreis sm( V) sin( T)
through an angle to make the general POVM with three
real rank 1 elements:
A mar
j(6)=]w;(6))w;(0)], (213 ™M
b= nw (m+n)w\ (240
lwj(0))=V(0)|w;), V(O=exg—ibay). (21b sin(v) sin T)
This gives the most general POVibo(6), »1(6),@,(6)} in o o
terms of three independent parameters ¢,, andé. Herem andn are any positive integers satisfying
We are now in a position to maximize the Shannon mu-
tual information of&), with (at mos} three-element POVMs. 0=<a’+b’<2. (240

We first give a useful preliminary lemma.
Lemma 6Let A={\3|a)(al} be any POVM with rank 1 |5 some cases one af b, andy2—a2—b? is zero and the

elements labeled bg, where 0<\, =<1 is real and POVM has only two elements.
cos0 I?roof. AFor tpe three-element POVMAW( 6, ¢, ,¢p)
la :( _ a) ={wg(0),w1(6),w,(6)} with rank 1 elements, lemma 6 im-
Sinf, mediately gives
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oy po Iy,
! ey . 1o
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1, 1 Iy

Ipy

10y | p"5>

FIG. 2. Optimal POVM directiongthick solid lineg given by FIG. 3. Two inequivalent optimal POVMs in the case Mf

theorem 2 in the case &l =5. The input states are represented as_ 7 The povM directions and input states are represented by thick

k . .
(=1)"n) by the dashed lines whose lengths correspond to a unif\y 4ashed lines, respectively, according to the conventions of Fig.
state vector. The lengths of the thick solid lines are scaled according

to the normalization factors of the corresponding POVM elements.

responds tca?=b?=1/2 sirf(27/7)] where the angle be-

2 2 2
[(Er 2 W) = 1____)| 0+ —1(6+ tween the two measurement vectors directed downward is
(W) 2 (0)+ 5 1(0%ea) 2m/7 (the left figure, and the other corresponds #8=b?
b2 =1/ 2 sirf(3/7)] where the angle between the two mea-
+ 7|(g+(pb)_ surement vectors directed downward ig/3 (the right fig-
ure).

Lemma 6 and theorem 2 may be used to provide a further

Hencel (& : W) <max, 1(6). By lemma 3 this maximum is variety of optimalK-element POVMs forfy,, whereK is
[ (7/2), the accessible information 6&f, . Furthermore|(6) between 3 andM.
is periodic in @ with period w/M. Hence we can achieve Lemma 7 Let A be any POVM as described in lemma 6
[(En W) =1(7/2) by settingd=w/2 and choosingp, and  for which all anglesd, have the form
¢y, o be any integer multiples af/M. This gives Eqs(23).
Equations(24) are just the condition for{&)f} to be a T T _ _
POVM. H 9a=5 + kaM’ where k, is aninteger. (25

From this theorem we can develop various kinds of opti-
mal strategies. We noted previously in corollary 1 thalif ) )
is even, then there exists an optimal strategy based on a paif'€N-A is an optimal strategy fofy .
of orthogonal directions. This also follows from theorem 2:  Proof Sincel(6) is periodic V;”th periodm/M, we have
if M=4L—2 with L=1,2, ..., then we may taken=2L I(ea)_zl(qug) for all a. Also E)\a_=2 so_that !Eq.(22) im-
—1 giving a=0 and a two-element POVM based on the mediately gived (&y :A)=I(7r/2) i.e.,, Ais optimal. H
directions £) and §). If M=4L with L=1,2, ..., we may Now note the following facts.
take m=n=L giving yV2—a’—b?=0 and an optimal (@ Al PO\{MSf in theorem 2 Sa.t'Sf}’ Eq25).
POVM based on the directions;t) and ¢). In both cases _ (b) If A={A;} is any POVM satisfying Eq25), then any
the pair of directions coincides with an orthogonal pair ofZm-shifted versionA, of A, defined for eacte Zy, by
states of€y, .

If M is odd, at least t_hree outputs are required. In the case A={V'AV™"
of M =3, we get an optimum strategy with three elements of
Tt o T S 1 U248 1 2 POVM i satsying E25, (T angles are st
more interesting. In both cases, the optimum strategies cor?—h"cte‘jfbyI mIM). . i f s
sist of the three elements with the two different nor(ims 25(C) r|1 A, Ay s anyb!st 0 P%V“rfj,sat'.flfymg Ea.
contrast to theZy,-covariant strategies of theorem. 1A so- (25), then any convex combination of thé;'s wi satisfy
lution for M =5 is shown in Fig. 2. The POVM elements are Eq. (29. (In forming convex combmanons, we na_ltu_rally
represented by the thick solid lines and the dashed lines re _malgamat_e PQVM elements from differef’s that lie in

he same directioi.

resent the input statefNote that, for ease of presentation, o .
P SN P Hence any convex combination of amd,-shifted ver-

these dashed lines representing the states of . : ;
£,—symmetrically distributed around a whole circle— S°"S of the POVMs in theorem 2 will be an optimal strat-

correspond to the vectors—(l)kl Yn) rather than the original egy. For example,, Igt us consider a convex combma:uon be-
vectors in Eq.(6)]. According to choices of parameters tween two POVM's in the case &l =5. The following{w;}
(m,n) in theorem 2, there can be several configurationdS one of the optimum detection strategies from theorem 2:

of the POVM directions. But by the symmetry ét they

all lie in the same position relative to the ensemble as a wo=(1-a%(—a,), (263
whole, characterized bg?=b?=1/ 2 sirf(2/5)] as shown
in Fig. 2.

Bk 2
Figure 3 shows the case &1 =7. There are now two ~

. . 2 = , 26h)
inequivalent classes of POVM element directions. One cor- “1 (260

~ (4. 47\ .
| —sin 5 oy,—CO L

2
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: (260 . oo
The optimal POVMsA,, andW given in theorems 1 and

~ . [6m). 67\ .
I—sm? gy—CO ? [P
) ) o 2 may be of interest from the viewpoint of putting quantum
where a®=1/[2 SA'nzA(Zf’/S)]- The convex combination be- getection theory to the test. None of the POVMs for attaining
tween{w;} and{V2w;V'?} forms the resolution of the iden- maximum mutual information have been demonstrated by

tity experiment yet. So far, only two kinds of optimal quantum
2 2 detection scenarios have been confirmed experimentally.
(1-M) o;+2 > Vo U2=1 (1=0), (27 One is the Helstrom bound as the minimaverageerror
j=0 k=0 probability [2], and the other is the Ivanovic-Dieks-Peres

bound which gives the maximum probability for error-free

and we define detection, sometimes referred to as the unambiguous mea-

o= (1—N) g+ A\V2a,V12 (289 suremen{13-16. (A concise review of both criteria can be
found in Ref.[17].) The former scenario was first demon-
f1=(1=N) g+ A\ V2o 12 (28b) strated experimentally by Barnett and RjiES]. The latter

has been demonstrated in the laboratory by Huteteal.
[19]. Both of these are concerned with discrimination be-
tween binary nonorthogonal states, in which case the optimal
. A detection strategy consists of a projection onto the orthogo-
p3=AV2w, V12, (280 nal pair of measurement vectors, that is, von Neumann mea-
A aoa A aoa A L surement. In our case ofy andW for &, with M odd, we
(Note that“’oavz“’zvtz and w;V2woV'2) This gives a ¢ dealing with essentiallyjonorthogonal measurement
four-element POVM{u;} which maximizes the Shannon yectors in+,, which is called ageneralizedmeasurement.
mutual information for&s. No von Neumann measurement can be an optimal strategy
The strategies in theorem 2 are not generallyfor £, with M odd. This case is of particular interest here. It
Zy-covariant but they correspond to extreme point®00n s already well known that this kind of generalized measure-
the other hand, th&y-covariant strategy of theorem 1 is ment can be converted into a standard von Neumann mea-
generally not an extreme point dP. The Zy-covariant  surementin a larger Hilbert space by introducing an ancillary
POVM of theorem 1 can be related to the asymmetricakystem. This so-called Naimark extension ensures that any
three-element POVM of theorem 2 as follows. Note first thatPOVM can be physically implemented in princid2,3].

pa=(1-N)wy, (289

if W:{z:)j} is any optimal POVM, then so ignW In this section we propose an optical scheme to demon-
:{(/mg,jf/fm} for anyme Z,, . Indeed, strate the optimal POVMs specified by for &, made of

single-mode photon polarization states. As seen in the pre-

[(Ey W) =1(Ey :mW) (290  ceding sectionyV has three outcomes at most and suffices to

provide an optimal strategy for alfy,’s. For M odd, it is
since the set of states &, is invariant under the action of always possible to find the optimal strategy witi=n, that
Zy . Given any one of thél(=2,3)-element POVM$w}} s, a’=b%=1/2 sif(mm/M)] in theorem 2 ifmis taken as
defined in theorem 2, one can consider the resolution of th1/4<m<M/2. We consider the implementation of this par-
identity ticular detection strategy. The measurement vectors can be
represented by

1 M—-1 N-1
i > > Umervm=i. (30) y
m=0 j=0 |w5)=—sing [ 1), (319

But the MN elements{V™w* V™ are proportional to each

other in groups oN and these groups may each naturally be . Y

summed and assigned a single element. This leads to the |w1>:_? |T>+7 003§|l>= (31b
covariantM-element POVM which is jus#,, of theorem 1 2 2

and lemma 3. In this sensdy, may be thought of as a

convex combination |w§>:i I1y+ 1 cos—yu) (319
. RN I
Au= > — kW,
keZy M where
whereW is any one of the POVMs in theorem 2. If we know
that Ay, is optimal, then Egqs29) and(4) will imply that W co%zcot%, singz— \ /1—cot2%, (32)

is optimal too. This provides an alternative proof of theorem

2 if we already know theorem 1 and lemma 3. On the other

hand, if conversely we are given the result of theorem 2and|) and||) are orthonormal bases of polarization. The
(which uses lemma)3then the accessible information & first step is to make orthogonal measurement vectors by em-
must bel(7/2) so Ay must be optimalsincel(&y:Ay)  bedding {|wg),|w]),|w3)} into a three- or higher-
=1(7/2) by definition ofl (8) and.Ay]. dimensional Hilbert space. One possible physical prescrip-
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tion is to make an optical circuit with two input ports, say,
“a” and “b.” The signal state is guided into the porg;
while the port ‘b” is initialized as the vacuum state. We can
then consider the four-dimensional Hilbert space spanned by Port "a"

the orthonormal basif{E;)},

|Eo)=[1)al0)p.
|E0)=[1)al0)s.
|E2)=1[0)a| s
|Es)=0)al L)

(339
(33b

(330

(33d

where |0) is the vacuum state and the subscriptand b

indicate the port ‘@” and “b,” respectively. A natural or-

thogonalization is

|QO>E|w3>a|0>b+co%|0>a”>bi

|Q1)=|w])al0 - '“Z|0 |
1= w,f a +— a )
> > >b \/ESI 2 > T>b

1 vy
|Q2)=|w3)4|0)p+ — S|n5|0>a|T>b!

V2
|Q3)=10)4l | )b,

or equivalently,

[20)=—5In7 | 1}2]0)u-+ 0S5 [0)al 1),

(343

(34b

(340

(340

(353

1 4 Y
|Ql>E_ ( _|T>a|0>b+0035|l>a|0>b+5|n£|0>a|T>b)i

V2

Q)=

d

|Q3)=10)4l | )p -

It is easy to check thaf|Qo),|Q;),|Q,)} give the same

(35b)

Y Y
11)al0)p+ COSE |1)al0)p+ Sin§|0>a|T>b) ,

(350
(350

channel matrix as{|wg),|wl),|w3)}, that is, (wj|¢)
=(Q;|(|#1)al0)) (j=0,1,2). The second step is to decom- beam splitters, polarization rotators, and half-wave plates

pose the von Neumann measuremgli};)} into a unitary

62171 PD1 \E)

[
lVk)\ Halfwave
plate s

a IE))
PD2

IE5)

Port llb" / P I »
Polarization™ olarizing
0) / rotator beam splitter

|ES)

FIG. 4. Optical circuit implementingV={o% ,»* ,»%}. It con-
sists of the unitary transformatidn,U, followed by the measure-
ment{|E;)}. U,0, is effected by four half-wave plates, two polar-
izing beam splitters, and two polarization rotators. The
measuremenf|E;)} is made by photon counting at the four output
ports.

“ 2
U= y y , (37)
0 -—si 0
siny  cos;
0 0 0 1
1 1 0 0
V2 2
N 1 1
U= —— — 0 0, (38
V2 2
0 0 1
0 0

in the{|Ey),|E1),|E>),|E3)} -basis representation. Equations
(36) mean that in the detector, the signal state),|0)y, is

first transformed byJ,U,, and is then measured in the basis
{|E;)} which corresponds to the simultaneous measurement
with respect tavhich pathandwhich polarization The final
step is to translate 201 into a practical circuit. In fact, this
unitary transformation can be effected by the simple circuit
consisting of passive linear optical devices such as polarizing

[20]. The circuit is shown in Fig. 4The bases$() and||)

transfqrmation fo[lowed by.a measurement in the basisre assumed to be linearly polarized stat@he U,0, part
{IE;)} in order to find a practical detector structure. We mayconsists of four half-wave plates, two polarizing beam split-

write
<QO|E<E2|0201,
<91|E<E1|0201’
<QZ|E<E0|0201,

(Q3=(E;5|0,0,,

whereU, andU, are given by the matrices

(363
(36b)
(360
(369

ters, and two polarization rotators. Each half-wave plate is
oriented at 45° to the horizontal so that each component of
polarization is rotated to 90°. The polarization rotator repre-
sented by the circle with the rotation angleperforms

Y Y
) cos;  siny
Ry(y)= : (39
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The polarizing beam splitter represented by the square func- @ Mt
tions as a perfect mirror only fof polarization (fast axis P=1- i 2 P(Kk|K). (40)
polarization. Light polarized along polarization(slow axis k=0
polarization passes straight through it perfectly. The mea-

surement|E;)} is made by photon counting at the four out- The Peoptimal strategy is{m={2/M|i)(yil-ke Zy},
put ports. Note that only a single photon count at one of thdhat is, the POVM based on the state directions themselves.

three ports is expected and the outcoffig) is never ex- | S IS true aiso for the above mixed state ensemfibe
pected. This structure is valid for amy (the number of the Necessary and sufficient conditions f8, optimality, as

signalg if one tunes the rotation anglein ﬁy(y) according giye_n _in [,1'2]1 are easily .verifie.d fort ;) Generglly Pe.
to the value oM [see Eq(32)]. The circuit is simple enough minimization is an essentially different type of optimization

to be implemented with present technology. problem froml (X:Y) maximization. . _
Within the confines of our formalism, various interesting

issues remain unresolved. For example we would like to
VI. CONCLUDING REMARKS know an optimal strategy for the redl,-covariant source
‘'double-&,,” in four dimensions comprising the 2-qubit sig-

We have considered optimal strategies for symmetrical | e Zo UMY In thi h
sources of real quantum states, treating in detail the sourcé¥ stated| )| ) ke Zy ; }- In this case the symmetry

&, of M real qubit states placed symmetrically in thez groupZy (Jjoes not act irred'ucibly even on the subset of all
plane around the Bloch sphere. Davi& has provided a €@l 2-qubit states. Interesting properties of doufjenave
general theorem characterizing an optimal strategy for an(feen considered iri 1] from the viewpoint of coding gain of
G-covariant source whose group acts irreducibly on thdransmittable information. .

whole state space. The symmetry grafip of &, does not It is also a remaining difficult problem to optimize a quan-

act irreducibly on that state space so Davies's theorem carfdM channel over both thepriori probability distribution of
not be directly applied. However, we proved an extension ofignalsandthe detection strategy for a fixed set of quantum

this theorem which applies tG-covariant sources of real states. The solution is known only for the binary pure state
states for which the group acts irreducibly on the subset ofhannel-

real stategas is the case fafy,). This led to aZy,-covariant
optimal strategyAy for &y . ACKNOWLEDGMENTS
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Our results have added to the relatively small number of
quantum sources for which optimal strategies are explicitly
known. They may be extended in various straightforward Since| cos(9—2kn/M)|<1, 1(#6) can be expanded by us-
ways (which we have omitted for clarity of presentatjon ing the formula
For example, the optimal strategief, and W for & re-
mains optimal for theM-state source

APPENDIX: PROOF OF THE LEMMA 3

©

-n"

1+x)In(1+x)=x+ X", |x]<1. (Al
1 1 (1IN =x+ 2 (o=ex”, X< (A1)
(1—6)|¢k><¢k|+6§|23kEzMJM , We get
M-1
where each pure signal haAS been corrupted by noise given by |(0):M 2 cos( 20— VW)
the maximally mixed statél,. This mixed state ensemble is k=0
clearly alsoG-covariant and the process of deriving the op- (=1 oK
timal strategy for this ensemble is quite the same as in the +> — cod| 20— _77)
pure state caseeE0) but just multiplying the cosine terms n=2 N(n—1) M
in Eq. (17) by (1—€). Then the same strategy remains opti- w N M1
mal for the G-covariant mixed state ensemble although the _ i 2 (-1 2 coé‘(za— 2k
accessible information decreases witlas expected. M =2 n(n—1) =0 M’

It is perhaps worth briefly contrasting our results of maxi-
mizing the mutual information with the problem of minimiz- sinceE{l";olcos(ZH—2k7r/M)=0. Next we separate out the
ing the average error probability. The latter is definedfgr  even and odd parts of the series and replace powers of co-
and anyM-element POVM by sines by multiple angle cosines to get
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14 (o> "Gt Kk “ (—1)2 1(2n
0= 2 InEn=1) & 5 (20_7) (6)= 2, 2n(2n—1)22”_1{§< n)
1 —1)2n+1 M1 2k nl = (2n
+Mn§:l((2n+ﬁ kz_:o 0052“”(20— Ww) +|=20 qzo( | )005(29(1'\/')52n2|,q|v|

oo (_1)2n M-1 1 1 2n * (_1)2n+1
Z 2n(2n—1) 2 22“-1{ ( )

2\ n T & 2n+1)2n2®

o (2 2k S (2041
+ ( n) 3{2n 2|)( 0——W)H x| > > cog260M) 820+ 1-21 qu
=0 M =0 4=0

e ( 1)2n+1 M-1 1 ” 1 (zn)

nZl (2n+1)2n 2 22 Z 4 2n(2n—1)2%"

n 2 1 o0

x4 " co{(2n+1—2l)<20— 2|\k/|_77” +qZO f(qM)(—1)IMcog26qM), (A4)

=0 =

(A2)  where

Then recall that

lecos(l_gk_W)_[M for LIM=qg (intege) f(qM):Zi

2l+gM
|
2l+gM)(2l+qM—1)27FaM-1

=) M ] |0 for L/M#integer.
(A3) X (62n-21,gmT F2n+1-21,gm)- (A5)
Applying this to Eq.(A2) with L=2n—-2] andL=2n+1  Since f(qgM)>0, I(#) is maximized when
—21 in the even and odd series, we get (—1)9Mcos(20gM) =1, that is,#= /2 for all M. W
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